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MULTIPLICATIVELY INDEPENDENT INTEGERS

AND DENSE MODULO 1 SETS OF SUMS

Roman Urban

ABSTRACT. Let c ∈ R, c > 0, β ∈ R and a1 > a2 > 1 and b1 > b2 > 1 be two
distinct pairs of multiplicatively independent integers. If b1 > a1 and a2 > b2
or b1 < a1 and a2 < b2 then we prove that for every ξ1, ξ2, with at least one ξi

irrational, there exists q ∈ N such that the set of sums

{am
1 an

2 qξ1 + bm
1 bn

2 qξ2 + cm+nβ : m, n ∈ N},
is dense modulo 1 for all reals β.

Communicated by Istvan Berkes

1. Introduction and main results

In 1967 Furstenberg proved the following

Theorem 1.1 (Furstenberg, [2]). If p, q > 1 are multiplicatively independent
integers (i.e., they are not both integer powers of the same integer) then for
every irrational ξ the set

{pmqnξ : m,n ∈ N} (1.2)

is dense modulo 1.

An interesting generalization of Furstenberg’s theorem can be found in [3].

Theorem 1.3 ([3, Theorem 1.2]). Suppose that the pairs pi, qi ∈ N, with 1 <
pi < qi for i = 1, . . . , k, k ∈ N, (pi, qi) 6= (pj , qj) for i 6= j, and p1 ≤ p2 ≤
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. . . ≤ pk, are multiplicatively independent. Then for distinct ξ1, . . . , ξk ∈ [0, 1]
with at least one ξi 6∈ Q the set

{
k∑

i=1

pm
i qn

i ξi : m, n ∈ N}

is dense modulo 1.

For some generalizations of Theorem 1.3 to the case of algebraic numbers see
[6, 7].

Another variation on the theme of Furstenberg’s theorem is the following
result of Berend.

Theorem 1.4 ([1, Proposition III.1]). Let p, q, and c be non-zero integers with
p and q multiplicatively independent, ξ an irrational and β arbitrary. Then the
set

{pmqnξ + cm+nβ : m, n ∈ N} (1.5)
is dense modulo 1.

Remark 1.6. Actually, c in Theorem 1.4 may be an arbitrary real number, not
necessarily integer. The proof given in [1] works in this case as well.

The aim of this note is to prove the following result, which naturally fits in
with the context of Theorem 1.3 and Theorem 1.4.

Theorem 1.7. Let a1 > a2 > 1 and b1 > b2 > 1 be two pairs of multiplicatively
independent integers, and let c be a positive real number. Suppose that

a1 < b1 and a2 > b2. (1.8)

Then, for any real numbers ξ1, ξ2 with at least one ξi irrational, there exists
q ∈ N such that for any real number β, the set

{am
1 an

2 qξ1 + bm
1 bn

2 qξ2 + cm+nβ : m,n ∈ N} (1.9)

is dense modulo 1.

Remark. It is clear that we can consider sets of the form (1.9) with not neces-
sarily all of ai, bi and c positive. In fact, using squares of the original parameters
we have a subset of (1.9).

Remark. We believe that under the assumptions of Theorem 1.7 the set (1.9)
is dense modulo 1 with q = 1. In order to prove such a statement a much better
understanding of the closed subsets of T2, invariant under the action of the
semigroup S defined in the proof of Proposition 2.1, is required. Specifically,
if we knew that under the assumptions of Theorem 1.7 the closure of the orbit

28



DENSE MODULO 1 SETS OF SUMS

Sξ, ξ = (ξ1, ξ2)t contains (0, 0) then we would have that for every ξ, with at
least one ξi irrational, q = 1. This seems to be a difficult problem as very little
is known about reducible actions of linear semigroups on tori. In particular,
description of the closed invariant sets and orbit closures is not known even in
the “simplest” case of the semigroup generated by the following two matrices(

2 0
0 2

)
and

(
3 0
0 3

)
and only some partial results are available in literature ([3, 5]).

2. Proof of Theorem 1.7

The proof of Theorem 1.7 will follow from the following result.

Proposition 2.1. Let a1 > a2 > 1 and b1 > b2 > 1 be two pairs of multiplica-
tively independent integers such that

a1 < b1 and a2 > b2.

Then for any real numbers ξ1, ξ2 with at least one ξi irrational, and for every
ε > 0 there exist q ∈ N and M0 ∈ N such that for every M ≥ M0 the set:

qAM := {am
1 aM−m

2 qξ1 + bm
1 bM−m

2 qξ2 : 0 ≤ m ≤ M}
is ε-dense modulo 1.

