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ON LOCALIZATION IN KRONECKER’S

DIOPHANTINE THEOREM

Michel Weber

ABSTRACT. Using a probabilistic approach, we extend for general ℚ-linearly

independent sequences a result of Turán concerning the sequence (log pℓ), pℓ being
the ℓ-th prime. For instance let �1, �2, . . . be linearly independent over ℚ. We
prove that there exists a constant C0 such that for any positive integers N and

!, if T >
(

4!
C0

√

log N!
C0

)N
/Ξ, where

Ξ = min
uk integers

∣uk∣≤6! log (N!/C0)

∣u1�1+...+uN�N ∣∕=0

∣

∣

∣

∣

∑

1≤k≤N

�kuk

∣

∣

∣

∣

then to any reals d, �1, . . . , �N , corresponds a real t ∈ [d, d + T ] such that

supNj=1
t�j − �j ≤ 1/!.

Communicated by Oto Strauch

1. Introduction and main result

The well-known theorem of Kronecker on Diophantine approximation asserts
that if �1, �2, . . . , �N are linearly independent over ℚ, then for any given real
numbers �1, �2, . . . , �N and any " > 0, there exists a real number t such that

N
sup
j=1

t�j − �j ≤ ", (1)

where x denotes the distance of x to ℤ, i.e. x = min�∈ℤ ∣x− �∣.
A quantitative form of Kronecker’s theorem was given by Bacon [2], who

proved that if �1, �2, . . . , �N are reals numbers satisfying for some M ≥ 1
{

u1�1 + . . .+ uN�N = 0

∣u1∣+ . . .+ ∣uN ∣ ≤ M, uk integers
=⇒ u1 = u2 = . . . = uN = 0, (2)

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11J13, 11K60.
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then for any real numbers �1, �2, . . . , �N , there exists a real number t such that

N
sup
j=1

t�j − �j ≤ c(N)

M
, c(N) =

1

2
(N − 1)3/2

(

125

48

)(N3−N)/12

. (3)

Recently Chen [3] considerably improved this result, showing that there exists
a real number t such that

N
∑

n=1

t�n − �n
2 ≤ �2

16

N

(M + 1)2
. (4)

He also considered the case when �1, �2, . . . �N and �1, �2, . . . , �N are real num-
bers such that for some M ≥ 1
{

u1�1 + . . .+ uN�N is an integer

∣u1∣+ . . .+ ∣uN ∣ ≤ M, uk integers
=⇒ u1�1+. . .+uN�N is an integer. (5)

No indication is however given on the range of t, and in [3] it was claimed
that no estimate for t exists in general. We refer to [11] (see also [10]) for more
information about this important facet of Kronecker’s theorem. The object of
this work is to provide a simple estimate for t.Theorem 1. There exists a constant C0 such that for any positive integers N ,
!, if �1, �2, . . . , �N are reals satisfying

⎧

⎨

⎩

u1�1 + . . .+ uN�N = 0

max
1≤ℓ≤N

∣uℓ∣ ≤ 6! log
N!

C0
, uk integers

=⇒ u1 = u2 = . . . = uN = 0, (6)

if T > 3
�Ξ

(

2
√
3!

C0

√

log N!
C0

)N

where

Ξ = Ξ(N,!) := min
uk integers

∣uk∣≤6! log (N!/C0)

∣u1�1+...+uN�N ∣∕=0

∣

∣

∣

∣

∑

1≤k≤N

�kuk

∣

∣

∣

∣

, (7)

then to any reals d, �1, . . . , �N corresponds a real t ∈ [d, d+ T ] such that

N
sup
j=1

t�j − �j ≤ 1

!
. (8)

When �1, �2, . . . , �N are linearly independent over ℚ, condition (6) is trivially
satisfied, and so the theorem applies. In the case �ℓ = log pℓ, pℓ being the ℓ-
th prime, ℓ = 1, . . . , N , Turán ([11], Lemma p.313) proved that the conclusion

above is satisfied with T = e17!N log2 N if N is large enough, and 4 ≤ ! ≤ N . It
is possible to estimate Ξ from below.
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ON LOCALIZATION IN KRONECKER’S DIOPHANTINE THEOREM

As pj ∼ j log j, we have
∏N

ℓ=1 pℓ ≤ e(1+o(1))N logN . Further, for a > b ≥ 1
integers, log(a/b) = log(1 + (a− b)/b) ≥ 1/(2b). Thus for N large

∣

∣ℓ1 log p1 + . . .+ ℓN log pN
∣

∣ =

∣

∣

∣

∣

log

N
∏

n=1

pℓnn

∣

∣

∣

∣

≥ 1

2
∏N

n=1 p
∣ℓn∣
n

≥ e−max(∣ℓn∣)(1+o(1))N logN . (9)

Let 
 = (2 log 2)−1. It follows from Remark 3 that

Ξ ≥ e−(
+o(1))N!(logN!) logN . (10)

From this and Theorem 1, we deduce the slightly better estimate:

Given any " > 0, for all N large enough, say N ≥ N("), and any ! positive
integer, one can take

T > e(
+")!N(logN!) logN . (11)

By considering particular sequences of large prime numbers, it can be however
shown, that estimate (10) of Ξ is far from being optimal in general. Let indeed
q be some positive integer such that max(∣ℓn∣) ≤ q. Now let Q be some large
integer. Recall there exists a real 1/2 < � < 1 such that between n and n+ n�,

n is any integer, there exists a prime P . Applying this for n = pQj , provides a

prime Pj between pQj and pQj (1 + p
−(1−�)Q
j ). By arguing as for getting (9), we

obtain
∣

∣

∣

∣

N
∑

j=1

ℓj logPj

∣

∣

∣

∣

≥ 1

2
∏N

n=1 P
∣ℓn∣
n

≥ 1

2
∏N

n=1 p
Q∣ℓn∣
n

≥ e−(1+o(1))QqN logN . (12)

But Q log pj < logPj ≤ Q log pj + log(1 + p
−(1−�)Q
j ) ≤ Q log pj + p

−(1−�)Q
j .

