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ON SOME OSCILLATING SUMS

J. Arias de Reyna∗ — J. van de Lune

ABSTRACT. This paper deals with various properties (theoretical as well as

computational) of the sums Sα(n) =
∑n

j=1(−1)bjαc where α is any real number

(mostly a positive real quadratic).

Communicated by Michael Drmota

Introduction

This paper deals with the sums

Sα(n) =
n∑

j=1

(−1)bjαc

where α is any real number. If the value of α is clear from the context we will
simply write S(n) instead of Sα(n).

Apparently the interest in these sums was initiated (in 1976) by an unsolved
problem proposed by H. D. Ruderman [3]: Prove that the series

∞∑
n=1

(−1)bn
√

2c

n

converges and estimate its value. Indeed, when applying Abel-summation (sum-
mation by parts) to this series our sum (with α =

√
2) emerges naturally.

This fact is reflected in the 1978 issue of the Amer. Math. Monthly, where
one finds a solution by D. Borwein [7] (with an editorial reference to 11 other
solutions).

Many generalizations were presented, one of them being: If α is any real
quadratic irrational then the series

∑∞
n=1(−1)bnαc/ns converges for every s > 0.

Further solutions may be found in Bundschuh [6] and van de Lune [4].
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The last related publication seems to be Schoissengeier [17], where it is
proved that if the regular continued fraction expansion of β = α/2 is
{b0; b1, b2, . . . } with convergents pk

qk
then the series

∑∞
n=1 (−1)bnαc/n converges

if and only if the series
∞∑

k = 0, 2 - qk

(−1)k log bk+1

qk

converges.
Our sums S(n) are also interesting in themselves as may be seen from the

following example: For α =
√

2 we compute S(n) for n = 1, 2, 3, . . . , and
keep track of those n for which S(n) assumes a value for the first time (i.e., is
larger/smaller than ever before). Here (and in the sequel) we define S(0) = 0.
The sequence of these n’s (the record-holders) will be denoted by t1, t2, t3, . . . .
We found

t → 1 3 8 20 49 119 288 696 1681 4059 9800
S → −1 1 −2 2 −3 3 −4 4 −5 5 −6

In making our computations we observe that tk+1 = 2tk + tk−1 + 1 for all
k ≥ 1. Here (and in the sequel) we define t0 = 0. Also, the sequence sign(S(tk))
appears to be purely periodic.

In this paper we will show that similar results are true for all real quadratic
irrationals.

We will see that the behavior of our sums is intimately connected with the
regular continued fraction expansions α = {a0; a1, a2, a3, . . . } and β = α/2 =
{b0; b1, b2, b3, . . . , }. In this vein Brouwer and van de Lune [5] have shown
that S(n) ≥ 0 for all n if and only if the partial quotients a2i are even for all
i ≥ 0. In Fokkink, Fokkink and van de Lune [9] we find a description of
a fast algorithm for the computation of S(n) for (very) large n in terms of the
regular continued fraction expansion of β = α/2. For an explicit program we
refer to the Appendix. We just mention that by means of this program we easily
found that

S√2(101000) = −10, S√2(1010000) = 166, Sπ(1010000) = 11726.

A closely related (but somewhat less general) algorithm is given in an inter-
esting paper by O’Bryant, Reznick and Serbinowska [15].

It will turn out that the sequence (−1)bjαc exhibits various symmetries. We
will determine these explicitly in terms of the convergents of α.

We will also show that for any real irrational α the sum S(n) is not bounded,
so that the corresponding sequence of record-holders tk actually is an infinite
sequence.
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In addition we will prove that for every j ≥ 1 there is an index k such that
tj − tj−1 = Qk, where Qk is the denominator of a certain regular continued
fraction approximant of α, as defined in Section 2. We will translate this into
an algorithm which (given sufficiently many initial convergents of α) computes
the entire sequence of record-holders. We will also give explicit formulae for the
numbers tj and the corresponding Qk.

Finally we will study the function H(α) = Λ(1− α), where

Λ(α) = lim sup
n→∞

Sα(n)
log n

.

It will turn out that this function is finite for all real α with bounded partial
quotients, and, in a certain sense, is a modular function since

H(α + 2) = H(α), H
(
− 1

α

)
= H(α).

We will also present a fast algorithm for the computation of H(α).
In Section 6 we solve the problem of the order of supn≤N Sα(n) for almost

all real α (see Theorem 29). This order is similar to that of supn≤N nD∗
n(jα),

where D∗
n is the discrepancy of the sequence {jα}. We think that our proof of

the lower bound of (41) might very well be the most straightforward.
In an Appendix we present a fast implementation of the FFL-algorithm

(already implicitly described in FFL [9]) to compute Sα(n) for any irrational
real α.

1. Preliminary results

We begin with some well known facts.

Lemma 1. We have

x ∈ R and n ∈ Z =⇒ bn + xc = n + bxc (1)

x ∈ Rr Z =⇒ bxc+ b−xc = −1. (2)

α ∈ R and n ≥ 0 =⇒ Sα+2(n) = Sα(n) (3)

α ∈ Rr Z =⇒ S−α(n) = −Sα(n). (4)

In the sequel we will always assume that α is real, and that all continued frac-
tions are regular. This also applies to our programs (which have been designed
primarily for real quadratic irrationals).

In case α = p
q , with (p, q) = 1, is rational it is easily seen that the sequence

S(n) is (1) periodic (and hence bounded) with period 2q if p is odd and (2)
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unbounded (of true order n) if p is even. Therefore, we will restrict ourselves
from now on to irrational real α. In view of Lemma 1 we may, without loss of
generality, even restrict ourselves to 0 < α < 1.

It will turn out that the properties of S(n) heavily depend on the regular con-
tinued fraction expansion {a0; a1, a2, . . . } of α, in particular on its convergents

P−2

Q−2
=

0
1
,

P−1

Q−1
=

1
0
,

Pj

Qj
= {a0; a1, . . . , aj}, (j ≥ 0) (5)

which satisfy the relations

Pj+1 = aj+1Pj + Pj−1, Qj+1 = aj+1Qj + Qj−1, (j ≥ −1) (6)

and

(Pj , Qj) = 1 (j ≥ −2), PjQj−1 −QjPj−1 = (−1)j−1, (j ≥ −1). (7)

If an+1 ≥ 2 we will also make use of mediants. These are the irreducible
fractions P/Q defined by

P

Q
=

hPn + Pn−1

hQn + Qn−1
, (n ≥ 0, h = 1, 2, . . . , an+1 − 1).

For these fractions we have PQn−PnQ = (−1)n, and we say that Pn/Qn is the
convergent next to the mediant P/Q. Note that α always lies strictly between
P/Q and the convergent next to P/Q.

Just for the sake of easy reference we state the following known lemma (see
[11, Chapter VII, Exercise 13]).

Lemma 2. If a
b < c

d with b and d > 0 and cb − ad = 1, then every fraction m
n

with n > 0 and
a

b
<

m

n
<

c

d
satisfies n ≥ b + d.

Lemma 3. Let P
Q = hPn+1+Pn

hQn+1+Qn
, with 0 ≤ h < an+2, be a mediant or a convergent

of α.
If 1 ≤ m < Q + Qn+1, with Q - m, then

bmαc =
⌊
m

P

Q

⌋
. (8)

In particular this is true for 1 ≤ m < Q.

P r o o f. Suppose the assertion of the Lemma is false. Then we can find an
integer k between mα and mP/Q, so that k/m lies strictly between α and P/Q,
and is not equal to these extremes. (Indeed k/m 6= α since α is irrational and
k/m 6= P/Q since P/Q is in lowest terms and by hypothesis Q - m.) Since α
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lies between Pn+1/Qn+1 and P/Q, it follows that k/m is lying strictly between
P/Q and Pn+1/Qn+1,

Now observe that
P

Q
− Pn+1

Qn+1
=

PnQn+1 −QnPn+1

QQn+1
= − (−1)n

QQn+1
(9)

so that, by Lemma 2, we would have m > Q + Qn+1, which contradicts our
hypothesis. ¤

Lemma 4. Let P
Q = hPn+1+Pn

hQn+1+Qn
, with 0 ≤ h < an+2, be a mediant or a convergent

of α. Then
(−1)bQαc = (−1)n+P . (10)

P r o o f. As in the proof of the previous Lemma, α lies between the fractions
P/Q and Pn+1/Qn+1. By a computation as in (9) we have

∣∣∣P
Q
− α

∣∣∣ <
∣∣∣P
Q
− Pn+1

Qn+1

∣∣∣ =
1

QQn+1
.

For n ≥ 0 the two numbers Q and Qn+1 are ≥ 1, so that |Qα−P | < Q−1
n+1 ≤ 1.

It follows that bQαc = P if Qα > P , and that bQαc = P − 1 if Qα < P . But,
by the theory of continued fractions the first case happens when n is even, and
the second when n is odd. Hence, (10) is true in both cases. ¤

The following theorem shows the fundamental connection between the sums
Sα(n) and the convergents of α.

Proposition 5. Let α be any irrational real number, and Pn

Qn
with n ≥ 0 one

of its convergents. Let Qn ≤ m < Qn + Qn+1 and put m = hQn + r with
0 ≤ r < Qn. Then

bmαc =





hPn + brαc if r 6= 0,

hPn if r = 0 and n is even,

hPn − 1 if r = 0 and n is odd.
(11)

P r o o f. If r 6= 0 then Qn - m and Qn - r. By Lemma 3 we have

bmαc =
⌊
m

Pn

Qn

⌋
=

⌊
hPn + r

Pn

Qn

⌋
= hPn +

⌊
r

Pn

Qn

⌋
= hPn + brαc.

If r = 0 then m = hQn. Also, mα lies between the two numbers mPn/Qn

and mPn+1/Qn+1, and the distance between these two numbers is
∣∣∣m Pn

Qn
−m

Pn+1

Qn+1

∣∣∣ =
m

QnQn+1
≤ 1.
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(For the last inequality observe that always 1 ≤ Qn ≤ Qn+1. So QnQn+1 ≥
Qn + Qn+1 > m, unless Qn = 1. In this case Qn = 1 ≤ m < 1 + Qn+1 and the
inequality follows.)

