A THEOREM OF KHINTCHINE TYPE

Enrico Zoli

Abstract

Let $\psi: \mathbb{N} \rightarrow[0, \infty)$ be an approximation function with $\sum_{q=1}^{\infty} q \psi(q)$ $=\infty$ and the property that there exists $\delta>0$ such that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and all $s \in\{q, q+1, \ldots, 2 q\}$. Then the set $$
\left\{x \in(0,1):\left|x-\frac{p}{q}\right|<\psi(q) \text { for infinitely many reduced rationals } \frac{p}{q}\right\}
$$ has Lebesgue measure one.

Communicated by Oto Strauch

1. Introduction

Let $\psi: \mathbb{N} \rightarrow[0, \infty)$ be an arbitrary sequence - it shall be called "approximation function", in the sequel. A central question in Diophantine approximation theory consists in determining the size of the Khintchine set

$$
K(\psi):=\left\{x \in(0,1):\left|x-\frac{p}{q}\right|<\psi(q) \text { for infinitely many rationals } \frac{p}{q}\right\}
$$

in terms of its Lebesgue measure $\lambda(K(\psi))$. A fundamental theorem by Khintchine [7] establishes sufficient conditions on ψ for $K(\psi)$ to have Lebesgue measure zero or one (see, e.g., Bugeaud's book [2, Section 1.3]): If $\sum_{q=1}^{\infty} q \psi(q)<\infty$, then $\lambda(K(\psi))=0$. If $\sum_{q=1}^{\infty} q \psi(q)=\infty$ and the map $q \mapsto q^{2} \psi(q)$ is decreasing, then $\lambda(K(\psi))=1$. He also raised the question whether the decay hypothesis in the second half of his theorem could be dropped - in other words, whether it would be possible to characterize the Khintchine sets $K(\psi)$ of full Lebesgue measure as those for which $\sum_{q=1}^{\infty} q \psi(q)=\infty$. An example by Duffin and Schaeffer states that this is not the case (see [5] or [6, Theorem 2.8]). So, if not dropped, can the decay rate assumption on ψ be weakened?

[^0]In their seminal paper [5], Duffin and Schaeffer studied, instead of $K(\psi)$, the modified Khintchine set
$K^{*}(\psi):=\left\{x \in(0,1):\left|x-\frac{p}{q}\right|<\psi(q)\right.$ for infinitely many reduced rationals $\left.\frac{p}{q}\right\}$
under the assumption $\sum_{q=1}^{\infty} \phi(q) \psi(q)=\infty^{1}$ - as usual, ϕ stands for the Euler totient function. There are at least two reasons for approving Duffin and Schaeffer's viewpoint: the first is that "the most natural formulation of this problem is in terms of reduced fractions" [5, p.244]; the second is that the task of estimating $\lambda\left(K^{*}(\psi)\right)$ is easier than that of estimating $\lambda(K(\psi))$. Indeed, in [5, Theorem III] (see, in alternative, Corollary 1 to Theorem 2.5 in [6]) Duffin and Schaeffer succeeded in improving the Khintchine theorem by imposing a less restrictive decay rate assumption on ψ. Here is their result, not stated in its full generality: Let $\sum_{q=1}^{\infty} q \psi(q)=\infty$ and $q \psi(q) \leq 1 / 2$ for all $q .{ }^{2}$ If for some $c \in \mathbb{R}$ the map $q \mapsto q^{c} \psi(q)$ is decreasing, then $\lambda\left(K^{*}(\psi)\right)=1$.

The way opened by Duffin and Schaeffer has led to remarkable results, such as those of Erdős, Vaaler, Vilchinskii, and Strauch. In this context, Harman's contribution (see [6, Theorem 6.2]) is of particular interest: Let $\sum_{q=1}^{\infty} q \psi(q)=$ ∞. If if there exist two positive constants δ, M such that $M \psi(s) \geq \psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and all $s \in\{q, q+1, \ldots, 2 q-1\}$, then $\lambda\left(K^{*}(\psi)\right)=1$. In justice to its author we pause to note that the statement above is only a particular instance of Harman's theorem, for he additionally considers various restrictions to the numerator p and the denominator q of the approximating rational $p / q-$ a problem not touched, here.

