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WEIGHTED LIMIT THEOREMS FOR GENERAL

DIRICHLET SERIES. II

Jonas Genys — Antanas Laurinčikas∗

ABSTRACT. Under some hypotheses on the weight function and a function

given by general Dirichlet series, weighted limit theorems in the sense of weak

convergence of probability measures in the space of meromorphic functions are

obtained. If the system of exponents of Dirichlet series is linearly independent

over the field of rational numbers, then the explicit form of the limit measure is

given.

Communicated by Michel Weber

1. Introduction

Let {am : m ∈ ℕ} be a sequence of complex numbers, and {�m : m ∈ ℕ}
be an increasing sequence of real numbers such that lim

m→∞
�m = +∞. Then the

series

∞
∑

m=1

ame−�ms, s = � + it, (1)

is called a general Dirichlet series. The region of convergence as well as of
absolute convergence of series (1) is a half-plane.

From H. Bohr and B. Jessen fundamental works [2], [3], the asymptotic be-
haviour of Dirichlet series is characterized by limit theorems in the sense of
weak convergence of probability measures. Theorems of such a type for general
Dirichlet series were obtained in [5]–[7] and [9]–[13].
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This paper is a continuation of [6], where weighted limit theorems on the
complex plane for general Dirichlet series were obtained. Before stating them,
we recall the used hypotheses on Dirichlet series and the weight function.

Suppose that the series (1) converges absolutely for � > �a and has a sum
f(s). Additionally, we assume that the function f(s) can be meromorphically
continued to the region � > �1, �1 < �a, all poles in this region are included in
a compact set, and that, for � > �1, � is not the real part of a pole of f(s), the
estimates

f(� + it) = O(∣t∣a), a = a(�) > 0, ∣t∣ ≥ t0 > 0, (2)

and
T
∫

−T

∣f(� + it)∣2dt = O(T ), T → ∞ (3)

are satisfied.

Let w(t) be a positive function of bounded variation on [T0,∞), T0 > 0.
Moreover, let

U = U (T,w) =

T
∫

T0

w(t)dt.

We suppose that lim
T→∞

U (T,w) = +∞, and that, for � > �1, � is not the real

part of a pole of f(s), and all v ∈ ℝ, the estimate

T+v
∫

T0+v

w(t− v)∣f(� + it)∣2dt = O(U (1 + ∣v∣)) (4)

is satisfied. Note that if w(t) = t−1, then the estimate (3) implies (4).

Denote by ℬ(S) the class of Borel sets of a metric space S, and define the
probability measure

PT,�,w(A) =
1

U

T
∫

T0

w(t)I{t:f(�+it)∈A}dt, A ∈ ℬ(ℂ),

where IA denotes the indicator function of the set A, and ℂ is the complex plane.

The first theorem of [6] is the following statement.Theorem 1. [6]. Suppose that � > �1 and that the function f(s) satisfies the

conditions (2) and (4). Then on (ℂ,ℬ(ℂ)), there exists a probability measure P�

such that the measure PT,�,w converges weakly to P� as T → ∞.
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The identification of the limit measure P� requires some definitions and ad-
ditional hypotheses on the functions f(s) and w(t). Let  = {s ∈ ℂ : ∣s∣ = 1}
denote the unit circle on the complex plane, and

Ω =

∞
∏

m=1

m,

where m =  for all m ∈ ℕ. By the Tikhonov theorem, with the product topol-
ogy and pointwise multiplication, the infinite dimensional torus Ω is a compact
topological Abelian group. Therefore, on (Ω,ℬ(Ω)) the probability Haar mea-
sure mH can be defined, and this leads to a probability space (Ω,ℬ(Ω),mH).
Denote by !(m) the projection of ! ∈ Ω to the coordinate space m, m ∈ ℕ.
Suppose that

�m ≥ c(logm)� (5)

with some positive constants c and �, and on the probability space (Ω,ℬ(Ω),mH)
define the complex-valued random element f(�, !) by

f(�, !) =

∞
∑

m=1

am!(m)e−�m�, � > �1.

