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A THEOREM OF KHINTCHINE TYPE

Enrico Zoli

ABSTRACT. Let ψ : N→ [0,∞) be an approximation function with
∑∞

q=1 qψ(q)

= ∞ and the property that there exists δ > 0 such that ψ(q) ≥ δψ(s) for all q ∈ N
and all s ∈ {q, q + 1, . . . , 2q}. Then the set

{
x ∈ (0, 1) :

∣∣∣∣x−
p

q

∣∣∣∣ < ψ(q) for infinitely many reduced rationals
p

q

}

has Lebesgue measure one.

Communicated by Oto Strauch

1. Introduction

Let ψ : N→ [0,∞) be an arbitrary sequence – it shall be called “approxima-
tion function”, in the sequel. A central question in Diophantine approximation
theory consists in determining the size of the Khintchine set

K(ψ) :=
{

x ∈ (0, 1) :
∣∣∣x− p

q

∣∣∣ < ψ(q) for infinitely many rationals
p

q

}

in terms of its Lebesgue measure λ(K(ψ)). A fundamental theorem by Khint-
chine [7] establishes sufficient conditions on ψ for K(ψ) to have Lebesgue measure
zero or one (see, e.g., Bugeaud’s book [2, Section 1.3]): If

∑∞
q=1 qψ(q) < ∞, then

λ(K(ψ)) = 0. If
∑∞

q=1 qψ(q) = ∞ and the map q 7→ q2ψ(q) is decreasing, then
λ(K(ψ)) = 1. He also raised the question whether the decay hypothesis in the
second half of his theorem could be dropped – in other words, whether it would
be possible to characterize the Khintchine sets K(ψ) of full Lebesgue measure
as those for which

∑∞
q=1 qψ(q) = ∞. An example by Duffin and Schaeffer states

that this is not the case (see [5] or [6, Theorem 2.8]). So, if not dropped, can
the decay rate assumption on ψ be weakened?
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In their seminal paper [5], Duffin and Schaeffer studied, instead of K(ψ), the
modified Khintchine set

K∗(ψ) :=
{

x ∈ (0, 1) :
∣∣∣x− p

q

∣∣∣ < ψ(q) for infinitely many reduced rationals
p

q

}

under the assumption
∑∞

q=1 φ(q)ψ(q) = ∞1 – as usual, φ stands for the Eu-
ler totient function. There are at least two reasons for approving Duffin and
Schaeffer’s viewpoint: the first is that “the most natural formulation of this
problem is in terms of reduced fractions” [5, p.244]; the second is that the task
of estimating λ(K∗(ψ)) is easier than that of estimating λ(K(ψ)). Indeed, in
[5, Theorem III] (see, in alternative, Corollary 1 to Theorem 2.5 in [6]) Duffin
and Schaeffer succeeded in improving the Khintchine theorem by imposing a less
restrictive decay rate assumption on ψ. Here is their result, not stated in its full
generality: Let

∑∞
q=1 qψ(q) = ∞ and qψ(q) ≤ 1/2 for all q.2 If for some c ∈ R

the map q 7→ qcψ(q) is decreasing, then λ(K∗(ψ)) = 1.
The way opened by Duffin and Schaeffer has led to remarkable results, such

as those of Erdős, Vaaler, Vilchinskii, and Strauch. In this context, Harman’s
contribution (see [6, Theorem 6.2]) is of particular interest: Let

∑∞
q=1 qψ(q) =

∞. If if there exist two positive constants δ,M such that Mψ(s) ≥ ψ(q) ≥ δψ(s)
for all q ∈ N and all s ∈ {q, q + 1, . . . , 2q − 1}, then λ(K∗(ψ)) = 1. In justice
to its author we pause to note that the statement above is only a particular
instance of Harman’s theorem, for he additionally considers various restrictions
to the numerator p and the denominator q of the approximating rational p/q –
a problem not touched, here.

By only appealing to the rudiments of measure theory and the basic facts of
arithmetic, in this paper we shall prove the following:

Theorem 1. If ψ : N→ [0,∞) is an approximation function such that
∞∑

q=1

qψ(q) = ∞ (h1)

and

there is δ > 0 so that ψ(q) ≥ δψ(s) for all q ∈ N and s ∈{q, q+1, . . . , 2q}, (h2)

then λ(K∗(ψ)) = 1 (a fortiori, λ(K(ψ)) = 1).