When n is even we have

m
Pn

Qn
= hPn < mα < m

Pn+1

Qn+1
≤ 1 + hPn

and it follows that bmαc = hPn.
When n is odd we have

m
Pn

Qn
= hPn > mα > m

Pn+1

Qn+1
≥ hPn − 1.

Thus, in this case we get bmαc = hPn−1, and the proof of (11) is complete. ¤

Corollary 6. Let α be any irrational real number, and Pn

Qn
with n ≥ 0 one

of its convergents. Let Qn ≤ m < Qn + Qn+1 and put m = hQn + r with
0 ≤ r < Qn. Then

(a) Pn even =⇒ S(m) = (−1)nh + S(r). (12)

(b) Pn odd =⇒ S(m) =

{
S(Qn)− S(r) if h is odd
S(r) if h is even.

(13)

P r o o f. We compute the sum

S(m) =
m∑

j=1

(−1)bjαc =

=
h−1∑

k=0

Qn−1∑
s=1

(−1)b(kQn+s)αc +
h∑

k=1

(−1)bkQnαc +
r∑

s=1

(−1)b(kQn+s)αc.

Applying (11) we get

S(m) =
h−1∑

k=0

Qn−1∑
s=1

(−1)kPn+bsαc +
h∑

k=1

(−1)kPn−[[ n is odd ]] +
r∑

s=1

(−1)hPn+bsαc

where, following Iverson’s notation, [[ X ]] = 1 if the proposition X is true, and
[[X ]] = 0 if X is false.

Simplifying we get

S(m) =
h−1∑

k=0

(−1)kPnS(Qn − 1) +
h∑

k=1

(−1)kPn−[[ n is odd ]] + (−1)hPnS(r). (14)

40



ON SOME OSCILLATING SUMS

By Lemma 3 we have Sα(Qn − 1) = SPn/Qn
(Qn − 1). Therefore, if Pn is even

we have Sα(Qn − 1) = 0 (see [5, Lemma 5.1]), so that in this case

S(m) = (−1)nh + S(r).

If Pn is odd and h even, then the two sums in (14) are equal to 0 and we get

S(m) = S(r).

Finally, when Pn and h are odd, the first sum in (14) is equal to S(Qn − 1),
the second is (−1)n+1, and we get

S(m) = S(Qn − 1) + (−1)n+1 − S(r) = S(Qn)− S(r)

since, by Lemma 4, we have (−1)bQnαc = (−1)n+Pn = (−1)n+1. ¤

2. Symmetries of the sequence of signs

We consider four types of symmetries of the sequence of signs (−1)bjαc. Each
of them leads to a useful transformation of the sums S(n). In this section we
define these symmetries and present some theorems in order to obtain these
symmetries from the sequence of convergents of α. It should be noted that our
definitions differ slightly from those in [9].

Definition 7. The integer n ≥ 1 will be called a point of repetition (a REP,
for short) if

1 ≤ k ≤ n =⇒ (−1)bkαc = (−1)b(n+k)αc

or, equivalently, if bkαc and b(n + k)αc have the same parity for 1 ≤ k ≤ n.

Note. There seem to be α’s which do not yield any REP’s.
For example, α =

√
2 seems to be such a number.

The first few REP’s for α = π are: n = 2, 7, 14, 21, 28, 35, 42, 49, 56, 226,
452, 678, 904, 1130, 1356, 1582, 1808, 2034, 2260, 2486, 2712, 2938.

Lemma 8. If n is a REP for α, then

0 ≤ k ≤ n =⇒ Sα(n + k) = Sα(n) + Sα(k). (15)

P r o o f. For k ≥ 1 we have

Sα(n + k) =
n+k∑

j=1

(−1)bjαc =
n∑

j=1

(−1)bjαc +
k∑

j=1

(−1)b(n+j)αc =

= Sα(n) + Sα(k).

As usual we define Sα(0) = 0, and for k = 0 the result is trivial. ¤
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Definition 9. The integer n ≥ 1will be called a point of contra-repetition
(a CREP, for short) if

1 ≤ k ≤ n =⇒ (−1)bkαc = −(−1)b(n+k)αc

or, equivalently, if bkαc and b(n + k)αc have different parities for 1 ≤ k ≤ n.

The first few CREP’s for α = π are: n = 1, 3, 106, 113, 339, 565, 791, 1017,
1243, 1469, 1695, 1921, 2147, 2373, 2599, 2825, 3051, 3277, 3503, 3729.

In the same way as in Lemma 8 we prove the following

Lemma 10. If n is a CREP for α, then

Sα(n + k) = Sα(n)− Sα(k), 0 ≤ k ≤ n. (16)

The next Theorem provides REP’s and CREP’s for α. See note at the end of
this section regarding the scope of this theorem.

Proposition 11. Let α be any irrational real number. If h ∈ N, n ≥ 0 and
2hQn < Qn + Qn+1, then

b(j + hQn)αc = hPn + bjαc, 1 ≤ j ≤ hQn. (17)

Thus hQn is a REP for α if hPn is even, and a CREP if hPn is odd.

P r o o f. We may apply (11) with m = j and m = j + hQn. If j = kQn + r with
0 ≤ r < Qn, then j + hQn = (h + k)Qn + r. Thus, by (11),

bjαc = kPn + A(n, r), b(j + hQn)αc = (h + k)Pn + A(n, r)

where A(n, r) depends only on n and r and is the same in both cases.
This proves (17). ¤

Definition 12. The integer n ≥ 2 will be called an end-point of reflection
(an EREF, for short) if

1 ≤ k ≤ n/2 =⇒ (−1)bkαc = (−1)b(n+1−k)αc

or, equivalently, if bkαc and b(n+1−k)αc have the same parity for 1 ≤ k ≤ n/2.

The first few EREF’s for α = π are given by: n = 3, 5, 7, 14, 21, 28, 35, 42,
49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 331, 557, 783, 1009, 1235, 1461.

Lemma 13. If n is an EREF for α, then

Sα(n + 1− k) = Sα(n)− Sα(k − 1), (1 ≤ k ≤ n/2). (18)

42



ON SOME OSCILLATING SUMS

P r o o f. For 2 ≤ k ≤ n/2 we have

S(n) =
n∑

j=1

(−1)bjαc =
n+1−k∑

j=1

(−1)bjαc +
n+1−1∑

j=n+1−(k−1)

(−1)bjαc =

= S(n + 1− k) +
k−1∑
r=1

(−1)b(n+1−r)αc = S(n + 1− k) +
k−1∑
r=1

(−1)brαc =

= S(n + 1− k) + S(k − 1).

For k = 1 the result is clear. ¤

Definition 14. The integer n ≥ 2 will be called an end-point of contra-
reflection (an ECREF, for short) if

1 ≤ k ≤ n/2 =⇒ (−1)bkαc = −(−1)b(n+1−k)αc

or, equivalently, if bkαc and b(n+1−k)αc have different parities for 1 ≤ k ≤ n/2.

The first few ECREF’s for α = π are given by: n = 2, 4, 6, 13, 211, 218, 225,
444, 670, 896, 1122, 1348, 1574, 1800, 2026, 2252, 2478, 2704, 2930.

Lemma 15. If n is an ECREF for the real irrational α, then

Sα(n− k) = Sα(n) + Sα(k), 0 ≤ k ≤ n/2. (19)

It follows that Sα(n) = 0 for n even, and Sα(n) = (−1)b
n+1

2 αc for n odd.

The proof is similar to that of Lemma 13.

Proposition 16. Let α be any real irrational. If n ≥ −1 and 1 ≤ h ≤ an+2

then

b(Qn +hQn+1− j)αc+ bjαc = Pn +hPn+1−1, 1 ≤ j < Qn +hQn+1. (20)

So Qn +hQn+1−1 (when ≥ 2) is an EREF for odd Pn +hPn+1, and an ECREF
when Pn + hPn+1 is even.

P r o o f. Let P = Pn+hPn+1 and Q = Qn+hQn+1. The fraction P
Q is a mediant

for 1 ≤ h < an+2, whereas P
Q = Qn+2

Pn+2
if h = an+2. In both cases we may apply

Lemma 3 to get

bjαc =
⌊
j
P

Q

⌋
, 1 ≤ j < Q.

Observe that (20) is equivalent to
⌊
P − j

P

Q

⌋
+

⌊
j
P

Q

⌋
= P − 1, 1 ≤ j < Q.
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Since (P, Q) = 1 and 1 ≤ j < Q, the number r = jP/Q is not an integer. So,
our assertion is a consequence of (2) in Lemma 1. ¤

Proposition 17. Let α be any real irrational. If n ≥ 1 then

b(2Qn − j)αc+ bjαc = 2Pn − 1, 1 ≤ j < Qn. (21)

Thus 2Qn − 1, when ≥ 2, is an ECREF.

P r o o f. By Lemma 3, if 1 ≤ j < 2Qn ≤ Qn + Qn+1 and j 6= Qn, then

bjαc =
⌊
j
Pn

Qn

⌋
. (22)

Now our proposition may also be written as
⌊
2Pn − jPn

Qn

⌋
+

⌊
j
Pn

Qn

⌋
= 2Pn − 1.

Since jPn/Qn is not an integer this follows in the same way as in the previous
proof. ¤

Note. For the cases we have considered, Propositions 11, 16 and 17 give all
symmetries associated with α. But we have no proof that no other symmetries
exist.

3. The sequence of record-holders

In this section we will study the record-holders —those values t of n for
which Sα(t) assumes a value for the first time—more thoroughly. The following
theorem shows that the record-holders are infinite in number.

Theorem 18. The sums Sα(n) are not bounded if the real number α is irra-
tional.