Note that inequality (5) is used to prove in [13] that f(�, !) is a random element.

Also, we need a condition for w(t) which generalizes the classical Birkhoff-
Khintchine theorem, see, for example, [4]. Denote by EX the expectation of the
random elementX. Let X(t, !) be an arbitrary ergodic process, E∣X(t, !)∣ < ∞,
with sample paths integrable almost surely in the Riemann sense over every finite
interval. We suppose that

1

U

T
∫

T0

w(t)X(t + v, !)dt = EX(0, !) + rT (1 + ∣v∣)� (6)

almost surely for all v ∈ ℝ with some � > 0, where rT → 0 as T → ∞. If in
(6) w(t) ≡ 1 and v = 0, then (6) becomes the Birkhoff-Khintchine theorem. Let
�(T ) = inf

t∈[T0,T ]
w(t). If

w(T )�−1(T ) = O(1),

then the weight function w(t) satisfies (6) with � = 1 (see [14]).Theorem 2. [6]. Let � > �1. Suppose that the system {�m : m ∈ ℕ} is linearly

independent over the field of rational numbers, and inequality (5) holds. More-

over, suppose that the weight function w(t) satisfies (6), and, for the function

f(s), estimates (2) and (4) hold. Then the probability measure PT,�,w converges

weakly to the distribution Pf,� of the random element f(�, !) as T → ∞.
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We recall that Pf,� is defined by

Pf,�(A) = mH (! ∈ Ω : f(�, !) ∈ A) , A ∈ ℬ(ℂ).

The aim of this paper is to prove weighted limit theorems in the space of
meromorphic functions for the function f(s). The first limit theorem in this
space for the function f(s) was obtained in [10].

Let ℂ∞ = ℂ ∪ {∞} be the Riemann sphere, and let d(s1, s2) denote the
spherical metric, i. e., for s1, s2, s ∈ ℂ,

d(s1, s2) =
2∣s2 − s1∣

√

1 + ∣s1∣2
√

1 + ∣s2∣2
, d(s,∞) =

2
√

1 + ∣s∣2
, d(∞,∞) = 0.

Denote by D the half-plane {s ∈ ℂ : � > �1}, and let M (D) stand for the
space of meromorphic functions g : D → (ℂ∞, d) equipped with the topology of
uniform convergence on compacta. In this topology, a sequence {gn} ∈ M (D)
converges to g ∈ M (G) if

sup
s∈K

d(gn(s), g(s)) −→
n→∞

0

for every compact subset K of D.

Analytic on D functions form a subspace H(D) of M (G).

Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ ℝ.Theorem 3. [10]. Suppose that the function f(s) satisfies the hypotheses (2)
and (3). Then on (M (D),ℬ(M (D))), there exists a probability measure P such

that the measure

1

T
meas{� ∈ [0, T ] : f(s+ i�) ∈ A}, A ∈ ℬ(M (D)),

converges weakly to P as T → ∞.

The first attempt for identification of the limit measure P in Theorem 3
was made in [13], using the hypothesis that the set {log 2}

∪

{�m : m ∈ ℕ}
is linearly independent over the field of rational numbers. In [5], the number
log 2 was removed from the hypothesis. Suppose that inequality (5) is satisfied,
and for s ∈ D, on the probability space (Ω,ℬ(Ω),mH), define the H(D)-valued
random element f(s, !) by the formula

f(s, !) =

∞
∑

m=1

am!(m)e−�ms.

12



WEIGHTED LIMIT THEOREMS FOR GENERAL DIRICHLET SERIES. IITheorem 4. [5]. Suppose that the system {�m : m ∈ ℕ} is linearly indepen-

dent over the field of rational numbers, and that conditions (2), (3) and (5) are
satisfied. Then the measure

1

T
meas{� ∈ [0, T ] : f(s+ i�) ∈ A}, A ∈ ℬ(M (D)),

converges weakly to the distribution of the H(D)-valued random element f(s, !)
as T → ∞.

