# ON THE DISTRIBUTION OF RATIONAL FUNCTIONS ON CONSECUTIVE POWERS 

Jaime Gutierrez* - Igor E. Shparlinski**

ABSTRACT. We show that for a prime $p$ and any nontrivial rational function $r(X) \in \mathbb{F}_{p}(X)$ over the finite field $\mathbb{F}_{p}$ of $p$ elements, the fractional parts

$$
\left\{\frac{r(x)}{p}, \ldots, \frac{r\left(x^{m}\right)}{p}\right\}
$$

where $x$ runs through the fields elements which are not the poles of the above functions, are asymptotically uniformly distributed in the $m$-dimensional unit cube for any fixed $m$ and $p \rightarrow \infty$.

Communicated by Henri Faure

## 1. Introduction

Let $p$ be a prime number and let $\mathbb{F}_{p}$ be the finite field of $p$ elements. Assume that $\mathbb{F}_{p}$ is represented by the set $\{0,1, \ldots, p-1\}$.

For an integer $m$ and any rational function $r(X) \in \mathbb{F}_{p}(X)$ we denote by $\mathcal{E}_{m}$ the set of poles of the following $m$ functions $r(X), \ldots, r\left(X^{m}\right)$.

We use exponential sums to show that the fractional parts

$$
\begin{equation*}
\left\{\frac{r(x)}{p}, \ldots, \frac{r\left(x^{m}\right)}{p}\right\}, \quad x \in\{0, \ldots, N-1\} \backslash \mathcal{E}_{m} \tag{1}
\end{equation*}
$$

are asymptotically uniformly distributed in the $m$-dimensional unit cube for any fixed $m$, and integer $N$ with $N p^{-1 / 2}(\log p)^{-m-1} \rightarrow \infty$ as $p \rightarrow \infty$.

[^0]Certainly, a result of this type is expected, but its proof requires a result about linear independency of certain rational functions which can have an independent interest.

Throughout the paper, the involved constants in symbols ' $O$ ' and ' $\ll$ ' may depend on $m$ and the degree of the function $r(X)$ (we recall that $A \ll B$ is equivalent to $A=O(B)$ ).

## 2. Linear independence of rational functions on consecutive powers

Since the following statement may find some other applications we formulate it in a more general form than it is necessary for our purpose.
Lemma 1. Let $\mathbb{K}$ be an arbitrary field. Assume that a rational function $r(X) \in$ $\mathbb{K}(X)$ is not of the form $r(X)=A X+B$ with $A, B \in \mathbb{K}$. Then, the following $m+2$ rational functions

$$
1, X, r\left(X^{i}\right), i=1, \ldots, m
$$

are linearly independent.
Proof. The result is trivial when $r(X) \in \mathbb{K}[X]$, that is, if it is a polynomial.
We now assume that $r(X) \notin \mathbb{K}[X]$. Suppose that for some $a_{i} \in \mathbb{K}, i=$ $-1,0,1, \ldots, m$ we have

$$
\begin{equation*}
a_{-1}+a_{0} X+\sum_{i=1}^{m} a_{i} r\left(X^{i}\right)=0 \tag{2}
\end{equation*}
$$

As usual, we define the degree of the identically zero polynomial as -1 , and the degree of any other constant polynomial as 0 .

We write

$$
r(X)=h(X)+\frac{f(X)}{g(X)}
$$

where $f(X), g(X), h(X) \in \mathbb{K}[X], \operatorname{deg} g(X)>\operatorname{deg} f(X) \geq 0$ (since $r(X) \notin$ $\mathbb{K}[X])$. We see from (2) that

$$
a_{-1}+a_{0} X+\sum_{i=1}^{m} a_{i} h\left(X^{i}\right)+\sum_{i=1}^{m} a_{i} \frac{f\left(X^{i}\right)}{g\left(X^{i}\right)}=0 .
$$