Thus, for each j ≤ N

∣ logPj −Q log pj ∣ ≤ p
−(1−�)Q
j .

Herefrom
∣

∣

∣

∣

N
∑

j=1

ℓj(logPj −Q log pj)

∣

∣

∣

∣

≤ q

N
∑

j=1

p
−(1−�)Q
j ≤ qNp

−(1−�)Q
1 .

Hence
∣

∣

∣

∣

N
∑

j=1

ℓj logPj

∣

∣

∣

∣

≥ Q

2
e−(1+o(1))qN logN − qNp

−(1−�)Q
1 .
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When Q ≫ qN logN , this implies
∣

∣

∣

∣

N
∑

j=1

ℓj logPj

∣

∣

∣

∣

≥ Q

3
e−(1+o(1))qN logN , (13)

which is considerably better than (11).

The proof of Theorem 1 is inspired from Turán’s proof of the aforementionned
particular case. But we also introduced an important probability structure al-
lowing us to tackle the general case. Let us make some further remarks. By The-

orem 1, we can take T =
(

4!
C0

√

log N!
C0

)N
/Ξ. Then !

C0

√

log N!
C0

= (TΞ)1/N/4.

Let w = !/C0, Θ = (TΞ)1/N/4. As w
√
logNw = Θ, we get

Θ√
logNΘ

=
w
√
logNw

√

logN(w
√
logw)

≤ w =
!

C0
.

Since by (8) , to any reals d, �1, . . . , �N , corresponds a real t ∈ [d, d + T ] such
that supN

j=1 t�j − �j ≤ 1/!, we are free to choose d = T/2. Then

N
sup
j=1

t�j − �j ≤ 1

!
≤

√
logNΘ

C0Θ
=

√

logN(TΞ)1/N/4

C0(TΞ)1/N/4
≤ 4

√

log tN(Ξ)1/N

C0(tΞ)1/N
,

or
(tΞ)1/N

√

log tN(Ξ)1/N
N
sup
j=1

t�j − �j ≤ 4

C0
.

And this holds for infinitely many t. We deduce

lim inf
t→∞

t1/N√
log t

⋅ N
sup
j=1

t�j − �j < ∞. (14)

Finally, applications of Theorem 1 to supremums of Dirichlet polynomials and
more general polynomials are given at the end of Section 3.

2. Some probabilistic preliminaries

Let e(x) = e2�ix. Let m be a positive integer. Let (Ω,A,P) be a probability
space, and let X be a discrete random variable with law defined by:

P{X = n} =

{

m−∣n∣
m2 if 0 ≤ ∣n∣ < m,

0 if ∣n∣ ≥ m.
(15)
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ON LOCALIZATION IN KRONECKER’S DIOPHANTINE THEOREM

Then EX = 0, �2 := EX2 = (m2 − 1)/6, and the characteristic function
'X(t) = E e(tX) satisfies

'X(t) =
∑

0≤∣n∣<m

P{X = n}e(tn) = 1

m2

∑

0≤∣n∣<m

(m− ∣n∣)e(tn)

= m−2 ⋅ ∣Am(e(t))∣2,
where Am(z) = 1 + z + . . .+ zm−1. Indeed we have

∣Am(z)∣2 =

m−1
∑

j=0

m−1
∑

ℓ=0

zj−ℓ =

m−1
∑

n=−m+1

zn#{0 ≤ j, ℓ < m : j − ℓ = n}

=
∑

0≤∣n∣<m

(

m− ∣n∣)zn.Remark 2. We have 'X(t) = (2�/m)Fm(2�t), where Fm is the Fejér kernel

Fm(u) =
1

2m�

( sinmu/2

sinu/2

)2

=
1

m

m−1
∑

k=0

Dk(u), Dm(u) =
1

2�

∑

∣k∣≤m

e−iku,

Dm being the Dirichlet kernel.

Now let X1, . . . , Xk be independent copies of X. Put Sk = X1 + . . . + Xk,
and consider its characteristic function 'Sk

(t) = E e(tSk). Basic properties of
independent random variables imply

'Sk
(t) = 'k

X(t) =
∑

0≤∣�∣≤(m−1)k

P{Sk = �}e(t�) = m−2k ⋅ ∣Am(e(t))∣2k. (16)

By the local limit theorem [9] p.187

sup
�

∣

∣

∣

∣

�
√
kP{Sk = �} − 1√

2�
e−

�2

2�2k

∣

∣

∣

∣

= o(1) k → ∞.