P r o o f. This is a consequence of a more general Theorem of Kesten [2] which
says that for subintervals I of [0, 1) the sequence

(∑N
n=1 cI({nα}) − N |I|)

N≥1

is bounded if and only if the length of I lies in the group Z+αZ. Our sums can
be written

Sα(n) =
n∑

j=1

(−1)bjαc = 2
n∑

j=1

c[0,1/2)({jα/2} − n

and 1/2 is clearly not in the group Z+ (α/2)Z. ¤
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Definition 19. Putting t0 = 0 and assuming that we have defined tk for k < n,
let tn be the least integer t > tn−1 such that

0 ≤ j < t =⇒ S(j) 6= S(t). (23)

Clearly, if t > 0 is a record-holder then S(t) 6= 0. We call such a t a maximum
if S(t) > 0, and a minimum if S(t) < 0.

As we will see, the record-holders are very structured. In particular, this
holds true, though not exclusively, for quadratic irrationalities α. For example,
we will prove that for every j ≥ 1 there is a k such that tj − tj−1 = Qk.

Theorem 20. Let α be any irrational real number, and k ≥ 0 such that Pk is
odd. Define u and v as those record-holders for which

S(u) = sup
0≤n<Qk

S(n), S(v) = inf
0≤n<Qk

S(n).

Then the interval [Qk, Qk + Qk+1) contains only one record-holder t.
If k is odd then t is a maximum and t = v + Qk. If k is even then t is a

minimum and t = u + Qk.

P r o o f. By Theorem 17 the number 2Qk − 1 is an ECREF. By Lemma 15 we
thus have

S(2Qk − 1− j) = S(2Qk − 1) + S(j), 0 ≤ j ≤ 2Qk − 1
2

.

Lemma 15 also gives us the value S(2Qk − 1) = (−1)bQkαc. Thus by Lemma 4
we get S(2Qk − 1) = (−1)k+1, so that

S(2Qk − 1− j) = (−1)k+1 + S(j), 0 ≤ j < Qk. (24)

The values of S(`) for Qk ≤ ` < 2Qk differ from those in the interval 0 ≤ ` < Qk

by (−1)k+1. So, for k odd, we get only one record-holder t in the interval
[Qk, 2Qk) that will be a maximum with S(t) = S(u)+1. For k even, we get only
one record-holder in [Qk, 2Qk) that will be a minimum with S(t) = S(v)− 1.

Equation (24) does not yield the exact position of the record-holders. Also,
we have not proved that the found record-holder is the only one in the interval
[Qk, Qk + Qk+1). We will clarify these issues by applying Corollary 6: Given `
with Qk ≤ ` < Qk + Qk+1 and writting ` = hQk + r with 0 ≤ r < Qk we will
have

S(`) =

{
S(Qk)− S(r) if h is odd
S(r) if h is even.

Thus, the values of S(`) for ` ∈ [2Qk, Qk + Qk+1) have already been assumed
for ` ∈ [0, 2Qk). This proves that there are no new record-holders in the interval
[2Qk, Qk + Qk+1).
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Assuming that k is odd, we know that there is one and only one record-
holder t ∈ [Qk, 2Qk) that is a maximum. Also for ` ∈ [Qk, 2Qk) we have
S(Qk + r) = S(Qk) − S(r), so that S(t) = S(Qk) − S(r). For this t to be a
maximum, r must be a minimum for S(r) with r ∈ [0, Qk). Also r must be the
first “time” this minimum is attained. But then r = v and we will have

t = v + Qk, S(t) = S(Qk)− S(v).

In case k is even we know that the only record-holder t ∈ [Qk, Qk+1) will be a
miminum. So, in this case t = Qk + r and r must be the maximum of S for the
interval [0, Qk). Hence

t = u + Qk, S(t) = S(Qk)− S(u).

¤

Theorem 21. Let α be any irrational real number, and k ≥ 0 such that Pk is
even. Define u and v as the record-holders satisfying

S(u) = sup
0≤n<Qk

S(n), S(v) = inf
0≤n<Qk

S(n).

(a) If k is odd, then the record-holders in the interval [Qk, Qk+1 + Qk+2) are
minima at the points v + hQk < Qk + Qk+1 with h ≥ 1.

(b) If k is even, then the record-holders contained in [Qk, Qk+1 + Qk+2) are
maxima at the points u + hQk < Qk + Qk+1 with h ≥ 1.

P r o o f. Since Pk is even we have by Corollary 6

S(`) = (−1)kh + S(r), Qk ≤ ` < Qk + Qk+1

where ` = hQk + r with 0 ≤ r < Qk.
If k is even then S(`) = h + S(r). So, in this range of values of ` we have

S(`) = 1+S(`−Qk). On every interval [sQk, (s+1)Qk) ⊂ [Qk, Qk +Qk+1) the
values taken by S(`) are one unit above the corresponding values taken in the
interval [(s− 1)Qk, sQk). Therefore, in each of these intervals there is only one
record-holder that is a maximum.

The record-holders are at the points u + sQk < Qk + Qk+1. In fact, let
` < u+sQk with ` = hQk+r. Then either h = s and r < u, or h < s. In the first
case, by the definition of u, we have S(r) < S(u) and S(`) = s+S(r) < s+S(u).
In the second case S(`) = h + S(r) < s + S(r) ≤ s + S(u). Therefore, the first
time S(`) takes the value s + S(u) is at the point sQk + u.

By a similar argument it may be shown that, when k is odd, the points
v+sQk < Qk +Qk+1 are the only record-holders in the interval [Qk, Qk +Qk+1).
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Let t be equal to v when k is odd, and equal to u when k is even. Then the
last record-holder found satisfies

t + sQk < Qk + Qk+1 ≤ t + (s + 1)Qk.

It follows that Qk+1 ≤ t+sQk. So, the last record-holder is larger than or equal
to Qk+1.

Since (Pk, Pk+1) = 1 and Pk is even, the number Pk+1 is odd. Therefore, we
may apply Theorem 20.

Let u′ and v′ be the record-holders satisfying

S(u′) = sup
0≤n<Qk+1

S(n), S(v′) = inf
0≤n<Qk+1

S(n).

(When k is odd and s > 1 we will have v′ = v + (s− 1)Qk, and when k is even
and s > 1 we will have u′ = u + (s− 1)Qk. But the case s = 1 is also possible.)

In case k is odd there is only one record-holder in [Qk+1, Qk+1 + Qk+2) and
it is a minimum at the point u′ + Qk+1. Since we know that v + sQk is a
record-holder in this range we will have

u′ + Qk+1 = v + sQk, k ≡ 1 (mod 2). (25)

In case k is even there is only one record-holder in [Qk+1, Qk+1 + Qk+2) and
it is a maximum at the point v′ + Qk+1. Reasoning as before we obtain

v′ + Qk+1 = u + sQk, k ≡ 0 (mod 2). (26)

This proves that the found record-holders are the only ones in the interval
[Qk, Qk+1 + Qk+2). ¤

In what follows the intervals

Jk = [Qk, Qk + Qk+1) (27)

will play a prominent role. For k ≥ 0 we have Jk ∩ Jk+1 6= ∅, but Jk ∩ Jk+2 = ∅.
Theorems 20 and 21 yield all the record-holders contained in Jk when Pk is
odd, or in Jk ∪ Jk+1 when Pk is even. Since Q0 = 1, we see that the union of
the intervals Jk is all of [1,+∞). Thus, these two theorems determine all the
record-holders. Also, every record-holder t in Jk is given by t = t′ + Qk where
t′ is a previous record-holder. Namely, t′ is either tm or tM , or one of these plus
(h− 1)Qk. But it is not always the largest record-holder less than t. In fact, for
some t we have two representations t = t′ + Qk as may be seen from equations
(25) and (26).

In the next theorem we will see that there is always a representation of t as
t′ + Qk where t′ denotes the record-holder immediately preceding t.

Theorem 22. For every j ≥ 1 there is a k ≥ 0 such that tj − tj−1 = Qk.
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P r o o f. We put t0 = 0. The next record-holder is t1 = 1. If S(1) = 1 then
t1 is a maximum, and if S(1) = −1 then t1 is a minimum. Hence, in this case
t1 − t0 = 1 = Q0.

We proceed by induction. Assuming that n > 1 and that, for every 1 ≤ ` < n,
we have found a j such that t`− t`−1 = Qj , we will determine the position of tn.

Since Q0 = 1 ≤ Q1 < · · · and lim Qn = ∞, there is a k such that tn ∈ Jk.
Let k ≥ 0 be the least integer with this property. We will prove that either
tn − tn−1 = Qk or tn − tn−1 = Qk−1.

(a) First consider the case in which Pk is even. Then by Theorem 21 the
record-holders in the interval Jk ∪ Jk+1 are of the type t + hQk where t = tM
or t = tm is a record-holder < Qk. Therefore tn = t + hQk. If h > 1 then
tn−1 = t + (h− 1)Qk and tn − tn−1 = Qk.

Now consider the subcase h = 1. Then tn = t + Qk is the first record-holder
≥ Qk. Since tn > t1 = 1 = Q0, and we know that tn is the first record-holder
in Jk, it follows that k > 0. Since (Pk−1, Pk) = 1 and Pk is even, the number
Pk−1 is odd. By Theorem 20 the interval Jk−1 contains only one record-holder
t′. By our choice of k we have tn /∈ Jk−1. Since t′ is the only record-holder in
Jk−1 and tn is the first record-holder ≥ Qk it follows that t′ = tn−1 < Qk. Now
we have to distinguish the two cases k odd and k even.

If k is odd, then by Theorem 21 all the record-holders in Jk∪Jk+1 (in particu-
lar our tn) are minima at the points tm + hQk. On the other hand, by Theorem
20 (since k − 1 is even) the only record-holder in Jk−1 is a minimum. Thus
t′ = tm since it is a minimum and it is the last record-holder before Qk. Hence,
tn = tm + Qk = t′ + Qk = tn−1 + Qk.

If k is even, then by Theorem 21 all the record-holders in Jk ∪ Jk+1 (in
particular our tn) are maxima at the points tM + hQk. On the other hand, by
Theorem 20 (since k − 1 is odd) the only record-holder in Jk−1 is a maximum.
Thus t′ = tM since t′ is a maximum and it is the last record-holder before Qk.
Hence, tn = tM + Qk = t′ + Qk = tn−1 + Qk.