Now we state new weighted limit theorems in the space of meromorphic func-
tions for f(s). Define

PT,w(A) =
1

U

T
∫

T0

w(�)I{� :f(s+i�)∈A}d�, A ∈ ℬ(M (D)).Theorem 5. Suppose that conditions (2) and (4) are satisfied. Then on (M (D),
ℬ(M (D))), there exists a probability measure Pw such that PT,w converges weakly

to Pw as T → ∞.

The next theorem gives the explicit form for the limit measure Pw in Theo-
rem 5.Theorem 6. Suppose that the system {�m : m ∈ ℕ} is linearly independent

over the field of rational numbers, and inequality (5) holds. Moreover, suppose

that the weight function w(t) satisfies (6), and, for the function f(s), estimates

(2) and (4) hold. Then the probability measure PT,w converges weakly to the

distribution Pf of the random element f(s, !) as T → ∞.

Note that the distribution Pf is defined by

Pf (A) = mH (! ∈ Ω : f(s, !) ∈ A) , A ∈ ℬ(H(D)).

Theorems 5 and 6 show, in some sense, the regularity of the asymptotic
behaviuor of the function f(s). History and bibliography on probabilistic results
for zeta-functions and Dirichlet series are given in [6], the first part of our work.

2. Limit theorems for absolutely convergent Dirichlet

series

Since all poles of f(s) in the half-plane D are included in a compact set, their
number is finite. Denote the poles of f(s) in the region D by s1, ..., sr. Without
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loss of generality we can assume that every of these poles has order 1. Define

f1(s) =

r
∏

j=1

(

1− e�1(sj−s)
)

.

Then, obviously, f1(sj) = 0 for j = 1, ..., r. Therefore, the function

f2(s) = f1(s)f(s)

is regular on D. Denote by ∣A∣ the number of elements of the set A. Then, for
� > �a, the function f2(s) can be written in the form

f2(s) =
∑

A⊆{1,...,r}

∞
∑

m=1

ame�1

∑
j∈A sj (−1)∣A∣e−(�m+∣A∣�1)s =

=

r
∑

j=0

∞
∑

m=1

am,je
−(�m+j�1)s

by the absolute convergence with the coefficients am,j = O(∣am∣), m ∈ ℕ, j =
1, ..., r.

It is clear that the definition of f2(s), and (2) and (4), for � > �1, imply the
estimate

f2(� + it) = O(∣t∣a), a = a(�) > 0, ∣t∣ ≥ t0 > 0, (7)

and, for all v ∈ ℝ, the estimate

T+v
∫

−T+v

w(t− v)∣f2(� + it)∣2dt = O(U (1 + ∣v∣)). (8)

Let �2 > �a − �1 be a fixed number, v(m,n) = exp{−e(�m−�n)�2} and

gn(s) =

r
∑

j=0

∞
∑

m=1

am,jv(m,n)e−(�m+j�1)s.

In view of (7) and (8), in the same way as in [6], it follows that the series for
gn(s) converges absolutely for � > �1. In this section, first we consider the weak
convergence of the probability measure

PT,n,w(A) =
1

U

T
∫

T0

w(�)I{� :gn(s+i�)∈A}d�, A ∈ ℬ(H(D)).

For this, we recall a limit theorem on the torus Ω.
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Let

QT,w(A) =
1

U

T
∫

T0

w(�)I{� :(e−i�m� :m∈ℕ)∈A}d�, A ∈ ℬ(Ω).Lemma 1. [6]. On (Ω,ℬ(Ω)), there exists a probability measure Qw such that the

measure QT,w converges weakly to Qw as T → ∞. If the system {�m : m ∈ ℕ}
is linearly independent over the field of rational numbers, then the measure QT,w

converges weakly to the Haar measure mH as T → ∞.Theorem 7. On (H(D),ℬ(H(D))), there exists a probability measure Pn,w such

that the measure PT,n,w converges weakly to Pn,w as T → ∞.