By only appealing to the rudiments of measure theory and the basic facts of arithmetic, in this paper we shall prove the following:

Theorem 1. If $\psi: \mathbb{N} \rightarrow[0, \infty)$ is an approximation function such that

$$
\begin{equation*}
\sum_{q=1}^{\infty} q \psi(q)=\infty \tag{1}
\end{equation*}
$$

and
there is $\delta>0$ so that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and $s \in\{q, q+1, \ldots, 2 q\}, \quad\left(h_{2}\right)$ then $\lambda\left(K^{*}(\psi)\right)=1($ a fortiori, $\lambda(K(\psi))=1)$.

[^1]
A THEOREM OF KHINTCHINE TYPE

It is easy to verify that our hypothesis $\left(h_{2}\right)$ on ψ embraces those of Duffin and Schaeffer (let $\left.\delta:=\min \left\{1,2^{c}\right\}\right)$ and Harman $\left(\operatorname{as}\left(h_{2}\right)\right.$ is even equivalent to: for every $\alpha \in[0,1)$ there exists $\delta>0$ such that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and $s \in\{q, q+1, \ldots, 2 q-\lceil\alpha q\rceil\})$. So, in this limited sense, Theorem 1 is a synthesis of the two afore-mentioned results.

The author would like to thank the referee for helpful comments.

2. Another form of the second Borel-Cantelli lemma

The need of some suitable form of the divergence half of the Borel-Cantelli lemma very often emerges in metric number theory: the most frequently used is that dating back to Erdős and Rényi (it can be found in [2, Lemma 6.2] and [6, Lemma 2.3]). As a matter of fact, the following inequality for probabilities is sharper than, and straightforwardly implies, Erdős and Rényi's one [3, Corollary 2].

Lemma 2 (Dawson and Sankoff [3]). Let $E_{1}, E_{2}, \ldots, E_{n}$ be events in a probability space (Ω, \mathcal{B}, P). Then

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right) \sum_{i=1}^{n} \sum_{j=1}^{n} P\left(E_{i} \cap E_{j}\right) \geq\left(\sum_{i=1}^{n} P\left(E_{i}\right)\right)^{2}
$$

The easiest way to obtain Lemma 2 (without any appeal to integration theory) is to prove de Caen's inequality for probabilities (see [4]) and then, as indicated there, to immediately deduce Lemma 2 via the Cauchy-Schwarz inequality.

Let Ω be a set and $\left(E_{q}\right)_{q \in \mathbb{N}}$ a sequence of subsets of Ω. By $\limsup E_{q}$ we denote the subset of Ω consisting of all points in Ω belonging to infinitely many E_{q}. Namely:

$$
\limsup E_{q}=\bigcap_{q=1}^{\infty} \bigcup_{s=q}^{\infty} E_{s}
$$

Let us now establish a lower bound for the probability of the "limsup" of a sequence of events in a probability space.
Lemma 3. Let (Ω, \mathcal{B}, P) be a probability space and $\left(E_{q}\right)_{q \in \mathbb{N}}$ a sequence of events in Ω. Let M be a constant and I an event in Ω with $P(I)>0$. If there exists a strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} P\left(E_{q_{i}} \cap I\right)=\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(E_{q_{i}} \cap E_{q_{j}} \cap I\right) \leq M \frac{P\left(E_{q_{i}} \cap I\right) P\left(E_{q_{j}} \cap I\right)}{P(I)} \text { for all } i \in \mathbb{N} \text { and } j>i \text {, } \tag{2}
\end{equation*}
$$

then

$$
P\left(\limsup E_{q} \cap I\right) \geq \frac{P(I)}{2(4 M+1)}
$$

Proof. Fix arbitrarily $n \in \mathbb{N}$. By (1), there exists a natural number $m>n$ such that

$$
\begin{equation*}
P(I) \leq \sum_{i=n}^{m} P\left(E_{q_{i}} \cap I\right) \leq 2 P(I) . \tag{3}
\end{equation*}
$$

