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AVERAGE DISTANCE BETWEEN CONSECUTIVE

POINTS OF UNIFORMLY DISTRIBUTED

SEQUENCES

Friedrich Pillichshammer? — Stefan Steinerberger

ABSTRACT. In this paper we give best possible lower and upper bounds on the
average distance between consecutive points of uniformly distributed sequences.
The upper bound is attained with the dyadic van der Corput sequence. Further-
more we give a constructive proof that any element from the interval [0, 1/2] can
be obtained as the average distance between consecutive points of some uniformly
distributed sequence.

Communicated by Oto Strauch

1. Introduction

A sequence (xn)n≥0 in the unit-interval [0, 1) is said to be uniformly dis-
tributed if for all intervals I ⊆ [0, 1) we have

lim
N→∞

A(I, N, (xn))
N

= λ(I),

where A(I, N, (xn)) = #{0 ≤ n < N : xn ∈ I}, the number of elements among
the first N elements of the sequence that belong to I, and λ(I) is the length
of the interval I. An excellent introduction into this topic can be found in the
book of Kuipers and Niederreiter [5] or in the book of Drmota and Tichy [2].
Typical examples of uniformly distributed sequences are:

1. The van der Corput sequence in integer base b ≥ 2 for which the n-th
point is given by xn = n0

b + n1
b2 + n2

b3 + · · · for n ∈ N0 with b-adic expansion
n = n0 + n1b + n2b

2 + · · · . It is well known that the van der Corput
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sequence in base b is uniformly distributed (see [5, Chapter 2, Theorem
3.5]).

2. The (nα)-sequences where the n-th element is given by xn = {nα}, and {·}
denotes the fractional part. From Weyl’s criterion one obtains immediately,
that the (nα)-sequence is uniformly distributed if and only if α ∈ R \ Q
(see [5, Chapter 1, Example 2.1]).

It is well known (see [5, Chapter 1, Theorem 2.6]) that if a sequence (xn)n≥0

is uniformly distributed, then necessarily lim supn→∞ n|xn+1−xn| = ∞. In this
paper we consider the average of the distances between consecutive elements of
a uniformly distributed sequence (xn)n≥0 in the unit-interval, i.e., we analyze
the quantity

N−1∑
n=0

|xn+1 − xn|. (1)

Trivially, this quantity is bounded above by N . On the other hand, it is also
clear that for uniformly distributed sequences (xn)n≥0 in the unit-interval the se-
ries

∑∞
n=0 |xn+1−xn| is divergent, since otherwise we would have

∑
n>N |xn+1−

xn| < 1
4 for some N ∈ N. Hence for all m > N we would have

|xm − xN | ≤
m−1∑

n=N

|xn+1 − xn| < 1
4
,

which means that all elements xm with m > N are in the interval (xN − 1
4 , xN +

1
4 )∩[0, 1). Obviously, this is a contradiction to the uniform distribution property
of (xn)n≥0.

A sequence (xn)n≥0 is said to be completely uniformly distributed if for any s ≥
1 the s-dimensional sequence (x(s)

n )n≥0, where x
(s)
n = (xn, xn+1, . . . , xn+s−1), is

uniformly distributed in [0, 1)s (the definition of uniform distribution for se-
quences in [0, 1) can be generalized to uniform distribution of s-dimensional
sequences in the obvious way, see [5, Chapter 1, Section 6]). Examples for com-
pletely uniformly distributed sequences can be found in [10]. Hence, if (xn)n≥0

is completely uniformly distributed, then from [5, Chapter 1, Theorem 6.1] we
obtain

lim
N→∞

1
N

N−1∑
n=0

|xn+1 − xn| =
∫ 1

0

∫ 1

0

|x− y|dxdy =
1
3
.

Now it is well known that almost all random sequences in the unit interval
[0, 1) are completely uniformly distributed (this follows, for example, from [3,
Theorem 4]; see also [6]). Hence we obtain that almost all random sequences in
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the unit interval are uniformly distributed with average distance of consecutive
elements equal to 1

3 in the limit.
The paper is organized as follows: in Section 2 we present the main results.