P r o o f. Define the function ℎn : Ω → H(D) by the formula

ℎn(!) =

r
∑

j=0

∞
∑

m=1

am,jv(m,n)!(m)!j(1)e−(�m+j�1)s.

Then the function ℎn is continuous, and

ℎn

(

(e−i�m� : m ∈ ℕ)
)

= gn(s+ i�).

Consequently, PT,n,w = QT,wℎ
−1
n , and Lemma 1 and Theorem 5.1 of [1] imply

the weak convergence of PT,n,w to Qwℎ
−1
n as T → ∞. □

For ! ∈ Ω, let

gn(s, !) =

r
∑

j=0

∞
∑

m=1

am,jv(m,n)!(m)!j(1)e−(�m+j�1)s.

Obviously, the latter series also converges absolutely for � > �1. Let !̂ be a
fixed element of Ω, and

P̂T,n,w(A) =
1

U

T
∫

T0

w(�)I{� :gn(s+i�,!̂)∈A}d�, A ∈ ℬ(H(D)).Theorem 8. Suppose that the system {�m : m ∈ ℕ} is linearly independent

over the field of rational numbers. Then on (H(D),ℬ(H(D))), there exists a

probability measure Pn such that the measures PT,n,w and P̂T,n,w converge weakly

to Pn as T → ∞.

P r o o f. Since the system {�m : m ∈ ℕ} is linearly independent over the field
of rational numbers, by the second part of Lemma 1 and the proof of Theorem
7 we have that PT,n,w converges weakly to mHℎ−1

n as T → ∞.
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Define ℎ̂n : Ω → H(D) by the formula

ℎ̂n(!) =

r
∑

j=0

∞
∑

m=1

am,jv(m,n)!̂(m)!̂j(1)!(m)!j(1)e−(�m+j�1)s.

Then, in the same way as in the case of PT,n,w, we obtain that P̂T,n,w converges

weakly to mH ℎ̂−1
n as T → ∞. Now we take ℎ : Ω → Ω defined by ℎ(!) = !!̂.

Then, clearly, ℎ̂n(!) = ℎn(ℎ(!)). Since the Haar measure is invariant, the
equality

mH ℎ̂−1
n = mH(ℎn(ℎ))

−1 = (mHℎ−1)ℎ−1
n = mℎ−1

n

holds, and the theorem is proved. □

3. Approximation by the mean

For s ∈ D and ! ∈ Ω, define

f2(s, !) =
r

∑

j=0

∞
∑

m=1

am,j!(m)!j(1)e−(�m+j�1)s.

In this section, we approximate f2(s) by gn(s) as well as f2(s, !) by gn(s, !) in
the mean. This is necessary to deduce Theorems 5 and 6 from Theorems 7 and
8, respectively.Theorem 9. Let K be a compact subset of the half-plane D. Then

lim
n→∞

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈K

∣f2(s+ i�)− gn(s+ i�)∣d� = 0.

P r o o f. Let �2 be the same as in definition of gn(s), and

ln(s) =
s

�2
Γ

(

s

�2

)

e�ns, n ∈ ℕ.

Then the function gn(s) can be written in the form in [5]

gn(s) =
1

2�i

�2+i∞
∫

�2−i∞

f2(s+ z)ln(z)
dz

z
.
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From this, for �3 > �1 and �3 < �, using the residue theorem we derive

gn(s) =
1

2�i

�3−�+i∞
∫

�3−�−i∞

f2(s+ z)ln(z)
dz

z
+ f2(s). (9)

Let L be a simple closed contour lying in D and enclosing the set K. Denote
by � the distance of L from the set K. Then by the Cauchy integral formula

sup
s∈K

∣f2(s+ i�)− gn(s+ i�)∣ ≤ 1

2��

∫

L

∣f2(z + i�)− gn(z + i�)∣∣dz∣.

