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ON WEIGHTED DISTRIBUTION FUNCTIONS OF
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ABSTRACT. In this paper we prove that the set of logarithmically weighted

distribution functions of the sequence of iterated logarithm log(i) n mod 1, n =
ni, ni + 1, . . . is the same as the set of classical distribution functions of the

sequence log(i−1) n mod 1 for every i = 2, 3, . . . . Also we prove that log(n log n)
mod 1 is logarithmically uniformly distributed. This implies that the sequence
pn/n mod 1, where pn denotes the nth prime, is also logarithmically uniformly
distributed.

Communicated by Reinhard Winkler

1. Introduction

In this paper we study some connection between the set of weighted distri-
bution functions and the set of classical distribution functions of sequences. For
the definitions see Part 2.

In Part 3 we prove Theorems 1, 2 and 3 which give methods for computing
the set of weighted distribution functions of some sequences f(n) mod 1, n =
1, 2, . . . , where f(x) increases. These Theorems are a weighted generalization
of Koksma’s Theorem 7.7 in [KN, p. 58], Theorem 5 in [SB], and extend some
results by J. Cigler (1960)[Cig] and J.H.B. Kemperman (1973)[Ke, pp.157–158]
(for a discussion see Paragraph 3.1).

In Part 5, (Theorem 6), we give a formula for the set of weighted distribution
functions of a given sequence. It involves a sequence having the same set, but
formed by classical distribution functions.
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In Theorem 7 we give a condition in order that two sequences x(n) and y(n),
n = 1, 2, . . . such that (x(n)− y(n)) mod 1 → 0, have the same sets of weighted
distribution functions.

Also we prove a simple result (Theorem 8) which gives two conditions in
order that the sets of weighted and non–weighted distribution functions of some
sequences coincide. An open problem is to find other suitable conditions.

In Theorem 9 a criterion of connectivity of a set of weighted distribution
functions is given.

In Part 6 we apply our Theorems 1, 2 and 3 to the set of logarithmically
weighted distribution functions of the sequence of iterated logarithm log(i)(n)
mod 1, n = ni, ni + 1, . . . and we prove that it coincides with the set of clas-
sical distribution functions of log(i−1)(n) mod 1, n = ni, ni + 1, . . . , for every
i = 2, 3, . . . . This implies, generally speaking, that two sequences having the
same distribution functions do not need to have the same weighted distribution
functions.

Furthermore, we also prove that the sequence log(n log n) mod 1 is logarith-
mically weighted uniformly distributed and as a consequence, applying Theorem
3, we prove that pn/n mod 1 is logarithmically weighted uniformly distributed,
where pn denotes the nth prime. Note that in [SB] it is proved that the se-
quence pn/n mod 1, n = 1, 2, . . . , has the same set of distribution functions as
the sequence log n mod 1.

All proofs are elementary and main parts employ the well-known Cauchy-
Stolz lemma, Helly theorems (see [SP, 4. Appendix]) and the Lagrange mean
value theorem in the following form:
Cauchy-Stolz lemma: Let xn and yn, n = 1, 2, . . . , be the real–valued se-
quences. If yn is strictly monotone, |yn| → ∞, and if the limit (finite or infi-
nite) limn→∞

xn+1−xn

yn+1−yn
exists, then the limit of the sequence xn

yn
also exists and

limn→∞ xn

yn
= limn→∞

xn+1−xn

yn+1−yn
.

First Helly theorem: Any sequence gn of distribution functions contains a
subsequence gkn such that the sequence gkn(x) converges for every x ∈ [0, 1] and
its point limit limn→∞ gkn(x) = g(x) is also a distribution function.
Second Helly theorem: If we have limn→∞ gn(x) = g(x) a.e. on [0, 1], then
for every continuous function f : [0, 1] → R we have limn→∞

∫ 1

0
f(x)dgn(x) =∫ 1

0
f(x)dg(x).

Lagrange theorem: Let f : [a, b] → R be a continuous function in a closed
interval [a, b] with a finite or infinite derivative f ′(x) in each point x ∈ (a, b).
Then there is at least one point x = γ inside the interval such that f(b)−f(a) =
f ′(γ)(b− a).

2
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2. Definitions

Here we refer to the monographs [KN], [DT] and [SP]:
• Given a real number x, [x] denotes the integer part of x, and {x} is the
fractional part of x (i.e., {x} = x mod 1).
• A function g : [0, 1] → [0, 1] will be called distribution function (abbreviated
d.f.) if g(0) = 0, g(1) = 1 and g(x) is nondecreasing. We shall identify two d.f.s
g(x) and g̃(x) if g(x) = g̃(x) almost everywhere (i.e., in every point x of common
continuity). Note that any d.f. g(x) can be seen as a Borel probability measure
µ, where µ([0, x)) = limt→x−0 g(t), but we prefer the notion of d.f.s since the
graph of g(x) can be represented by a picture.
• For a sequence xn, n = 1, 2, . . . and a positive integer N we define step d.f.
FN (x) for x ∈ [0, 1) by FN (x) = 1

