WEIGHTED SUMS IN FINITE ABELIAN GROUPS

S.D. Adhikari - M.n. Chintamani - B.K. Moriya - P. Paul

Abstract

In this note we prove the following weighted generalization of Bollobás and Leader theorem (J. Number Theory 78 (1999), no. 1, 27-35): Let G be an abelian group of order n and k a positive integer. Let $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ be a sequence of integers where each w_{i} is co-prime to n. Then, given a sequence $\left(x_{1}, x_{2}, \ldots, x_{k+r}\right)$ of elements of G, where $1 \leq r \leq n-1$, if 0 is the most repeated element in the sequence, and $\sum_{1}^{k} w_{i} x_{\sigma(i)} \neq 0$, for all permutations σ of $\{1,2, \ldots, k+r\}$, we have $$
\begin{gathered} \mid\left\{\sum_{1}^{k} w_{i} x_{\sigma(i)}: \sigma \text { is a permutation of }\{1,2, \ldots, k+r\}\right\} \mid \geq r+1 . \\ \text { Communicated by Georges Grekos } \end{gathered}
$$

1. Introduction

Let G be a finite abelian group (written additively) of order n. For positive integers t, d, with $t \geq d$, given a sequence $\left(a_{1}, a_{2}, \cdots, a_{t}\right)$ of length t, by a d-sum of the sequence one means a sum $a_{i_{1}}+\cdots+a_{i_{d}}$ of the elements in a subsequence of length d.

A result of Bollobás-Leader [2] is the following:
Theorem A. Suppose we are given an abelian group G of order n and a sequence $\left(a_{1}, a_{2}, \cdots, a_{n+r}\right)$ of elements of G, where r is a positive integer. Then, if 0 is not an n-sum, the number of distinct n-sums of the sequence is at least $r+1$.

For $n \geq 3$, taking $r=n-2$ in the above result, one observes that given a sequence of length $2 n-2$ of elements of G, if 0 is not an n-sum, then the set of n-sums is the set $G \backslash\{0\}$, that is, any non-zero element of G is an n-sum.

Similarly, for $n \geq 2$, taking $r=n-1$ in Theorem A, it follows that given a sequence of length $2 n-1$ of elements of $G, 0$ must be an n-sum. When G is

[^0]cyclic, this is the content of the well known theorem of Erdős-Ginzburg-Ziv [4] (can also see [1] or [8], for instance).

In the present paper, following the method of a simple proof of the above result of Bollobás and Leader as given by Yu [10], we prove a theorem which will imply (see Corollary 2) a result of Hamidoune [6], which had confirmed a conjecture of Caro [3] (see also [5], for instance) in a special case. For further information regarding these results, we refer to the paper of Grynkiewicz [5], where, among other things, the above mentioned conjecture of Caro has been established in full generality.

In what follows, we shall use the following notations. For a positive integer n, the symbol $[n]$ will denote the set $\{1,2, \cdots, n\}$ and for a finite set $S,|S|$ will denote the number of elements of S.

Theorem 1. Let G be an abelian group of order n and k a positive integer. Let $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ be a sequence of integers where each w_{i} is co-prime to n. Then, given a sequence $A:\left(x_{1}, x_{2}, \ldots, x_{k+r}\right)$ of elements of G, where $1 \leq r \leq n-1$, if 0 is the most repeated element in the sequence, and

$$
\sum_{i=1}^{k} w_{i} x_{\sigma(i)} \neq 0
$$

for all permutations σ of $[k+r]$, we have

$$
\mid\left\{\sum_{i=1}^{k} w_{i} x_{\sigma(i)}: \sigma \text { is a permutation of }[k+r]\right\} \mid \geq r+1
$$

If in the above statement, instead of $0, x_{1}$ happens to be the most repeated element, then applying the result on the sequence $\left(a_{1}, a_{2}, \ldots, a_{k+r}\right)$, where $a_{i}=$ $x_{i}-x_{1}$, for all $i=1,2, \cdots k+r$, and observing that translation of a subset of G by an element does not change its cardinality, one obtains the following:

Corollary 1. Let G be an abelian group of order n and k a positive integer. Let $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ be a sequence of integers where each w_{i} is co-prime to n. Then, given a sequence $A:\left(x_{1}, x_{2}, \ldots, x_{k+r}\right)$ of elements of G, where $1 \leq r \leq n-1$, if x_{1} is the most repeated element in the sequence, and

$$
\sum_{i=1}^{k} w_{i} x_{\sigma(i)} \neq\left(\sum_{i=1}^{k} w_{i}\right) x_{1}
$$

for all permutations σ of $[k+r]$, we have

$$
\mid\left\{\sum_{i=1}^{k} w_{i} x_{\sigma(i)}: \sigma \text { is a permutation of }[k+r]\right\} \mid \geq r+1
$$