In particular, we give best possible (asymptotic) upper and lower bounds on
(1). Furthermore, we determine the average distance among consecutive points
of the two prototypes of uniformly distributed sequences given above, the van
der Corput sequence and the (nα)-sequence. These results lead for any γ ∈ [0, 1

2 ]
to the construction of a uniformly distributed sequence whose average distance
between consecutive points is in the limit equal to γ. The proofs of the results
are presented in Section 3.

Throughout the paper we denote by bxc the integer part of x and by {x} the
fractional part of x, i.e., x = bxc + {x}. Furthermore, by ‖x‖ we denote the
distance from x to the nearest integer, i.e., ‖x‖ = min{x − bxc, 1 − (x − bxc)}.
By log we denote the natural logarithm.

2. The main results

In this section we present the main results of this paper. The proofs of these
results will be given in Section 3.

The first theorem shows that the sum of the first N distances between consec-
utive points of a uniformly distributed sequence grows faster than any positive
constant times the logarithm of N .

Theorem 1. Let (xn)n≥0 be uniformly distributed in [0, 1). Then we have

lim
N→∞

1
log N

N−1∑
n=0

|xn+1 − xn| = ∞.

The result of this theorem becomes quite natural in the light of the following
corollary stating that sequences generated by increasing functions with a very
slow growth are not uniformly distributed. This result is well known and was
first proved by Niederreiter [7] (see also [10, Subsection 2.2.8]).

Corollary 1. Let f : N→ R+ be an increasing function with f(n) = O(log n).
Then the sequence ({f(n)})n≥1 is not uniformly distributed.

A further consequence of Theorem 1 is the result from [5, Chapter 1, Theorem
2.6] on the lim supn→∞ n|xn+1−xn| for uniformly distributed sequences (xn)n≥0

as mentioned in the Introduction to this paper. Assuming that
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lim supn→∞ n|xn+1 − xn| < ∞ we would obtain
∑N−1

n=0 |xn+1 − xn| = O(log N)
which contradicts Theorem 1. Hence we must have

lim sup
n→∞

n|xn+1 − xn| = ∞.

The result from Theorem 1 is best possible in the sense that there exist (arbi-
trary slowly) growing functions h which generate uniformly distributed sequences
for which the first N distances between consecutive points of the sequences are
bounded above by h(N) log N .

Theorem 2. Let h : [1,∞) → R+ be an increasing, continuously differentiable
function such that:

1. limx→∞ h(x) = ∞,
2. h(x)/x tends monotonically to 0 as x →∞ and
3. h′(x) log x tends monotonically to 0 as x →∞.

Then there exists a uniformly distributed sequence (xn)n≥0 in [0, 1) for which we
have

N−1∑
n=0

|xn+1 − xn| ≤ h(N) log N.

Such a sequence is, for example, given by xn =
{

1
2h(n) log n

}
for n ≥ 1.

Now we turn to an asymptotic upper bound on the average of distances be-
tween consecutive points of a uniformly distributed sequence.

Theorem 3. Let (xn)n≥0 and (yn)n≥0 be two uniformly distributed sequences
in [0, 1). Then we have

lim sup
N→∞

1
N

N−1∑
n=0

|xn − yn| ≤ 1
2
.

In particular, we have

lim sup
N→∞

1
N

N−1∑
n=0

|xn+1 − xn| ≤ 1
2
.

Again, this result is best possible. The value 1
2 is obtained, for example, by

the van der Corput sequence in base 2.

Theorem 4. Let (xn)n≥0 be the van der Corput sequence in base 2. Then we
have

N−1∑
n=0

|xn+1 − xn| = N

2
− 1

2
xbN

2 c.
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In particular, limN→∞ 1
N

∑N−1
n=0 |xn+1 − xn| = 1

2 .

Hence the van der Corput sequence in base 2 is an example for a uniformly
distributed sequence with the largest possible average distance between consec-
utive points.