N

∑N
n=1 c[0,x)({xn}), while FN (1) = 1. Here

c[0,x)(t) is the indicator function of the interval [0, x).
• A d.f. g(x) is called d.f. of the sequence xn mod 1 if an increasing sequence
of positive integer N1, N2, . . . exists such that limk→∞ FNk

(x) = g(x) holds at
every point x ∈ [0, 1] of continuity of g(x) and thus a.e. on [0, 1].
• The set of all d.f. of a sequence xn mod 1 will be denoted by G(xn mod 1).
• Let f(n) and w(n), n = 1, 2, . . . , be two real-valued sequences. We assume
that w(n) > 0 and

∑N
n=1 w(n) →∞, as N →∞. We call w(n) weights and we

define the w(n)−weighted distribution function (shortly w(n)-d.f.) g(x) of the
sequence f(n) mod 1, n = 1, 2, . . . , as follows:
• For every positive integer N we consider the w(n)-step d.f.

FN (x) =
1∑N

n=1 w(n)

N∑
n=1

w(n)c[0,x)({(f(n)}). (1)

Assume that for an increasing sequence of indices Nk, k = 1, 2, . . . , there exists
the weak limit g(x) of FNk

(x), i.e., limi→∞ FNi(x) = g(x) for every continuity
point x ∈ [0, 1] of g(x). Then the d.f. g(x) is called the d.f. of f(n) mod 1 with
respect to the weights w(n) (i.e. w(n)-d.f.). We denote as Gw(n)(f(n) mod 1)
the set of all such possible limits.
• If the set Gw(n)(f(n) mod 1) is a singleton, say Gw(n)(f(n) mod 1) = {g(x)},
then g(x) is said to be the w(n)-weighted asymptotic distribution function (shortly
w(n)-a.d.f.) of the sequence f(n) mod 1, n = 1, 2, . . . , and if g(x) = x we say
that the sequence f(n) mod 1 is w(n)-weighted uniformly distributed (shortly
w(n)-u.d.).

3



RITA GIULIANO ANTONINI — OTO STRAUCH

• If w(n) = 1 for n = 1, 2, . . . , then in all the above notation the symbol w(n)
is omitted.
• If w(n) = 1/n, then the weights w(n) are called logarithmic weights.
• The w(n)-weighted lower d.f. g(x) and the w(n)-weighted upper d.f. g(x) are
defined as

g(x) = inf
g∈Gw(n)(f(n) mod 1)

g(x), g(x) = sup
g∈Gw(n)(f(n) mod 1)

g(x).

• cu(x) is the one-step d.f., i.e., cu(x) = 0 if 0 ≤ x < u and cu(x) = 1 if
u ≤ x ≤ 1. hβ(x) is the constant d.f., i.e., hβ(x) = β if x ∈ (0, 1). In all cases
cu(0) = hβ(0) = 0 and cu(1) = hβ(1) = 1.
• Two sequences f(n) mod 1, h(n) mod 1, n = 1, 2, . . . are statistically indepen-
dent if every two-dimensional d.f. g(x, y) ∈ G((f(n) mod 1, h(n) mod 1)) has
the form g(x, y) = g(x, 1).g(1, y) for every continuity point (x, y) ∈ [0, 1]2 of
g(x, y) (see [SP, p. 1–17, 1.8.9.]).

3. Main results

In the following, let

(I) f(x) and w(x) > 0 be two real-valued functions defined for x ≥ 1 such
that f(x) is strictly increasing with its inverse function f−1(x).

(II) Put
∫ x

1
w(t)dt = M(x) for x ≥ 1 and express

∑
n∈[x,y) w(n) = M(y) −

M(x) + θ(x, y) for 1 ≤ x < y.
Assume that the following limits exist:

(III) limk→∞
M(f−1(k+x))−M(f−1(k))
M(f−1(k+1))−M(f−1(k)) = g̃(x) for each x ∈ [0, 1], point of continu-

ity of g̃(x);

(IV) limk→∞
M(f−1(k+u)
M(f−1(k)) = ψ(u) for each u ∈ [0, 1], point of continuity of ψ(u),

or ψ(u) = ∞ for u > 0;
(V) limk→∞M(f−1(k + 1))−M(f−1(k)) = ∞ and |θ(x, y)| ≤ c for 1 ≤ x ≤ y;

or alternatively
(V’) limk→∞M(f−1(k + 1))−M(f−1(k)) = c > 0 and limx→∞ θ(x, y) = 0.

For computing Gw(n)(f(n) mod 1) we can use the following three theorems.
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Theorem 1. If 1 < ψ(1) < ∞ and f ′(x) → 0 as x →∞, then

Gw(n)(f(n) mod 1) =
{

gu(x) =
min(ψ(x), ψ(u))− 1

ψ(u)
+

1
ψ(u)

g̃(x); u ∈ [0, 1]
}

,

(2)
where g̃(x) = ψ(x)−1

ψ(1)−1 and FNi
(x) → gu(x) as i → ∞ if and only if

f(Ni) mod 1 → u. The w(n)-lower d.f. g(x) and the w(n)-upper d.f. g(x)
of f(n) mod 1 are

g(x) = g̃(x), g(x) = 1− 1
ψ(x)

(1− g̃(x)).