Thereby

P{Sk = �} =
1

√

�k(m2 − 1)/3
e
− 3�2

(m2−1)k + o(1)
1

√

k(m2 − 1)/6
,

and in particular for each m, as k tends to infinity

P{Sk = 0} = m−2k

∫ 1

0

∣Am(e(t))∣2kdt =
∫ 1

0

∣

∣

∣

∣

sin �mt

m sin�t

∣

∣

∣

∣

2k

dt

=

(

3

�

)1/2
1

m
√
k
(1 + o(1)). (17)
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When m and k vary simultaneously, some useful estimates are also at disposal
([11]). For k large, and any positive integer m

∫ 1

0

(

sin �mt

sin�t

)2k

dt ≥ C
m2k−1

√
k

,

where C is an absolute constant.

Indeed, with the variable change t = u/m� and since cosx ≤ ( sinx
x ) if 0 <

x ≤ �/2, we may write for any positive integers m and k
∫ 1

0

∣

∣

∣

∣

sin �mt

sin�t

∣

∣

∣

∣

2k

dt =
1

m�

∫ m�

0

∣

∣

∣

∣

sin u

sin u/m

∣

∣

∣

∣

2k

du ≥ 1

m�

∫ m�

0

∣

∣

∣

∣

sinu

(u/m)

∣

∣

∣

∣

2k

du

≥ m2k−1

�

∫ m�

0

∣

∣

∣

∣

sin u

u

∣

∣

∣

∣

2k

du ≥ m2k−1

�

∫ 1√
k

0

∣

∣

∣

∣

sin u

u

∣

∣

∣

∣

2k

du

≥ m2k−1

�

∫ 1√
k

0

cos2k udu =
m2k−1

�

∫ 1√
k

0

(1− sin2 u)kdu

≥ m2k−1

�
(1− 1

k
)k

∫ 1√
k

0

du ≥ m2k−1

�
√
k

e−1.

And so there exists constant C0 > 0 such that for any positive integers m, k

P{Sk = 0} ≥ C0

m
√
k
. (18)

One can take C0 = 1/e�, and we notice (see (23)) that C0 < 1/4. Conversely,
for any m > m0, and any positive k

∫ 1

0

∣

∣

∣

∣

sin�mt

sin�t

∣

∣

∣

∣

2k

dt ≤ 22k+1m4k2/(2k+1) = C ⋅m2k−1+1/(2k+1).

Finally, as sin�t ≥ (2/�)�t = 2t, for 0 ≤ t ≤ 1/2, we have

'Sk
(t) =

( sin�mt

m sin�t

)2k

≤
( 1

2m t

)2k

∧ 1. (19)

3. Proof of Theorem 1

Let �1, . . . , �N be given reals. Let Y1, . . . , YN be independent copies of Sk.
Consider the random vector Y = (Y1, . . . , YN ) and let � = (�1, . . . , �N ), t =

(t�1 − �1, . . . , t�N − �N ). Put

Υ(t, �) := E e(⟨t,Y⟩) = E e

(

t

N
∑

ℓ=1

�ℓYℓ −
N
∑

ℓ=1

�ℓYℓ

)

=

N
∏

ℓ=1

'Sk
(t�ℓ − �ℓ),
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and for j = 1, . . . , N

Υj(t, �) := E e

(

t
∑

1≤ℓ≤N
ℓ∕=j

�ℓYℓ −
∑

1≤ℓ≤N
ℓ∕=j

�ℓYℓ

)

=
∏

1≤ℓ≤N
ℓ∕=j

'Sk
(t�ℓ − �ℓ).

Let ! ≥ 1. Let d be another given real and let T > 0. Suppose that to any
t ∈ [d, d+ T ], corresponds an index j = jt ∈ {1, . . . , N}, such that

t�j − �j > 1/!. (20)

We will show that this can happen only if T is not too large. By (19)

'Sk
(t�j − �j) ≤

(

1

2m t�j − �j

)2k

≤
(

!

2m

)2k

.

and so

Υ(t, �) ≤
(

!

2m

)2k N
∑

j=1

�{jt = j}Υj(t, �).

Integrating this inequality over [d, d+ T ] yields

∫ d+T

d

Υ(t, �)dt ≤
(

!

2m

)2k N
∑

j=1

∫ d+T

d

�{jt = j}Υj(t, �)dt

≤
(

!

2m

)2k N
∑

j=1

∫ d+T

d

Υj(t, �)dt. (21)

But

Υj(t, �) =
∏

1≤ℓ≤N
j ∕=ℓ

'Sk
(t�ℓ − �ℓ)

=
∏

1≤ℓ≤N
ℓ∕=j

(

∑

0≤∣�∣≤(m−1)k

P{Sk = �}e
(

(t�ℓ − �ℓ)�
)

)

= P{Sk = 0}N−1

+
∑

0<supℓ∕=j ∣�ℓ∣≤(m−1)k

(

∏

1≤ℓ≤N
j ∕=ℓ

P{Sk = �ℓ}
)

e

(

−
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

)

.e

(

t
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

)

. (22)

Let C0 be the constant from (18). As C0 < 1/4, it follows that N! > 4C0.
Choose

m = 2!, k = inf
{

j ≥ 1 :
N!

C0
≤ 42j−1

√
j

}

. (23)
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Then k is well defined, k ≥ 2, and

N!

C0
≤ 42k−1

√
k

and
N!

C0
>

42k−3

√
k − 1

.

Further

k ≤ 3 log
(N!