By (2), (3) and Lemma 2, we have

$$
\begin{gathered}
P\left(\bigcup_{q=n}^{\infty}\left(E_{q} \cap I\right)\right) \geq P\left(\bigcup_{i=n}^{m}\left(E_{q_{i}} \cap I\right)\right) \geq \frac{\left(\sum_{i=n}^{m} P\left(E_{q_{i}} \cap I\right)\right)^{2}}{\sum_{i=n}^{m} \sum_{j=n}^{m} P\left(E_{q_{i}} \cap E_{q_{j}} \cap I\right)} \\
=\frac{\left(\sum_{i=n}^{m} P\left(E_{q_{i}} \cap I\right)\right)^{2}}{2\left(\sum_{i=n}^{m-1} \sum_{j=i+1}^{m} P\left(E_{q_{i}} \cap E_{q_{j}} \cap I\right)\right)+\sum_{i=n}^{m} P\left(E_{q_{i}} \cap I\right)} \\
\geq \frac{P^{2}(I)}{8 M P^{2}(I) / P(I)+2 P(I)}=\frac{P(I)}{2(4 M+1)} .
\end{gathered}
$$

By the arbitrariness of $n \in \mathbb{N}$, this gives

$$
P\left(\lim \sup E_{q} \cap I\right)=\lim _{k \rightarrow \infty} P\left(\bigcap_{n=1}^{k} \bigcup_{q=n}^{\infty}\left(E_{q} \cap I\right)\right) \geq \frac{P(I)}{2(4 M+1)}
$$

and ends the proof.
Lemma 4. Let (Ω, \mathcal{B}, P) be a probability space and let \mathcal{E} be a subfamily of \mathcal{B} such that for every $B \in \mathcal{B}$

$$
\begin{equation*}
P(B)=\inf \left\{\sum_{n=1}^{\infty} P\left(I_{n}\right): B \subseteq \bigcup_{n=1}^{\infty} I_{n} \text { and } I_{n} \in \mathcal{E} \text { for all } n \in \mathbb{N}\right\} \tag{4}
\end{equation*}
$$

Let E be an event in Ω. If there exists a constant $\epsilon>0$ such that

$$
P(E \cap I) \geq \epsilon P(I) \text { for all } I \in \mathcal{E}
$$

then $P(E)=1$.

A THEOREM OF KHINTCHINE TYPE

Proof. Put $A:=\Omega \backslash E$. By subadditivity, for every sequence $\left(I_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{E} covering A we have

$$
P(A) \leq \sum_{n=1}^{\infty} P\left(A \cap I_{n}\right) \leq(1-\epsilon) \sum_{n=1}^{\infty} P\left(I_{n}\right)
$$

By (4) and the arbitrariness of the covering $\left(I_{n}\right)_{n \in \mathbb{N}}$, we have $P(A) \leq(1-\epsilon) P(A)$ and therefore $P(A)=0$, i.e., $P(E)=1$.

The next proposition is the measure-theoretic ingredient of our proof of Theorem 1:

Proposition 5. Let (Ω, \mathcal{B}, P) be a probability space, $\left(E_{q}\right)_{q \in \mathbb{N}}$ a sequence of events in Ω, and \mathcal{E} a subfamily of \mathcal{B} as in Lemma 4. If there exist a positive constant M (depending only on the sequence $\left(E_{q}\right)_{q \in \mathbb{N}}$) and, for each $I \in \mathcal{E}$ with $P(I)>0$, a strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers (possibly depending on I) such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} P\left(E_{q_{i}} \cap I\right)=\infty \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(E_{q_{i}} \cap E_{q_{j}} \cap I\right) \leq M \frac{P\left(E_{q_{i}} \cap I\right) P\left(E_{q_{j}} \cap I\right)}{P(I)} \text { for all } i \in \mathbb{N} \text { and } j>i \tag{6}
\end{equation*}
$$

then $P\left(\lim \sup E_{q}\right)=1$.
Proof. It is just a combination of Lemma 3, yielding $P\left(\limsup E_{q} \cap I\right) \geq$ $P(I) /(2(4 M+1))$ for all $I \in \mathcal{E}$, and Lemma 4 (applied for $\epsilon=1 /(2(4 M+1)))$.

3. Auxiliary results

Let us start with a slight modification of Lemma 4 from [1] (see, in alternative, [2, Lemma 6.3]).
Lemma 6. If θ is an approximation function that satisfies $\left(h_{1}\right)$ and $\left(h_{2}\right)$, then there exists an approximation function ψ satisfying $\left(h_{1}\right),\left(h_{2}\right)$,

$$
\begin{gather*}
q \psi(q) \leq \frac{1}{2} \text { for all } q>1 \tag{3}\\
\sum_{q=1}^{\infty} \psi(q)<\infty \tag{4}
\end{gather*}
$$

and such that $K^{*}(\psi) \subseteq K^{*}(\theta)$.