Furthermore g(x) = g0(x) = g1(x) belongs to Gw(n)(f(n) mod 1) but g(x) =
gx(x) does not.

Theorem 2. If ψ(1) = 1, then the sequence f(n) mod 1, n = 1, 2, . . . has
w(n)-a.d.f. g̃(x), i.e.

Gw(n)(f(n) mod 1) = {g̃(x)}. (3)

Theorem 3. Let ψ(u) = ∞, for every u > 0 and assume that for u = 0 the limit
ψ(u) is not defined in the way that for every t ∈ [0,∞) there exists a sequence
u(k) → 0 such that

(i) limk→∞
M(f−1(k+u(k)))

M(f−1(k)) = t. Moreover assume that

(ii) limx→∞
w(x)
M(x) = 0.

Then we have

Gw(n)(f(n) mod 1) = {cu(x); u ∈ [0, 1]} ∪ {hβ(x); β ∈ [0, 1]}, (4)

where FNi → cu(x) if and only if f(Ni) mod 1 → u > 0 and FNi → hβ(x) if and
only if f(Ni) mod 1 → 0 and M(f−1([f(Ni)]))

M(Ni)
→ 1− β.

3.1. Comments

1. In the case ψ(1) = 1 in Theorem 2, the limit (III) can be any d.f. g̃(x). To
check this, put H(x) = M(f−1(x)) and H(k +x) = k + g̃(x) for x ∈ [0, 1]. Then

(IV) H(k+1)
H(k) = k+1

k → 1, and

(III) H(k+x)−H(k)
H(k+1)−H(k) = g̃(x). Similarly, for H(k + x) = (k + g̃(x))2.

2. The situation is different if we replace the limit

(III) limk→∞
M(f−1(k+x))−M(f−1(k))
M(f−1(k+1))−M(f−1(k)) = g̃(x) for x ∈ [0, 1] by the

(III’) limt→∞
M(f−1(t+x))−M(f−1(t))
M(f−1(t+1))−M(f−1(t)) = g̃(x) for x ∈ [0, 1], where t is a real vari-

able.
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This limit was introduced by J. Cigler (1960)[Cig], generalizing J.F. Koksma’s
(1936) result on lower and upper d.f.s of f(n) mod 1, see [Ko, p. 88]. J.H.B. Kem-
perman (1973)[Ke, Th. 11] proved that in (III’) exactly one of the following
relations must hold:

(a) g̃(x) = x for x ∈ [0, 1];

(b) g̃(x) = ecx−1
ec−1 for x ∈ [0, 1];

(c) g̃(x) = 0 for x ∈ (0, 1).
Furthermore he remarked that

(a) In the case g̃(x) = x, the sequence f(n) mod 1 is u.d.

(b) In the case g̃(x) = ecx−1
ec−1 the set Gw(n)(f(n) mod 1) is described by the

following Theorem 4, where t = 1/c.

(c) The case g̃(x) = 0 is equivalent to limt→∞
M(f−1(t+x))

M(f−1(t)) = ∞ and the set
Gw(n)(f(n) mod 1) contains only one-step d.f.s cu(x), where FNi

(x) →
cu(x) if and only if f(Ni) mod 1 → u.

3. For the sequence f(n) mod 1 with increasing f(x) Kemperman [Ke] proved
the following two theorems which are different in nature from our Theorems 1,
2 and 3.

Theorem 4 (Kemperman [Ke, Th.9]). Assume that
(j) limn→∞ f(n + 1)− f(n) = 0;

(jj) limn→∞
w(1)+w(2)+···+w(n)

w(n) (f(n + 1)− f(n)) = t.

Then Gw(n)(f(n) mod 1) contains only d.f.s of the type

gu(x) =

{
e(1+x−u)/t−e(1−u)/t

e1/t−1
if 0 ≤ x ≤ u,

1− e(1−u)/t−e(x−u)/t

e1/t−1
if u < x ≤ 1.

(5)

Here the density g′u(x) of gu(x) has the form

g′u(x) =
e{x−u}/t

t(e1/t − 1)
.

Furthermore FNi(x) → gu(x) if and only if f(Ni) mod 1 → u.

Theorem 5 (Kemperman [Ke, p. 148, Coroll. 1]). Assume that
(j) limn→∞ f(n + 1)− f(n) = 0;

(jj) limn→∞
w(1)+w(2)+···+w(n)

w(n) (f(n + 1)− f(n)) = +∞.

(jjj) f(n+1)−f(n)
w(n) is monotone in n.

Then the sequence f(n) mod 1, n = 1, 2, . . . is w(n)-u.d.
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4. Proofs of Theorems 1, 2 and 3

For a positive integer N define
• K = K(N) = [f(N)],
• u(N) = {f(N)},
• SN ([x, y)) =

∑N
n=1,f(n)∈[x,y) w(n),

• WN =
∑N

n=1 w(n).
Clearly f−1(K + u(N)) = N and for every x ∈ [0, 1] by the very definition of
w(n)-step d.f. FN (x) we have 1

FN (x) =
∑K−1

k=0 SN ([k, k + x)) + SN ([K, K + x) ∩ [K, K + u(N)))
WN

+
O(SN ([0, x))

WN
.