## ON THE DISTRIBUTION OF RATIONAL FUNCTIONS ON CONSECUTIVE POWERS

This implies

$$
-a_{-1}-a_{0} X-\sum_{i=1}^{m} a_{i} h\left(X^{i}\right)=\sum_{i=1}^{m} a_{i} \frac{f\left(X^{i}\right)}{g\left(X^{i}\right)}
$$

from which we obtain:

$$
\begin{equation*}
-\left(a_{-1}+a_{0} X+\sum_{i=1}^{m} a_{i} h\left(X^{i}\right)\right) \prod_{j=1}^{m} g\left(X^{j}\right)=\sum_{i=1}^{m} a_{i} f\left(X^{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{m} g\left(X^{j}\right) \tag{3}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\operatorname{deg}\left(f\left(X^{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{m} g\left(X^{j}\right)\right)=i \operatorname{deg} f(X)+\left(\frac{m(m+1)}{2}-i\right) \operatorname{deg} g(X) \tag{4}
\end{equation*}
$$

Now, if

$$
a_{-1}+a_{0} X+\sum_{i=1}^{m} a_{i} h\left(X^{i}\right) \neq 0
$$

(that is, if it is a non-zero polynomial), then the degree of the polynomial on the left hand side of (3) is at least

$$
\sum_{j=1}^{m} j \operatorname{deg} g(X)=\frac{m(m+1)}{2} \operatorname{deg} g(X)
$$

which contradicts the fact that, by (4), the degree of the polynomial on the right hand side of (3) is

$$
\max _{i=1, \ldots, m}\left(i \operatorname{deg} f(X)+\left(\frac{m(m+1)}{2}-i\right) \operatorname{deg} g(X)\right)<\frac{m(m+1)}{2} \operatorname{deg} g(X) .
$$

If

$$
\begin{equation*}
a_{-1}+a_{0} X+\sum_{i=1}^{m} a_{i} h\left(X^{i}\right)=0 \tag{5}
\end{equation*}
$$

(that is, if it is a zero polynomial), then

$$
\sum_{i=1}^{m} a_{i} f\left(X^{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{m} g\left(X^{j}\right)=0
$$

Recalling that $\operatorname{deg} g(X)>\operatorname{deg} f(X) \geq 0$, we now derive from (4) that

$$
\begin{aligned}
\operatorname{deg}\left(f\left(X^{i}\right)\right. & \left.\prod_{\substack{j=1 \\
j \neq i}}^{m} g\left(X^{j}\right)\right)=i \operatorname{deg} f(X)+\left(\frac{m(m+1)}{2}-i\right) \operatorname{deg} g(X) \\
& >(i+1) \operatorname{deg} f(X)+\left(\frac{m(m+1)}{2}-i-1\right) \operatorname{deg} g(X) \\
& =\operatorname{deg}\left(f\left(X^{i+1}\right) \prod_{\substack{j=1 \\
j \neq i+1}}^{m} g\left(X^{j}\right)\right),
\end{aligned}
$$

for all $i=1, \ldots, m$. It implies that $a_{i}=0$, for all $i=1, \ldots, m$. Then, from (5) we obtain $a_{-1}=a_{0}=0$, and this ends the proof.

## 3. Discrepancy and exponential sums

For a sequence of $N$ points

$$
\begin{equation*}
\Gamma=\left(\gamma_{1, n}, \ldots, \gamma_{m, n}\right)_{n=1}^{N} \tag{6}
\end{equation*}
$$

in the half-open interval $[0,1)^{m}$, denote by $\Delta_{\Gamma}$ its discrepancy, that is,

$$
\Delta_{\Gamma}=\sup _{\mathcal{B} \subseteq[0,1)^{m}}\left|\frac{T_{\Gamma}(\mathcal{B})}{N}-|\mathcal{B}|\right|
$$

where $T_{\Gamma}(B)$ is the number of points of the sequence $\Gamma$ lying in the box

$$
\mathcal{B}=\left[\alpha_{1}, \beta_{1}\right) \times \ldots \times\left[\alpha_{m}, \beta_{m}\right) \subseteq[0,1)^{m}
$$

of volume

$$
|\mathcal{B}|=\prod_{j=1}^{m}\left(\beta_{j}-\alpha_{j}\right),
$$

where $0 \leq \alpha_{j}<\beta_{j} \leq 1, j=1, \ldots, m$, and the supremum is taken over all such boxes.