1By the convergence half of the Borel–Cantelli lemma, this condition is necessary for
λ(K∗(ψ)) = 1. Whether also sufficient, it is “to date one of the most important unsolved
problems in metric number theory” [6, p.27], known as “Duffin–Schaeffer conjecture”.
2As noticed in [6, p.37], the latter assumption on ψ, omitted by Duffin and Schaeffer, turns
out to be necessary in their proof.
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It is easy to verify that our hypothesis (h2) on ψ embraces those of Duffin
and Schaeffer (let δ := min{1, 2c}) and Harman (as (h2) is even equivalent to:
for every α ∈ [0, 1) there exists δ > 0 such that ψ(q) ≥ δψ(s) for all q ∈ N and
s ∈ {q, q +1, . . . , 2q−dαqe}). So, in this limited sense, Theorem 1 is a synthesis
of the two afore-mentioned results.

The author would like to thank the referee for helpful comments.

2. Another form of the second Borel–Cantelli lemma

The need of some suitable form of the divergence half of the Borel–Cantelli
lemma very often emerges in metric number theory: the most frequently used
is that dating back to Erdős and Rényi (it can be found in [2, Lemma 6.2] and
[6, Lemma 2.3]). As a matter of fact, the following inequality for probabili-
ties is sharper than, and straightforwardly implies, Erdős and Rényi’s one [3,
Corollary 2].

Lemma 2 (Dawson and Sankoff [3]). Let E1, E2, . . . , En be events in a probability
space (Ω,B, P ). Then

P

(
n⋃

i=1

Ei

)
n∑

i=1

n∑

j=1

P (Ei ∩ Ej) ≥
(

n∑

i=1

P (Ei)

)2

.

The easiest way to obtain Lemma 2 (without any appeal to integration theory)
is to prove de Caen’s inequality for probabilities (see [4]) and then, as indicated
there, to immediately deduce Lemma 2 via the Cauchy–Schwarz inequality.

Let Ω be a set and (Eq)q∈N a sequence of subsets of Ω. By lim sup Eq we
denote the subset of Ω consisting of all points in Ω belonging to infinitely many
Eq. Namely:

lim supEq =
∞⋂

q=1

∞⋃
s=q

Es.

Let us now establish a lower bound for the probability of the “limsup” of a
sequence of events in a probability space.

Lemma 3. Let (Ω,B, P ) be a probability space and (Eq)q∈N a sequence of events
in Ω. Let M be a constant and I an event in Ω with P (I) > 0. If there exists a
strictly increasing sequence (qi)i∈N of natural numbers such that

∞∑

i=1

P (Eqi ∩ I) = ∞ (1)
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and

P (Eqi
∩ Eqj

∩ I) ≤ M
P (Eqi

∩ I)P (Eqj
∩ I)

P (I)
for all i ∈ N and j > i, (2)

then

P (lim sup Eq ∩ I) ≥ P (I)
2(4M + 1)

.

P r o o f. Fix arbitrarily n ∈ N. By (1), there exists a natural number m > n
such that

P (I) ≤
m∑

i=n

P (Eqi ∩ I) ≤ 2P (I). (3)

By (2), (3) and Lemma 2, we have

P

( ∞⋃
q=n

(Eq ∩ I)

)
≥ P

(
m⋃

i=n

(Eqi
∩ I)

)
≥ (

∑m
i=n P (Eqi

∩ I))2∑m
i=n

∑m
j=n P (Eqi

∩ Eqj
∩ I)

=
(
∑m

i=n P (Eqi ∩ I))2

2(
∑m−1

i=n

∑m
j=i+1 P (Eqi ∩ Eqj ∩ I)) +

∑m
i=n P (Eqi ∩ I)

≥ P 2(I)
8MP 2(I)/P (I) + 2P (I)

=
P (I)

2(4M + 1)
.

By the arbitrariness of n ∈ N, this gives

P (lim sup Eq ∩ I) = lim
k→∞

P

(
k⋂

n=1

∞⋃
q=n

(Eq ∩ I)

)
≥ P (I)

2(4M + 1)

and ends the proof. ¤

Lemma 4. Let (Ω,B, P ) be a probability space and let E be a subfamily of B such
that for every B ∈ B

P (B) = inf

{ ∞∑
n=1

P (In) : B ⊆
∞⋃

n=1

In and In ∈ E for all n ∈ N
}

. (4)

Let E be an event in Ω. If there exists a constant ε > 0 such that

P (E ∩ I) ≥ εP (I) for all I ∈ E ,

then P (E) = 1.
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P r o o f. Put A := Ω \ E. By subadditivity, for every sequence (In)n∈N in E
covering A we have

P (A) ≤
∞∑

n=1

P (A ∩ In) ≤ (1− ε)
∞∑

n=1

P (In).