From the monotonicity of f(x) (assumption (I)) it follows that SN ([x, y)) =∑N
n=1,n∈[f−1(x),f−1(y)) w(n), and WN = SN ([0, K + u(N)) and we have

• SN ([x, y)) = M(f−1(y))−M(f−1(x)) + θ(f−1(x), f−1(y)),
• WN = M(f−1(K + u(N))) + θ(f−1(0), f−1(K + u(N)))

and thus

FN (x) =
∑K−1

k=0 (M(f−1(k + x))−M(f−1(k)))
WN

+
min(M(f−1(K + x)),M(f−1(K + u(N))))−M(f−1(K))

WN

+
O(

∑K
k=0 θ(f−1(k), f−1(k + x))

WN
+

O(θ(f−1(K), f−1(K + u(N))))
WN

.

Assumption (V) implies that 1/(M(f−1(k + 1))−M(f−1(k))) → 0; this in turn
yields that K/M(f−1(K)) → 0 by the Cauchy-Stolz lemma, which gives

O(
∑K

k=0 θ(f−1(k), f−1(k + x)))
WN

=
O(K)
WN

→ 0.

Assumption (V’) implies that 1/(M(f−1(k + 1)) − M(f−1(k))) → (1/c); this
gives that K/M(f−1(K)) → (1/c) by the Cauchy-Stolz lemma, so that

O(
∑K

k=0 θ(f−1(k), f−1(k + x)))
WN

=
O(

∑K
k=0 θ(f−1(k), f−1(k + x)))

K
· K

WN
→ 0.

1Without loss of generality we assume that f(1) ∈ [0, 1).
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Thus in both cases

FN (x) = F
(1)
N (x) + F

(2)
N (x) + o(1),

where

F
(1)
N (x) =

∑K−1
k=0 (M(f−1(k + x))−M(f−1(k)))

M(f−1(K + u(N)))
,

F
(2)
N (x) =

min(M(f−1(K + x)),M(f−1(K + u(N))))−M(f−1(K))
M(f−1(K + u(N)))

.

We shall express the first term F
(1)
N (x) as

F
(1)
N (x) =

∑K−1
k=0 (M(f−1(k + x))−M(f−1(k)))∑K−1
k=0 (M(f−1(k + 1))−M(f−1(k)))

· M(f−1(K))−M(f−1(0))
M(f−1(K + u(N)))

and by the Cauchy-Stolz lemma and assumption (III),

lim
K→∞

∑K−1
k=0 (M(f−1(k + x))−M(f−1(k)))∑K−1
k=0 (M(f−1(k + 1))−M(f−1(k)))

= g̃(x).

Now, let FNi(x) → g(x). Then there exists a subsequence N ′
i of Ni such that

u(N ′
i) = u′i → u′ for some u′ ∈ [0, 1]. Thus, in the following we can assume that

FNi(x) → g(x), and
Ki = [f(Ni)], and u(Ni) = ui → u, simultaneously.

We shall prove Theorems 1, 2, and 3 one by one.

P r o o f o f T h e o r e m 1. In this case g̃(x) = ψ(x)−1
ψ(1)−1 , and the relation ui → u

implies 2

M(f−1(Ki))−M(f−1(0))
M(f−1(Ki+ui))

→ 1
ψ(u) ;

F
(1)
Ni

(x) → ψ(x)−1
ψ(1)−1 · 1

ψ(u) ;

F
(2)
Ni

(x) → min(ψ(x),ψ(u))−1
ψ(u) .

Thus the w(n)-d.f. g(x) has the form g(x) = gu(x). On the other hand, for every
u ∈ [0, 1] there exists an increasing sequence of indices Ni such that u(Ni) =
ui → u. It follows from the assumption f ′(x) → 0 because for some εi → 0 we
can find Ni ∈ f−1((Ki + u− εi,Ki + u + εi)).

2Note that if u is a point of continuity of ψ(u), the monotonicity of M(f−1(x)) im-

plies the relation
M(f−1(Ki+ui))

M(f−1(Ki))
→ ψ(u), because

M(f−1(Ki+u−ε))

M(f−1(Ki))
≤ M(f−1(Ki+ui))

M(f−1(Ki))
≤

M(f−1(Ki+u+ε))

M(f−1(Ki))
for ui ∈ (u− ε, u + ε).
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We find the w(n)-lower and upper d.f. by computing gu(x) for fixed x ∈ [0, 1]
and u ∈ [0, 1]

gu(x) =

{
1− 1

ψ(u)

(
1− ψ(x)−1

ψ(1)−1

)
if u ≤ x,

ψ(1)
ψ(u)

ψ(x)−1
ψ(1)−1 if u ≥ x,

thus infu≤x gu(x) = g0(x), infu≥x gu(x) = g1(x) and since g0(x) = g1(x) we have
g(x) = g0(x) = g1(x) = ψ(x)−1