Remark 1. With a much simpler argumentation as in the proof of Theorem 4,
but less accurate, we can show that for the van der Corput sequence in arbitrary
base b we have

lim
N→∞

1
N

N−1∑
n=0

|xn+1 − xn| = 2(b− 1)
b2

. (2)

Namely, from the construction of the van der Corput sequence in base b we find
that xn+1 − xn = 1

b whenever n 6≡ b − 1 (mod b) and xn+1 − xn = − bk−b−1
bk

whenever n is of the form n = mbk + βbk−1 + bk−1 − 1 with m ∈ N0, β ∈
{0, . . . , b− 2} and k ≥ 2. Therefore we have

N−1∑
n=0

|xn+1 − xn| = b− 1
b

⌊
N

b

⌋
+

∑
k≥2,m≥0
0≤β≤b−2

mbk+βbk−1+bk−1−1≤N−1

bk − b− 1
bk

= N
b− 1
b2

+ N(b− 1)
blog Nc∑

k=2

bk − b− 1
b2k

+ O(log N)

= N
b− 1
b2

+ N(b− 1)
(bblog Nc+1 − bblog Nc − 1)(bblog Nc − b)

(b− 1)b2(blog Nc+1)

+ O(log N).

From this the result (2) follows, since limN→∞
(bblog Nc+1−bblog Nc−1)(bblog Nc−b)

(b−1)b2(blog Nc+1) =
1
b2 .

The next theorem shows, that for any (nα)-sequence we have that the average
distance between consecutive points is in the limit < 1

2 where again 1
2 is best

possible.

Theorem 5. Let (xn)n≥0 be the (nα)-sequence with α ∈ R \Q. Then we have

lim
N→∞

1
N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α}).

Hence for α ∈ R \ Q the values limN→∞ 1
N

∑N−1
n=0 |xn+1 − xn| are dense in[

0, 1
2

]
. Especially, every real γ ∈ (0, 1

2 ) which is of the form γ = 2α(1 − α) for
some irrational α can be obtained as the average distance between consecutive
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points of the (nα)-sequence. (Note also that choosing randomly a irrational
α ∈ (0, 1) leads to a (nα)-sequence with expected average distance between
consecutive points of 1

3 in the limit.) By constructing a more general sequence,
we finally obtain that even any γ ∈ [0, 1

2 ] can be obtained as the average distance
between consecutive points of a uniformly distributed sequence. This result
should be compared with the fact that almost all random sequences have average
distance between consecutive points of 1

3 in the limit (see Section 1).

Corollary 2. For each γ ∈ [0, 1
2 ] there exists a uniformly distributed sequence

(xn)n≥0 in [0, 1) such that

lim
N→∞

1
N

N−1∑

i=0

|xn+1 − xn| = γ.

We remark here, that for each γ ∈ [0, 1
2 ] we can give an explicit example

for a uniformly distributed sequence with average distance between consecutive
points equal to γ in the limit (see the proof of Corollary 2 in the subsequent
section).

3. The proofs

In this section we provide the proofs of the results from Section 2. For the
proof of Theorem 1 we need the following lemmas.

Lemma 1. Let f : N→ N be a function and let (xn)n≥0 be uniformly distributed
in [0, 1). Assume there is a constant c = c(f) > 0 such that there exists a
y = y(c) ∈ R with the property that for all x > y we have f(x)

(
1
2 − 3c

)
> 2cx.

Then there is an integer N ∈ N such that for all n > N we have

n+f(n)∑

i=n

|xi+1 − xi| > 1
2
. (3)

P r o o f. Let us assume that the inequality is false for infinitely many numbers
n ∈ N. We now choose an arbitrary ε ∈ (0, c). Since the sequence (xn)n≥0 is
uniformly distributed modulo one, there is a constant M ∈ N such that for all
m > M and for all intervals I ⊆ [0, 1) we have

∣∣∣∣
A(I,m, (xn))

m
− λ(I)

∣∣∣∣ ≤ ε. (4)
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By assumption, there are infinitely many numbers m > M such that Eq. (3) does
not hold. We choose one such m > M for which the inequality f(m)

(
1
2 − 3ε

)
>

2εm is true as well. Then for all m ≤ j < k ≤ m + f(m) + 1 we have

|xk − xj | ≤
k−1∑

i=j

|xi+1 − xi| ≤
m+f(m)∑

i=m

|xi+1 − xi| ≤ 1
2

Hence the elements xm, xm+1, ..., xf(m)+m+1 can be found within an interval
I∗ ⊆ [0, 1) of length at most 1

2 . From (4) we conclude that
∣∣∣∣
A(I∗,m + f(m), (xn))

m + f(m)
− A(I∗,m, (xn))

m

∣∣∣∣ ≤ 2ε. (5)

On the other hand

A(I∗,m + f(m), (xn))
m + f(m)

=
A(I∗, m, (xn))

m + f(m)
+

f(m)
m + f(m)

Inserting this into Eq. (5) yields
∣∣∣∣

f(m)
m + f(m)

(
1− A(I∗, m, (xn))

m

)∣∣∣∣ ≤ 2ε

The expression within the brackets is strictly positive, therefore

2ε ≥ f(m)
m + f(m)

(
1− A(I∗,m, (xn))

m

)
≥ f(m)

m + f(m)
(1− λ(I∗)− ε)

≥ f(m)
m + f(m)

(
1
2
− ε

)
.