WEIGHTED SUMS IN FINITE ABELIAN GROUPS

In Corollary 1 above, taking $r=n-2$ (that is, when A is of length $k+n-2$), and writing

$$
\alpha=\left(\sum_{i=1}^{k} w_{i}\right) x_{1}
$$

if

$$
\sum_{i=1}^{k} w_{i} x_{\sigma(i)} \neq \alpha
$$

for all permutations σ of $[k+n-2]$, we have

$$
\left\{\sum_{i=1}^{k} w_{i} x_{\sigma(i)}: \sigma \text { is a permutation of }[k+n-2]\right\}=G \backslash\{\alpha\}
$$

Similarly, taking $r=n-1$ in Corollary 1, one obtains the following:
Corollary 2 (Hamidoune). Let G be an abelian group of order n and k a positive integer. Let $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ be a sequence of integers where each w_{i} is coprime to n. Then, given a sequence $A:\left(x_{1}, x_{2}, \ldots, x_{k+n-1}\right)$ of elements of G, if x_{1} is the most repeated element in the sequence, we have

$$
\sum_{i=1}^{k} w_{i} x_{\sigma(i)}=\left(\sum_{i=1}^{k} w_{i}\right) x_{1}
$$

for some permutation σ of $[k+n-1]$. Hence, if the weights w_{i} satisfy

$$
\sum_{i=1}^{k} w_{i} \equiv 0 \quad(\bmod n), \quad \text { then we have } \quad \sum_{i=1}^{k} w_{i} x_{\sigma(i)}=0
$$

for some permutation σ of $[k+n-1]$.

2. Proof of Theorem 1

We need the following result of Scherk [9] (see also [7]).
Lemma 1. Let B and C be two subsets of an abelian group G of order n. Suppose $0 \in B \cap C$ and suppose that the only solution of

$$
b+c=0, \quad b \in B, \quad c \in C \quad \text { is } \quad b=c=0 .
$$

Then

$$
|B+C| \geq \min (n,|B|+|C|-1)
$$

Proof of Theorem 1. Let $L=\left\{i: x_{i}=0\right\}$ and $|L|=l$. By our assumption, $l \leq k-1$.

Let $S \subset[k+r] \backslash L$ be such that $|S|=s$ is maximal subject to the conditions $s \leq k-1$ and

$$
\begin{equation*}
\sum_{i \in S} w_{f(i)} x_{i}=0 \tag{1}
\end{equation*}
$$

for some injective map $f: S \rightarrow[k]$. It is possible that S is empty.
We note that

$$
\begin{equation*}
l+s \leq k-1 \tag{2}
\end{equation*}
$$

For, if $l+s \geq k$, then $l \geq k-s$ and hence writing $S^{\prime}=\{j \in[k]: j \neq$ $f(i)$ for $i \in S\}$,

$$
\begin{equation*}
\sum_{j \in S^{\prime}} w_{j} x_{i_{j}}=0 \tag{3}
\end{equation*}
$$

where $x_{i_{j}}$'s run over a subsequence of $\left(x_{i}: i \in L\right)$ and from (1) and (3), we have

$$
\sum_{i=1}^{k} w_{i} x_{\sigma(i)}=0
$$

for some permutation σ of $[k+r]$, contradicting our assumption.
Now, from (2),

$$
|[k+r] \backslash L \cup S|=k+r-(l+s) \geq k+r-(k-1)=r+1
$$

Therefore, there is $T \subset[k+r] \backslash L \cup S$ such that $|T|=r$. Let h be the maximum number of repetition of any element in the subsequence $X:\left(x_{i}, i \in T\right)$. By our choice of $L, h \leq l$ and hence by (2)

$$
\begin{equation*}
h+s \leq l+s \leq k-1 \tag{4}
\end{equation*}
$$

Let $X=X_{1} \cup X_{2} \cup \cdots \cup X_{h}$ be a partition of X into non-empty subsets, that is, in a particular X_{i} no element is repeated. More precisely, this is done in the following way. Let x be an element of X which is repeated h times. Then we put x in each X_{i}. Any other element, say y, occurring in X appears $m \leq h$ times and we put y in $X_{i}, 1 \leq i \leq m$. Thus,

$$
\begin{equation*}
\left|X_{1}\right|+\left|X_{2}\right|+\cdots+\left|X_{h}\right|=r . \tag{5}
\end{equation*}
$$