ψ(1)−1 . Similarly, supu≤x gu(x) = gx(x), supu≥x gu(x) =
gx(x), and thus g(x) = gx(x) /∈ Gω(n)(f(n) mod 1). ¤

P r o o f o f T h e o r e m 2. In this case we cannot use the relation g̃(x) = ψ(x)−1
ψ(1)−1

and moreover ψ(u) = 1 for all u ∈ [0, 1]. Then

F
(1)
Ni

(x) → g̃(x) 1
1 ;

F
(2)
Ni

(x) → min(1,1)−1
1 ,

and thus g(x) = g̃(x) for x ∈ [0, 1). ¤

P r o o f o f T h e o r e m 3. In this case

g̃(x) = lim
k→∞

M(f−1(k + x))−M(f−1(k))
M(f−1(k + 1))−M(f−1(k))

= 0

for every x ∈ [0, 1), thus F
(1)
Ni

(x) → 0. To compute the limit of F
(2)
Ni

(x) we
distinguish the two following cases, where ui → u.
10. If u > 0, then

lim
i→∞

F
(2)
Ni

(x) =
min(M(f−1(Ki + x)),M(f−1(Ki + ui)))−M(f−1(Ki))

M(f−1(Ki + ui))
= cu(x).

20. If u = 0, then

F
(2)
Ni

(x) = 1− M(f−1(Ki))
M(f−1(Ki + ui))

.

From Ki we select K ′
i (i.e. from Ni we select a subsequence N ′

i) such that

lim
i→∞

M(f−1(K ′
i))

M(f−1(K ′
i + u′i))

= t ∈ [0, 1], (6)

where again K ′
i = [f(N ′

i)] and u′i = {f(N ′
i)}. Then we have F

(2)
N ′

i
(x) → hβ(x),

where β = 1−t and hβ(x) = β for x ∈ (0, 1). On the other hand (by assumptions
(i) and (ii)) for any given t ∈ [0, 1] there exists a sequence of positive integers
Ki and real numbers ui → 0 such that limi→∞

M(f−1(Ki))
M(f−1(Ki+ui))

= t. Then there
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exist integers K ′
i (K ′

i = Ki for almost all i) and real numbers u′i ∈ (0, 1) such
that N ′

i = f−1(K ′
i + u′i) is an integer and

|f−1(Ki + ui)− f−1(K ′
i + u′i)| < 1.

Thus |M(f−1(Ki + ui))−M(f−1(K ′
i + u′i))| ≤ w(N ′

i) + O(1) and applying the
relation w(x)

M(x) → 0 we have (6) again. ¤

5. Further results

Theorem 6. Let the function f(x) and weights w(x) satisfy assumptions (I)–
(V) in Part 3 and either assumptions of Theorem 1 or Theorem 2 or Theorem
3. In case Theorem 1 we assume in addition that limx→∞

f ′(x)
M ′(x) = 0. Then we

have
Gw(n)(f(n) mod 1) = G(f(M−1(n)) mod 1). (7)

P r o o f. Denote h(x) = f(M−1(x)). Let FN (x) be the step d.f. of the sequence
f(n) mod 1 with respect to the weights w(n) and let F ∗N (x) be the step d.f. of
the sequence h(n) mod 1 with respect to the weights 1. For a positive integer N
define again

• K = K(N) = [f(N)], K∗ = K∗(N) = [h(N)];
• u(N) = {f(N)}, u∗(N) = {h(N)};
• SN ([x, y)) =

∑N
n=1,f(n)∈[x,y) w(n), AN ([x, y)) =

∑N
n=1,h(n)∈[x,y) 1;

• WN =
∑N

n=1 w(n).
By the very definition we have

FN (x) =
∑K−1

k=0 SN ([k, k + x)) + SN ([K, K + x) ∩ [K,K + u(N)))
WN

+
O(1)
WN

,

F ∗N (x) =
∑K∗−1

k=0 AN ([k, k + x)) + AN ([K∗, K∗ + x) ∩ [K∗,K∗ + u∗(N)))
N

+
O(1)
N

.

Assumption (V) and the relations
h−1(x) = M(f−1(x));∑

n∈[x,y) 1 = y − x + θ′(x, y), where |θ′(x, y)| ≤ 1;

WN = h−1(K + u(N)) + O(1);
N = h−1(K∗ + u∗(N)),

10
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imply

FN (x) =
∑K−1

k=0 (h−1(k + x)− h−1(k))
WN

+
min(h−1(K + x), h−1(K + u(N)))− h−1(K)

WN
+

O(K)
WN

,

F ∗N (x) =
∑K∗−1

k=0 (h−1(k + x)− h−1(k))
N

+
min(h−1(K∗ + x), h−1(K∗ + u∗(N)))− h−1(K∗)

N
+

O(K∗)
N

,

and

O(K)
WN

→ 0,
O(K∗)

N
→ 0.

Note that we cannot use (V’) since this implies O(K)
WN

→ 0 but not O(K∗)
N → 0

because we have only |θ′(x, y)| ≤ 1. ¤

Theorem 7. Let x(n) and y(n) be two given real sequences and w(n) > 0,
n = 1, 2, . . . be a sequence of weights such that WN =

∑N
n=1 w(n) → ∞ as

N → ∞. Assume that all the d.f.s in Gw(n)(x(n) mod 1) are continuous at 0
and 1. Then

lim
n→∞

(x(n)− y(n)) mod 1 = 0 =⇒ Gw(n)(x(n) mod 1) = Gw(n)(y(n) mod 1).

