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THE FOUR-DIMENSIONAL DIVISOR PROBLEM

EKKEHARD KRATZEL

ABSTRACT. Let @4 = (a1,a2,as,as), where a; are natural numbers with 1 <

a1 < a2 < a3 < aq. The divisor function d(@4;n) counts the numbers of ways of

expressing n as the product n = n]*n32n33ng*. A new proof for the representa-

tion of the remainder term in the asymptotic formula for the summatory function
of the four-dimensional divisor function is given.

Communicated by Werner Georg Nowak

1. Some remarks to divisor problems

Let p > 2 and @, = (a1, a2, ..., ap). If a1,as,...,a, are natural numbers with
1 <a <ap <...< a, the divisor function d(d@,;n) denotes the number of
representations of an integer n > 1 in the form n = n{'n$?---n,” with natural
numbers n1,n2,...,n,. We are interested in the asymptotic behaviour of the

summatory function

D(dp;x) =Y _ d(dp;n).

n<zx
We can also write
q - — e @1,,02 a
D(ady;x) = #{(nl,ng,...,np) € NP :nf'ng® - ngr Sx}.
We see that now it is not required that ai,asg,...,a, are natural numbers.
Therefore, we shall always assume that aq,as,...,a, are real numbers with

1<a;<ag<---<a, Weput A, =a1+ag+---+a, forr=1,2,...,p.
It is known that the summatory function has the representation

D(ap; x) = H(@p; ) + Aldp; )
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with the main term H(dp; ) and a remainder term A(dp; ). The main term is
given by

P P o N
G = [T (2) |+
F=1\ 2k

provided that all the numbers a are distinct. In case of some equalities we
may take the appropriate limit values in the sum. ((s) denotes the RIEMANN
zetafunction.

In general, the remainder A(d,, x) will be estimated by means of the analytic
theory of the RIEMANN zetafunction. But for small values of p, especially for
p = 2,3,4, we also may apply the theory of estimations of exponential sums.

For this purpose we obtain for the remainder the representation
1

Adyz)== >, > ¥ (Ml %I akp_l>akp +O(xpr). (1)

- n n BN 1)
kEﬂ'(p) 1 2 p—1

¥ denotes the function ¢(t) = ¢ — [t] — 1. k € m(p) means that the p-tuple

k= (k1,ka, ..., kp) is a permutation of the numbers 1,2,...,p. Then the sum
is extended over all permutations. The summation condition SC of ), is given
by

Ay, _q Taky

p—1 S x, nl(g)nQ(S)(S)npfl

SC(32,) tn™ ~~n§i”2’2n
n;(<)n;y1 means that n; < n;q for k; < kg and n; < mipq for k; > kivq.
The case p = 2 can be found as Theorem 5.1 in [1]. The proof is easy. The
case p = 3 is given by Theorem 6.1 in [1]. The complicated proof is based on a
proof of the special case ds = (1,2, 3), given by P.G. SCHMIDT [3]. M. VOGTS
[5] has given a proof of (1) for p > 4 with a complicated error term. For the error
term in (1) see [2]. The proof of M. VOGTS is very complicated and difficult and
not clearly arranged. Therefore, one can be doubtful on the correctness of the
proof. Hence, in this paper a new and sufficiently simple proof for the important
case p = 4 will be given applying the method of proof of Theorem 6.1 [1].

THEOREM 1. The representation (1) holds in the special case p = 4 under the
condition 2a4 < Ay.

The condition 2a4 < A4 ensures that the error term is smaller than the
smallest term in the main term H(dy4; x).

We mention some important estimates of the remainder, which can be derived
from (1). Besides of the trivial estimate

Aldy; ) < cA1 for 3as < Ay (2)
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the general estimate
Aldy; x) < g (logz)* for 3ay < a; + Ay (3)

holds under a weak condition. Further we mention two pairs of estimates.
Firstly

Aldy;x) < w15 A (logz)* for % ag < Ay < % ay (4)
and
Ay ) < g Sar oA (log x)* (5)
for
17a4 < 5a; + 6A4, 15a; < 4As3
and
%galg% or %Sal and 4az < 7as.
Secondly
Aldy;z) < e (logz)®  for % ag < Ay < % ay (6)
and
Ay ) < oS IA (log x)® (7)
for
1lay < 3a; + 444 < 22a9
and

19a; < 4A4 < 30a1, 12a1 + 1lag < 6A4.

The estimates (2), (3), (4), (5) are proved in [2] and the estimates (6), (7) in [4].
In both papers there are a lot of further estimations.