C0

)

. (24)

Indeed, put for a while X = N!/C0 and observe that k ≤ 2k and (7k/2)− 6 ≥
k/2 when k ≥ 2. Then

X >
42k−3

√
k − 1

>
42k−3

√
k

≥ 24k−6−k/2 = 2(7k/2)−6 ≥ 2k/2.

Hence k ≤ (2/ log 2) logX < 3 logX. Thus mk ≤ 6! log N!
C0

. By the assumption

made, the argument
∑

1≤ℓ≤N ,j ∕=ℓ �ℓ�ℓ appearing in the last sum of (22) is non-

vanishing. Therefore, if sup{∣�ℓ∣ : ℓ ∕= j} > 0

∫ d+T

d

e

(

t
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

)

dt =
e(d

∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ)
(

e(T
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ)− 1
)

2i�
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ
.

And so
∣

∣

∣

∣

∫ d+T

d

e

(

t
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

sin �T
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

�
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

∣

∣

∣

∣

.

Consequently
∫ d+T

d

Υj(t, �)dt = TP{Sk = 0}N−1 +Hj ,

with

Hj =
∑

0<supℓ∕=j ∣�ℓ∣≤(m−1)k

(

∏

1≤ℓ≤N
j ∕=ℓ

P{Sk = �ℓ}
)∫ d+T

d

e

(

∑

1≤ℓ≤N
j ∕=ℓ

(t�ℓ − �ℓ)�ℓ

)

dt,

and

∣Hj ∣ ≤
∑

0<supℓ∕=j ∣�ℓ∣≤(m−1)k

(

∏

ℓ∕=j

P{Yℓ = �ℓ}
)∣

∣

∣

∣

sin�T
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

�
∑

1≤ℓ≤N
j ∕=ℓ

�ℓ�ℓ

∣

∣

∣

∣

.

It follows that
∫ d+T

d

Υ(t, �)dt ≤
(

!

2m

)2k(

NTP{Sk = 0}N−1 +

N
∑

j=1

∣Hj ∣
)

. (25)
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Similarly

∫ d+T

d

Υ(t, �)dt = TP{Sk = 0}N +H,

and

∣H∣ ≤
∑

0<supℓ∣�ℓ∣≤(m−1)k

(

∏

ℓ

P{Yℓ = �ℓ}
)∣

∣

∣

∣

sin�T
∑

1≤ℓ≤N �ℓ�ℓ

�
∑

1≤ℓ≤N �ℓ�ℓ

∣

∣

∣

∣

.

So that

TP{Sk = 0}N − ∣H∣

≤
(

!

2m

)2k(
N

P{Sk = 0}

)

TP{Sk = 0}N +

(

!

2m

)2k N
∑

j=1

∣Hj ∣. (26)

By the choice made in (23) of m and k, we have
(

!

2m

)2k

N =
N

42k
=

N!

2m42k−1
≤ C0

2m
√
k
≤ 1

2
P{Sk = 0}. (27)

We get from (3.7) and (3.8)

TP{Sk = 0}N ≤ 2

(

∣H∣ +
(

!

2m

)2k N
∑

j=1

∣Hj ∣
)

≤ 2

(

∣H∣+ P{Sk = 0}
2N

N
∑

j=1

∣Hj ∣
)

.

Hence

TP{Sk = 0}N ≤ 3max
(

∣H∣, N
max
j=1

∣Hj ∣
)

. (28)

We shall now bound ∣Hj ∣ and ∣H∣. We begin with ∣H∣ and put ZN =
∑

1≤ℓ≤N �ℓYℓ. We have

∣H∣ ≤ E

∣

∣

∣

sin �TZN

�ZN

∣

∣

∣ ⋅ �{ZN ∕= 0}. (29)

Indeed

∣H∣ ≤
∑

0<supℓ∣�ℓ∣≤(m−1)k

(

∏

ℓ

P{Yℓ = �ℓ}
)∣

∣

∣

∣

sin�T
∑

1≤ℓ≤N �ℓ�ℓ

�
∑

1≤ℓ≤N �ℓ�ℓ

∣

∣

∣

∣

= E

∣

∣

∣

sin �TZN

�ZN

∣

∣

∣ ⋅ �{ZN ∕= 0}.

And we have the trivial bound

E

∣

∣

∣

sin �TZN

�ZN

∣

∣

∣ ⋅ �{ZN ∕= 0} ≤ E
1

�∣ZN ∣ ⋅ �{ZN ∕= 0}
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≤ 1

� min
0<supℓ∣�ℓ∣≤(m−1)k

{∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ
∣

∣

}

.

By (23), (24), mk = 2!k ≤ 6! log(N!/C0). Notice by using assumption (6)
that

min
{∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ
∣

∣ : 0 < sup
ℓ

∣�ℓ∣ ≤ (m− 1)k
}

= min
�k integers

∣�ℓ∣≤(m−1)k

∣�1�1+...+�N�N ∣∕=0

∣

∣

∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ

∣

∣

∣

∣

≥ min
�k integers

∣�ℓ∣≤6! log(N!/C0)

∣�1�1+...+�N�N ∣∕=0

∣

∣

∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ

∣

∣

∣

∣

= Ξ.