Proof. Let $\psi(q):=\min \left\{\theta(q), 1 / q^{2}\right\}$ for all $q \in \mathbb{N}$. As $\psi(q) \leq \theta(q)$ for all $q \in \mathbb{N}$, we have $K^{*}(\psi) \subseteq K^{*}(\theta)$. That $\left(h_{3}\right)$ and $\left(h_{4}\right)$ hold for ψ is trivial, and $\left(h_{2}\right)$ follows immediately from the monotonicity of the map $q \mapsto 1 / q^{2}$. So, we only have to check $\left(h_{1}\right)$ for ψ. Assume, towards a contradiction, that $\sum_{q=1}^{\infty} q \psi(q)<\infty$. On the one hand, since $q \leq 2\lceil q / 2\rceil$,

$$
q^{2} \psi(q) \leq 2 \sum_{i=1}^{q} i \psi(q) \leq 4 \sum_{i=\lceil q / 2\rceil}^{q} i \psi(q) \leq \frac{4}{\delta} \sum_{i=\lceil q / 2\rceil}^{q} i \psi(i) \text { for every } q \in \mathbb{N},
$$

which yields $\limsup q^{2} \psi(q)=0$. On the other hand, as $\sum_{q=1}^{\infty} q \theta(q)=\infty$, for infinitely many q we have $\psi(q)=1 / q^{2}$, i.e., $q^{2} \psi(q)=1$. Absurd.

In view of Lemma 6, it is not limitative for us to assume $\left(h_{3}\right)$ and $\left(h_{4}\right)$ for any approximation function ψ that fulfils $\left(h_{1}\right)$ and $\left(h_{2}\right)$. So:

From now on the approximation function ψ shall be always assumed to satisfy $\left(h_{1}\right)-\left(h_{4}\right)$.

In the sequel we shall adopt the standard Vinogradov symbol \ll to mean " \leq up to a positive constant multiplier". Recall that the lower density of a strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers is defined to be the number $d_{L}:=$ $\liminf _{n \rightarrow \infty} \max \left\{i \in \mathbb{N}: q_{i} \leq n\right\} / n$. It is intuitive and easy to prove that $d_{L}>0$ if and only if $q_{i} \ll i$ (the reader interested in a proof is referred to [9, Theorem 11.1], for instance). We record this fact for future reference:

Lemma 7. A strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers has positive lower density if and only if $q_{i} \ll i$.

Lemma 8. If $\left(q_{i}\right)_{i \in \mathbb{N}}$ is a strictly increasing sequence of natural numbers with positive lower density, then $\sum_{i=1}^{\infty} q_{i} \psi\left(q_{i}\right)=\infty$.

Proof. Let us firstly prove that

$$
\begin{equation*}
\sum_{i=1}^{\infty} i \psi(k i)=\infty \text { for every } k \in \mathbb{N} . \tag{7}
\end{equation*}
$$

We may assume $k>1$ (the case $k=1$ coincides with our hypothesis $\left(h_{1}\right)$). By $\left(h_{2}\right)$

$$
\begin{align*}
\sum_{q=1}^{\infty} q \psi(q) & =\sum_{q=1}^{k-1} q \psi(q)+\sum_{i=1}^{\infty} \sum_{m=0}^{k-1}(k i+m) \psi(k i+m) \\
& \leq \sum_{q=1}^{k-1} q \psi(q)+\sum_{i=1}^{\infty} \sum_{m=0}^{k-1} \frac{(k i+m) \psi(k i)}{\delta} \\
& =\sum_{q=1}^{k-1} q \psi(q)+\frac{1}{\delta} \sum_{i=1}^{\infty}\left(k^{2} i+\frac{k(k-1)}{2}\right) \psi(k i) \\
& =\sum_{q=1}^{k-1} q \psi(q)+\frac{k(k-1)}{2 \delta} \sum_{i=1}^{\infty} \psi(k i)+\frac{k^{2}}{\delta} \sum_{i=1}^{\infty} i \psi(k i) . \tag{8}
\end{align*}
$$

Since by $\left(h_{4}\right)$

$$
\sum_{q=1}^{k-1} q \psi(q)+\frac{k(k-1)}{2 \delta} \sum_{i=1}^{\infty} \psi(k i)<\infty
$$

(7) follows from (8) and (h_{1}).