In summary, when Pk is even we always have tn − tn−1 = Qk.
(b) Now we consider the case Pk odd. By Theorem 20, tn is the only record-

holder in Jj and it is either a maximum, for k odd, with tn = tm + Qk, or a
minimum, for k even, with tn = tM + Qk. Since tn > t1 = 1 = Q0, and tn being
the only record-holder in Jk, we have k > 0.

(b1) If Pk−1 is odd, again by Theorem 20, there is only one record-holder t′ ∈
Jk−1. By our choice of k we have tn /∈ Jk−1, so that t′ < Qk < Qk−1 + Qk ≤ tn.
It follows that t′ = tn−1.

Now, when k is odd, k − 1 is even and t′ is a minimum. It follows that in
this case t′ = tm. Similarly, when k is even we have t′ = tM . It follows that
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for k odd tn = tm + Qk = t′ + Qk = tn−1 + Qk. Similarly, for k even we have
tn = tM + Qk = t′ + Qk = tn−1 + Qk.

(b2) If Pk−1 is even, then, by Theorem 21, the record-holders in Jk−1 ∪ Jk

are of the type t + hQk−1, where t is a record-holder with t < Qk−1. Since tn
is the only record-holder in Jk, it is the last of the record-holders of the form
t + hQk−1, and we can write tn = t + h0Qk−1. We have h0 > 1 since

t + Qk−1 < Qk−1 + Qk−1 ≤ akQk−1 + Qk−1 = Qk ≤ tn.

It follows that tn−1 = t + (h0 − 1)Qk−1 and tn − tn−1 = Qk−1.
So, for Pk odd we have tn− tn−1 = Qk−1 if Pk−1 is even, and tn− tn−1 = Qk

if Pk−1 is odd. ¤

Proposition 23. If Pk is odd then the interval Jk contains one and only one
record-holder. If Pk is even then the interval Jk contains ak+1 record-holders if
ak > 1 and ak+1 + 1 if ak = 1.

The only cases in which two of the intervals Jk contain a common record-
holder are:
(a) If Pk is even then the only record-holder contained in Jk+1 is the last record-
holder contained in the interval Jk.
(b) If Pk is even and ak = 1 then the only record-holder in Jk−1 is the first
record-holder contained in the interval Jk.

The number of record-holders t satisfying t > 0 and t < Qn + Qn+1 is

sup{m : tm < Qn + Qn+1} =
∑

0≤k≤n
Pk even

ak+1 +
∑

0≤k≤n
Pk and Pk−1 odd

1. (28)

P r o o f. For k ≥ −1, Jk ∩ Jk+2 = ∅. So, we only need to consider Jk ∩ Jk+1.
(1) If Pk and Pk+1 are odd then, by Theorem 20, there is only one record

holder t′ ∈ Jk and only one t ∈ Jk+1. One of them is a maximum and the other
one a minimum. So, for k ≥ 0 we have t 6= t′. (In case k = −1 the conclusion
can be verified directly.) It follows that t′ /∈ Jk+1 and t /∈ Jk. Therefore, in this
case we have Qk ≤ t′ < Qk+1 < Qk + Qk+1 ≤ t, and Jk ∩ Jk+1 = ∅. Also note
that, since t and t′ are a maximum and a minimum, by Theorem 20 we will have
t = t′ + Qk+1.

(2) When Pk is even (by Theorem 21) the only record-holders in Jk ∪ Jk+1 =
[Qk, Qk+1 +Qk+2) are the numbers t+hQk < Qk +Qk+1 with h ≥ 1 and t < Qk

a record-holder. Since Pk+1 is odd there is only one record-holder in Jk+1 which
(as above) is always contained in Jk. So in this case the only record-holder in
Jk+1 is the last record-holder in Jk and Jk ∩ Jk+1 6= ∅. This proves (a).
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(3) When k = 0, we have J−1 = [0, 1), J0 = [1, 1 + Q1) with P0 = a0. Thus,
P0 even implies a0 6= 1 and J−1 ∩ J0 = ∅. So, assertion (b) is (vacuously) true
for k = 0. Thus, in what follows we may assume k ≥ 1.

Assume k ≥ 1, Pk even and Jk−1 ∩ Jk 6= ∅. We want to prove that ak = 1.
Since Pk−1 is odd there is only one record-holder t ∈ Jk−1 and t = t′ + Qk−1

with t′ < Qk−1. Since t ∈ Jk we get Qk ≤ t′ + Qk−1. Therefore (ak − 1)Qk−1 +
Qk−2 ≤ t′. Since k ≥ 1 we have Qk−1 ≥ 1, and ak > 1 leads to t′ < Qk−1 ≤
(ak − 1)Qk−1 ≤ t′ which is a contradiction.

Conversely, if k ≥ 1, Pk is even and ak = 1, then since (Pk−1, Pk) = 1 the
number Pk−1 is odd and Pk = Pk−1 + Pk−2 implies that also Pk−2 is odd.
Then, by case (1) considered above, the only record-holder t ∈ Jk−1 and the
record-holder t′ ∈ Jk−2 satisfy Qk−2 < t′ ≤ Qk−1 ≤ Qk−2 + Qk−1 < t, and
t = t′ + Qk−1. It follows that Qk−2 + Qk−1 = Qk ≤ t and t ∈ Jk.

We only need to show how many record-holders are contained in Jk when Pk

is even. They are all the numbers t+hQk < Qk +Qk+1 = (ak+1 +1)Qk +Qk−1

with h ≥ 1 and t < Qk a particular record-holder. In case ak > 1 this record-
holder is t ∈ Jk−1 and t /∈ Jk. Thus Qk−1 ≤ t < Qk. We see that the allowed
values of h are 1 ≤ h ≤ ak+1.

In case ak = 1 the only record-holder in Jk−1 is contained in Jk so that
t < Qk−1 and it is easily seen that the allowed values of h are given by 1 ≤ h ≤
ak+1 + 1.

Formula (28) is an easy consequence of the above results. ¤

The above theorems justify the following procedure (written in Mathematica
Version 5.2) in order to obtain the sequence of “all” record-holders. We assume
that we have previously defined the numbers P[n] and Q[n] for n < kMax (kMax
being an appropriate limit).

Program to compute the record-holders for α

T = {0}; (* T will contain the sequence of record-holders *)

t = 0 ; (* The last obtained record - holder *)

For[n = 0, n <= kMax, n++,

If[OddQ[P[n]],

(* then *) If[t < Q[n], t = t + Q[n]; T = Append[T, t]],

(* else *) While[t + Q[n] < Q[n] + Q[n + 1], t + = Q[n]; T = Append[T, t]]

]

]; Print[T]
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4. The case of a quadratic irrationality

In the case of a real quadratic irrational α the numbers Pk and Qk can be
given explicitly. We did not find the formulas in Proposition 24 in the standard
textbooks dealing with continued fractions.

Proposition 24. Let α ∈ Q(
√

d) be a real quadratic irrationality, and let k be
the length of the period of the regular continued fraction of α. Then

Pnk+j = Ajω
n
1 + Bjω

n
2 ,

Qnk+j = Cjω
n
1 + Djω

n
2 ,

0 ≤ j < k, n ≥ n0 (29)

where ω1 and ω2 are certain conjugate units in the ring of algebraic integers in
Q(
√

d).

P r o o f. Let the continued fraction expansion of α be

α = {a0; a1, a2, . . . , ah, b1, b2, . . . , bk} (30)

and Pn/Qn the corresponding convergents. We consider the number β with
continued fraction {0; b1, b2, . . . , bk}. Let pn/qn be the convergents of β. Note
that p0 = 0, p1 = 1, q0 = 1 and q1 = b1.

It is well known that the two quadratic irrationals α and β generate the same
field Q(α) = Q(β) = Q(

√
d).

For n ≥ 0 and 1 ≤ j ≤ k we have

Qh+nk+j = bjQh+nk+j−1 + Qh+nk+j−2.

In particular

Qh+nk+1 = b1Qh+nk + Qh+nk−1 = q1Qh+nk + p1Qh+nk−1.

We claim that in general for n ≥ 0 and 1 ≤ j ≤ k

Qh+nk+j = qjQh+nk + pjQh+nk−1.

We will prove this by induction on the number j. Assuming that we have proved
the result for all numbers less than j + 1 we have

Qh+nk+j+1 = bj+1Qh+nk+j + Qh+nk+j−1

= bj+1(qjQh+nk + pjQh+nk−1) + qj−1Qh+nk + pj−1Qh+nk−1

= (bj+1qj + qj−1)Qh+nk + (bj+1pj + pj−1)Qh+nk−1

= qj+1Qh+nk + pj+1Qh+nk−1.
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We can write this equation in matrix form

Qn :=




Qh+kn+k

Qh+kn+k−1

Qh+kn+k−2

. . .
Qh+kn+1




= Ω




Qh+kn

Qh+kn−1

Qh+kn−2

. . .
Qh+kn−k+1




= Ω Qn−1, n ≥ 0

where Ω is defined by

Ω =




qk pk 0 . . . 0
qk−1 pk−1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
q1 p1 0 . . . 0


 .

The linear transformation Ω has k− 2 eigenvalues equal to 0 whereas the other
two are the solutions of the equation∣∣∣∣

qk − ω pk

qk−1 pk−1 − ω

∣∣∣∣ = ω2 − (qk + pk−1)ω + (−1)k = 0.

Its two solutions are algebraic integers. We call them ω1 and ω2. They are
quadratic irrationals in the same field Q(α). In order to see this we prove that
the discriminant of ω is the same as that of β. In fact, β is the solution of the
quadratic equation

pk + βpk−1

qk + βqk−1
= β or qk−1β

2 + (qk − pk−1)β − pk = 0.

Therefore, the discriminant of β is

∆ = (qk − pk−1)2 + 4qk−1pk = (qk − pk−1)2 + 4(qkpk−1 + (−1)k−1)

= (qk + pk−1)2 − 4(−1)k

which coincides with the discriminant of ω.
Since ω1ω2 = (−1)k and ω1 and ω2 are not rational, exactly one of them is in

absolute value larger than 1. This one we call ω1.
Let u1 and u2 be the corresponding eigenvectors. Every vector in the image

of Ω is a linear combination of these two vectors. In particular there exist
constants A and B such that Q0 = Au1 + Bu2.