Remark. Equivalently, Proposition 2.1 says that the set AM := 1
q (qAM ) is

ε-dense modulo 1/q, or, in other words, that AM is ε-dense in 1
qT.

Before we give the proof of Proposition 2.1 we present the proof of Theo-
rem 1.7.

P r o o f o f T h e o r e m 1.7. We may assume that both ξ1 and ξ2 are non-zero;
if one of them is zero then Theorem 1.7 follows from Theorem 1.4 (and Re-
mark 1.6). The result follows immediately from Proposition 2.1. In fact, for a
fixed M = m + n the expression in (1.9) is a translate by cMβ of the ε-dense
modulo 1 set qAM . ¤

In order to prove Proposition 2.1 we generalize the original proof from [1] using
certain results from [3] on the diagonal semigroups acting on the 2-dimensional
torus, and some ideas from [6] adapted to our setting.

P r o o f o f P r o p o s i t i o n 2.1. Consider a semigroup S = 〈s1, s2〉 ⊂ End(T2)
of toral endomorphisms generated by the following two matrices:

s1 =
(

a1 0
0 b1

)
, s2 =

(
a2 0
0 b2

)
.
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Let ξ = (ξ1, ξ2) + Z2 ∈ T2 and denote by F the closure of the the orbit of the
point ξ under the action of the semigroup S :

F = Sξ.

Clearly, F is closed and S-invariant subset of T2. We show that F is infinite. By
the assumption one of ξi’s is irrational. Suppose that ξ1 (ξ2, resp.) is irrational.
Then, by Theorem 1.1, for every x ∈ T (y ∈ T, resp.) there are subsequences nk

and mk ⊂ N such that ank
1 amk

2 ξ1 → x (bnk
1 bmk

2 ξ2 → y, resp.) as k →∞. Since T
is compact it follows that there exist y ∈ T (x ∈ T, resp.) such that (x, y) ∈ F.
Hence F is infinite.

By [3, Corollary 3.2], it follows that F contains a non-isolated rational point
r = p/q, q ∈ N, p ∈ Z2. Define

F ′ = qF.

Then (0, 0) ∈ F ′, and we have the following.

Lemma 2.2. The set F ′ contains at least one of the following sets

T1 =T× {0},
T2 ={0} × T.

(2.3)

Remark. Lemma 2.2 follows from [3, Lemma 3.4] since (1.8) implies that the
condition (3) of [3, Lemma 3.4] can not hold. However, we include the detailed
proof here because (1) we want the paper to be self-contained as much as possible
(2) the formulation in [3] is not exactly what we need here, and finally (3) the
proof of [3, Lemma 3.4] given in [3] is in some parts very sketchy and, moreover,
seems to be more complicated than the proof we present.

Remark. It will be clear from the proof of Lemma 2.2 that in fact a more
general result holds true. Namely, it is enough to assume that F ′ is an arbitrary
closed, infinite, s1- and s2-invariant subset of T2 containing 0 (not necessarily
the closure of the orbit of some point which contains 0).

P r o o f o f L e m m a 2.2. We follow [3] and [6]. Clearly, F ′ is a non-empty, s1-
and s2-invariant closed subset of T2, and contains (0, 0). By [3, Lemma 3.1] the
intersection of F with the “axes” T1 and T2 is either empty, contains finitely
many rational points, or equals Ti, i = 1, 2. Assume that for i = 1, 2,

F ∩ Ti 6= Ti and 1 < Card(F ∩ Ti) < +∞. (2.4)

We will show that this assumption leads to a contradiction.
Since (0, 0) ∈ F ′, there exists a sequence {(xn, yn)+Z2} ⊂ F ′ tending to (0, 0)

in T2. By (2.4) we may assume that xn +Z 6= 0 and yn +Z 6= 0. Without loss of
generality, choosing an appropriate representative from xn + Z (yn + Z, resp.),
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we can assume that 0 6= xn → 0, and 0 6= yn → 0. Choosing an appropriate
subsequence, we can assume that

lim
k→∞

|yn|
|xn| = c ∈ [0, +∞]. (2.5)

Consider the case when c 6= 0 or the limit in (2.5) is infinite. By the assump-
tion (1.8) there are k, l ∈ N such that

bk
1bl

2 > ak
1al

2.

Hence, for every j ∈ N,

|(bk
1bl

2)
jyn|

|(ak
1al

2)jxn|
≥ ρj |yn|

|xn| with ρ > 1. (2.6)

Lemma 2.7. For every integer r ≥ 1 we can choose a subsequence vni =
(xni

, yni
), and a subsequence {jni

} ⊂ N tending to infinity, such that

lim
i→∞

(bk
1bl

2)
jni yni = y 6= 0 and (1/bk

1bl
2)

r+1 ≤ |y| ≤ (1/bk
1bl

2)
r. (2.8)

P r o o f. In fact, without loss of generality we can assume that |yn| ≤ (1/bk
1bl

2)
r.