Now, in view of Lemma 7 we have

$$
i \leq q_{i} \leq k i \leq k q_{i} \text { for some } k \in \mathbb{N} \text { and all } i \in \mathbb{N}
$$

together with $\left(h_{2}\right)$, this gives

$$
\psi\left(q_{i}\right) \geq \delta^{\left\lceil\log _{2} k\right\rceil} \psi(k i) \text { for all } i \in \mathbb{N}
$$

and consequently

$$
\sum_{i=1}^{\infty} q_{i} \psi\left(q_{i}\right) \geq \sum_{i=1}^{\infty} i \psi\left(q_{i}\right) \geq \delta^{\left\lceil\log _{2} k\right\rceil} \sum_{i=1}^{\infty} i \psi(k i)
$$

The proof is finally completed with the aid of (7).
The asymptotic behavior on average of Euler's ϕ-function is vital for the following proposition, the number-theoretic ingredient of our proof of Theorem 1.
Proposition 9. There exists a strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers with lower density $\geq 1 / 4$ and with $\phi\left(q_{i}\right) / q_{i} \geq 1 / 4$ for all $i \in \mathbb{N}$.

Proof. It is known that for all large n we have

$$
\sum_{q=1}^{n} \frac{\phi(q)}{q} \geq \frac{n}{2}
$$

LeVeque presents this fact as an exercise [8, p.171] based on the asymptotic formula for the mean value of Euler's ϕ-function [8, Theorem 6.32] and on Abel's
partial summation formula [8, p.148]. This inequality (together with $\phi(q) / q \leq 1$ for all q) plainly ensures that for all large n we have $\phi(q) / q \geq 1 / 4$ for at least one fourth of those q belonging to $\{1,2, \ldots, n\}$.

It immediately follows from Lemma 8 and Proposition 9 that under $\left(h_{2}\right)$ the two conditions $\sum_{q=1}^{\infty} q \psi(q)=\infty$ and $\sum_{q=1}^{\infty} \phi(q) \psi(q)=\infty$ on ψ are equivalent.

4. Proof of Theorem 1

For every $q>1$ put

$$
\begin{equation*}
E_{q}:=\bigcup_{\substack{1 \leq i \leq q-1 \\ \operatorname{gcd}(i, q)=1}}\left(\frac{i}{q}-\psi(q), \frac{i}{q}+\psi(q)\right) \tag{9}
\end{equation*}
$$

Note that the set E_{q} consists of the disjoint (by $\left(h_{3}\right)$) union of $\phi(q)$ intervals, each of length $2 \psi(q)$ and included in (0,1), centered in reduced rationals with denominator q; by definition, $K^{*}(\psi)=\lim \sup E_{q}$.

The plan of the proof is to apply Proposition 5 to the case where: the probability space (Ω, \mathcal{B}, P) is the interval $(0,1)$ equipped with the Lebesgue measure λ restricted to the Borel σ-algebra \mathcal{B} of $(0,1)$; the sets E_{q} are those defined in (9); the family \mathcal{E} contains all intervals of the particular form $(m / p,(m+1) / p)$, being p a prime number and $m \in\{0,1, \ldots, p-1\}$ (by a routine density argument, such family \mathcal{E} is easily seen to fulfil (4)). As shall be seen in a moment, the advantage in limiting our study to such intervals is that the necessary task of estimating the size of the sets $E_{p^{2} q}$ and their overlaps is very easy, there.

The following lemma appears in [5, Lemma I] without the proof; Harman provides us with it in [6, p.39].

Lemma 10. Let $q, s \in \mathbb{N}$ and $A>0$. Then the number of integers pairs (i, j) which satisfy $0<|i s-j q| \leq A$ and $1 \leq i \leq q, 1 \leq j \leq s$, does not exceed $2 A$.