Thus

∣H∣ ≤ 1

�Ξ
. (30)

Similarly, letting ZN,j =
∑

1≤ℓ≤N
ℓ∕=j

�ℓYℓ, we have

∣Hj ∣ ≤
∑

0<supℓ∕=j ∣�ℓ∣≤(m−1)k

(

∏

ℓ

P{Yℓ = �ℓ}
)∣

∣

∣

∣

sin �T
∑

1≤ℓ≤N
ℓ∕=j

�ℓ�ℓ

�
∑

1≤ℓ≤N
ℓ∕=j

�ℓ�ℓ

∣

∣

∣

∣

= E

∣

∣

∣

sin �TZN,j

�ZN,j

∣

∣

∣ ⋅ �{ZN,j ∕= 0}.

And so,

∣Hj ∣ ≤ E

∣

∣

∣

sin�TZN,j

�ZN,j

∣

∣

∣ ⋅ �{ZN,j ∕= 0}

≤ 1

� min
0<supℓ∕=j ∣�ℓ∣≤(m−1)k

{∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ
∣

∣

}

≤ 1

�Ξ
. (31)

By inserting these estimates into (28), we get

TP{Sk = 0}N ≤ 3

�Ξ
. (32)

By (18), P{Sk = 0} ≥ C0/(m
√
k) = C0/(2!

√
k), and by reporting this into

(32) and using (23), (24), we arrive to

T ≤ 3

�Ξ

(

2!
√
k

C0

)N

≤ 3

�Ξ

(2!
√

3 log
(

N!
C0

)

C0

)N

. (33)

Consequently, if

T >
3

�Ξ

(

2
√
3!

C0

√

log
N!

C0

)N

,
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then to any reals d, �1, . . . , �N corresponds a real t ∈ [d, d+ T ] such that

N
sup
j=1

t�j − �j ≤ 1

!
. (34)

The proof is now complete. □Remark 3. By (23), k ∼ (4 log 2)−1 log(N!
C0

), as N! → ∞. Thus

k ≤
(

1

4 log 2
+ o(1)

)

log

(

N!

C0

)

, N! → ∞,

which is better than (24). Hence also mk ≤
(

(2 log 2)−1 + o(1)
)

! log(N!/C0).

Let 
 = (2 log 2)−1. Consequently, one can take

Ξ = min
uk integers

∣uk∣≤(
+o(1))! log (N!/C0)

∣u1�1+...+uN�N ∣∕=0

∣

∣

∣

∣

∑

1≤k≤N

�kuk

∣

∣

∣

∣

,

in this case.Remark 4. Let I be any bounded interval and let ∣I∣ denote its length. Let
�1, . . . , �N be given reals, and put

�I = inf
t∈I

sup
1≤j≤N

t�j − �j .

Suppose �I > 0, and let ! be the unique integer such that ! ≥ 2 and 1/! ≤
�I ≤ 1/(! − 1). The following is a simple extrapolation of our proof, and more
specifically of estimates (28) and (27), (24).

There is an absolute constant K such that for any interval I any integer
N ≥ 1

�NI

(

log
N

�I

)−1/2

≤ Kmax

(

E

∣

∣

∣

sin �∣I∣ZN

�∣I∣ZN

∣

∣

∣
�{ZN ∕= 0}, N

max
j=1

E

∣

∣

∣

sin�∣I∣ZN,j

�∣I∣ZN,j

∣

∣

∣
�{ZN,j ∕= 0}

)

.

Theorem 1 has interesting consequences for Dirichlet polynomials and more
general polynomials. We shall investigate them. Let �1, . . . , �L be given re-

als and consider the Dirichlet polynomials DL(t) =
∑L

n=1 �nn
it. Let �(x) =

#{p prime ≤ x} be the prime number function. Choose N = �(L). Using the
prime factor decomposition, n = pa1

1 . . . paN

N , aj(n) ≥ 0, 1 ≤ j ≤ N , 1 ≤ n ≤ L,
we get

DL(t) =

L
∑

n=1

�ne
it

∑N
j=1 aj(n) log pj . (35)
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Let #1, . . . , #N ∈ [0, 1[. Let Ω(n) =
∑N

j=1 aj(n) denote the prime divisor func-
tion. As

∣

∣e2i�t
∑N

j=1 aj(n) log pj − e2i�
∑N

j=1 aj(n)#j
∣

∣

=
∣

∣e2i�
∑N

j=1 aj(n)[(t log pj−�j−#j )+�j+#j ] − e2i�
∑N

j=1 aj(n)#j
∣

∣

=
∣

∣e2i�
∑N

j=1 aj(n)(t log pj−�j−#j) − 1
∣

∣

≤ 2�

N
∑

j=1

aj(n)
∣

∣t log pj − �j − #j

∣

∣,

by taking the infimum over all �j, we get

∣

∣e2i�t
∑N

j=1 aj(n) log pj − e2i�
∑N

j=1 aj(n)#j
∣

∣ ≤ 2�

N
∑

j=1

aj(n) t log pj − #j

≤ 2�
( N
sup
j=1

t log pj − #j

)

Ω(n).

Herefrom
∣

∣

∣

∣

L
∑

n=1

�nn
2i�t −

L
∑

n=1

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

≤ 2�
( N
sup
j=1

t log pj − #j

)

L
∑

n=1

∣�n∣Ω(n).

Let ! be some positive integer. By the comments made after Theorem 1 con-
cerning Túran’s result, if T > T (N,!) := e2!N log (N!/C0) logN , then for any real
d, any reals #1, . . . , #N , there exists � ∈ [d, d+ T ] such that

N
sup
j=1

� log pj − #j ≤ 1/!.