2. Proof of the theorem

For the sake of simplicity we assume 1 < a1 < as < ag < aq. We write for

the summatory function
D@sa)= > D1
Fer(4)

SC(X) :ny" ny"ng"ng™ <, na(<)na(<Ing(<)na.
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The meaning of the sign (<) ensures that each equality n; = n; 41 occurs exactly
once. Further let ¢; ;11 =1 for k; < k;11 and €; ;41 = 0 for k; > k;1 1. Summing
over ny we obtain

Dags) = Y 3 H(n>] n3+53,4},

Fen(4)

SC(ZI) Tklnng”gkﬁak“S% n1()nz(K)ns.

Now we put [t] = ¢ — 1(t) — 3. Then the sum over 34 — 3 vanishes, because in
this sum k3 and k4 may be exchanged. Hence

D(C_l'4;.’L') = K(54;$)+S(64;$)7 (8)

K(@ge) = > 3 {(n)n} (9)

ken(4)
S(dgy;x) = - Z Z (] ((M) ak4>. (10)
Fen(4) "3

Apart from the error term S(a@4; x) is equal to A(dy; ).
In (9) we develop the sum over ng by means of the EULER-MACLAURIN sum
formula

b b

S fn) = / F()dt = (B F(B) +b(a) f(a) + / Fwbdt. (1)

a a

1

x N
f(t) = (W) -,

1
x kg Ty
a = na, b=\ —a—a .
ny Mg

It is seen that ¢(a) = —%, f(b) = 0. Hence, we obtain from (9) and (10)
K(dy;x) = Ko + K1 + K3 + Ky + K,
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2
1 X kg taky
Ky = _ = ,
o= X2, 3) ()
kem(4)

x e 9
o X Nt () el 02

ker(4) 2

_1
T,
Z Z X
Ks = (€2S_> (na’“lnakQJrakS) Y
kem(4) "2

1

ak‘3 X W
- > Z/ - (aklngkztgkg> ¥(t3) dis,

Fer(4)
Z Z /ﬂ) t3) dt3
kem(4)

with the summation and integration conditions

SC(EZ) : n‘llkl ngk2+ak3+ak4 S €T, nl(g)n2)

a a aksta
IC([) : ny"tmy"t3 ™™ <z, ng <ts.

In Ky we have
ag, 1 1 ag, +ap,
Oy — Qg 2 2 ag, —ak3'
Changing k3 and k4 it is seen that Ky = 0. Analogously, changing ko and k3
it follows that K3 = 0. In Kj5 the integral over the t-function is of order 1.

Therefore
K 1
5 < _‘Z 22,1 ’
ken(4)
(22 K ny"t gk2+ak3+ak4 <z, n;<ng,
and thus

1
T kg Fakztany

Ke Y3 (i) -

. ny
<z

Because of 2a4 < Ay it is a, < ax, + ag, + ag,. This gives

2
Ky < x4a.
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With regard to K4 let us consider

1
o Qg 1 T Pky
Kyp=— #Z ZQ / an. L <W> ¥(ts) dis,

now with the integration condition
FO() a5
Using partial integration it follows that
2
A;
Ki1 < AZ 221<<m 4,
ken(4)
Hence
2
K(@@ga) =K + Ky + O (a:T) ,

where K is given by (12) and

oo 1

a 1 €T gy
Ky = — Z —fa Z /* kg Gy 0k ¥(ts) dis.
i3 Ny g

- ag n
Fer(a) ' niy (S)nkgny, o 1

It is seen at once that
4
1
K2 = ZCL]C{E‘W .
k=1

We omit the detailed computation of the coefficients c; j.

(14)

We now deal with K7 in (13). In the representation (12) of K; we develop
the sum over ny by means of the EULER-MACLAURIN sum formula (11). We put

1

w1
Ft) = — t( i )k4+2t2,

ar
Ay — Ak, ny 140k +aky
1
X Chg Tz TOky
a =Ny, b= “ag, .
ny

Again it is ¢(a) = —%. Hence, we obtain from (11) and (12)
K = Ki1+K+Kizg+Kis+Kyis,
K, = K£11)+K£21)7

s
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1
a x kg
K171 - Z Z / Ay — ak4 (n{llkl tak2+ak3) dt,

ker(4) n14<x a

3
2 gy taggtag, .
CEEED Vo {(ah) 2}

ker(4) nit<a

M e

Eer(4) i<

= 0,

1
1 ak z \ *ks 1
Ko = 505 - o () 4 g
. < Qfy — O, nj 2
kem(4) ni4<z
= 07

;) by(b)

ka

1

T “ka
Ka = 2 2 /<ak4—ak3 1> <W) vl

Een(4) ny Ay

Kis = > Y /tzlﬁ (t2) dtz

kem(4) nit<a
2

<L xha,

IC’(fQ) : n{fklt;k2+ak3+ak4 <z, n<to.