By (4) and the arbitrariness of the covering (In)n∈N, we have P (A) ≤ (1−ε)P (A)
and therefore P (A) = 0, i.e., P (E) = 1. ¤

The next proposition is the measure-theoretic ingredient of our proof of The-
orem 1:

Proposition 5. Let (Ω,B, P ) be a probability space, (Eq)q∈N a sequence of
events in Ω, and E a subfamily of B as in Lemma 4. If there exist a positive
constant M (depending only on the sequence (Eq)q∈N) and, for each I ∈ E with
P (I) > 0, a strictly increasing sequence (qi)i∈N of natural numbers (possibly
depending on I) such that

∞∑

i=1

P (Eqi
∩ I) = ∞ (5)

and

P (Eqi ∩ Eqj ∩ I) ≤ M
P (Eqi ∩ I)P (Eqj ∩ I)

P (I)
for all i ∈ N and j > i, (6)

then P (lim sup Eq) = 1.

P r o o f. It is just a combination of Lemma 3, yielding P (lim sup Eq ∩ I) ≥
P (I)/(2(4M+1)) for all I ∈ E , and Lemma 4 (applied for ε = 1/(2(4M+1))). ¤

3. Auxiliary results

Let us start with a slight modification of Lemma 4 from [1] (see, in alternative,
[2, Lemma 6.3]).

Lemma 6. If θ is an approximation function that satisfies (h1) and (h2), then
there exists an approximation function ψ satisfying (h1), (h2),

qψ(q) ≤ 1
2

for all q > 1, (h3)

∞∑
q=1

ψ(q) < ∞, (h4)

and such that K∗(ψ) ⊆ K∗(θ).
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P r o o f. Let ψ(q) := min{θ(q), 1/q2} for all q ∈ N. As ψ(q) ≤ θ(q) for all q ∈ N,
we have K∗(ψ) ⊆ K∗(θ). That (h3) and (h4) hold for ψ is trivial, and (h2) follows
immediately from the monotonicity of the map q 7→ 1/q2. So, we only have to
check (h1) for ψ. Assume, towards a contradiction, that

∑∞
q=1 qψ(q) < ∞. On

the one hand, since q ≤ 2dq/2e,

q2ψ(q) ≤ 2
q∑

i=1

iψ(q) ≤ 4
q∑

i=dq/2e
iψ(q) ≤ 4

δ

q∑

i=dq/2e
iψ(i) for every q ∈ N,

which yields lim sup q2ψ(q) = 0. On the other hand, as
∑∞

q=1 qθ(q) = ∞, for
infinitely many q we have ψ(q) = 1/q2, i.e., q2ψ(q) = 1. Absurd. ¤

In view of Lemma 6, it is not limitative for us to assume (h3) and (h4) for
any approximation function ψ that fulfils (h1) and (h2). So:

From now on the approximation function ψ shall be always assumed to satisfy
(h1)–(h4).

In the sequel we shall adopt the standard Vinogradov symbol ¿ to mean “≤
up to a positive constant multiplier”. Recall that the lower density of a strictly
increasing sequence (qi)i∈N of natural numbers is defined to be the number dL :=
lim infn→∞max{i ∈ N : qi ≤ n}/n. It is intuitive and easy to prove that
dL > 0 if and only if qi ¿ i (the reader interested in a proof is referred to [9,
Theorem 11.1], for instance). We record this fact for future reference:

Lemma 7. A strictly increasing sequence (qi)i∈N of natural numbers has positive
lower density if and only if qi ¿ i.

Lemma 8. If (qi)i∈N is a strictly increasing sequence of natural numbers with
positive lower density, then

∑∞
i=1 qiψ(qi) = ∞.