For an integer vector $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$ we put

$$
\begin{equation*}
|\mathbf{a}|=\max _{i=1, \ldots, m}\left|a_{i}\right|, \quad r(\mathbf{a})=\prod_{i=1}^{m} \max \left\{\left|a_{i}\right|, 1\right\} \tag{7}
\end{equation*}
$$

## ON THE DISTRIBUTION OF RATIONAL FUNCTIONS ON CONSECUTIVE POWERS

We need the Erdös-Turán-Koksma inequality (see [1, Theorem 1.21]), linking the discrepancy with exponential sums, which we present in the following form.

Lemma 2. There exists a constant $C_{m}>0$ depending only on the dimension $m$ such that, for any integer $L \geq 1$, for the discrepancy of a sequence of points (6) the bound

$$
\Delta_{\Gamma}<C_{m}\left(\frac{1}{L}+\frac{1}{N} \sum_{0<|\mathbf{a}| \leq L} \frac{1}{r(\mathbf{a})}\left|\sum_{n=1}^{N} \exp \left(2 \pi i \sum_{j=1}^{m} a_{j} \gamma_{j, n}\right)\right|\right)
$$

holds, where $|\mathbf{a}|, r(\mathbf{a})$ are defined by (7) and the sum is taken over all integer vectors

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m} \quad \text { with } \quad 0<|\mathbf{a}| \leq L
$$

We put

$$
\mathbf{e}_{p}(z)=\exp (2 \pi i z / p)
$$

Our second main tool is the Weil bound on exponential sums (see [3, Chapter 6] or [4, Chapter 5]) which we present in the following form which can be found in [5].

Lemma 3. For any polynomials $g(X), h(X) \in \mathbb{F}_{p}[X]$ such that the rational function $F(X)=h(X) / g(X)$ is not constant on $\mathbb{F}_{p}$, the bound

$$
\left|\sum_{\substack{x \in \mathbb{F}_{p} \\ g(x) \neq 0}} \mathbf{e}_{p}(F(x))\right| \leq(\max \{\operatorname{deg} g, \operatorname{deg} h\}+r-2) p^{1 / 2}+\delta
$$

holds, where

$$
(r, \delta)= \begin{cases}(s, 1) & \text { if } \operatorname{deg} h \leq \operatorname{deg} g \\ (s+1,0) & \text { if } \operatorname{deg} h>\operatorname{deg} g\end{cases}
$$

and $s$ is the number of distinct zeros of $g(X)$ in the algebraic closure of $\mathbb{F}_{p}$.

## 4. Main result

Recall that we have assumed that the elements of the field $\mathbb{F}_{p}$ are represented by the set $\{0,1, \ldots, p-1\}$. For a rational function $r(X) \in \mathbb{F}_{p}(X)$ and a positive integer $N<p$, we denote by $\Delta_{r, m}(N, p)$ the discrepancy of the points set (1).

Theorem 4. Assume that a rational function $r(X) \in \mathbb{F}_{p}(X)$ is not of the form $r(X)=A X+B$ with $A, B \in \mathbb{F}_{p}$. Then, for any positive integer $N<p$, we have

$$
\Delta_{r, m}(N, p)=O\left(N^{-1} p^{1 / 2}(\log p)^{m+1}\right)
$$

Proof. We can certainly assume that $p \geq 3$ since otherwise the result is trivial. Combining Lemmas 1 and 3 we conclude that for any $a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{F}_{p}$, not all equal to zero, we have

$$
\sum_{\substack{x=0 \\ x \notin \mathcal{E}_{m}}}^{p-1} \mathbf{e}_{p}\left(a_{0} x+\sum_{j=1}^{m} a_{j} r\left(x^{j}\right)\right)=O\left(p^{1 / 2}\right)
$$