Thus for every n, there exists the smallest natural number jn such that

(1/bk
1bl

2)
r+1 ≤ |(bk

1bl
2)

jnyn| ≤ (1/bk
1bl

2)
r.

Hence, by compactness, we can chose a subsequence {ni} ⊂ N such that (2.8)
holds. ¤

Let r ≥ 1 be fixed. Since the limit c in (2.5) is non-zero, it follows from (2.6)
and Lemma 2.7 that (ak

1al
2)

jni xni → 0. Moreover, we have the sequence

{(sk
1sl

2)
jni vni}i ⊂ F ′

such that (sk
1sl

2)
jni vni → (0, yr) ∈ T2, with (1/bk

1bl
2)

r+1 ≤ |yr| ≤ (1/bk
1bl

2)
r.

Taking r →∞ we get a sequence of different points (0, 0) 6= (0, yr) → (0, 0), and
laying on T2. This contradicts (2.4).

Now, let c = 0 in (2.5). By the assumption (1.8) there are k′, l′ ∈ N such that

bk′
1 bl′

2 < ak′
1 al′

2 ,

and consequently, for every j ∈ N,

|(ak′
1 al′

2 )jxn|
|(bk′

1 bl′
2 )jyn|

≥ ρj |xn|
|yn| with ρ > 1.
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Now we proceed analogously to the previous case changing the role of xn with yn

and get, for every r ≥ 1 a sequence {(sk′
1 sl′

2 )jni vni
}i ⊂ F ′ such that, as i →∞,

(sk
1sl

2)
jni vni → (xr, 0) ∈ T2, with (0, 0) 6= (xr, 0) → (0, 0) and

(1/bk′
1 bl′

2 )r+1 ≤ |xr| ≤ (1/bk′
1 bl′

2 )r+1.

Hence we can produce infinitely many points in F ′ ∩ T1. This again contradicts
(2.4). ¤

By Lemma 2.2 we can assume that F ′ = qF either contains

T× {0} or {0} × T.

First we consider the case when

F ′ ⊃ T× {0}. (2.9)

It is known that there exists a point ω ∈ [0, 1] such that the set

{(a1/a2)nω : n ∈ N} (2.10)

is dense modulo 1 (recall that a1 > a2). Actually the set defined in (2.10) is
dense modulo 1 (and even uniformly distributed modulo 1) for almost all real
numbers ω (see [4, Corollary 4.3]). Let ε > 0 be fixed. By continuity, there
exists a neighborhood U of ω and a natural number N such that for every u ∈ U
the set

{(a1/a2)nu : 0 ≤ n ≤ N}
is ε-dense modulo 1. Define U0 = U/aN

2 and choose 0 < δ < ε
bN
1 bN

2
. By (2.9) we

can take m0, n0 ∈ N such that

qsm0
1 sn0

2 ξ = (θ1, θ2) + (l1, l2), (2.11)

where θ1 ∈ U0, θ2 ∈ [−δ, δ] and (l1, l2) ∈ Z2.

Now we consider the following sets

BN :={am0+j
1 an0+N−j

2 ξ1 + bm0+j
1 bn0+N−j

2 ξ2 : 0 ≤ j ≤ N}
={(a1/a2)jaN

2 am0
1 an0

2 ξ1 + (b1/b2)jbN
2 bm0

1 bn0
2 ξ2 : 0 ≤ j ≤ N}

and

qBN ={am0+j
1 an0+N−j

2 qξ1 + bm0+j
1 bn0+N−j

2 qξ2 : 0 ≤ j ≤ N}
={(a1/a2)jaN

2 am0
1 an0

2 qξ1 + (b1/b2)jbN
2 bm0

1 bn0
2 qξ2 : 0 ≤ j ≤ N}.

By (2.11) the set qBN is equal (modulo 1) to

{(a1/a2)jaN
2 θ1 + (b1/b2)jbN

2 θ2 : 0 ≤ j ≤ N}.
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Since aN
2 θ1 ∈ U and |(b1/b2)jbN

2 θ2| < bN
1 bN

2 δ < ε, we conclude that qBN is
2ε-dense modulo 1. Taking M = m0 + n0 + N we see that qAM ⊃ qBN . Hence,
qAM is 2ε-dense modulo 1 and so the result follows under the assumption (2.9).

If F ′ ⊃ {0} × T, the proof is the same. It is enough to consider b1 and b2

instead of a1 and a2. ¤
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