P r o o f. Let us firstly prove that

∞∑

i=1

iψ(ki) = ∞ for every k ∈ N. (7)

We may assume k > 1 (the case k = 1 coincides with our hypothesis (h1)). By
(h2)

78



A THEOREM OF KHINTCHINE TYPE

∞∑
q=1

qψ(q) =
k−1∑
q=1

qψ(q) +
∞∑

i=1

k−1∑
m=0

(ki + m)ψ(ki + m)

≤
k−1∑
q=1

qψ(q) +
∞∑

i=1

k−1∑
m=0

(ki + m)ψ(ki)
δ

=
k−1∑
q=1

qψ(q) +
1
δ

∞∑

i=1

(
k2i +

k(k − 1)
2

)
ψ(ki)

=
k−1∑
q=1

qψ(q) +
k(k − 1)

2δ

∞∑

i=1

ψ(ki) +
k2

δ

∞∑

i=1

iψ(ki). (8)

Since by (h4)
k−1∑
q=1

qψ(q) +
k(k − 1)

2δ

∞∑

i=1

ψ(ki) < ∞,

(7) follows from (8) and (h1).
Now, in view of Lemma 7 we have

i ≤ qi ≤ ki ≤ kqi for some k ∈ N and all i ∈ N;

together with (h2), this gives

ψ(qi) ≥ δdlog2 keψ(ki) for all i ∈ N
and consequently

∞∑

i=1

qiψ(qi) ≥
∞∑

i=1

iψ(qi) ≥ δdlog2 ke
∞∑

i=1

iψ(ki).

The proof is finally completed with the aid of (7). ¤

The asymptotic behavior on average of Euler’s φ-function is vital for the
following proposition, the number-theoretic ingredient of our proof of Theorem 1.

Proposition 9. There exists a strictly increasing sequence (qi)i∈N of natural
numbers with lower density ≥ 1/4 and with φ(qi)/qi ≥ 1/4 for all i ∈ N.

P r o o f. It is known that for all large n we have
n∑

q=1

φ(q)
q

≥ n

2
;

LeVeque presents this fact as an exercise [8, p.171] based on the asymptotic
formula for the mean value of Euler’s φ-function [8, Theorem 6.32] and on Abel’s
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partial summation formula [8, p.148]. This inequality (together with φ(q)/q ≤ 1
for all q) plainly ensures that for all large n we have φ(q)/q ≥ 1/4 for at least
one fourth of those q belonging to {1, 2, . . . , n}. ¤

It immediately follows from Lemma 8 and Proposition 9 that under (h2) the
two conditions

∑∞
q=1 qψ(q) = ∞ and

∑∞
q=1 φ(q)ψ(q) = ∞ on ψ are equivalent.

4. Proof of Theorem 1

For every q > 1 put

Eq :=
⋃

1≤i≤q−1
gcd(i,q)=1

(
i

q
− ψ(q),

i

q
+ ψ(q)

)
. (9)

Note that the set Eq consists of the disjoint (by (h3)) union of φ(q) intervals,
each of length 2ψ(q) and included in (0, 1), centered in reduced rationals with
denominator q; by definition, K∗(ψ) = lim sup Eq.

The plan of the proof is to apply Proposition 5 to the case where: the proba-
bility space (Ω,B, P ) is the interval (0, 1) equipped with the Lebesgue measure λ
restricted to the Borel σ-algebra B of (0, 1); the sets Eq are those defined in (9);
the family E contains all intervals of the particular form (m/p, (m+1)/p), being
p a prime number and m ∈ {0, 1, . . . , p−1} (by a routine density argument, such
family E is easily seen to fulfil (4)). As shall be seen in a moment, the advantage
in limiting our study to such intervals is that the necessary task of estimating
the size of the sets Ep2q and their overlaps is very easy, there.

The following lemma appears in [5, Lemma I] without the proof; Harman
provides us with it in [6, p.39].

Lemma 10. Let q, s ∈ N and A > 0. Then the number of integers pairs (i, j)
which satisfy 0 < |is− jq| ≤ A and 1 ≤ i ≤ q, 1 ≤ j ≤ s, does not exceed 2A.

Lemma 11. Let p be a prime number and m ∈ {0, 1, . . . , p − 1}. Put I :=
(m/p, (m + 1)/p). Then

λ(Ep2q ∩ I) = 2φ(pq)ψ(p2q) for every q ∈ N (10)

and

λ(Ep2q ∩ Ep2s ∩ I) ≤ 8
λ(I)

pqψ(p2q)psψ(p2s) for every q ∈ N and s > q. (11)
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P r o o f. Basically, the proof is the “scaled” version of the original one by Duffin
and Schaeffer (see [5, Lemma II] or [6, p.39]). Let us fix q ∈ N and write I as
follows (it is maybe useful to visualize I in this way)

I =
(

m

p
,
m + 1

p

)
=

(
mpq

p2q
,
mpq + pq

p2q

)
.