From (4), $h<k-s$. Let $w_{1}^{\prime}, \cdots, w_{k-s}^{\prime}$ be the subsequence ($w_{i}: i \in S^{\prime}$), where

$$
S^{\prime}=\{j \in[k]: j \neq f(i) \text { for } i \in S\} .
$$

We claim that for $1 \leq j \leq h$,

$$
\begin{equation*}
0 \notin w_{1}^{\prime} X_{1}+w_{2}^{\prime} X_{2}+\cdots+w_{j}^{\prime} X_{j} . \tag{6}
\end{equation*}
$$

If possible, suppose

$$
0=w_{1}^{\prime} x_{i_{1}}+w_{2}^{\prime} x_{i_{2}}+\cdots+w_{j}^{\prime} x_{i_{j}}
$$

where $x_{i_{t}} \in X_{t}$, for $t=1,2, \cdots, j$. Then, appending $w_{1}^{\prime} x_{i_{1}}+w_{2}^{\prime} x_{i_{2}}+\cdots+w_{j}^{\prime} x_{i_{j}}$ to the left hand side of (1), since $\left|S \cup\left\{i_{1}, i_{2}, \cdots, i_{j}\right\}\right|=s+j \leq h+s \leq k-1$, by (4), we are led to a contradiction to the maximality of S.

This establishes the claim.
Writing $X_{t}^{\prime}=X_{t} \cup\{0\}$, for $t=1,2, \cdots, h$, and observing that $\left|c X_{i}^{\prime}\right|=\left|X_{i}^{\prime}\right|$, for any integer c co-prime to n, from (5), we have

$$
\sum_{i=1}^{h}\left|w_{i}^{\prime} X_{i}^{\prime}\right|=r+h
$$

Therefore, by repeated application of Lemma 1 (observe that by (6), the condition of the lemma is satisfied), we have

$$
\begin{aligned}
\left|\sum_{i=1}^{h} w_{i}^{\prime} X_{i}^{\prime}\right| & \geq \min \left\{n, \sum_{i=1}^{h}\left|w_{i}^{\prime} X_{i}^{\prime}\right|-(h-1)\right\} \\
& =\min \{n, r+1\}=r+1
\end{aligned}
$$

Therefore, $X:\left(x_{i}, i \in T\right)$ with h zeros from $\left(x_{i}, i \in L\right)$ has at least $(r+1)$ h-sums with weights w_{i}^{\prime}. So adding a weighted sum of the remaining $k+r-$ $(r+h)=k-h$ elements of the sequence A with the remaining $k-h$ weights to each of the above $(r+1) h$-sums, we get at least $(r+1) k$-sums with the given weights.

REFERENCES

[1] ADHIKARI, S. D.: Aspects of Combinatorics and Combinatorial Number Theory, Narosa Publishing House, New Delhi, 2002.
[2] BOLLOBÁS, B. - LEADER, I.: The number of k-sums modulo k, J. Number Theory 78 (1999), no. 1, 27-35.
[3] CARO, Y.: Zero-sum problems - a survey, Discrete Math. 152(1996), 93-113.
[4] ERDŐS, P. - GINZBURG, A. - ZIV, A.: Theorem in the additive number theory, Bull. Res. Council Israel 10 (F) (1961), 41-43.
[5] GRYNKIEWICZ, D. J.: A weighted Erdős-Ginzburg-Ziv theorem, Combinatorica 26 (2006), no. 4, 445-453.
[6] HAMIDOUNE, Y.O.: On weighted sums in abelian groups, Discrete Math. 162 (1996), 127-132.
[7] KEMPERMAN, J.H.B. - SCHERK, P.: Complexes in abelian groups, Canad. J. Math. 6 (1954), 230-237.
[8] MELVYN B. NATHANSON: Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math., 165. Springer-Verlag, New York, 1996.
[9] SCHERK, P.: Solution to Problem 4466, Amer. Math. Monthly 62, (1955) 46-47.
[10] YU, H.B.: A simple proof of a theorem of Bollobás and Leader, Proc. Amer. Math. Soc. 131 (2003) no. 9, 2639 -2640.

Received July 1, 2008
Accepted December 7, 2008

Sukumar D. Adhikari
Mohan N. Chintamani
Bhavin K. Moriya

Prabal Paul

Harish-Chandra Research Institute
(Former Mehta Research Institute)
Chhatnag Road, Jhusi
Allahabad 211019
INDIA.
E-mail: adhikari@mri.ernet.in chintamani@mri.ernet.in bhavinmoriya@mri.ernet.in prabal@mri.ernet.in

[^0]: 2000 Mathematics Subject Classification: 11B50.
 Keywords: Abelian group, permutation, weighted sum.