Hence, we obtain

1

U

T
∫

T0

w(�) sup
s∈K

∣f2(s+ i�)− gn(s+ i�)∣d� ≪

1

U�

∫

L

∣dz∣
T+Imz
∫

T0+Imz

w(� − Imz)∣f2(Rez + i�)− gn(Rez + i�)∣d� ≪

∣L∣
U�

sup
�+iu∈L

T+u
∫

T0+u

w(t − u)∣f2(� + it)− gn(� + it)∣dt, (10)

where ∣L∣ denotes the length of the contour L. Suppose that min{� : s ∈ K} =
�1 + ", " > 0, and max{� : s ∈ K} = A. We put �3 = �1 +

"
2 . The contour L

can be chosen so that, for s ∈ L, the inequalities � ≥ �1 +
3"
4 and � ≥ "

4 hold.
In view of (9),

f2(� + it)− gn(� + it) ≪
∞
∫

−∞

∣f2(�3 + it+ i�)∣∣ln(�3 − � + i�)∣d�.

Therefore, the Cauchy-Schwarz inequality and (8) yield

1

U

T+u
∫

T0+u

w(t − u)∣f2(� + it)− gn(� + it)∣dt ≪

∞
∫

−∞

∣ln(�3 − � + i�)∣ 1
U

T+u+�
∫

T0+u+�

w(t− u− �)∣f2(�3 + it)∣dtd� ≪

17
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∞
∫

−∞

∣ln(�3 − � + i�)∣ 1√
U

⎛

⎝

T+u+�
∫

T0+u+�

w(t− u− �)∣f2(�3 + it)∣2dt

⎞

⎠

1

2

d� ≪

∞
∫

−∞

∣ln(�3 − � + i�)∣ (1 + ∣u∣+ ∣� ∣)
1

2 d� ≪
∞
∫

−∞

∣ln(�3 − � + i�)∣ (1 + ∣� ∣) d�,

because u is bounded by a constant. This together with (10) show that

1

U

T
∫

T0

w(�) sup
s∈K

∣f2(s+ i�)− gn(s+ i�)∣d� ≪

sup
�≤− "

4

∞
∫

−∞

∣ln(� + it)∣(1 + ∣t∣)dt = o(1)

as n → ∞. □Theorem 10. Suppose that the system {�m : m ∈ ℕ} is linearly independent

over the field of rational numbers. Let K be a compact subset of the half-plane

D. Then, for almost all ! ∈ Ω,

lim
n→∞

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈K

∣f2(s+ i�, !)− gn(s+ i�, !)∣d� = 0.

P r o o f. Let a� = {e−i��m : m ∈ ℕ}, � ∈ ℝ, and define '� (!) = a�! for ! ∈ Ω.
Then {'� : � ∈ ℝ} is a one-parameter group of measurable measure preserving
transformations on Ω. In [6], Lemma 5, it was proved that the one-parameter
group {'� : � ∈ ℝ} is ergodic. From this and (6), similarly to the proof of
Lemma 12 of [6] we obtain that, for � > �1,

T+v
∫

T0+v

w(t − v)∣f2(� + it, !)∣2dt ≪ U (1 + ∣v∣)�

for almost all ! ∈ Ω and all v ∈ ℝ. Using this estimate instead of (8) and
repeating the arguments of the proof of Theorem 9, we obtain the assertion of
the theorem. □
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4. Limit theorems for the function f2(s)

This section is devoted to limit theorems in the space of analytic functions
for the function f2(s). On (H(D)), ℬ(H(D)), define two probability measures

PT,f2,w(A) =
1

U

T
∫

T0

w(�)I{� :f2(s+i�)∈A}d�

and, for ! ∈ Ω,

P̂T,f2,w(A) =
1

U

T
∫

T0

w(�)I{� :f2(s+i�,!)∈A}d�.Theorem 11. Suppose that the hypotheses of Theorem 5 are satisfied. Then on

(H(D),ℬ(H(D))), there exists a probability measure Pf2,w such that the measure

PT,f2,w converges weakly to Pf2,w as T → ∞.