Thus
∣

∣

∣

∣

L
∑

n=1

�nn
2i�� −

L
∑

n=1

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

≤ 2�

!
⋅

L
∑

n=1

∣�n∣Ω(n).

Let T = ℝ/ℤ be the circle and put for (#1, . . . , #N) ∈ T
N ,

Q(#1, . . . , #N ) =

L
∑

n=1

�ne
2i�

∑N
j=1 aj(n)#j .

Consequently, given any (#1, . . . , #N ) ∈ T
N , Q(#1, . . . , #N) is well approached

by DL(2��), for some � ∈ [d, d + T ] with an error term precised by the above
estimate. Now by (35),

DL(2��) =

L
∑

n=1

�ne
2i��

∑N
j=1 aj(n) log pj = Q( � log p1 , . . . , � log pN ).
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Thereby

0 ≤ sup
(#1,...,#N )∈TN

∣

∣

∣

∣

L
∑

n=1

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

− sup
d≤�≤d+T

∣

∣DL(2��)
∣

∣

≤ 2�

!
⋅

L
∑

n=1

∣�n∣Ω(n). (36)

Letting d and T tend to infinity, next ! tend to infinity yields (Bohr’s reduction
argument)

sup
t∈ℝ

∣

∣DL(t)
∣

∣ = sup
(#1,...,#N )∈TN

∣

∣

∣

∣

L
∑

n=1

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

.

Thus (36) means that

0 ≤ sup
t∈ℝ

∣DL(t)∣ − sup
2�d≤t≤2�(d+T )

∣DL(t)∣ ≤
2�

!
⋅

L
∑

n=1

∣�n∣Ω(n), (37)

Therefore the supremum of the Dirichlet polynomials DL over large intervals
(of length greater than T (N,!)) is comparable to the supremum over the real
line. And the error made is controlled by the degree of accuracy existing for the
Kronecker theorem within this interval. Further estimate (37) is uniform over d.

It would be interesting to know below which size of the interval this property
breaks down. Notice by the Dirichlet Theorem, that for any reals '1, . . . , 'N we
may choose t ≤ !N such that

N
sup
j=1

t'j ≤ 1

!
. (38)

(corresponding to the particular case �1 = . . . = �N = d = 0 in Theorem 1).
Further this is nearly optimal, see Erdös and Rényi’s article [6] for a discussion
and for some related results and the references therein, notably Hajós paper.
Therefore this size cannot be smaller than !N .

More generally, let A be some positive real and let �1, �2, . . . , �N be reals
satisfying

{

u1�1 + . . .+ uN�N = 0

max
1≤j≤N

∣uj ∣ ≤ 2A, uj ∈ ℤ
=⇒ u1 = u2 = . . . = uN = 0. (39)

Let aj : ℤ → ℤ, 1 ≤ j ≤ N be arbitrary mappings, and put

NA =
{

b(n) =

N
∑

j=1

aj(n)�j : max
1≤j≤N

∣aj(n)∣ ≤ A, n ∈ ℤ

}

, B(n) =

N
∑

j=1

aj(n).
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Because of assumption (39), to any b ∈ NA corresponds a unique n such
that b = b(n). Given N reals �1, . . . , �N , consider the polynomials DA(t) =
∑

n∈NA
�ne

itb(n). Let #1, . . . , #N ∈ [0, 1[. Similarly

∣

∣e2i�t
∑N

j=1 aj(n)�j − e2i�
∑N

j=1 aj(n)#j
∣

∣ ≤ 2�

N
∑

j=1

aj(n) t�j − #j

≤ 2�
( N
sup
j=1

t�j − #j

)

B(n).

And
∣

∣

∣

∣

∑

n∈NA

�nn
2i�t −

∑

n∈NA

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

≤ 2�
( N
sup
j=1

t�j − #j

)

.
∑

n∈NA

∣�n∣B(n).

Let ! be a positive integer such that A < ! log N!
C0

. By Theorem 1, if

T >
3

�Ξ(N,!)

(

2
√
3!

C0

√

log
N!

C0

)N

,

where

Ξ(N,!) = min
uk integers

∣uk∣≤! log (N!/C0)

∣u1�1+...+uN�N ∣∕=0

∣

∣

∑

1≤k≤N

�kuk

∣

∣,

then to any reals d, �1, . . . , �N corresponds a real � ∈ [d, d + T ] such that
supN

j=1 ��j − �j ≤ 1/!. Consequently, by similar considerations

0 ≤ sup
(#1,...,#N )∈TN

∣

∣

∣

∣

∑

n∈NA

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

− sup
d≤�≤d+T

∣

∣DA(2��)
∣

∣

≤ 2�

!
⋅
∑

n∈NA

∣�n∣B(n). (40)

Since, by letting d, T , next ! tend to infinity

sup
t∈ℝ

∣

∣DA(t)
∣

∣ = sup
(#1,...,#N )∈TN

∣

∣

∣

∣

∑

n∈NA

�ne
2i�

∑N
j=1 aj(n)#j

∣

∣

∣

∣

,

the same comments concerning the supremums of the polynomials DA over large
intervals are in order.
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4. Concludings remarks

We conclude this work by making several remarks related to the proof above
and some key expressions having appeared in it, as well as to some related
questions.