However, the inequality f(m)
(

1
2 − 3ε

)
> 2εm gives

2ε ≥ f(m)
m + f(m)

(
1
2
− ε

)
> 2ε,

and this contradiction completes the proof. ¤

Lemma 2. Let m ∈ N be arbitrary and let T : R → R be defined as T (x) :=
x +

⌊
x
m

⌋
+ 1. For n ∈ N we define T (n) := T (T (n−1)) with T (0)(x) := x. If

x > m, then we have

T (n)(x) ≤ x

(
1 +

2
m

)n

P r o o f. The result follows by induction on n. ¤
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P r o o f o f T h e o r e m 1. Let m > 2 be a fixed integer. It is easy to see that
the function f(x) =

⌊
x
m

⌋
satisfies the requirements of Lemma 1. Therefore there

exists a number M ∈ N such that for all k > M we have
k+b k

mc∑

n=k

|xn+1 − xn| > 1
2
.

Let now N > max(M, m), we then estimate

N−1∑
n=0

|xn+1 − xn| ≥
M+bM

m c∑

n=M

|xn+1 − xn|+
M+bM

m c+1+

⌊
M+bM

m c+1

m

⌋

∑

n=M+bM
m c+1

|xn+1 − xn|+. . . ,

where the sums are being added while the upper index is still smaller than
N . From our Lemma 2 we know that the upper index of the kth sum will be
≤ M(1+ 2

m )k. By making use of the elementary inequality log(1+x) ≤ x we see
that there are at least m

2 (log N− log M) sums on the right side of the inequality.
Each sum contributes at least 1

2 , therefore

N−1∑
n=0

|xn+1 − xn| ≥ m

4
(log N − log M)

for N sufficiently large. Since m was an arbitrary integer, the result follows. ¤

P r o o f o f C o r o l l a r y 1. The result follows from Theorem 1 together with
the subsequent lemma which is also required for the proof of Theorem 2. ¤

Lemma 3. Let f : N→ R+ be an increasing function. Then for any N ∈ N we
have

N−1∑
n=0

|{f(n + 1)} − {f(n)}| ≤ 2f(N).

P r o o f. We have

|{f(n + 1)} − {f(n)}| ≤
{

f(n + 1)− f(n) if bf(n)c = bf(n + 1)c,
1 otherwise.

Therefore we obtain
N−1∑
n=0

|{f(n + 1)} − {f(n)}| ≤
N−1∑
n=0

bf(n)c=bf(n+1)c

(f(n + 1)− f(n)) +
N−1∑
n=0

bf(n)c6=bf(n+1)c

1

≤ f(N) + #{0 ≤ n < N : bf(n)c 6= bf(n + 1)c}.
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For the increasing sequence f(n), n = 0, 1, . . . , N − 1, it can occur at most
f(N) times that bf(n)c 6= bf(n + 1)c (the worst case is that each interval [i, i +
1), i ∈ {0, . . . , bf(N)c}, contains exactly one element f(n)). Hence the result
follows. ¤

P r o o f o f T h e o r e m 2. The proof is based on Fejér’s theorem (see, for exam-
ple, [5, Chapter 1, Corollary 2.1]). Let f(x) = 1

2h(x) log x, then f : [1,∞) → R+

is an increasing, differentiable function with

x|f ′(x)| = x

2

(
h′(x) log x +

h(x)
x

)
≥ 1

2
h(x)

and hence limx→∞ x|f ′(x)| = ∞.
Since by assumption h(x)/x and h′(x) log x both converge to 0 monotonically

as x →∞ we find that

f ′(x) =
1
2

(
h′(x) log x +

h(x)
x

)

converges to 0 monotonically as x →∞.
Thus, by Fejér’s theorem the sequence (f(n))n≥0 is uniformly distributed.