P r o o f. By Theorem 7, we have that PT,n,w converges weakly to some proba-
bility measure Pn,w on (H(D),ℬ(H(D))) as T → ∞. Let Xn,w(s) be a H(D)-

valued random element having the distribution Pn,w, and
D−→ denote the

convergence in distribution. Moreover, let �T be a random variable defined on
a certain probability space (Ω̂,ℬ(Ω̂),ℙ) such that

ℙ(�T ∈ A) =
1

U

T
∫

T0

w(�)IAd�, A ∈ ℬ(ℝ).

Define

XT,n,w(s) = gn(s+ i�T ).

Then we have from Theorem 7 that

XT,n,w(s)
D−→

T→∞
Xn,w(s). (11)

In the next step we prove that the family of probability measures {Pn,w : n ∈
ℕ} is tight. It is well known, see, for example, Lemma 1.7.1 of [7], that there

exists a sequence {Kl : l ∈ ℕ} of compact subsets of D such that D =
∞
∪

l=1

Kl,

Kl ⊂ Kl+1, and if K is a compact subset of D, then K ⊆ Kl for some l. Then

%(g1, g2) =

∞
∑

l=1

2−l

sup
s∈Kl

∣g1(s)− g2(s)∣

1 + sup
s∈Kl

∣g1(s)− g2(s)∣
, g1, g2 ∈ H(D),
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is a metric on H(D) which induces its topology of uniform convergence on com-
pacta.

For every Ml > 0, l ∈ ℕ, we have

1

U

T
∫

T0

w(�)I{� : sup
s∈Kl

∣gn(s+i�)∣>Ml}d� ≤

≤ 1

MlU

T
∫

T0

w(�) sup
s∈Kl

∣gn(s+ i�)∣d�. (12)

Moreover, by Theorem 9 and Cauchy integral formula

sup
n∈ℕ

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈Kl

∣gn(s+ i�)∣d� ≤

≤ sup
n∈ℕ

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈Kl

∣f2(s+ i�)− gn(s+ i�)∣d�+

+sup
n∈ℕ

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈Kl

∣f2(s+ i�)∣d� ≪

≪ 1 + lim sup
T→∞

1

U

⎛

⎜

⎝

√
U

⎛

⎝

T
∫

−T

w(t)∣f2(� + it)∣2dt

⎞

⎠

1

2

⎞

⎟

⎠

with some � > �1. Therefore, this and (8) show that

sup
n∈ℕ

lim sup
T→∞

1

U

T
∫

T0

w(�) sup
s∈Kl

∣gn(s+ i�)∣d� ≤ Rl < ∞, (13)

l ∈ ℕ. Now we take Ml = Ml," = Rl2
l"−1, where " > 0 is arbitrary number.

Then, in view of (12) and (13),

lim sup
T→∞

ℙ

(

sup
s∈Kl

∣XT,n,w(s)∣ > Ml

)

=

=
1

U

T
∫

T0

w(�)I{� : sup
s∈Kl

∣gn(s+i�)∣>Ml}d� ≤ "

2l
, l ∈ ℕ, n ∈ ℕ. (14)
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Relation (11) implies

sup
s∈Kl

∣XT,n,w(s)∣ D−→
T→∞

sup
s∈Kl

∣Xn,w(s)∣, l ∈ ℕ, n ∈ ℕ.

Therefore, by (14),

ℙ

(

sup
s∈Kl

∣Xn,w(s)∣ > Ml

)

≤ "

2l
, l ∈ ℕ, n ∈ ℕ. (15)

Define

H" = {g ∈ H(D) : sup
s∈Kl

∣g(s)∣ ≤ Ml,", l ∈ ℕ}.

Since the set H" is uniformly bounded on every compact of D, it is a compact
subset of H(D). Moreover, in view of (15),

ℙ (Xn,w(s) ∈ H") ≥ 1− "

∞
∑

l=1

1

2l
= 1− ", n ∈ ℕ.

This shows that the family {Pn,w : n ∈ ℕ} is tight, therefore, by the Prokhorov
theorem, see, for example, [1], Theorem 6.1, it is relatively compact. Hence,
there exists a sequence {Pnk,w} ⊂ {Pn,w} such that Pnk,w converges weakly to
a certain probability measure Pf2,w on (H(D),ℬ(H(D))) as k → ∞. In other
words,

Xnk,w(s)
D−→

k→∞
Pf2,w. (16)

Define once one H(D)-valued random element XT,w(s) by

XT,w(s) = f2(s+ i�T ).

