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ON THE DISTRIBUTION OF RATIONAL

FUNCTIONS ON CONSECUTIVE POWERS

Jaime Gutierrez∗ — Igor E. Shparlinski∗∗

ABSTRACT. We show that for a prime p and any nontrivial rational function
r(X) ∈ IFp(X) over the finite field IFp of p elements, the fractional parts

{
r(x)

p
, . . . ,

r(xm)

p

}
,

where x runs through the fields elements which are not the poles of the above
functions, are asymptotically uniformly distributed in the m-dimensional unit
cube for any fixed m and p →∞.

Communicated by Henri Faure

1. Introduction

Let p be a prime number and let IFp be the finite field of p elements. Assume
that IFp is represented by the set {0, 1, . . . , p− 1}.

For an integer m and any rational function r(X) ∈ IFp(X) we denote by Em

the set of poles of the following m functions r(X), . . . , r(Xm).

We use exponential sums to show that the fractional parts
{

r(x)
p

, . . . ,
r(xm)

p

}
, x ∈ {0, . . . , N − 1} \ Em, (1)

are asymptotically uniformly distributed in the m-dimensional unit cube for any
fixed m, and integer N with Np−1/2(log p)−m−1 →∞ as p →∞.
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Certainly, a result of this type is expected, but its proof requires a result about
linear independency of certain rational functions which can have an independent
interest.

Throughout the paper, the involved constants in symbols ‘O’ and ‘¿’ may
depend on m and the degree of the function r(X) (we recall that A ¿ B is
equivalent to A = O(B)).

2. Linear independence of rational functions on
consecutive powers

Since the following statement may find some other applications we formulate
it in a more general form than it is necessary for our purpose.

Lemma 1. Let IK be an arbitrary field. Assume that a rational function r(X) ∈
IK(X) is not of the form r(X) = AX + B with A, B ∈ IK. Then, the following
m + 2 rational functions

1, X, r(Xi), i = 1, . . . , m,

are linearly independent.

P r o o f. The result is trivial when r(X) ∈ IK[X], that is, if it is a polynomial.

We now assume that r(X) 6∈ IK[X]. Suppose that for some ai ∈ IK, i =
−1, 0, 1, . . . , m we have

a−1 + a0X +
m∑

i=1

air(Xi) = 0. (2)

As usual, we define the degree of the identically zero polynomial as −1, and
the degree of any other constant polynomial as 0.

We write

r(X) = h(X) +
f(X)
g(X)

,

where f(X), g(X), h(X) ∈ IK[X], deg g(X) > deg f(X) ≥ 0 (since r(X) 6∈
IK[X]). We see from (2) that

a−1 + a0X +
m∑

i=1

aih
(
Xi

)
+

m∑

i=1

ai

f
(
Xi

)

g (Xi)
= 0.
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This implies

−a−1 − a0X −
m∑

i=1

aih
(
Xi

)
=

m∑

i=1

ai

f
(
Xi

)

g (Xi)
,

from which we obtain:

−
(

a−1 + a0X +
m∑

i=1

aih
(
Xi

)
)

m∏

j=1

g
(
Xj

)
=

m∑

i=1

aif
(
Xi

) m∏

j=1
j 6=i

g
(
Xj

)
. (3)

Clearly,

deg


f

(
Xi

) m∏

j=1
j 6=i

g
(
Xj

)

 = i deg f(X) +

(
m(m + 1)

2
− i

)
deg g(X). (4)

Now, if

a−1 + a0X +
m∑

i=1

aih
(
Xi

) 6= 0

(that is, if it is a non-zero polynomial), then the degree of the polynomial on the
left hand side of (3) is at least

m∑

j=1

j deg g(X) =
m(m + 1)

2
deg g(X),

which contradicts the fact that, by (4), the degree of the polynomial on the right
hand side of (3) is

max
i=1,...,m

(
i deg f(X) +

(
m(m + 1)

2
− i

)
deg g(X)

)
<

m(m + 1)
2

deg g(X).

If

a−1 + a0X +
m∑

i=1

aih
(
Xi

)
= 0 (5)

(that is, if it is a zero polynomial), then
m∑

i=1

aif(Xi)
m∏

j=1
j 6=i

g(Xj) = 0.
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Recalling that deg g(X) > deg f(X) ≥ 0, we now derive from (4) that

deg


f

(
Xi

) m∏

j=1
j 6=i

g
(
Xj

)

 = i deg f(X) +

(
m(m + 1)

2
− i

)
deg g(X)

> (i + 1) deg f(X) +
(

m(m + 1)
2

− i− 1
)

deg g(X)

= deg


f

(
Xi+1

) m∏

j=1
j 6=i+1

g
(
Xj

)

 ,

for all i = 1, . . . , m. It implies that ai = 0, for all i = 1, . . . , m. Then, from (5)
we obtain a−1 = a0 = 0, and this ends the proof. ut

3. Discrepancy and exponential sums

For a sequence of N points

Γ = (γ1,n, . . . , γm,n)N
n=1 (6)

in the half-open interval [0, 1)m, denote by ∆Γ its discrepancy , that is,

∆Γ = sup
B⊆[0,1)m

∣∣∣∣
TΓ(B)

N
− |B|

∣∣∣∣ ,

where TΓ(B) is the number of points of the sequence Γ lying in the box

B = [α1, β1)× . . .× [αm, βm) ⊆ [0, 1)m

of volume

|B| =
m∏

j=1

(βj − αj) ,

where 0 ≤ αj < βj ≤ 1, j = 1, . . . , m, and the supremum is taken over all such
boxes.