1. The central point of the proof is inequality (28):

TP{Sk = 0}N ≤ 3max
(

∣H∣, N
max
j=1

∣Hj ∣
)

.

To get it, we had to adjust parameters m and k so that the factor
(

!/2m
)2k

(N/P{Sk = 0})
of TP{Sk = 0}N in (26), can be made less than 1/2. This operation seems
inherent to the proof, thereby making the choice of m and k made in (23)
unavoidable. Next ∣H∣ and ∣HJ ∣ are controlled in exactly the same manner. For
H for instance, in (29) we obtained the interesting bound

∣H∣ ≤ E

∣

∣

∣

sin �TZN

�ZN

∣

∣

∣
⋅ �{ZN ∕= 0},

and next continued with the rather brutal estimate

E

∣

∣

∣

sin�TZN

�ZN

∣

∣

∣
⋅ �{ZN ∕= 0} ≤ E

1

�∣ZN ∣ ⋅ �{ZN ∕= 0}

≤ 1

� min
0<supℓ∣�ℓ∣≤(m−1)k

∣

∣

∑

1≤ℓ≤N

�ℓ�ℓ
∣

∣

,

leading to (30). At this stage, the question naturally arises whether this bound
is really the best possible, in other words how to compute

E

∣

∣

∣

sin�TZN

�ZN

∣

∣

∣
�{ZN ∕= 0}. (41)

We believe that this is an important question. When in place of ZN , we
have a random variable U with density distribution G, it is possible to eval-
uate E

∣

∣

sin�TU
�U

∣

∣, by using the formula (see for instance [7] p.430) for any real
0 < r < 2

∣x∣r =
1

2K(r)

∫ ∞

−∞

1− cosxt

∣t∣r+1
dt =

1

K(r)

∫ ∞

−∞

sin2(xt2 )

∣t∣r+1
dt (42)

where x is real and

K(r) =
Γ(2 − r)

r(1 − r)
sin

[

(1− r)
�

2

]

. (43)
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Choose 1 < r < 2. By writing that ∣t∣ = ∣t∣( r+1
2 ) ⋅ ∣t∣1−( r+1

2 ), next using the
Cauchy-Schwarz inequality, we get by the aforementionned formula

E

∣

∣

∣

sin xU

U

∣

∣

∣ =

∫

ℝ

∣

∣

∣

sin 2xt
2 )

t

∣

∣

∣G(t)dt ≤

≤
[

∫

ℝ

sin2 2xt
2

∣t∣r+1
dt
]1/2

⋅
[

∫

ℝ

G2(t)

∣t∣2[1−( r+1
2 )]

dt
]1/2

=
( ∣2x∣r
2K(r)

)1/2

⋅
[

∫

ℝ

∣t∣r−1G2(t)dt
]1/2

, (44)

since 2[1 − ( r+1
2 )] = 2(1−r

2 ) = 1 − r. Let V be a random variable with density

distribution A−1
U ⋅G2(t) where AU =

∫

ℝ
G2(t)dt. Thereby E

∣

∣

sinxU
U

∣

∣ ≤
( ∣2x∣r
2K(r)AU ⋅

E ∣V ∣r−1
)1/2

. Letting x = �T , we obtain

E

∣

∣

∣

∣

sin�TU

U

∣

∣

∣

∣

≤ Cr

[

T rAU ⋅ E ∣V ∣r−1
]1/2

.

2. The construction made in Section 2 leads to an interesting observation con-
cerning the general study of small deviations in probability theory. The problem
of evaluating

P{∣ZN ∣ < "}
which is clearly related to the one of estimating E

∣

∣

sin�TZN

�ZN

∣

∣�{ZN ∕= 0}, is of
an arithmetic nature. And so it seems that in general, one cannot expect to find
estimates of the small deviations of sums of i.i.d. random variables (even discrete
and bounded) by means on purely probabilist arguments only. The intriguing
remainding question is then to know which kind of conditions on the sequence
�n, n ≤ N , would permit to get sharp estimates of the small deviations.

3. In a very recent work, we obtained an estimate of integral (41). The proof is
rather delicate and will be published elsewhere. Although the bounds we found
are sharp, there are unfortunately not sharp enough to be incorporated in the
proof (section 3), and to provide significant new results. But we showed that the
integral in (41) appears in a rather wide context and obtained other applications.Final note. While writing down the paper, Chen [4] (December 2007) informed
us that his theorem 1 in [3] can also provide another estimate for t, but different

than ours and concerning
∑N

n=1 t�n − �n
2. More precisely let �1, �2, . . . , �N

be linearly independent over ℚ. Given " > 0,

M0 =
[

(N�2

8"

)1/2
]

, Λ = min
uj integers

∣uj ∣≤M0
∣u1�1+...+uN�N ∣∕=0

∣

∣u1�1 + . . .+ uN�N

∣

∣.
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Put

T0(", (�j)) =
NMN

0

2�Λ
.