(8)
The same implication follows from the continuity of d.f.s in Gw(n)(y(n) mod 1)
at 0 and 1.

P r o o f. We shall adapt a proof of a similar result (Theorem 1 of [SB]) in which
the weights w(n) = 1 were used. Assume that, for an increasing sequence of
positive integers Nk, k = 1, 2, . . . ,

FNk
(x) =

1
WNk

Nk∑
n=1

w(n)c[0,x)({x(n)}) → g(x),

F̃Nk
(x) =

1
WNk

Nk∑
n=1

w(n)c[0,x)({y(n)}) → g̃(x),

11
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for every continuity point x ∈ [0, 1]. By Riemann–Stieltjes integration and the
well-known second Helly theorem

1
WNk

Nk∑
n=1

w(n)e2πihx(n) =
∫ 1

0

e2πihxdFNk
(x) →

∫ 1

0

e2πihxdg(x),

1
WNk

Nk∑
n=1

w(n)e2πihy(n) =
∫ 1

0

e2πihxdF̃Nk
(x) →

∫ 1

0

e2πihxdg̃(x).

Since,
∣∣∣∣∣

1
WNk

Nk∑
n=1

w(n)(e2πihx(n) − e2πihy(n))

∣∣∣∣∣

=

∣∣∣∣∣
1

WNk

Nk∑
n=1

w(n)(e2πih(x(n)−[x(n)−y(n)]) − e2πihy(n))

∣∣∣∣∣

≤ 2πh

WNk

Nk∑
n=1

w(n)|x(n)− [x(n)− y(n)]− y(n)| = 2πh

WNk

Nk∑
n=1

w(n){x(n)− y(n)}

the relation {x(n)− y(n)} → 0 implies that
∫ 1

0
e2πihxdg(x) =

∫ 1

0
e2πihxdg̃(x) for

every h = ±1,±2, . . . . Thus for every continuous h : [0, 1] → R, h(0) = h(1), we
have

∫ 1

0

h(x)dg(x) =
∫ 1

0

h(x)dg̃(x), i.e.
∫ 1

0

g(x)dh(x) =
∫ 1

0

g̃(x)dh(x).

For two common points 0 < x1 < x2 < 1 of continuity of g(x) and g̃(x) and for
sufficiently small ∆ > 0, define

h(x) = 0 for x ∈ [0, x1 −∆],
h′(x) = 1/∆ for (x1 −∆, x1),
h(x) = 1 for [x1, x2 −∆],
h′(x) = −1/∆ for (x2 −∆, x2), and
h(x) = 0 for [x2, 1].

Then
∫ 1

0

g(x)dh(x) =
1
∆

g(x1)∆− 1
∆

g(x2)∆ + O(∆),
∫ 1

0

g̃(x)dh(x) =
1
∆

g̃(x1)∆− 1
∆

g̃(x2)∆ + O(∆),

12
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and ∆ → 0 gives
g(x1)− g̃(x1) = g(x2)− g̃(x2).

Now, assume that g(x1) 6= g̃(x1) and g(x2) 6= g̃(x2). Fixing x1 and letting
x2 → 1 we have that one of g, g̃ must be discontinuous at 1, and fixing x2,
letting x1 → 0, then one of g, g̃ must be discontinuous at 0. ¤

Remark 1. By the referee, if x(n), y(n) ∈ [0, 1), n = 1, 2, . . . , then the as-
sumption that all the d.f.s in Gw(n)(x(n) mod 1) are continuous at 0 and 1 (in
Theorem 7) can be omitted. The referee’s proof: Given a sequence x = (x(n)),
y = (y(n)) and a sequence of weights w = (w(n)) we can define the mea-
sures µ(x,w, N) = 1

Wn

∑N
n=1 w(n)δx(n) where, as usual, δx(n) denotes the point

measure in the point x(n). Let d be a compatible metric on the space of all
measures (equivalently: distribution functions). Then (by uniform continuity)
|x(n) − y(n)| → 0 implies d(δx(n), δy(n)) → 0. Thus the assumption WN → ∞
easily yields d(µ(x,w, N), µ(y, w, N)) → 0. As a consequence the corresponding
sets of d.f.s have to coincide.

Theorem 8. Let f(x), w(x) ∈ [0, 1) be two functions defined for x ≥ 1. If

(i) the sequences f(n) and w(n) are statistically independent, and

(ii)
∑N

n=1 w(n) ≥ c.N for N = 1, 2, . . . , where c is a positive constant,

then
Gw(n)(f(n)) = G(f(n)).