From Lemma 3 we obtain that
N−1∑
n=0

|xn+1 − xn| =
N−1∑
n=0

|{f(n + 1)} − {f(n)}| ≤ 2f(N) = h(N) log N,

as claimed. ¤

P r o o f o f T h e o r e m 3. 1 We consider an arbitrary distribution function (d.f.)
g : [0, 1]2 → [0, 1] of the two-dimensional sequence (xn, yn)n≥0. Hence there ex-
ists an increasing sequence of natural numbers N1, N2, . . . such that

lim
k→∞

1
Nk

Nk−1∑
n=0

|xn − yn| =
∫ 1

0

∫ 1

0

|x− y|dx dyg(x, y).

Integration by parts yields
∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) =
∫ 1

0

g(1, y) dy +
∫ 1

0

g(x, 1) dx− 2
∫ 1

0

g(x, x) dx.

Since the sequences (xn)n≥0 and (yn)n≥0 are both uniformly distributed, we
have that g(1, y) = y and g(x, 1) = x for all x, y ∈ [0, 1]. Such a distribution

1We are grateful to Oto Strauch who proposed this proof which is much shorter and more
general than our initial proof of Theorem 3.
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function is called a copula (see [9, p. 55] for basic properties of copulas). Now
we obtain ∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) = 1− 2
∫ 1

0

g(x, x) dx.

It is known (see [9, p. 56]) that for every copula g(x, y) we have max(x + y −
1, 0) ≤ g(x, y) ≤ min(x, y) and from this we find that

∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) ≤ 1
2
.

Since g is an arbitrary d.f. the result follows. ¤

The proof of Theorem 4 is based on the following result.

Proposition 1. Let (xn)n≥0 be the van der Corput sequence in base 2. For
2m ≤ N < 2m+1 we have

N−1∑
n=0

xn =
N

2
− 1

2

(
1 +

m∑
r=1

∥∥∥∥
N

2r

∥∥∥∥
)

(6)

and
N−1∑
n=0

n≡0 ( mod 2)

xn =
N

8
+ ρN − 1

4

m∑

i=1

∥∥∥∥
N

2i

∥∥∥∥−
1
8

m−1∑

i=1

δN,i

2i
, (7)

with ρN = 0 when N is odd and ρN = −1/4 when N is even and δN,i = 0 when
N is even and δN,i = (−1)Ni when N is odd.

The following lemma is required for the proof of Proposition 1.

Lemma 4. Let 0 ≤ U < 2m be an integer and for any integer 0 ≤ n ≤ U − 1 let
n = n0 + n12 + · · ·+ nm−12m−1 be the binary representation of n. Then for any
integer 0 ≤ r < m we have

U−1∑
n=0

(−1)nr = 2r+1

∥∥∥∥
U

2r+1

∥∥∥∥ , (8)

and for 1 ≤ r < m we have
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr = 2r

∥∥∥∥
U

2r+1

∥∥∥∥ +
δU,r

2
, (9)

where δU,r = 0 when U is even and δU,r = (−1)Ur when U is odd.
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P r o o f. Eq. (8) is a special case of [8, Lemma 4.1] (or [1, Lemma 3]). Hence
we just deduce Eq. (9) from Eq. (8). We have

2r+1

∥∥∥∥
U

2r+1

∥∥∥∥ =
U−1∑
n=0

(−1)nr =
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr +
U−1∑
n=1

n≡1 ( mod 2)

(−1)nr .

If n is odd and r ≥ 1 we have nr = (n− 1)r where (n− 1)r is the r-th digit in
the binary representation of n− 1. Hence

U−1∑
n=1

n≡1 ( mod 2)

(−1)nr =
U−1∑
n=1

n≡1 ( mod 2)

(−1)(n−1)r =
U−2∑
n=0

n≡0 ( mod 2)

(−1)nr

=
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr − δU,r,

where δU,r = 0 when U is even and δU,r = (−1)(U−1)r = (−1)Ur when U is odd
(note that r 6= 0). Together we obtain

2r+1

∥∥∥∥
U

2r+1

∥∥∥∥ = 2
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr − δU,r

and the result follows. ¤

Now we give the proof of Proposition 1.