We obtain for K 4 as before

1
x “ha 2
K14— Z Z/ (ak4 ~an, 1) (W) w(tZ)dt2+O(1‘A4)7

ker(4)

C(Zf):1§n1§t2<oo.
Therefore
4
K1,4 = z:CQ)kl‘a + O (3?“%1) .
k=1
Now we consider the term K ;. At first we remark that in Kfll) the special

case 2ay, = ag, + ap, may arise. If we exchange ko and k3 in this case it is seen
that the sum of the two terms in question vanishes. Consequently we assume
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2ay, # ak, + ag,. Also in this case we exchange k2 and k3. Then

1
SIS i > 1)
EGﬂ'(4)nf4§z
1

( x >% TFargFan “ka
2 3 4 2 X
- —-n - -
Akq 1 ap, +ak, +ag ’
nl nl 1 2 3

2
b(ky) = Sk P! L
' 2 Ay — Ay Afy — Afy 2ak4 — A, — A

2
_ Pk 1

2 . (a’k4 - ak2)(ak4 - ak3).

3

Now we see from this representation that the two terms in question also vanish
in this case. Of course, the case 2ay, = ap, + ar, has been addressed before.
Hence, we use this representation in both cases. Further we exchange k4 and ko
and also k4 and k3 with respect to the first term. Then we obtain

3
1 x Akg FakgFaky
K= T 3 e () T
I;Eﬂ'(4) nf“ﬁm 1
1

2 < W
_b(k’) L3 nak1+ak2 +akg ?

1

(k) = L i, ; i, .
' 6 (ak4 - akz)(a’kz; - aks) (ak2 - ak4)<ak2 - akS)

az,
+
(a’ks - ak2)(ak3 - a‘k4)

1
5
Then we obtain for the sum Kfll) + Kﬁ)

ol
— . 2 €T e
Kip= > > {-blki)ni <W> g (19

kemn(4) nf‘l <z
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Finally, all things considered, we obtain

4
K = 26271&3# +Ki1+0 (1“%4> (16)
k=1

with the representation (15) for K ;.
In the end we use the EULER-MACLAURIN sum formula (11) in (15) with

1

Ak,
PO = ~bk) | e | - e,
nj 1 2 3 6

a=1, b=x%4
Then
Kiin=Ki11+Ki120+Ki13+Ki14+ K15,
Qg 1 4
K = —b(k; Mt Aq,
1,11 qz { ( )4% A, 24}35 !
kem(4)
K = 2 (k) —2E gy 4 1
1,1,2 ) RP— 21
Eer(4)
1 3 1
K3 = Z {—b(ki)—G}x’fﬂ/J(x‘g‘*)
ker(4)
= 0,
1 ag 1 1
Kiia = —= b(k)— M pms L
1,1,4 2 { ( )4%4714455 4 6}
kem(4)
1/ A _1
3ay, — Ay x “a 2
Kiis = Z / b(k:) 4% t1 YT - 51 Y(t1) dt
Fer(4) 1 : 1
< xA%

In the representation of K ;1 we exchange ai, with ay, and a, with ay,. Then
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1 4
Kiiqn = AZ (d(kz) - 24) ria,
kem(4)
a24 1
6 (a'k4 - akl)(akzL - ak2)(ak4 - a’k}g) ’
Further we work as in the representation of K £11) and exchange ay, with ax, and
ay, with ax,. Then it is easily seen that K ;1 = 0. Hence, we obtain

4
1 2
Kl,l = ZCg}kxak + 0 (xA4>
k=1

and by inserting into (16)

K, = Zc;hkxf%k + O (m*‘%> . (17)

k=1
After all we obtain from (9), (13), (14) and (17)

K(dy;r) = ;CWJ‘W +0 (mf‘T)

and, by means of (8),
. ! a1 . 2
D(dy;x) = chxak + S(dy;x) + O (me) )

k=1

The exact calculation of the coefficients C seems to be superflous. It must be
4 1
H(Gy;2) = Z Crxor.
k=1

Further it is
A(dy;z) = S(@g ) + O (mT) .

This proves the theorem.
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