Then, by Theorem 9, for every " > 0,

lim
n→∞

lim sup
T→∞

ℙ (�(XT,w(s), XT,n,w(s)) ≥ ") ≤

≤ lim
n→∞

lim sup
T→∞

1

U"

T
∫

T0

w(�)�(f2(s+ i�), gn(s+ i�))d� = 0.

This, (11), (16) and Theorem 4.2 of [1] show that

XT,w(s)
D−→

T→∞
Pf2,w, (17)

and the theorem is proved. □Theorem 12. Suppose that the hypotheses of Theorem 6 are valid. Then the

probability measures PT,f2,w and P̂T,f2,w both converge weakly to the same prob-

ability measure on (H(D),ℬ(H(D))) as T → ∞.
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P r o o f. In view of Theorem 11, it remains to show that the measure P̂T,f2,w

also converges weakly to the measure Pf2,w as T → ∞. We also preserve the
notation of the proof of Theorem 11.

By Theorem 8, the measures PT,n,w and P̂T,n,w converge weakly to some
probability measure Pn,w on (H(D),ℬ(H(D))) as T → ∞. Let

X̂T,n,w(s) = gn(s+ i�T , !).

Then we have that

X̂T,n,w(s)
D−→

T→∞
Xn,w(s), (18)

where the H(D)-valued random element Xn,w(s) was defined in the proof of
Theorem 11. The relation (17) shows that the measure Pf2,w is independent of
the choice of the sequence {Pnk,w}. This and the relative compactness of the
family {Pn,w} imply the relation

Xn,w(s)
D−→

n→∞
Pf2,w. (19)

Let
X̂T,w(s) = f2(s+ i�T , !).

Then, by Theorem 10, for every " > 0 and almost all ! ∈ Ω,

lim
n→∞

lim sup
T→∞

ℙ

(

�(X̂T,w(s), X̂T,n,w(s)) ≥ "
)

≤

≤ lim
n→∞

lim sup
T→∞

1

U"

T
∫

T0

w(�)�(f2(s+ i�, !), gn(s+ i�, !))d� = 0.

This, (18) and (19) together with Theorem 4.2 of [1] again imply the weak

convergence of P̂T,f2,w to Pf2,w as T → ∞. □

Denote by Pf2 the distribution of the random element f2(s, !).Theorem 13. Suppose that the hypotheses of Theorem 6 are valid. Then the

probability measure PT,f2,w converges weakly to Pf2 as T → ∞.

P r o o f. In view of Theorem 12, it suffices to show that the measure Pf2,w

coincides with Pf2 .

Let A ∈ ℬ(H(D)) be an arbitrary fixed continuity set of the limit measure
Pf2,w in Theorem 12. Then Theorem 12 and an equivalent of weak convergence
of probability measures, see Theorem 2.1 of [1], imply

lim
T→∞

1

U

T
∫

T0

w(�)I{� :f2(s+i�,!)∈A}d� = Pf2,w(A). (20)
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On the probability space (Ω,ℬ(Ω),mH), define the random variable � by

�(!) =

{

1 if f2(s, !) ∈ A,
0 if f2(s, !) ∕∈ A.

Then, obviously,

E� =

∫

Ω

�(!)dmH = mH (! ∈ Ω : f2(s, !) ∈ A) = Pf2(A). (21)

Since the one-parameter group {'� : � ∈ ℝ} is ergodic, the random process
�('� (!)) is ergodic, too. Hence, using the hypothesis (6) with v = 0, we have
that, for almost all ! ∈ Ω,

lim
T→∞

1

U

T
∫

T0

w(�)�('� (!))d� = E�. (22)

From the definitions of � and '� (!) it follows that

1

U

T
∫

T0

w(�)�('� (!))d� =
1

U

T
∫

T0

w(�)I{� :f2(s,'� (!))∈A}d� =

=
1

U

T
∫

T0

w(�)I{� :f2(s+i�,!)∈A}d�.