Then we have

Qn = Ωn(Au1 + Bu2) = Aωn
1 u1 + Bωn

2 u2.

That is, for n ≥ 0 and 1 ≤ j ≤ k,

Qh+kn+j = AUjω
n
1 + BVjω

n
2
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where Uj and Vj are the coordinates of the two eigenvectors. So, Uj and Vj are
conjugate numbers in the field Q(α). ¤

Proposition 25. Let α ∈ Q(
√

d) be a real quadratic irrationality, and k the
length of the (pure) period of the continued fraction of α. Then there are natural
numbers b, L, K an integer multiple of k, and a function φ such that the sequence
of record-holders for α satisfies

tb+nL+j − tb+nL+j−1 = QnK+φ(j), 0 ≤ j < L, n ≥ 0. (31)

Also, there exists a finite sequence of signs (εj)L
j=1 such that

εjS(tb+nL+j) > 0, n ≥ 0. (32)

Let M be the number of j such that εj = 1, and m the number of j with
εj = −1. Then m + M = L, and

S(tb+nL+j) =

{
nM + aj if εj = 1
−nm + aj if εj = −1.

(33)

P r o o f. Assume that α has the continued fraction (30). For n ≥ 1 the pair
(Pn, Pn+1) modulo 2 has only three possible values (1, 0), (0, 1) and (1, 1). There-
fore, there exists a multiple K of k (K will be k, 2k or 3k) and c > h + 2 such
that Pc−2 ≡ Pc+K−2 and Pc−1 ≡ Pc+K−1. Given the periodicity of the partial
quotients of α and the recursive formulas (6), we will have

Pc+m ≡ Pc+K+m, (mod 2), m ≥ −2. (34)

Without loss of generality we may assume that K is even (if necessary take 2K
instead of K).

By Proposition 23 the number of record-holders in the interval Jn depends
only on the parity of Pn and the numbers an and an+1. Since K is a multiple of
the period k it follows from (34) that for n ≥ c the intervals Jn and Jn+K contain
the same number of record-holders. By Propositions 20 and 21 the characters
maximum/minimum of these record-holders will be the same since K has been
taken even.

Therefore, the number, characters and relative positions of the record-holders
in the union of intervals

⋃K
j=0 Jc+nK+j do not depend on n.

Let tb, tb+1, . . . , tb+L−1 be the record-holders contained in
⋃K

j=0 Jc+j . Then
the record-holders contained in

⋃K
j=0 Jc+nK+j will be the numbers tb+nL+j with

0 ≤ j < L. The numbers tb+nL+j with a fixed j are either all maxima or
all minima. Put εj = 1 for a maximum and εj = −1 for a minimum. Then,
obviously, we will have εjS(tb+nL+j) > 0.
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If n ≥ b and if the record-holder tn ∈ Jv then the record-holder tn+L ∈ Jv+K .
This record-holder will be the only one in the given interval or will have the same
position between the record holders in the respective intervals Jv and Jv+K . It
follows that if tn − tn−1 = Qr then tn+L − tn+L−1 = Qr+K . Thus we can define
a function φ such that

tb+j+nL − tb+j+nL−1 = Qφ(j)+nK , 0 ≤ j < L.

Finally, let M be equal to the number of maxima in the period of record-
holders, and m the number of minima. If tb+nL+j is a maximum, then tb+nL+L+j

is also a maximum and S(tb+nL+L+j) = M + S(tb+nL+j) since there are M
maxima on the period of record-holders. This fact, together with reasoning
similar to that for the case of minimum establishes our formula for S(tb+nL+j).

¤

Corollary 26. With the same notations as in Theorem 24 and Proposition 25

tb+nL+j = Ej + Fj ωκn
1 + Gj ωκn

2 , 0 ≤ j < L, n > n1 (35)

where K = κk, κ being a positive integer.

P r o o f. Summing equations 31 for 0 ≤ j < L we get

tb+(n+1)L−1 − tb+nL−1 =
L−1∑

j=0

QnK+φ(j).

For every fixed j let φ(j) = ujk + r with 0 ≤ r < k. Then nK + φ(j) =
(nκ + uj)k + r and by (29), for n ≥ n1, we will have

QnK+φ(j) = Cj ω
nκ+uj

1 + Dj ω
nκ+uj

2 .

Thus there exist constants n1, C ′j and D′
j such that

tb+(n+1)L−1 − tb+nL−1 = C ′jω
nκ
1 + D′

jω
nκ
2 , n ≥ n1.

Summing this for n1 ≤ n ≤ N − 1 we get

tb+NL−1 = tb+n1L−1 +
N−1∑
n=n1

C ′jω
nκ
1 + D′

jω
nκ
2 .

Summing the geometric series we see that there are constants E−1, F−1 and
G−1 such that

tb+NL−1 = E−1 + F−1ω
Nκ
1 + G−1ω

Nκ
2 , N > n1.
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From this equation, by induction, we obtain (35). For example:

tb+NL = E−1 + F−1ω
Nκ
1 + G−1ω

Nκ
2 + QNK+φ(0) =

= E−1 + F−1ω
Nκ
1 + G−1ω

Nκ
2 + C0ω

Nκ
1 + D0ω

Nκ
2 = E0 + F0ω

Nκ
1 + G0ω

Nκ
2 .

¤

5. Connection with modular functions

The functions

Λ(α) = lim sup
n→∞

Sα(n)
log n

, λ(α) = lim inf
n→∞

Sα(n)
log n

are finite at the points α for which Sα(n) = O(log n), in particular at real
quadratic irrationals.

We may restrict ourselves to one of them since S−α(n) = −Sα(n) (by (2)) so
that

λ(α) = −Λ(−α). (36)

Defining H(α) = Λ(1− α) we have

Theorem 27. For every real irrational α

H(α + 2) = H(α), H
(
− 1

α

)
= H(α). (37)

P r o o f. By (3) in Lemma 1 we have Λ(α+2) = Λ(α), so that H(α+2) = H(α).
It is convenient to extend the definition of Sα(n). For any real number x we

put
Sα(x) =

∑

1≤n≤x

(−1)bnαc.

It is easy to show that with this definition we have

Λ(α) = lim sup
x→∞

Sα(x)
log x

, λ(α) = lim inf
x→∞

Sα(x)
log x

.

Now we prove that

α ∈ I, α > 1,
1
α

+
1
β

= 1 ⇒ Λ(α) = −λ(β); λ(α) = −Λ(β). (38)

(Here I stands for the set of all irrational real numbers.) Assume that α > 1 is
irrational and that 1

α + 1
β = 1. A well known theorem by Beatty says that bnαc
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and bnβc then form a partition of the natural numbers. This can be translated
into a property of the sums Sα(n). In [15] we found the proof of

Sα(x/α) + Sβ(x/β) = O(1)

based on Beatty’s theorem.
Dividing by log x we get

Λ(α) = lim sup
x→+∞

Sα(x/α)
log(x/α)

= lim sup
x→+∞

Sα(x/α)
log x

=

= lim sup
x→+∞

O(1)− Sβ(x/β)
log x

= − lim inf
x→+∞

Sβ(x/β)
log(x/β)

= −λ(β).

In the same way we get
λ(α) = −Λ(β).

We can write the main equation in (38) in the form

Λ(α) = −λ
( α

α− 1

)
, for α ∈ I, α > 1. (39)

For every irrational y < 0 we have

H(y) = Λ(1− y) = −λ
(1− y

−y

)
=

= −λ
(
1− 1

y

)
= Λ

(1
y
− 1

)
= Λ

(
1 +

1
y

)
= H

(
−1

y

)
.

(The first equality is the definition of H, the second an application of (39) with
1 − y > 1, the third an algebraic identity, the fourth an application of (36),
the fifth an application of the first equation in (37), and the last one also an
application of the definition of H.)

But then, by the symmetry of this equation, it is true for all y ∈ I. ¤

Theorem 28. For α a quadratic irrational and with the same notations used
in Theorem 24 and Proposition 25 we have

Λ(α) =
M

κ log ω1
and λ(α) = − m

κ log ω1
. (40)

P r o o f. If M = 0, then there is at most a finite number of maximum-record-
holders and a constant C such that S(n) ≤ C for all n ∈ N. So Λ(α) = 0 and
equation (40) is true.

When M > 0 there are infinitely many maximum-record-holders. So, given x,
there is a record-holder satisfying tb+(n−1)L+j < x ≤ tb+nL+j . By Corollary 35
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there is a constant C (of the order of |ωκ
1 |) such that tb+nL+j ≤ Ctb+(n−1)L+j .

It follows that log x ∼ log tb+nL+j and we have

Λ(α) = lim sup
x→+∞

Sα(x)
log x

≤ lim sup
n→∞

S(tb+nL+j)
log tb+nL+j

=

= lim sup
n→∞

nM + aj

log(Ej + Fjωnκ
1 + Gjωnκ

2 )
=

M

κ log ω1
.

Since this is the limit of Sα(n)/ log n for a particular sequence, it is also less
than or equal to the lim sup = Λ(α), proving (40). ¤

6. The order of the sums

O’Bryant, Reznick and Serbinowska wonder in [15] whether Sα(n) =
O(log n) is the correct type of growth of Sα(n) for a quadratic irrational α .
They say that it seems unlikely that Sα(n) = O(log n) for almost all α, but a
proof of this is elusive. They also ask for necessary and sufficient conditions on α
(in terms of its continued fraction expansion) in order to have Sα(n) = O(log n).

In this section we will answer the first and second of these questions.
Applying Theorem 28 to a real quadratic irrational α, we have

lim sup
n

Sα(n)/ log n > lim inf
n

Sα(n)/ log n

and both are finite real numbers. Hence Sα(n) = O(log n) and Sα(n) = Ω(log n).
Thus, O(log n) is the correct rate of growth of Sα(n) for any fixed real quadratic
irrational α.