For an integer vector a = (a1, . . . , am) ∈ ZZm we put

|a| = max
i=1,...,m

|ai|, r(a) =
m∏

i=1

max{|ai|, 1}. (7)
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We need the Erdös–Turán–Koksma inequality (see [1, Theorem 1.21]), linking
the discrepancy with exponential sums, which we present in the following form.

Lemma 2. There exists a constant Cm > 0 depending only on the dimension m
such that, for any integer L ≥ 1, for the discrepancy of a sequence of points (6)
the bound

∆Γ < Cm


 1

L
+

1
N

∑

0<|a|≤L

1
r(a)

∣∣∣∣∣∣

N∑
n=1

exp


2πi

m∑

j=1

ajγj,n




∣∣∣∣∣∣




holds, where |a|, r(a) are defined by (7) and the sum is taken over all integer
vectors

a = (a1, . . . , am) ∈ ZZm with 0 < |a| ≤ L.

We put
ep(z) = exp(2πiz/p).

Our second main tool is the Weil bound on exponential sums (see [3, Chapter 6]
or [4, Chapter 5]) which we present in the following form which can be found
in [5].

Lemma 3. For any polynomials g(X), h(X) ∈ IFp[X] such that the rational
function F (X) = h(X)/g(X) is not constant on IFp, the bound

∣∣∣∣∣∣∣∣

∑

x∈IFp

g(x) 6=0

ep (F (x))

∣∣∣∣∣∣∣∣
≤ (max{deg g, deg h}+ r − 2) p1/2 + δ

holds, where

(r, δ) =
{

(s, 1) if deg h ≤ deg g,
(s + 1, 0) if deg h > deg g,

and s is the number of distinct zeros of g(X) in the algebraic closure of IFp.

4. Main result

Recall that we have assumed that the elements of the field IFp are represented
by the set {0, 1, . . . , p− 1}. For a rational function r(X) ∈ IFp(X) and a positive
integer N < p, we denote by ∆r,m(N, p) the discrepancy of the points set (1).

89



JAIME GUTIERREZ — IGOR E. SHPARLINSKI

Theorem 4. Assume that a rational function r(X) ∈ IFp(X) is not of the form
r(X) = AX + B with A,B ∈ IFp. Then, for any positive integer N < p, we have

∆r,m(N, p) = O
(
N−1p1/2(log p)m+1

)
.

P r o o f. We can certainly assume that p ≥ 3 since otherwise the result is trivial.
Combining Lemmas 1 and 3 we conclude that for any a0, a1, . . . , am ∈ IFp, not
all equal to zero, we have

p−1∑
x=0

x 6∈Em

ep


a0x +

m∑

j=1

ajr(xj)


 = O(p1/2),

where, as before, Em denotes the set of poles of the functions r(X), . . . , r(Xm).

Using the standard reduction between complete and incomplete sums, see [2,
Section 12.2], we derive

N∑
x=0

x 6∈Em

ep




m∑

j=1

ajr(xj)


 = O(p1/2 log p),

provided that at least one coefficient a1, . . . , am ∈ ZZ is not zero modulo p. Now,
combining this bound with Lemma 2 and taking L = (p−1)/2 end the proof. ut

5. Comments

Let IK be an arbitrary field. Lemma 1 can be extended in the following way.

Assume that a rational function r(X) ∈ IK(X) is not of the form r(X) =
AX + B with A,B ∈ IK and a rational function w(X) ∈ IK(X) is not constant.
Then, the following m + 2 rational functions

1, X, r
(
w(X)i

)
, i = 1, . . . , m,

are linearly independent.

Let w(X), u(X) be two non-constant rational functions. As usual, we denote
by w(X) ◦ u(X) the element-wise composition of rational functions, that is,
w(X) ◦ u(X) = w(u(X)). For a positive integer number i, we write

wi(X) =

i times︷ ︸︸ ︷
w(X) ◦ . . . ◦ w(X) .
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Now, assume that two rational functions r(X), w(X) ∈ IK(X) are not of the
form AX + B with A,B ∈ IFp. Then, the following m + 2 rational functions

1, X, r (wi(X)) , i = 1, . . . ,m,

are linearly independent. Accordingly, one can obtain an analogue of Theorem 4
for the discrepancy of the joint distribution of fractional parts with these func-
tions.
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