Lemma 11. Let p be a prime number and $m \in\{0,1, \ldots, p-1\}$. Put $I:=$ $(m / p,(m+1) / p)$. Then

$$
\begin{equation*}
\lambda\left(E_{p^{2} q} \cap I\right)=2 \phi(p q) \psi\left(p^{2} q\right) \text { for every } q \in \mathbb{N} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(E_{p^{2} q} \cap E_{p^{2} s} \cap I\right) \leq \frac{8}{\lambda(I)} p q \psi\left(p^{2} q\right) p s \psi\left(p^{2} s\right) \text { for every } q \in \mathbb{N} \text { and } s>q \tag{11}
\end{equation*}
$$

A THEOREM OF KHINTCHINE TYPE

Proof. Basically, the proof is the "scaled" version of the original one by Duffin and Schaeffer (see [5, Lemma II] or [6, p.39]). Let us fix $q \in \mathbb{N}$ and write I as follows (it is maybe useful to visualize I in this way)

$$
I=\left(\frac{m}{p}, \frac{m+1}{p}\right)=\left(\frac{m p q}{p^{2} q}, \frac{m p q+p q}{p^{2} q}\right) .
$$

Thanks to the equivalence (of elementary verification)

$$
\operatorname{gcd}\left(i, p^{2} q\right)=1 \text { if and only if } \operatorname{gcd}(i, p q)=1 \text { for any } i \in \mathbb{N}
$$

we infer that the interval I intersects - even more than this, properly includes - exactly $\phi(p q)$ intervals of $E_{p^{2} q}$, each of length $2 \psi\left(p^{2} q\right)$. By disjointness, this proves the first part of the statement.

Now, let $q \in \mathbb{N}$ and $s>q$. Suppose there are two intervals with nonempty overlap, one in $E_{p^{2} q} \cap I$ and one in $E_{p^{2} s} \cap I$, and let $(i+m p q) / p^{2} q$ and $(j+$ $m p s) / p^{2} s$ be their respective centers - here $1 \leq i \leq p q$ and $1 \leq j \leq p s$. Then

$$
\begin{aligned}
0 & <\left|\frac{i}{p^{2} q}-\frac{j}{p^{2} s}\right|=\left|\frac{i+m p q}{p^{2} q}-\frac{j+m p s}{p^{2} s}\right| \\
& \leq \psi\left(p^{2} q\right)+\psi\left(p^{2} s\right) \leq 2 \max \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\}
\end{aligned}
$$

(note that the first inequality is strict by coprimeness) and consequently

$$
0<|i p s-j p q| \leq 2 p^{3} q s \max \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\}
$$

By Lemma 10 there are no more than $4 p^{3} q s \max \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\}$ pairs of intervals having nonempty intersection; moreover, each overlap has measure at most $2 \min \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\}$. To sum up:

$$
\begin{aligned}
& \lambda\left(E_{p^{2} q} \cap E_{p^{2} s} \cap I\right) \leq 8 p^{3} q s \max \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\} \min \left\{\psi\left(p^{2} q\right), \psi\left(p^{2} s\right)\right\} \\
& =8 p^{3} q s \psi\left(p^{2} q\right) \psi\left(p^{2} s\right)=\frac{8}{\lambda(I)} p q \psi\left(p^{2} q\right) p s \psi\left(p^{2} s\right) \text { for every } q \in \mathbb{N} \text { and } s>q
\end{aligned}
$$

The proof is complete.
To reach (5) and (6) trough the estimates (10) and (11) it would suffice to find a positive constant, say c, and a strictly increasing sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of natural numbers such that, for each prime number $p, \sum_{i=1}^{\infty} p q_{i} \psi\left(p^{2} q_{i}\right)=\infty$ and $\phi\left(p q_{i}\right) / p q_{i} \geq c$ for all $i \in \mathbb{N}$. We are in this position, now.
Lemma 12. For any prime number p and any $q \in \mathbb{N}, \phi(p q) \geq(p-1) \phi(q)$.
Proof. Immediately deduced from the equality $\phi\left(p^{n}\right)=p^{n-1}(p-1)$ valid for every $n \in \mathbb{N}$ and the fact that Euler's ϕ-function is multiplicative.

Lemma 13. Let p and I be as in Lemma 11, and $\left(q_{i}\right)_{i \in \mathbb{N}}$ as in Proposition 9. Then

$$
\begin{equation*}
\sum_{i=1}^{\infty} \lambda\left(E_{p^{2} q_{i}} \cap I\right)=\infty \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(E_{p^{2} q_{i}} \cap E_{p^{2} q_{j}} \cap I\right) \leq 128 \frac{\lambda\left(E_{p^{2} q_{i}} \cap I\right) \lambda\left(E_{p^{2} q_{j}} \cap I\right)}{\lambda(I)} \text { for all } i \in \mathbb{N} \text { and } j>i . \tag{13}
\end{equation*}
$$