Therefore, taking into account (21) and (22), we obtain that, for almost all
! ∈ Ω,

lim
T→∞

1

U

T
∫

T0

w(�)I{� :f2(s+i�,!)∈A}d� = Pf2(A).

Thus, by (20), for all continuity sets A of Pf2,w,

Pf2,w(A) = Pf2(A).

Hence, Pf2,w(A) = Pf2(A) for all A ∈ ℬ(H(D)). The theorem is proved. □

5. Proof of theorems 5 and 6

First we observe that

f1(s) =

r
∏

j=1

(

1− e�1(sj−s)
)

=

r
∑

m=0

bme−�1ms
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is a Dirichlet polynomial with some coefficients bm and exponents m�1. There-
fore, an application of Lemma 1 shows that the probability measure

1

U

T
∫

T0

w(�)I{� :f1(s+i�)∈A}d�, A ∈ ℬ(H(D)),

converges weakly to the distribution Pf1 the H(D)-valued random element

f1(s, !) =

r
∏

j=1

(

1− !(1)e�1(sj−s)
)

=

r
∑

m=0

bm!m(1)e−�1ms

as T → ∞.

Now let H2(D) = H(D)×H(D), and

PT,f1,f2,w(A) =
1

U

T
∫

T0

w(�)I{� :(f1(s+i�),f2(s+i�))∈A}d�, A ∈ ℬ(H2(D)),Lemma 2. Suppose that the hypotheses of Theorem 5 are satisfied. Then on

(H2(D),ℬ(H2(D))) there exists aprobability measure Pf1,f2,w such that PT,f1,f2,w

converges weakly to Pf1,f2 as T → ∞.

P r o o f. Let, for gj = (gj1, gj2) ∈ H2(D), j = 1, 2,

�(g1, g2) = max
1≤j≤2

(�(g11, g21), �(g12, g22)) .

Then � is a metric on H2(D) inducing its topology. Using this metric and
repeating the arguments of the proof of Theorem 11 with obvious changes, we
obtain the statement of the lemma. □

Define the H2(D)-valued random element F (s, !) by

F (s, !) = (f1(s, !), f2(s, !)),

and denote by PF its distribution.Lemma 3. Suppose that the hypotheses of Theorem 6 are valid. Then the mea-

sure PT,f1,f2,w converges weakly to PF as T → ∞.

P r o o f. The lemma is obtained in the same way as Theorem 13 with using the
metric �. □

24



WEIGHTED LIMIT THEOREMS FOR GENERAL DIRICHLET SERIES. II

P r o o f o f T h e o r e m 5. Define the function ℎ : H2(D) → M (D), by the
formula

ℎ(g1, g2) =
g2

g1
, g1, g2 ∈ H(D).

Since the metric d satisfies

d(g1, g2) = d

(

1

g1
,
1

g2

)

,

the function ℎ is continuous. Therefore, by Lemma 2 and Theorem 5.1 of [1],
the measure PT,w = PT,f1,f2,wℎ

−1 converges weakly to the measure Pf1,f2,wℎ
−1

as T → ∞. □

P r o o f o f T h e o r e m 6. Similarly to the proof of Theorem 5, using Lemma
3, we find that the measure Pf1,f2,w converges weakly to the measure PFℎ

−1 as
T → ∞. However,

PFℎ
−1(A) = mH

(

! ∈ Ω :
f2(s, !)

f1(s, !)
∈ A

)

, A ∈ ℬ(M (D)).

Since

f2(s, !) =

r
∑

j=0

∞
∑

m=1

am,j!
j(1)!(m)e−(�m+j�1)s =

=

r
∏

j=1

(

1− !(1)e�1(sj−s)
)

∞
∑

m=1

am!(m)e−�ms,

hence we have that PT,w converges weakly to the distribution of the random
element f(s, !) as T → ∞. □
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