Thanks to the equivalence (of elementary verification)

gcd(i, p2q) = 1 if and only if gcd(i, pq) = 1 for any i ∈ N,

we infer that the interval I intersects – even more than this, properly includes
– exactly φ(pq) intervals of Ep2q, each of length 2ψ(p2q). By disjointness, this
proves the first part of the statement.

Now, let q ∈ N and s > q. Suppose there are two intervals with nonempty
overlap, one in Ep2q ∩ I and one in Ep2s ∩ I, and let (i + mpq)/p2q and (j +
mps)/p2s be their respective centers – here 1 ≤ i ≤ pq and 1 ≤ j ≤ ps. Then

0 <

∣∣∣∣
i

p2q
− j

p2s

∣∣∣∣ =
∣∣∣∣
i + mpq

p2q
− j + mps

p2s

∣∣∣∣
≤ ψ(p2q) + ψ(p2s) ≤ 2max{ψ(p2q), ψ(p2s)}

(note that the first inequality is strict by coprimeness) and consequently

0 < |ips− jpq| ≤ 2p3qs max{ψ(p2q), ψ(p2s)}.
By Lemma 10 there are no more than 4p3qs max{ψ(p2q), ψ(p2s)} pairs of inter-
vals having nonempty intersection; moreover, each overlap has measure at most
2min{ψ(p2q), ψ(p2s)}. To sum up:

λ(Ep2q ∩ Ep2s ∩ I) ≤ 8p3qsmax{ψ(p2q), ψ(p2s)}min{ψ(p2q), ψ(p2s)}

= 8p3qsψ(p2q)ψ(p2s) =
8

λ(I)
pqψ(p2q)psψ(p2s) for every q ∈ N and s > q.

The proof is complete. ¤

To reach (5) and (6) trough the estimates (10) and (11) it would suffice to
find a positive constant, say c, and a strictly increasing sequence (qi)i∈N of
natural numbers such that, for each prime number p,

∑∞
i=1 pqiψ(p2qi) = ∞ and

φ(pqi)/pqi ≥ c for all i ∈ N. We are in this position, now.

Lemma 12. For any prime number p and any q ∈ N, φ(pq) ≥ (p− 1)φ(q).

P r o o f. Immediately deduced from the equality φ(pn) = pn−1(p − 1) valid for
every n ∈ N and the fact that Euler’s φ-function is multiplicative. ¤
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Lemma 13. Let p and I be as in Lemma 11, and (qi)i∈N as in Proposition 9.
Then ∞∑

i=1

λ(Ep2qi
∩ I) = ∞ (12)

and

λ(Ep2qi
∩Ep2qj

∩I) ≤ 128
λ(Ep2qi

∩ I)λ(Ep2qj
∩ I)

λ(I)
for all i ∈ N and j > i. (13)

P r o o f. First we have, by Lemma 12,

φ(pqi) ≥ (p− 1)φ(qi) ≥ pφ(qi)
2

≥ pqi

8
for all i ∈ N, (14)

which through the estimates (10) and (11) straightforwardly leads to (13):

λ(Ep2qi
∩ Ep2qj

∩ I) ≤ 8
λ(I)

pqiψ(p2qi)pqjψ(p2qj)

≤ 83

λ(I)
φ(pqi)ψ(p2qi)φ(pqj)ψ(p2qj)

= 128
λ(Ep2qi

∩ I)λ(Ep2qj
∩ I)

λ(I)
for all i ∈ N and j > i.

It remains to prove (12), by (10) equivalent to
∑∞

i=1 φ(pqi)ψ(p2qi) = ∞. By
(14) it is enough to check that

∑∞
i=1 pqiψ(p2qi) = ∞ or, equivalently,

∞∑

i=1

p2qiψ(p2qi) = ∞.

The latter is a consequence of the inequality chain p2qi ¿ qi ¿ i, Lemma 7 and
Lemma 8. ¤

We are finally in a position to apply Proposition 5: we have the constant
to put in (6), namely, M := 128; moreover, for any interval I of the form
(m/p, (m + 1)/p) we have verified that the sequence (Ep2qi

)i∈N fulfils (5) and
(6). All this gives λ(K∗(ψ)) = 1.
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