ADDENDUM TO: A THEOREM OF KHINTCHINE TYPE

Enrico Zoli

Throughout, notation and definitions are consistent with those in [4]. By making appeal only to elementary facts of measure theory and arithmetic, we have proved in [4] that the set
$K^{*}(\psi):=\left\{x \in(0,1):\left|x-\frac{p}{q}\right|<\psi(q)\right.$ for infinitely many reduced rationals $\left.\frac{p}{q}\right\}$
has Lebesgue measure one, provided $\psi: \mathbb{N} \rightarrow[0, \infty)$ is an approximation function with the necessary condition

$$
\begin{equation*}
\sum_{q=1}^{\infty} q \psi(q)=\infty \tag{1}
\end{equation*}
$$

and with
there is $\delta>0$ so that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and $s \in\{q, q+1, \ldots, 2 q\} . \quad\left(h_{2}\right)$
With the aid of Gallagher's zero-one law, in this note we shall generalize that result as follows:

Theorem 1. If $\psi: \mathbb{N} \rightarrow[0, \infty)$ is an approximation function with (h_{1}) and $\left(h_{2}\right)$, and if $\mathbf{q}:=\left(q_{i}\right)_{i \in \mathbb{N}}$ is a strictly increasing sequence of natural numbers with positive lower density, then the set
$K_{\mathbf{q}}^{*}(\psi):=\left\{x \in(0,1):\left|x-\frac{p}{q_{i}}\right|<\psi\left(q_{i}\right)\right.$ for infinitely many reduced rationals $\left.\frac{p}{q_{i}}\right\}$
has Lebesgue measure one.
Note that Theorem 1 extends Duffin and Schaeffer's Theorem III in [1] (for $\left(h_{2}\right)$ is weaker than their decay rate assumption on ψ, namely: for some real c the map $q \mapsto q^{c} \psi(q)$ is decreasing); also, note that Theorem 1 is not implied by Harman's Theorem 6.2 [3] (as Harman's hypotheses (6.1.3) and (6.1.4) are stronger than $\left(h_{2}\right)$).

Let us now proceed with the (brief) proof of the theorem. Let ψ and \mathbf{q} be as in Theorem 1. By [4, Lemma 6] it is not limitative to assume

$$
\begin{equation*}
q \psi(q) \leq \frac{1}{2} \quad \text { for all } q>1 \tag{1}
\end{equation*}
$$

and $\sum_{q=1}^{\infty} \psi(q)<\infty$; by [4, Lemma 8] the latter leads to

$$
\begin{equation*}
\sum_{i=1}^{\infty} q_{i} \psi\left(q_{i}\right)=\infty \tag{2}
\end{equation*}
$$

Moreover, it follows from the first part of the proof of Corollary 3 in [3, p.42] that we may even assume

$$
\begin{equation*}
\frac{\phi\left(q_{i}\right)}{q_{i}} \geq c \quad \text { for all } i \in \mathbb{N} \text { and some } c>0 \tag{3}
\end{equation*}
$$

(incidentally, Duffin and Schaeffer deduce this fact in [1, p.252] by resorting to Schönberg's theorem on the continuity of the distribution function of the sequence $q \mapsto \phi(q) / q$, whereas Harman's argument is based on the simpler [3, Lemma 2.5]). Now, for all $i>1$ consider the sets

$$
E_{q_{i}}:=\bigcup_{\substack{1 \leq m \leq q_{i}-1 \\ \operatorname{gcd}\left(m, q_{i}\right)=1}}\left(\frac{m}{q_{i}}-\psi\left(q_{i}\right), \frac{m}{q_{i}}+\psi\left(q_{i}\right)\right) ;
$$

by definition, we have

$$
\begin{equation*}
K_{\mathbf{q}}^{*}(\psi)=\lim \sup E_{q_{i}} \tag{4}
\end{equation*}
$$

Since the intervals forming each $E_{q_{i}}$ are disjoint (trivially due to (1)), we have

$$
\begin{equation*}
\lambda\left(E_{q_{i}}\right)=2 \phi\left(q_{i}\right) \psi\left(q_{i}\right) \quad \text { for all } i>1 ; \tag{5}
\end{equation*}
$$

moreover, by [1, Lemma II] (see, in alternative, [3, p.39]) we have

$$
\begin{equation*}
\lambda\left(E_{q_{i}} \cap E_{q_{j}}\right) \leq 8 q_{i} \psi\left(q_{i}\right) q_{j} \psi\left(q_{j}\right) \quad \text { for all } i, j \text { with } j>i>1 . \tag{6}
\end{equation*}
$$

Combining (2), (3) and (5), we get

$$
\begin{equation*}
\sum_{i=1}^{\infty} \lambda\left(E_{q_{i}}\right)=\infty \tag{7}
\end{equation*}
$$

and, combining (3), (5) and (6),

$$
\begin{equation*}
\lambda\left(E_{q_{i}} \cap E_{q_{j}}\right) \leq \frac{2}{c^{2}} \lambda\left(E_{q_{i}}\right) \lambda\left(E_{q_{j}}\right) \quad \text { for all } i, j \text { with } j>i>1 . \tag{8}
\end{equation*}
$$

By [4, Lemma 3], items (4), (7), and (8) together imply

$$
\begin{equation*}
\lambda\left(K_{\mathbf{q}}^{*}(\psi)\right)>0 . \tag{9}
\end{equation*}
$$

Consider now the approximation function $\theta: \mathbb{N} \rightarrow[0, \infty)$ defined by letting $\theta(q):=\psi\left(q_{i}\right)$ if $q=q_{i}$ for some i, or $\theta(q):=0$ otherwise. Since $K_{\mathbf{q}}^{*}(\psi)=K^{*}(\theta)$, by (9) and Gallagher's zero-one law (see [2] or [3, Theorem 2.7 (B)]) we conclude

$$
\lambda\left(K_{\mathbf{q}}^{*}(\psi)\right)=\lambda\left(K^{*}(\theta)\right)=1
$$

(note that Gallagher's Lemma 1 [2] is unnecessary here, for $\psi(q) \rightarrow 0$ is already ensured by (1)). The proof of Theorem 1 is complete.

REFERENCES

[1] DUFFIN, R.J. - SCHAEFFER, A.C.: Khintchine's problem in metric Diophantine approximation, Duke J. 8 (1941), 243-255.
[2] GALLAGHER, P.X.: Approximation by reduced fractions, J. Math. Soc. Japan 13 (1961), 342-345.
[3] HARMAN, G.: Metric Number Theory, Clarendon Press, Oxford, 1998.
[4] ZOLI, E.: A theorem of Khintchine type, Unif. Distrib. Theory 3 (2008), 73-83.

Enrico Zoli
Facoltà di Architettura "A. Rossi" via Cavalcavia, 55
I-47023 Cesena (FC), ITALY
E-mail: zoli@math.unifi.it