Our Theorem 18 shows that for any irrational α the sum Sα(n) is not bounded.
This is about all that can be said in general. In [15] it is proved that for any
positive function ψ(n) ≥ 1 that increases to infinity, we can find an α with
|Sα(n)| ≤ ψ(n) for all n.

There is an important connection between our sums and the concept of dis-
crepancy. Given a sequence of real numbers (xj) in the interval [0, 1], its dis-
crepancy D∗

n(xj) is defined by

D∗
n(xj) = sup

t∈[0,1)

∣∣∣#{j ≤ n : 0 ≤ xj < t}
n

− t
∣∣∣.

It is easy to show that (see, for example, [15])

Sα(n) = 2n
(#{j ≤ n : {jα/2} < 1

2 }
n

− 1
2

)
.
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Here, as usual, {x} denotes the fractional part of x. So we have

|Sα(n)| ≤ 2nD∗
n({jα/2}).

There is a substantial literature on the discrepancy of the sequence {nα}
(a good survey can be found in [10]). For example, the following result is due
to Khintchine: Let ϕ(n) be a positive increasing function. Then

sup
n≤N

nD∗
n({jα}) = O(log N · ϕ(log log N))

for almost all α ∈ R if and only if
∞∑

n=1

1
ϕ(n)

< ∞.

It follows that for almost all α ∈ (0, 1) we have

sup
n≤N

|Sα(n)| ≤ sup
n≤N

nD∗
n({jα/2}) = O(log N · ϕ(log log N))

when ϕ(n) is an increasing positive function with
∑∞

n=1
1

ϕ(n) < ∞.
We are going to extend this result to the following

Theorem 29. Let ψ(x) and ϕ(x) be positive increasing functions such that
∫ ∞

1

dx

ψ(x)
= +∞ and

∫ ∞

1

dx

ϕ(x)
< +∞.

Then for almost all α ∈ (0, 1) we have

Ω(log N · ψ(log log N)) ≤ sup
n≤N

|Sα(n)| ≤

≤ sup
n≤N

nD∗
n({jα/2}) = O(log N · ϕ(log log N)). (41)

P r o o f. We only need to prove the first inequality.
By Proposition 23 the number of record-holders < Qn + Qn+1 is larger than

or equal to the sum ∑

0≤k≤n
Pk even

ak+1.

It follows that the maximum of |Sα(k)| for k < Qn + Qn+1 is, when Pn is even,
at least 1

2 an+1. Thus, with m = n + 1 we have (once more using Iverson’s
notation)

sup
n≤Qm+Qm−1

|S(n)| ≥ 1
2

[[ Pm−1 even ]] am. (42)

Now we need some measure theory. Let E ⊂ [0, 1] be the set of those irrational
numbers α ∈ [0, 1] for which the partial quotients a1 = k1, a2 = k2, . . . , ar = kr
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take definite values, and let E(k) be the subset of these numbers for which the
additional partial quotient ar+1 is equal to k. Then we have (see [1, p. 60])

|E|
3k2

< |E(k)| ≤ 2|E|
k2

. (43)

For every m put Mα(m) = supn≤Qm+Qm−1
|Sα(n)|. We are going to show that,

given the set E (with k ≥ 2), we have

|{α ∈ E : Mα(k + 3) ≥ L}| ≥ |E|
200L

.

All numbers in E have regular continued fraction expansions starting with

{0; k1, k2, . . . , kr, . . . }.
Thus, they share the same convergents P0/Q0, . . . , Pr−1/Qr−1, Pr/Qr. Since
(Pr−1, Pr) = 1 modulo 2, these two numbers can be: both odd (1, 1), the first
even and the second odd (0, 1), or the first odd and the second even (1, 0) (for
all numbers in the set E).

Now we decompose E in four disjoint subsets E1,1, E1,0, E0,1, and E0,0 defined
by:

E1,1 = {α ∈ E : ar+1 ≡ 1 (mod 2), ar+2 ≡ 1 (mod 2)}
with similar definitions for E1,0, E0,1, E0,0.

We have to consider three cases.
Assume first that (Pr−1, Pr) ≡ (1, 1) modulo 2. In this case all the numbers

α ∈ E0,1 satisfy

Pr+1 = ar+1Pr + Pr−1 ≡ Pr−1 ≡ 1 (mod 2)

and

Pr+2 = ar+2Pr+1 + Pr ≡ Pr+1 + Pr ≡ 0 (mod 2).

Therefore, by (42), for α ∈ E0,1 we have

Mα(r + 3) = sup
n≤Qr+3+Qr+2

|Sα(n)| ≥ ar+3

2

so that we have

{α ∈ E : Mα(r + 3) ≥ L} ⊃
⋃

k≥2L

E0,1(k).

Here E0,1(k) denotes the set of those α ∈ E for which ar+1 is even, ar+2 is odd
and ar+3 = k.
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By (43) we get

|{α ∈ E : Mα(r + 3) ≥ L}| ≥
∑

k≥2L

∞∑
u=1

∞∑
v=1

1
3k2

1
3(2u− 1)2

1
3(2v)2

|E|

= |E| 1
27

π2

8
π2

24

∑

k≥2L

1
k2
≥ |E| π4

5184
1

2L
≥ |E|

200L
.

Similarly, when (Pr−1, Pr) ≡ (0, 1) we get

{α ∈ E : Mα(r + 3) ≥ L} ⊃
⋃

k≥2L

E1,1(k)

and an analogous computation gives

|{α ∈ E : Mα(r + 3) ≥ L}| ≥
∑

k≥2L

∞∑
u=1

∞∑
v=1

1
3k2

1
3(2u− 1)2

1
3(2v − 1)2

|E|

= |E| 1
27

π2

8
π2

8

∑

k≥2L

1
k2
≥ |E| π4

1728
1

2L
≥ |E|

200L
.

Finally, in the last case (Pr−1, Pr) ≡ (1, 0) we have

{α ∈ E : Mα(r + 3) ≥ L} ⊃
⋃

k≥2L

E0,0(k) ∪ E1,0(k).

In this case we also have

|{α ∈ E : Mα(r + 3) ≥ L}| ≥ |E|
200L

.

Therefore, for every set E (defined by conditions on the values of the partial
quotients aj for j ≤ r) we have

|{α ∈ E : Mα(r + 3) < L}| ≤
(
1− 1

200L

)
|E|. (44)

Observe that every set determined by a condition on the numbers Mα(n) for
n ≤ m is the union of the sets E = E(a1, a2, . . . , am) determined by the values
of the partial quotients aj with j ≤ m. In fact, the Mα(n) are determined by
the values of Sα(n) for n < Qm + Qm−1 and, by Proposition 5, these values are
determined by the aj with j ≤ m.

Let h(x) be any positive nondecreasing function such that
∫∞
1

dx/h(x) = +∞.
We claim that Mα(n) = Ω(h(n)) for almost all α, or, more precisely

|{α ∈ I : Mα(n) ≥ h(n) for infinitely many values of n}| = 1. (45)

(Here I denotes the set of all irrational numbers in [0, 1]).
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This is equivalent to showing that for every m0

|{α ∈ I : Mα(n) < h(n) for n ≥ m0}| = 0.

For a given value of m0 let us call this set F . Then we have

|F | ≤ |{α ∈ I : Mα(m0 + 3) < h(m0 + 3)}| ≤
(
1− 1

200h(m0 + 3)

)

because we may apply (44) to every interval E(a1, . . . , am0) contained in F .
Writing F1 = {α ∈ I : Mα(m0 + 3) < h(m0 + 3)} we also have by a similar
reasoning

|F | ≤ |{α ∈ F1 : Mα(m0 + 6) < h(m0 + 6)}| ≤
(
1− 1

200h(m0 + 6)

)
|F1|

≤
(
1− 1

200h(m0 + 6)

)(
1− 1

200h(m0 + 3)

)
.

By induction we get

|F | ≤
N∏

j=1

(
1− 1

200h(m0 + 3j)

)
.

Since ψ is increasing, we know that
∑∞

j=1
1

h(m0+3j) = ∞. Therefore, the above
inequality implies |F | = 0. This completes the proof of our claim.

Now, there exists an absolute constant B > 0 such that almost everywhere,
for sufficiently large n (see [1, p. 65]),

Qn = Qn(α) < eBn.

Given the positive nondecreasing function ψ(x) with
∫ +∞
1

dx/ψ(x) = +∞ we
define h : (0, +∞) → (0, +∞) in such a way that for all x > 30 (note that h(x)
is also positive and nondecreasing)

log x · ψ(log log x) = h
( log x− 4

B

)
.

Then
∫ +∞

1

dx

h(x)
=

∫ +∞

1

1
log y · ψ(log log y)

dy

By
=

=
∫ +∞

1

du

Bu · ψ(log u)
=

∫ +∞ dv

ψ(v)
= +∞.
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Therefore, by (45), for almost all α ∈ [0, 1] we have h(m) ≤ Mα(m) for
infinitely many m. That is

h(m) ≤ sup
n<Qm+Qm−1

|Sα(n)|.

For almost all α ∈ [0, 1] we have Qn < eBn for n ≥ n0(α). Therefore, for
infinitely many m we have

h(m) ≤ sup
n≤Qm+Qm−1

|Sα(n)| ≤ sup
n≤2eBm

|Sα(n)|.

Taking the integer N such that N/2 ≤ 2eBm < N we get

log N · ψ(log log N) = h
( log N − log 4

B

)
≤ sup

n≤N
|Sα(n)|

which will be true for infinitely many integers N . ¤

Note 1. In [15] the authors say: “It seems unlikely that Sα(n) is O(log n) for
almost all α, but a proof of this is elusive”. From the above theorem we infer
that log N · log log N ≤ supn≤N |Sα(n)| for almost all α. So, indeed, it is not
true that Sα(n) = O(log n) for almost all α.

Note 2. The conclusion

Ω(log N · ψ(log log N)) ≤ sup
n≤N

nD∗
n({jα/2})

is known (see [10]), but our proof by means of Sα(n) seems to be more straight-
forward.