P r o o f. Let h(x) be a continuous function defined on [0, 1] and FN (x) be the
step w(n)-weighted d.f. of the sequence f(n), F

(1)
N (x) be the step d.f. of f(n)

with weights 1 and F
(2)
N (x) be the step d.f. of the sequence w(n) again with

weights 1. Assume that for the sequence Ni of indices we have

FNi(x) → g(x),

F
(1)
Ni

(x) → g1(x),

F
(2)
Ni

(x) → g2(x),

in the points x of continuity. By (i), (ii) and by Helly’s second theorem we have

1∑Ni

n=1 w(n)

Ni∑
n=1

w(n)h(f(n)) →
∫ 1

0

h(x)dg(x),

1
1

Ni

∑Ni

n=1 w(n)

1
Ni

Ni∑
n=1

w(n)h(f(n)) → 1∫ 1

0
xdg2(x)

∫ 1

0

xdg2(x)
∫ 1

0

h(x)dg1(x).

13
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Thus
∫ 1

0
h(x)dg(x) =

∫ 1

0
h(x)dg1(x) for any continuous h(x), thus g(x) = g1(x)

for the common points x of continuity. ¤

It is well known that G(f(n) mod 1) is nonempty, closed and connected in
the weak topology (see [W] and [SP, p. 1–9]) and this topology is metrisable by
the L2 metric

ρ(g1, g2) =
(∫ 1

0

(g1(x)− g2(x))2dx

)1/2

.

The Helly selection principle (i.e. the Helly first theorem in Part 1, also see
[SP, p.4–5]) implies nonemptiness and closedness of Gw(n)(f(n) mod 1) for all
weights w(n). For connectivity we have:

Theorem 9. Assume that w(N)∑N
n=1 w(n)

→ 0 as N →∞. Then the set

Gw(n)(f(n) mod 1)

of all weighted d.f.s is connected, for every real-valued sequence f(n), n = 1, 2, . . .

P r o o f. For simplicity, let f(n) ∈ [0, 1). A proof follows from the following
theorem:

Theorem 10 (H.G. Barone [B]). If tn is a sequence in a metric space (X, ρ)
satisfying

(i) any subsequence of tn contains a convergent subsequence, and
(ii) limn→∞ ρ(tn+1, tn) = 0,

then the set of all limit points of tn is connected in (X, ρ).

Now, put X= the set of all d.f.s on [0, 1], tN = FN (x), and ρ= the L2 metric
on X, then the Helly selection principle implies (i), and thus (ii) ρ(tn+1, tn) → 0
implies the connectivity of Gw(n)(f(n)).

Putting g1(x) = FN+1(x) and g2(x) = FN (x) where

FN (x) =
1∑N

n=1 w(n)

N∑
n=1

w(n)c[0,x)(f(n)),

and applying the formula [SP, p. 4–11]
∫ 1

0

(g1(x)− g2(x))2dx =
∫ 1

0

∫ 1

0

|x− y|dg1(x)dg2(x)

− 1
2

∫ 1

0

∫ 1

0

|x− y|dg1(x)dg1(x)− 1
2

∫ 1

0

∫ 1

0

|x− y|dg2(x)dg2(x)

14
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we find ∫ 1

0

(FN+1(x)− FN (x))2dx =

− 1
2

(
w(N + 1)∑N

n=1 w(n)
∑N+1

n=1 w(n)

)2 N∑
m,n=1

|f(m)− f(n)|w(m)w(n)

+

(
w(N + 1)∑N+1

n=1 w(n)

)2
1∑N

n=1 w(n)

N∑
m=1

|f(m)− f(N + 1)|w(m)

≤
(

w(N + 1)∑N+1
n=1 w(n)

)2

and the proof is finished. ¤

6. Applications

In the following paragraphs I, II we use weights w(x) = 1/xα, 0 < α ≤ 1. In
III we define a set Ω ⊂ [0, 1]2 for given f(n) and w(n).

I. Put w(x) = 1/x. Thus M(x) = log x and limx→∞ θ(x, y) = 0. For f(x) we
investigate the following cases:

1. If f(x) = log x, then we have f−1(x) = ex, M(f−1(x)) = x, and

(III) limk→∞
M(f−1(k+x))−M(f−1(k))
M(f−1(k+1))−M(f−1(k)) = g̃(x) = x;

(IV) limk→∞
M(f−1(k+u(k))

M(f−1(k)) = ψ(u) = 1.

Thus by Theorem 2 we have the well known result that the sequence log n mod 1
is logarithmically u.d. (see M. Tsuji [T](1952)). For this result we cannot use
Theorem 6, since limk→∞M(f−1(k + 1))−M(f−1(k)) = 1.

2. If f(x) = log log x, then we have f−1(x) = eex

, M(f−1(x)) = ex, and we
have the case of Theorem 1 with ψ(x) = ex. Since
(V) limk→∞M(f−1(k + 1))−M(f−1(k)) = ∞

and limx→∞
f ′(x)
M ′(x) = 0 we can apply Theorem 6, thus the logarithmic d.f.s of

log log n mod 1 are the same as the classical d.f.s of f(M−1(n)) = log n mod 1,
n = 1, 2, . . . . Similarly, for f(x) = log(i) x, i = 2, 3, . . . , we have the case
Theorem 3 and by Theorem 6

G1/n(log(i) n mod 1) = G(log(i−1) n mod 1) for i = 2, 3, . . . .