Let �1, �2, . . . , �N be real numbers. Then in any interval J of length greater

than T0(", (�j)), there exists a t such that
∑N

n=1 t�n − �n
2 ≤ ". Although the

two quantities
∑N

n=1 t�n−�n
2 and supNn=1 t�n−�n are not really comparable,

it is however interesting to compare the bounds for T obtained in each case, call
them TC and TW respectively. Besides, Chen’s approach and our are radically
different.

i) Suppose we want to bound supNn=1 t�n−�n . Let " = 1/!2. Compare first Ξ
and Λ. If (!/N)1/2 log(N!) = O(1), then Ξ ≫ Λ. Next log(TCΛ) ∼ N log(N!)
and log(TWΞ) ∼ (N log! + log log(N!)). Thus TW ≪ TC . Now if ! is large,
namely if (!/N)1/2 log(N!) ∕= O(1), then Ξ ≪ Λ, the two preceding estimates
of TC and TW remain valid, but we do not see how to compare them.

ii) Suppose now we want to bound
∑N

n=1 t�n − �n . Let " = �−1, � integer
and ! =

√
N�. Then log(TWΞ) ∼ N log(N�) ∼ log(TCΛ). The same comments

on Ξ and Λ are in order.A
knowledgement. I thank Mikhäıl Lifshits, who carefully read the pre-
liminary versions of the present paper and helped to improve it. I also thank
Yong-Gao Chen for helpful comments and Dany Berend for a useful remark.Appendix. 1 The problem of distribution of (t�1, . . . , t�N ), t ∈ [0,∞), can also
be solved modulo 1 by the following method:

Let H0 be a constant characterizing independence of coordinates of the vec-
tor (�1, . . . , �N ) such that if ℎ = (ℎ1, . . . , ℎN ) ∈ ℤN , 0 < ∣∣ℎ∣∣∞ ≤ H0, then
∑N

l=i ℎi�i ∕= 0 and put as in (7)

Ξ = min
0<∣∣ℎ∣∣∞≤H0

∣
N
∑

l=i

ℎi�i∣, where ∣∣ℎ∣∣∞ = max
1≤i≤N

∣ℎi∣.

Define continuous discrepancy DT as

DT = sup
d∈[0,∞)

sup
I⊂[0,1)N

∣

∣

∣

∣

∣

1

T

∫ d+T

d

�I({(t�1, . . . , t�N )})dt− ∣I∣
∣

∣

∣

∣

∣

, (45)

where I is an interval, ∣I∣ is the volume of I, �I is the characteristic function of
I and {x} is the fractional part of x.

1This was sent to the author by Oto Strauch.
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By definition (45), if DT < ∣I∣, then for every d there exists t ∈ [d, d+T ] such
that (t�1, . . . , t�N ) mod 1 ∈ I because in an opposite case the right-hand side
of (45) contains ∣0 − ∣I∣∣ and then ∣I∣ ≤ DT .

An upper bound of DT is given by a continuous variant of Erdős-Turán-
Koksma inequality

DT ≤ sup
d∈[0,∞)

(

3

2

)N
⎛

⎝

2

H + 1
+

∑

0<∣∣ℎ∣∣∞≤H

1

r(ℎ)

∣

∣

∣

∣

∣

1

T

∫ d+T

d

e(t

N
∑

i=1

ℎi�i)dt

∣

∣

∣

∣

∣

⎞

⎠ ,

(46)

where r(ℎ) =
∏N

i=1max(1, ∣ℎi∣) and H > 0 is an arbitrary integer. Note that
the discrepancy DT in [5, p. 278, Def. 2.74] and also the continuous Erdős-
Turán-Koksma inequality in [5, p. 279, Th.2.77] is formed for fixed d = 0, but
for arbitrary d this inequality is clear, too.

If we put H = H0, then as in p. 104
∣

∣

∣

∣

∣

∫ d+T

d

e

(

t

N
∑

i=1

ℎi�i

)

dt

∣

∣

∣

∣

∣

≤ 1

�Ξ
. (47)

Furthermore we have
∑

0<∣∣ℎ∣∣∞≤H0

1

r(ℎ)
= (48)

=

(

1

∣ −H0∣
+

1

∣ − (H0 − 1)∣ + ⋅ ⋅ ⋅+ 1 +
1

1
+

1

2
+ ⋅ ⋅ ⋅+ 1

H0

)N

− 1

≤ (3 + 2 logH0)
N . (49)

Insert (47) and (49) in (46), then the inequality DT < ∣I∣ follows from
(

3

2

)N (

2

H0 + 1
+

1

TΞ�
(3 + 2 logH0)

N

)

< ∣I∣. (50)

Solving (50) with respect to T we have

T >
1

Ξ�
.
(3 + 2 logH0)

N

∣I∣
(

2
3

)N − 2
H0+1

(51)

but in this case we must assume

∣I∣ >
(

3

2

)N

⋅ 2

H0 + 1
. (52)

Thus, if the given interval I ⊂ [0, 1)N satisfies (52) and for T holds (51), then
for every d there exists t ∈ [d, d+ T ] such that ({t�1}, . . . , {t�N}) ∈ I.
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To compare (51) with Theorem 1 we put

H0 + 1 =
3

∣I∣
(

2
3

)N
. (53)

Then (51) has the form

T >
1

Ξ�
(H0 + 1)(3 + 2 logH0)

N . (54)

Insert ∣I∣ =
(

1
!

)N
in (54) we find

T >
1

Ξ�
3

(

3

2

)N

!N

(

3 + 2 log

(

3

(

3

2

)N

!N − 1

))N

(55)

with H0 + 1 = 3
(

3
2

)N
!N . We see that the result in Theorem 1

T >
3

Ξ�

(

2
√
3!

C0

√

log
N!

C0

)N

with H0 = 6! log N!
C0

, is better than (55).
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