Example. Theorem 29 is true for almost all α. We can also give concrete
examples in which Sα(n) grows quite fast. For example: For α = (e−1)/(e+1) =
{0, 2, 6, 10, 14, . . . } with ak = 4k−2, all numbers P2k are even. By (28) we easily
get that there is a t < Q2n + Q2n+1 with |S(t)| ≥ 2n2. By induction we get
Qn < 4nn!, so that log t ≤ c n log n, and consequently n > c log t/ log log t. It
follows that there is an infinite sequence (tn) tending to infinity, such that

|S(tn)| > c
( log tn

log log tn

)2

.
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7. Mathematica programs

We now present some Mathematica programs that, given a real quadratic
irrational α, will output the regular continued fraction of α, the period of signs
of S(tn), the length of this period, the sign sequence for a period, the numbers
ω1 and ω2, an initial section of the maxima/minima tn, a section of the sequence
of record-holders, and the corresponding values of S(tn). As a check it also gives
the values of S(tn) computed with the FFL algorithm described in the Appendix.

We should note here that the function ContinuedFraction[.] of Mathe-
matica does not always yield the correct value. We have actually detected this
malfunctioning when computing ContinuedFraction[ α ] for α = 2 −√3 > 0
by Mathematica Version 5.2.

So, we felt compelled to introduce a correct substitute function:

RegularContinuedFraction[.].

Mathematica Code for the Module RegularContinuedFraction[.].

RegularContinuedFraction[α_] := Module[{RCF, x, X, RepeatQ, a, n},

RCF = {}; x = α; X = {x};

RepeatQ = False; (* = True when a repetition has been detected *)

While[Not[RepeatQ], a = Floor[x];

RCF = Append[RCF, a];

x = FullSimplify[1/(x - a)];

If[MemberQ[X, x], (* then *) RepeatQ = True,

(* else *) X = Append[X, x]]];

n = Position[X, x, {1}, Heads -> False][[1]][[1]] - 1;

(* Output *) RCF = Append[Take[RCF, n], Drop[RCF, n] ] ];

Mathematica Code for the Module AnalysisOfTheRecordHolders.

AnalysisOfTheRecordHolders[α_] := Module[{n, k, x, y, u, v},

(* =================================================================== *)

(* 1. Compute the units : ω1 and ω2. *)

CFα = RegularContinuedFraction[α];
PurePeriodOfCFα = Last[CFα];
LengthPurePeriodα = Length[PurePeriodOfCFα];
β = FromContinuedFraction[{0, PurePeriodOfCFα}];

(* = β of Proposition 24. *)

kLim = LengthPurePeriodα + 2;

CFβ = ContinuedFraction[β, kLim];

(* For β we use lower case p and q *)

p[-2] = 0; p[-1] = 1;

For[k = 0, k < kLim, k++, p[k] = CFβ[[k + 1]]*p[k - 1] + p[k - 2]];

q[-2] = 1; q[-1] = 0;

For[k = 0, k < kLim, k++, q[k] = CFβ[[k + 1]]*q[k - 1] + q[k - 2]];

roots = Solve[
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x^2 - (q[LengthPurePeriodα] + p[LengthPurePeriodα - 1])x +

(-1)^LengthPurePeriodα == 0, x];

ω1 = FullSimplify[x /. roots[[2]]]; ω2 = FullSimplify[x /. roots[[1]]];

(* Interchange if Abs[ω1] < Abs[ω2] *)

If[Abs[ω1] < Abs[ω2], {ω1, ω2} = {ω2, ω1}]; (* Swap *)

(* =================================================================== *)

(* 2. Compute the convergents of α. *)

(* We need the P[k] for k <= h + 3 * LengthPurePeriodα *)

(* See proof of Theorem (25) *)

h = Length[CFα] - 2; (* Notation of equation (30) *)

kMax = Max[ h + 3*LengthPurePeriodα, 10];

For[u = 0, u + α < 0, u++]; (* This is not necessary for α > 0 *)

CF = ContinuedFraction[u + α, kMax]; CF[[1]] = CF[[1]] - u;

(* ! We use CAPITAL P and Q for α *)

P[-2] = 0; P[-1] = 1;

For[k = 0, k < kMax, k++, P[k] = CF[[k + 1]]*P[k - 1] + P[k - 2]];

Q[-2] = 1; Q[-1] = 0;

For[k = 0, k < kMax, k++, Q[k] = CF[[k + 1]]*Q[k - 1] + Q[k - 2]];

(* We have computed the necessary P’s and Q’s for α *)

(* =================================================================== *)

(* 3. Compute the sequence of Record - Holders for α. *)

T = {0}; (* T will contain the sequence of record - holders *)

t = 0; (* t = the last obtained record - holder *)

For[n = 0, n < kMax, n++,

If[OddQ[P[n]], (* then *) If[t < Q[n], t = t + Q[n]; T = Append[T, t]],

(* else *)

While[t + Q[n] < Q[n] + Q[n + 1], t = t + Q[n];

T = Append[T, t]]]];

(* We have computed the list of Record - Holders *)

(* =================================================================== *)

(* 4. Compute K and c satisfying (34) *)

(* h = Length[CF[α] - 2] is the number defined by equation (30) *)

For[n = 0, n < 4, n++,

A[n] = {Mod[P[h + n*LengthPurePeriodα - 1], 2],

Mod[P[h + n*LengthPurePeriodα], 2]}];

n = 0; m = 1;

(* Now we are going to find the first repetition of the A[n] *)

While[A[n] 6= A[m], If[m < 4, m++, If[n < 3, n++; m = n + 1]]];

m - = n;

If[OddQ[m*LengthPurePeriodα], m = 2m];

c = h + n*LengthPurePeriodα + 1;

K = m*LengthPurePeriodα;
κ = K/LengthPurePeriodα; (* This is the κ of Corollary 26 *)

(* We have computed c, K and κ of Corollary 26 *)

(* =================================================================== *)

(* 5. Now compute the Record - Holders < Q[c + K + 2] *)

If[c + K + 3 >= kMax,

For[u = 0, u + α < 0, u++]; (* This is not necessary for α > 0 *)
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CF = ContinuedFraction[u + α, c + K + 5]; CF[[1]] = CF[[1]] - u;

(* ! Here we use CAPITAL P and Q *)

For[k = kMax - 1, k < c+K+5, k++, P[k] = CF[[k + 1]]*P[k - 1] + P[k - 2]];

For[k = kMax - 1, k < c+K+5, k++, Q[k] = CF[[k + 1]]*Q[k - 1] + Q[k - 2]];

(* We have used the computed P’s and Q’s of 2 *)

kMax = c + K + 5]; (* End of If[c + K + 3 >= kMax, ... *)

MM = {}; mm = {};

(* MM and mm will contain the maxima and minima, respectively *)

t = 0;

For[n = 0, n < kMax - 1, n++, (* We inspect the interval J_n *)

If[OddQ[P[n]],

(* Then there is only one record holder *)

If[t < Q[n], t = t + Q[n];

If[OddQ[n], (* then *) MM = Append[MM, t],

(* else *) mm = Append[mm, t]]],

(* Else there are several record - holders in J[n] *)

news = {};

For[v = 1, t + v*Q[n] < Q[n] + Q[n + 1], v++,

news = Append[news, t + v*Q[n]]];

If[OddQ[n], (* then *) mm = Union[mm, news],

(* else *) MM = Union[MM, news]];

t = Last[news]]];

(* Now MM and mm contain the record - holders < Q[c + K + 2] *)

(* =================================================================== *)

(* 6. Compute the maxima and minima of the period *)

(* The period will be composed of the t_n contained

in [Q[c + 2], Q[c + K + 2]) *)

q0 = Q[c + 2]; q1 = Q[c + K + 2];

Maxima = Select[MM, (# < q1) && (# >= q0) &];

minima = Select[mm, (# < q1) && (# >= q0) &];

M = Length[Maxima]; m = Length[minima];

(* These are the M and m of Theorem 25 *)

(* =================================================================== *)

(* 7. Compute the period of maxima and minima *)

‘period = {}; (* Will contain the period of maxima and minina *)

For[j = 1, j <= M, j++, period = Append[period, {Maxima[[j]], "max"}]];

For[j = 1, j <= m, j++, period = Append[period, {minima[[j]], "min"}]];

period = Sort[period];

Lperiod = Table[period[[j]][[2]], {j, 1, Length[period]}];

(* Now we get the non - periodic part of the record - holders *)

Maxima = Select[MM, (# > 0) && (# < q0) &];

minima = Select[mm, (# > 0) && (# < q0) &];

M2 = Length[Maxima]; m2 = Length[minima];

(* M2 and m2 are the # of maxima and minima in the Sign - period *)

nonperiodic = {};(* Will contain the non - periodic maxima and minima *)

(* These have never been observed, though *)

For[j = 1, j <= M2, j++,

nonperiodic = Append[nonperiodic, {Maxima[[j]], "max"}]];
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For[j = 1, j <= m2, j++,

nonperiodic = Append[nonperiodic, {minima[[j]], "min"}]];

nonperiodic = Sort[nonperiodic];

nonperiodic = Table[nonperiodic[[j]][[2]], {j, 1, Length[nonperiodic]}];

period = Append[nonperiodic, Lperiod];

(* =================================================================== *)

(* 8. We simplify the period *)

(* Now we simplify the period {max, {max, min, max}} -> {{max, max, min}} *)

u = Length[Last[period]]; v = Length[period] - 1;

While[(v > 0) && (period[[v]] == Last[Last[period]]),

period = Insert[period, RotateRight[Last[period], 1], -1];

period = Delete[period, -2]; period = Delete[period, -2];

u = Length[Last[period]]; v = Length[period] - 1];

(* We simplify the pure period {max, min, max, min} -> {max, min} *)

lp = Length[Last[period]]; div = Divisors[lp];

pureperiod = Last[period];

v = 1; CheckValue = False;

While[CheckValue == False, CheckValue = True;

d = div[[v]];