P r o o f o f P r o p o s i t i o n 1. We just give the (more involved) proof of Eq.
(7) (Eq. (6) can be shown in the same way or, alternatively, follows from [1,
Proposition 1]).

For ξ ∈ {0, 1} we have ξ = 1−(−1)ξ

2 . Let x ∈ [0, 1) with canonical binary
representation x =

∑∞
i=1

ξi

2i . Then we have

x =
∞∑

i=1

1− (−1)ξi

2i+1
=

1
2
−

∞∑

i=1

(−1)ξi

2i+1
. (10)

For n = n0 + n12 + n222 + · · · the n-th point of the van der Corput sequence
is given by xn = n0

2 + n1
22 + n2

22 + · · · . Hence, using (10) we may write xn as
xn = 1

2 −
∑∞

i=0
(−1)ni

2i+2 . Now we have

N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1
2
−

∞∑

i=0

1
2i+2

N−1∑
n=0

n≡0 ( mod 2)

(−1)ni .

61



FRIEDRICH PILLICHSHAMMER — STEFAN STEINERBERGER

For any m ∈ N we have
2m−1∑

n=0
n≡0 ( mod 2)

(−1)ni =
{

0 if 1 ≤ i < m,
2m−1 if i = 0 or if i ≥ m.

Choosing m such that 2m ≤ N < 2m+1 we obtain
N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1
2
−

∞∑

i=0

1
2i+2

2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni

−
∞∑

i=0

1
2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni .

We have
∞∑

i=0

1
2i+2

2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni = 2m−3 +
∞∑

i=m

2m−1

2i+2
=

2m

8
+

1
4

and (splitting up the summation over i and invoking Lemma 4)
∞∑

i=0

1
2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni =
N−1∑
n=2m

n≡0 ( mod 2)

1
4

+
m−1∑

i=1

1
2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni

+
1

2m+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1) +
∞∑

i=m+1

1
2i+2

N−1∑
n=2m

n≡0 ( mod 2)

1

=
N−1∑
n=2m

n≡0 ( mod 2)

1
4

+
m−1∑

i=1

1
2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni

=
N−1∑
n=2m

n≡0 ( mod 2)

1
4

+
m−1∑

i=1

1
2i+2

N−2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni

=
N−1∑
n=2m

n≡0 ( mod 2)

1
4

+
m−1∑

i=1

1
2i+2

(
2i

∥∥∥∥
N − 2m

2i+1

∥∥∥∥ +
δN−2m,i

2

)

=
N−1∑
n=2m

n≡0 ( mod 2)

1
4

+
1
4

m∑

i=2

∥∥∥∥
N

2i

∥∥∥∥ +
1
8

m−1∑

i=1

δN,i

2i
.
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Now we obtain
N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1
2
−

N−1∑
n=2m

n≡0 ( mod 2)

1
4
− 2m

8
− 1

4
− 1

4

m∑

i=2

∥∥∥∥
N

2i

∥∥∥∥

− 1
8

m−1∑

i=1

δN,i

2i

=
N

8
+ ρ̃N − 1

4
− 1

4

m∑

i=2

∥∥∥∥
N

2i

∥∥∥∥−
1
8

m−1∑

i=1

δN,i

2i
,

where ρ̃N = 0 when N is even and ρ̃N = 1
8 when N is odd. For even N we have

‖N/2‖ = 0 and for odd N we have 1
4‖N/2‖ = 1/8 = 1/4− ρ̃N . Hence we have

N−1∑
n=0

n≡0 ( mod 2)

xn =
N

8
+ ρN − 1

4

m∑

i=1

∥∥∥∥
N

2i

∥∥∥∥−
1
8

m−1∑

i=1

δN,i

2i
,

with ρN = 0 when N is odd and ρN = −1/4 when N is even. ¤

P r o o f o f T h e o r e m 4. For even n we have xn+1−xn > 0 and for odd n we
have xn+1 − xn < 0. Hence together with Proposition 1 we get

N−1∑
n=0

|xn+1 − xn| =
N−1∑
n=0

n≡0 ( mod 2)

(xn+1 − xn) +
N−1∑
n=0

n≡1 ( mod 2)

(xn − xn+1)

= 2




N−1∑
n=0

n≡1 ( mod 2)

xn −
N−1∑
n=0

n≡0 ( mod 2)

xn


 + (−1)N+1xN

= 2




N−1∑
n=0

xn − 2
N−1∑
n=0

n≡0 ( mod 2)

xn


 + (−1)N+1xN

=
N

2
− 1− 4ρN +

1
2

m−1∑

i=1

δN,i

2i
+ (−1)N+1xN .