15
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Furthermore, Theorem 3 implies (see also [S])

G(log(i) n mod 1) = G(log(i−1) n mod 1) = {cu(x); x ∈ [0, 1]}∪{hβ(x); β ∈ [0, 1]}
for i = 3, 4, . . . Thus in general, the implication

G(f(n) mod 1) = G(h(n) mod 1) =⇒ Gw(n)(f(n) mod 1) = Gw(n)(h(n) mod 1)

does not hold, e.g., put f(n) = log log log n and h(n) = log log n.

3. If f(x) = log(x log x), then

(III) limk→∞
M(f−1(k+x))−M(f−1(k))
M(f−1(k+1))−M(f−1(k)) = g̃(x) = x;

(IV) limk→∞
M(f−1(k+u(k))

M(f−1(k)) = ψ(u) = 1,

and by Theorem 2 the sequence log(n log n) mod 1, n = 2, 3, . . . , is logarithmi-
cally u.d. As for the case log n mod 1, also in this case we cannot use Theorem
6, since limk→∞M(f−1(k + 1)) − M(f−1(k)) = 1. This limit and also the
limit (III) follows from the Lagrange mean value theorem and from the relation
limx→∞(M(f−1(x)))′ = 1. The proof of (ii) follows from the inequality

0 < log f−1(k + 1)− log f−1(k) < f(f−1(k + 1))− f(f−1(k)) = 1

which implies limk→∞
log f−1(k+1)
log f−1(k) = 1.

4. Let pn, n = 1, 2, . . . , be the increasing sequence of all primes. By an old
result of M. Cipolla (1902)[C] (cf. P. Ribenboim (1995)[R, p. 249])

pn = n log n + n(log log n− 1) + o

(
n log log n

log n

)

and thus

lim
n→∞

(pn

n
− log(n log n)

)
mod 1 = 0.

Since log(n log n) mod 1, n = 2, 3, . . . is logarithmically u.d., Theorem 3 im-
plies that pn/n mod 1 is also logarithmically u.d. The logarithmic u.d. of
log(n log n) mod 1 also follows from Kemperman’s Theorem 5 and from The-
orem 2 in Y. Ohkubo [O].

II. Let 0 < α < 1. In the following we put w(x) = 1/xα. Thus M(x) =
∫ x

0
dt
tα =

x1−α

1−α and limx→∞ θ(x, y) = 0.

5. Put f(x) = log log x, then f−1(x) = eex

, M(f−1(x)) = eex(1−α)

1−α and

(IV) limk→∞
M(f−1(k+u(k))

M(f−1(k)) = limk→∞ eek(1−α)(eu(k)−1) = ψ(u) = ∞,
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as u(k) → u and u > 0. If u = 0, ψ(0) is not defined and for every t ∈ [0,∞) there
exists u(k) → 0 such that eek(1−α)(eu(k)−1) → t. Applying Theorem 3 we have
G1/nα(log log n mod 1) = G(log log n mod 1). Since (see 1.) G1/n(log log n mod
1) = G(log n mod 1), the set limα→1 G1/nα(f(n) mod 1) ”does not converge” (in
some sense) to G1/n(f(n) mod 1).

6. Putting f(x) = log x, we have f−1(x) = ex and M(f−1(x)) = e(1−α)x

1−α . Then

(III) limk→∞
M(f−1(k+x))−M(f−1(k))
M(f−1(k+1))−M(f−1(k)) = e(1−α)x−1

e1−α−1 = g̃(x),

(IV) limk→∞
M(f−1(k+u)
M(f−1(k)) = e(1−α)u = ψ(u).

Since e1−α > 1 and f ′(x) → 0, the case of Theorem 1 implies

G1/nα(log n mod 1)

=
{

gu(x) =
e(1−α) min(x,u) − 1

e(1−α)u
+

1
e(1−α)u

e(1−α)x − 1
e1−α − 1

; u ∈ [0, 1]
}

.

By the same Theorem 1 and putting w(n) = 1 we have the well-known result
(see [KN, pp. 58–59])

G(log n mod 1) =
{

gu(x) =
emin(x,u) − 1

eu
+

1
eu

ex − 1
e− 1

; u ∈ [0, 1]
}

.

III. Define the two-dimensional set Ωw(n)(f(n) mod 1) in the unit square [0, 1]2

as

Ωw(n)(f(n) mod 1) =

{(x, y) ∈ [0, 1]2; ∃g ∈ Gw(n)(f(n) mod 1)(y = g(x) or y ∈ [g(x− 0), g(x + 0])}.

It is known that for every infinite subset of positive integers the lower asymptotic
density ≤ the lower logarithmic density ≤ the upper logarithmic density ≤ the
upper asymptotic density. Then

Ω1/n(f(n) mod 1) ⊂ Ω(f(n) mod 1)

for every real-valued sequence f(n), n = 1, 2, . . . . By Theorem 9, both subsets
of [0, 1]2, Ω1/n(f(n) mod 1) and Ω(f(n) mod 1) are connected.

Acknowledgment. The authors would like to thank the referee for valuable
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