where, as before, $\mathcal{E}_{m}$ denotes the set of poles of the functions $r(X), \ldots, r\left(X^{m}\right)$.
Using the standard reduction between complete and incomplete sums, see [2, Section 12.2], we derive

$$
\sum_{\substack{x=0 \\ x \notin \mathcal{E}}}^{N} \mathbf{e}_{p}\left(\sum_{j=1}^{m} a_{j} r\left(x^{j}\right)\right)=O\left(p^{1 / 2} \log p\right)
$$

provided that at least one coefficient $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ is not zero modulo $p$. Now, combining this bound with Lemma 2 and taking $L=(p-1) / 2$ end the proof.

## 5. Comments

Let $\mathbb{I K}$ be an arbitrary field. Lemma 1 can be extended in the following way.
Assume that a rational function $r(X) \in \mathbb{K}(X)$ is not of the form $r(X)=$ $A X+B$ with $A, B \in \mathbb{K}$ and a rational function $w(X) \in \mathbb{K}(X)$ is not constant. Then, the following $m+2$ rational functions

$$
1, X, r\left(w(X)^{i}\right), i=1, \ldots, m
$$

are linearly independent.
Let $w(X), u(X)$ be two non-constant rational functions. As usual, we denote by $w(X) \circ u(X)$ the element-wise composition of rational functions, that is, $w(X) \circ u(X)=w(u(X))$. For a positive integer number $i$, we write

$$
w_{i}(X)=\overbrace{w(X) \circ \ldots \circ w(X)}^{i \text { times }} .
$$

## ON THE DISTRIBUTION OF RATIONAL FUNCTIONS ON CONSECUTIVE POWERS

Now, assume that two rational functions $r(X), w(X) \in \mathbb{K}(X)$ are not of the form $A X+B$ with $A, B \in \mathbb{F}_{p}$. Then, the following $m+2$ rational functions

$$
1, X, r\left(w_{i}(X)\right), i=1, \ldots, m
$$

are linearly independent. Accordingly, one can obtain an analogue of Theorem 4 for the discrepancy of the joint distribution of fractional parts with these functions.

Acknowledgement. The authors are grateful to the referee for the very careful reading and many useful suggestions.

## REFERENCES

1] DRMOTA, M. - TICHY, R.F.: Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, Heidelberg, 1997.
2] IWANIEC, H.- KOWALSKI, E.: Analytic Number Theory, Colloq. Publ. Amer. Math. Soc. Vol. 53, Amer. Math. Soc., Providence, RI, 2004.
[3] LI, W.- C.W.: Number Theory with Applications, World Scientific, Singapore, 1996.
[4] LIDL, R.-NIEDERREITER, H.: Finite Fields (FWD by P. M. Cohn) Encyclopedia of Mathematics and its Applications 20, Second edition, Cambridge University Press, Cambridge, 1997 (MR1429394(97i:11115)).
[5] MORENO, C. J. - O. MORENO, O.: Exponential sums and Goppa codes, I, Proc. Amer. Math. Soc. 111 (1991), no. 2, 523-531.

Received June 6, 2008
Accepted October 10, 2008

[^1]
[^0]:    2000 Mathematics Subject Classification: Primary 11K31, Secondary 11K36, 11L07.
    Keywords: Rational functions, exponential sums.
    *Partially supported by Spain Ministry of Education and Science Grant MTM2007-67088.
    **Partially supported by Australia Research Council Grant DP0556431.

[^1]:    Jaime Gutierrez
    Department of Applied Mathematics and Computer Science
    University of Cantabria
    E-39071 Santander SPAIN
    E-mail: jaime.gutierrez@unican.es
    Igor E. Shparlinski
    Department of Computing
    Macquarie University
    Sydney, NSW 2109
    AUSTRALIA
    E-mail: igor@comp.mq.edu.au