For even N we have ρN = −1/4 and δN,i = 0 and 0 ≤ xN < 1/2, and hence

−1− 4ρN +
1
2

m−1∑

i=1

δN,i

2i
+ (−1)N+1xN = −xN .
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From this it follows that for even N

N − 2
N−1∑
n=0

|xn+1 − xn| = 2xN = xN
2
.

For odd N we know that xN = xN−1 + 1
2 , therefore

N − 2
N−1∑
n=0

|xn+1 − xn| = (N − 1)− 2
N−2∑
n=0

|xn+1 − xn| = xN−1
2

.

¤

Finally, we give the proof of Theorem 5.

P r o o f o f T h e o r e m 5. W.l.o.g. we may assume that α ∈ (0, 1). From the
construction of the sequence one can see that

|xn+1 − xn| =
{

α if xn ∈ [0, 1− α),
1− α if xn ∈ [1− α, 1).

Therefore and since (xn)n≥0 is uniformly distributed, for N →∞ we obtain

1
N

N−1∑
n=0

|xn+1 − xn| =
1
N

N−1∑
n=0

xn∈[0,1−α)

α +
1
N

N−1∑
n=0

xn∈[1−α,1)

(1− α)

= α(1− α + o(1)) + (1− α)(α + o(1))

and the result follows. ¤

P r o o f o f C o r o l l a r y 2. For γ = 1
2 we can take the van der Corput sequence

in base 2 and for γ = 0 we can take the sequence given in Theorem 2.
Each γ ∈ (0, 1

2 ) can be written as γ = 2α(1 − α) for some α ∈ (0, 1
2 ). This

is equivalent to α = 1
2 (1 −√1− 2γ). If α is irrational, then by Theorem 5 the

(nα)-sequence has the demanded properties.
Otherwise γ itself has to be rational. For a fixed irrational 0 < c < min{γ, 1

2−
γ} the numbers γ − c and γ + c are irrational, and hence there exist irrational
α and β such that

lim
N→∞

1
N

N−1∑
n=0

|{(n + 1)α} − {nα}| = γ − c and

lim
N→∞

1
N

N−1∑
n=0

|{(n + 1)β} − {nβ}| = γ + c.

By Theorem 5 we have 2α(1− α) = γ − c and 2β(1− β) = γ + c.
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We now consider the sequence (xn)n≥0 given by 0, {α}, {α+β}, {α+2β}, {2α+
2β}, . . . where, beginning with the element 0 we add consecutively α once, then
β twice, α three times and so forth. The resulting sequence can be written as
x0 = 0 and for k ∈ N and k(k−1)

2 < n ≤ k(k+1)
2 we have

xn =





{(
n− k2−1

4

)
α + k2−1

4 β
}

if k is odd,{
k2

4 α +
(
n− k2

4

)
β
}

if k is even.

Using Weyl’s criterion we show that the sequence (xn)n≥0 is uniformly dis-
tributed whenever α and β are irrational. For N ∈ N choose M ∈ N such that
M(M−1)

2 < N ≤ M(M+1)
2 and hence M = O(

√
N). Then for any integer h 6= 0

we have

N−1∑
n=0

e2πihxn =
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2∑

n=
k(k−1)

2 +1

e2πih
(

k2
4 α+

(
n− k2

4

)
β

)

+
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2∑

n=
k(k−1)

2 +1

e2πih
((

n− k2−1
4

)
α+ k2−1

4 β
)

+ O(M). (11)

Since β ∈ R \Q and h 6= 0 for even k ∈ N we have

∣∣∣∣∣∣∣

k(k+1)
2∑

n=
k(k−1)

2 +1

e2πih
(

k2
4 α+

(
n− k2

4

)
β

)
∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

k2
4 + k

2∑

n= k2
4 − k

2 +1

e2πihnβ

∣∣∣∣∣∣∣
≤ 2
|e2πihβ − 1| .