For[j = 1, j <= d, j++,

For[k = 0, k < lp/d, k++,

If[pureperiod[[j]] != pureperiod[[d*k + j]],

CheckValue = False]]];

v++];

period = Append[Drop[period, -1], Take[Last[period], d]];

(* 9. Print the results of the above analysis *)

Print["* α = ", α];
Print["* Type of S-extremes in period = ", period];

Print["* Length of this period = ", Length[period[[1]]]];

PeriodRecordHolders = Table[S[α, T[[n]]], {n, 2, 1 + 2*Length[period[[1]]]}];

(* ! We only observed pure periods ! *)

Print["* Regular CF(α) = ", RegularContinuedFraction[α]];
Print["* Sign sequence of S(t_n) -> ", Sign[PeriodRecordHolders]];

Print["* Units : ω1 = ", ω1," ω2 = ", ω2];
Print["* t_n of Maxima -> ", MM];

Print["* t_n of minima -> ", mm];

T = Delete[T, 1];

Print["* ’All’ Record-Holders t_n -> ", T];

(* The next line requires the loading of the FFL routine of the Appendix *)

Print["* S(t_n) -> ", Table[S[α, T[[j]]], {j, 1, Length[period[[1]]]}]];

Print["* κ = ", κ];
Print["* Λ(α) = ", Λ = FullSimplify[ M/(κ*Log[ω1])], " ≈ ", N[Λ]];
Print["* λ(α) = ", λ = FullSimplify[ - m/(κ*Log[ω1])], " ≈ ", N[λ]];
"Done"];

One may check the record-holders for α by the following simple program
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Mathematica Code for Generating the Record-Holders.

α =
√

2 (* For example *)

n = 0; s = 0; sMax = 0; sMin = 0;

While[0 == 0, n += 1;

If[EvenQ[Floor[n*α]], s += 1, s -= 1];

If[s > sMax, sMax = s; Print[" n= ", n, " s= ", s]; Goto[A]];

If[s < sMin, sMin = s; Print[" n= ", n, " s= ", s]];

Label[A]]

8. Some remaining open problems

1. In all of our computations, the sequence of the signs of Sα(tn) always
turned out to be purely periodic.

We were unable to prove the consistency of this surprising observation.
2. It seems that there is always a system of recurrence relations for the record-

holders tn. For example, for α =
√

3 we find that

t4n = 2 t4n−1 + t4n−4 + 1
t4n+1 = t4n + t4n−1 + 1
t4n+2 = t4n+1 + 2 t4n + 1
t4n+3 = t4n+2 + 2 t4n + 1.

We have not pursued this subject any further.
3. It seems that the inhomogeneous sums

∑n
j=1(−1)bjα+βc exhibit certain

characteristics very similar to those of the homogeneous sums dealt with
in this paper. For example for the sums

∑n
j=1(−1)bj

√
2 + 1

2 c we find the
recurrences:

t2n = 2 t2n−1 − t2n−4

t2n+1 = 3 t2n + 1.

4. The probabilistic distribution of the values of Sα(n) for n = 1, 2, 3, . . .
appears to be very regular and stable. Is there a Gaussian distribution
lurking in the background?

5. Finally there is the problem of the distribution of Sα(n) over the residue
classes mod m (with m > 2).

6. Although we did not study general irrational α’s, we observed various
regularities of Sα(n) for α = a simple form composed with the number e.
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For example, α = e , e1/m , e−1/m , e1/m−1
e1/m+1

. It seems that for the last of
these the record-holders are given by

tk =





k if 1 ≤ k ≤ 2m

2(4mr −m + 1)tk−1 − tk−2 if k = 4mr2 − 2mr + 1, (r > 1)
2tk−1 − tk−2 if k 6= 4mr2 − 2mr + 1, (r > 1).

9. Appendix. The FFL algorithm

This algorithm is implicitly contained in [9]. It computes the value of Sα(n)
for any irrational α. Here we present its implementation in Mathematica Version
5.2 and present a proof of it.

In the first part of the algorithm, applying Lemma 1, we determine an irra-
tional β ∈ (0, 1) and a sign σ such that for every natural number n we have
Sα(n) = σSβ(n).

S[α_, M_] := Module[{j, R, m, a, b, k},
(* ========================================================= *)

(* 1. Compute β and σ such that Sα(n) = σ · Sβ(n) *)
(* ========================================================= *)
σ = 1; β = α;
If[β < 0, β = -β; σ = -σ]; (* Now β > 0 *)
β - = 2 Floor[β/2]; (* Now 0 < β < 2 *)
If[β > 1, β = 2 - β; σ = -σ]; (* Now 0 < β < 1 *)

In order to compute the value of Sβ(n) the FFL algorithm uses the denomi-
nators qk of the convergents of the number γ = β/2. We will have to compute
these qk for the indices k satisfying qk−1 ≤ n < qk. By induction we find
that qk ≥ Fk+1, a Fibonacci number. So, we compute qk for all k such that

Fk−1 ≤
(

1+
√

5
2

)k

≤ n.

(* ========================================================= *)
(* 2. Compute the necessary q[k] for M *)

(* ========================================================= *)
β = β/2;
kMax = 1 + Ceiling[Log[2, M + 1]/Log[(1+Sqrt[5])/2]];
CF=ContinuedFraction[ β, kMax ];
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q[-2]=1; q[-1]=0;
For[ k = 0, k < kMax, k++, q[k] = CF[[k+1]]* q[k-1]+ q[k-2] ];

Finally, the algorithm depends on two principles:
(A) If qk−1 ≤ m < qk and qk/2 < m then

Sβ(m) = Sβ(qk −m− 1) +

{
(−1)k−1 if qk is even
0 if qk is odd.

(B) If qk−1 ≤ m < qk, m ≤ qk/2, and m = hqk−1 + r then

Sβ(m) = Sβ(r) + h

{
0 if qk−1 is even
(−1)k−1 if qk−1 is odd.

Now we can supply the code for the function Sα(n).

9 (* ========================================================= *)
10 (* 3. The FFL-routine proper *)
11 (* ========================================================= *)
12 m=M; R=0;
13 (* Throughout the program we will have S(M)= S(m)+ R *)
14 j = kMax - 1;
15 While[ m > 0, While[q[j] > m, j--];
16 (* We have located j with q[j] <= m < q[j+1] *)
17 a = q[j]; b = q[j+1];
18 If[ b - m < b/2, (* Then we apply principle A *)
19 R += If[ EvenQ[b], (-1)^j, 0];
20 m = b - m - 1,
21 (* Else we apply principle B *)
22 R += Floor[m/a] * If[EvenQ[a], 0, (-1)^j ];
23 m = Mod[m,a] ]];
24 (* end of While. *)
25 (* Output *) sigma * R ]
26 (* END of the FFL-routine and S[α,M] *)

We prove the two principles of the algorithm.
(A) By Theorem 17 the number 2qk − 1 is an ECREF for γ so that

b(2qk − j)γc+ bjγc = 2pk − 1, 1 ≤ j < qk. (46)

Put j = 2n. Since γ = β/2 we have

b(qk − n)βc+ bnβc = 2pk − 1, 1 ≤ n < qk/2.
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Therefore
1 ≤ n < qk/2 =⇒ (−1)bnβc = −(−1)b(qk−n)βc.

Thus qk − 1 is an ECREF for β and we have

Sβ(qk − 1− n) = Sβ(qk − 1) + Sβ(n), 0 ≤ n < qk/2.

Moreover, we have

Sβ(qk − 1) =
qk−1∑

j=1

(−1)bjβc =
qk−1∑

j=1

(−1)b2jγc.

By (46) we have (−1)b2jγc = −(−1)b2(qk−j)γc. If qk is odd we get Sβ(qk−1) = 0,
and for qk even the entire sum is equal to the central term (−1)bqkγc. By
Lemma 4 this term is equal to (−1)k+pk . Since qk is even, pk is odd, and we get
Sβ(qk − 1) = (−1)k−1. Writing m = qk − 1− n we get

Sβ(m) = (−1)k−1 + Sβ(qk − 1−m), qk/2 < m < qk

completing the proof of (A).

(B) Now assume that qk−1 ≤ m ≤ qk/2. Let h and 0 ≤ r < qk−1 be such that
m = hqk−1 + r. Let j be such that qk−1 ≤ j < j + qk−1 ≤ m < qk/2 and let
2j = dqk−1 + u. By applying Proposition 5 twice, first for 2j + 2qk−1 and then
for 2j, we obtain

(−1)b(j+qk−1)βc = (−1)b(2j+2qk−1)γc = (−1)(d+2)pk−1+buγc =

= (−1)dpk−1+buγc = (−1)b2jγc = (−1)bjβc.

(This for u 6= 0 and by a similar reasoning for u = 0.) It follows that

Sβ(m) =
hqk−1+r∑

j=1

(−1)bjβc =
r∑

j=1

(−1)bjβc + h

qk−1∑

j=1

(−1)bjβc.

As observed in the proof of (A), the terms of the sum
∑qk−1

j=1 (−1)bjβc cancel (the
term for j = 1 with that for j = qk−1 − 1, the term with j = 2 with that for
j = qk−1 − 2, . . . ). If qk−1 is odd the sum is equal to (−1)b2qk−1γc, and if qk−1

is even it is equal to (−1)bqk−1γc + (−1)b2qk−1γc.
By Proposition 5 we see that b2qk−1γc is equal to 2pk−1 when k−1 is even, and

equal to 2pk−1−1 when k−1 is odd. Thus in each case (−1)b2qk−1γc = (−1)k−1.
So, when qk−1 is odd we have

∑qk−1
j=1 (−1)bjβc = (−1)k−1.

70



ON SOME OSCILLATING SUMS

When qk−1 is even we have
qk−1∑

j=1

(−1)bjβc = (−1)k−1 + (−1)bqk−1γc.

Also we have (−1)bqk−1γc = (−1)pk−1+k−1, and qk−1 being even, pk−1 is odd.
Therefore (−1)bqk−1γc = (−1)k and (−1)bqk−1γc + (−1)b2qk−1γc = 0. This com-
pletes the proof of (B).
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