Proof. First we have, by Lemma 12,

$$
\begin{equation*}
\phi\left(p q_{i}\right) \geq(p-1) \phi\left(q_{i}\right) \geq \frac{p \phi\left(q_{i}\right)}{2} \geq \frac{p q_{i}}{8} \text { for all } i \in \mathbb{N}, \tag{14}
\end{equation*}
$$

which through the estimates (10) and (11) straightforwardly leads to (13):

$$
\begin{aligned}
\lambda\left(E_{p^{2} q_{i}} \cap E_{p^{2} q_{j}} \cap I\right) & \leq \frac{8}{\lambda(I)} p q_{i} \psi\left(p^{2} q_{i}\right) p q_{j} \psi\left(p^{2} q_{j}\right) \\
& \leq \frac{8^{3}}{\lambda(I)} \phi\left(p q_{i}\right) \psi\left(p^{2} q_{i}\right) \phi\left(p q_{j}\right) \psi\left(p^{2} q_{j}\right) \\
& =128 \frac{\lambda\left(E_{p^{2} q_{i}} \cap I\right) \lambda\left(E_{p^{2} q_{j}} \cap I\right)}{\lambda(I)} \text { for all } i \in \mathbb{N} \text { and } j>i
\end{aligned}
$$

It remains to prove (12), by (10) equivalent to $\sum_{i=1}^{\infty} \phi\left(p q_{i}\right) \psi\left(p^{2} q_{i}\right)=\infty$. By (14) it is enough to check that $\sum_{i=1}^{\infty} p q_{i} \psi\left(p^{2} q_{i}\right)=\infty$ or, equivalently,

$$
\sum_{i=1}^{\infty} p^{2} q_{i} \psi\left(p^{2} q_{i}\right)=\infty
$$

The latter is a consequence of the inequality chain $p^{2} q_{i} \ll q_{i} \ll i$, Lemma 7 and Lemma 8.

We are finally in a position to apply Proposition 5: we have the constant to put in (6), namely, $M:=128$; moreover, for any interval I of the form $(m / p,(m+1) / p)$ we have verified that the sequence $\left(E_{p^{2} q_{i}}\right)_{i \in \mathbb{N}}$ fulfils (5) and (6). All this gives $\lambda\left(K^{*}(\psi)\right)=1$.

REFERENCES

[1] BERESNEVICH, V.: On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), 97-112.
[2] BUGEAUD, Y.: Approximation by Algebraic Numbers, Cambridge University Press, Cambridge, 2004.

A THEOREM OF KHINTCHINE TYPE

[3] DAWSON, D.A. - SANKOFF, D.: An inequality for probabilities, Proc. Amer. Math. Soc. 18 (1967), 504-507.
[4] DE CAEN, D.: A lower bound on the probability of a union, Discrete Math. 169 (1997), 217-220.
[5] DUFFIN, R.J. - SCHAEFFER, A.C.: Khintchine's problem in metric Diophantine approximation, Duke J. 8 (1941), 243-255.
[6] HARMAN, G.: Metric Number Theory, Clarendon Press, Oxford, 1998.
[7] KHINTCHINE, A.: Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924), 115-125.
[8] LEVEQUE, W.J.: Fundamentals of Number Theory, Addison-Wesley, Reading, 1977.
[9] NIVEN, I. - ZUCKERMAN, H.S.: An Introduction to the Theory of Numbers, Wiley, New York, 1972.

Received February 13, 2008
Accepted August 23, 2008

Enrico Zoli

Facoltà di Architettura "A. Rossi" via Cavalcavia, 55
I-47023 Cesena (FC), ITALY
E-mail: zoli@math.unifi.it

[^0]: 2000 Mathematics Subject Classification: 11J83, 11K60, 28A12.
 Keywords: Khintchine theorem, Borel-Cantelli lemma, approximation function, Euler's ϕ function, Dawson-Sankoff inequality, Lebesgue measure, Duffin-Schaeffer conjecture.

[^1]: ${ }^{1}$ By the convergence half of the Borel-Cantelli lemma, this condition is necessary for $\lambda\left(K^{*}(\psi)\right)=1$. Whether also sufficient, it is "to date one of the most important unsolved problems in metric number theory" [6, p.27], known as "Duffin-Schaeffer conjecture".
 ${ }^{2}$ As noticed in [6, p.37], the latter assumption on ψ, omitted by Duffin and Schaeffer, turns out to be necessary in their proof.