An analogous bound holds for the second sum in (11) over n with odd k. Hence
it follows with Eq. (11) that for any h 6= 0 we have

∑N−1
n=0 e2πihxn = O(M) =

O(
√

N) and hence Weyl’s criterion implies that the sequence (xn)n≥0 is uni-
formly distributed.

Now we turn to the sum of the distances between consecutive points of
(xn)n≥0. For N ∈ N choose again M ∈ N such that M(M−1)

2 < N ≤ M(M+1)
2

and hence M = O(
√

N) and M2

2 ∼ N for N →∞. We write
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N−1∑
n=0

|xn+1 − xn| =
∑

r∈{0,1}

M−1∑
k=0

k≡r ( mod 2)

k(k+1)
2 −1∑

n=
k(k−1)

2

|xn+1 − xn|+ O(M)

=
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2 −1∑

n= k(k−1)
2

xn∈[0,1−α)

α +
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2 −1∑

n= k(k−1)
2

xn∈[1−α,1)

(1− α)

+
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2 −1∑

n= k(k−1)
2

xn∈[0,1−β)

β +
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2 −1∑

n= k(k−1)
2

xn∈[1−β,1)

(1− β) + O(
√

N).

For any interval J ⊆ [0, 1) for k →∞ we have

k(k+1)
2 −1∑

n= k(k−1)
2

xn∈J

1 = #
{

k(k − 1)
2

≤ n <
k(k + 1)

2
: xn ∈ J

}

=
(

k(k + 1)
2

(λ(J) + o(1))− k(k − 1)
2

(λ(J) + o(1))
)

= kλ(J) + o(k).

Hence we obtain

N−1∑
n=0

|xn+1 − xn| =2α(1− α)
M−1∑
k=0

k≡0 ( mod 2)

k + 2β(1− β)
M−1∑
k=0

k≡1 ( mod 2)

k

+
M−1∑

k=0

o(k) + O(
√

N).

Since
M−1∑
k=0

k≡r ( mod 2)

k = M2

4 +O(M) for r ∈ {0, 1} and since
∑M−1

k=0 o(k) = o(M2) =

o(N) and since M2

2 ∼ N for N →∞ we obtain

N−1∑
n=0

|xn+1 − xn| = (α(1− α) + β(1− β))N + o(N).

Now by construction, 2α(1 − α) = γ − c and 2β(1 − β) = γ + c and the result
follows. ¤

66



AVERAGE DISTANCE BETWEEN CONSECUTIVE POINTS

REFERENCES

[1] DRMOTA, M. – LARCHER, G. – PILLICHSHAMMER, F.: Precise distribution
properties of the van der Corput sequence and related sequences, Man. Math. 118
(2005), 11–41.

[2] DRMOTA, M. – TICHY, R.F.: Sequences, Discrepancies and Applications, Lec-
ture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997.

[3] DRMOTA, M. – WINKLER, R.: s(N)-uniform distribution modulo 1, J. Number
Theory 50 (1995), 213–225.

[4] HOLEWIJN, P.J.: Note on Weyl’s criterion and the uniform distribution of inde-
pendent random variables, Ann. Math. Statist. 40(1969) 1124–1125.

[5] KUIPERS, L. – NIEDERREITER, H.: Uniform Distribution of Sequences, John
Wiley & Sons, New York, 1974 (Reprint edition in Dover Publications, Inc. Mine-
ola, New York, 2006).

[6] LEVIN, M.B.: Discrepancy estimates of completely uniformly distributed and pseu-
dorandom number sequences, Internat. Math. Res. Notices 22 (1999), 1231–1251.

[7] NIEDERREITER, H.: Distribution mod 1 of monotone sequences. Nederl. Akad.
Wetensch. Indag. Math. 46 (1984), 315–327.

[8] F. PILLICHSHAMMER, F.: Dyadic diphony of digital sequences, J. Théor. Nom-
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[10] STRAUCH, O. – PORUBSKÝ, Š.: Distribution of Sequences: A Sampler,
Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter
Lang, Bern-Frankfurt am Main, 2005.

Received December 3, 2008
Accepted April 6, 2009

Friedrich Pillichshammer
Stefan Steinerberger
Institut für Finanzmathematik
Universität Linz
Altenbergstraße 69
A-4040 Linz
AUSTRIA

E-mail : friedrich.pillichshammer@jku.at
stefan.steinerberger@gmail.com

67


