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PSEUDO-RANDOMNESS OF QUADRATIC
GENERATORS

OLGA BLAZEKOVA — OTO STRAUCH

ABSTRACT. Let zy,,n=0,1,..., M — 1, be a sequence produced by quadratic
generator ax? + bz + ¢ (mod M). In this paper we describe a new method which
gives a new bound for discrepancy Dps(Zn, Zn+1). The analysis is restricted by
the case of z,, with maximal period length M.

Communicated by Harald Niederreiter

1. Introduction

There is no formal fully satisfactory definition of random and pseudo-random
number sequences, we have only a scale of tests which such a sequence should
satisfy, see [DT, pp. 424-430], [SP, p. 2-243, 2.25], and [N, pp. 161-175].
D.E. Knuth [K] proposed the test that for an infinite uniformly random se-

quence z,, n = 0,1,... in [0,1), all of sequences (x,,Zn4+1), » = 0,1,...;
(T, Tnt1, Tnt2), n = 0,1,...; etc. must be uniformly distributed. For fi-
nite pseudo-random sequence z,, n = 0,1,...,M — 1, (which is generated
by a deterministic algorithm) the sequences (z,,%n+1), n = 0,1,.... M — 2,
(T, Tna1, Tnao), n = 0,1,..., M — 3, etc. must have ”sufficiently” small dis-
crepancies.

In this paper we study so-called quadratic generator (see [SP, p. 2-248,
2.25.5], [N, pp. 181-182] and [DT, pp. 428-429]) which again was proposed by
D.E. Knuth in 1969 (see [K, p. 25]): Let M > 2 be a large integer, called the
modulus and let a, b, ¢ be three integer parameters and yy be the initial integer
starting point, all from [0, M). The quadratic congruential generator produces
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the sequence
Ty = yMn, where y, 11 = ay;, + by, +¢ (mod M) and 0 <y, <M -1 (1)

of pseudo-random numbers x,, n = 0,1,...,M — 1. By Knuth [K, p. 34] the
sequence Yy, is purely periodic with the maximum possible period length M (i.e.
{0,1,2,....M — 1} = {yn;n=0,1,..., M — 1}) if and only if:

(¢, M) =1,

pla for every prime p|M,p > 2;

b=1 (mod p) for every prime p|M,p > 2;

If 9| M, then either 9]a or b =1 (mod 9) and ac =6 (mod 9);

If 4| M, then 2|a and a = b — 1 (mod 4);

If 2|M, then a =b—1 (mod 2).
We assume from now (as usual) that these conditions for the maximum possible
period length hold.

Some papers (cf. [EHHW]) investigated the performance of quadratic gen-
erator (or pseudo-randomness of z,, n = 0,1,..., M — 1) under the extremal
discrepancy D), of the two-dimensional sequence

(xmmnﬂ):(yﬂ”,yﬂly n=01,.... M—1. 2)

Here the extremal discrepancy D), is defined by

A(L; N (2, Tng1))
M

Dy(zp, Tpt1) = sup - [}, (3)

1C[0,1]2

where the counting function A(I; M; (2, 2n+1)) is defined as the number of
terms of (z,,Znt+1), n = 0,1,...,M — 1, for which (z,,z,4+1) belong to the
interval I and || is the area of I. In this paper we use so-called star discrepancy
D3 (zp, Tpt1), where the intervals I in (3) have the form I = [0,z) % [0,y),
x,y € [0,1]. In any case D}, < Dyy < 4D3%,, consult [KN, DT, SP].

For a quadratic generator with power of two modulus M = 2“ assumed that
a=2 (mod 4), b=3 (mod 4), c=1 (mod 2), J. Eichenauer-Herrmann and H.
Niederreiter (see [EHN1]) proved that

2v/2+8 (log M)? loeM 03173 4
\fj Uoe M7 hrg1 08 +— an
T VM VM vM M
1
> -
3(r+2)vVM

For modulus M = p*¥, p > 2 is a prime, w > 2, pla, b=1 (mod p), p1 ¢, and
if p = 3, then a # 3¢ (mod 9) and a # 0 (mod p?), J. Eichenauer-Herrmann

Dy <

d (4)
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and H. Niederreiter (see [EHNQ]) found

4 4 5p~3/2
Dy < A5 (\/17’
VM

2 2
f <logM+ ?:Tlogp> (log M + 1.395)) + U
(5)

For composite modulus M = p{* ...p¥r with primes p; > 3 and exponents
w; > 2, S. Strand [S] found

fH<” )

4\/577
9

1 2
log P) (log M +0.778) + 23@) tor and  (6)

4
. <ﬂ2\/ﬁ(logM—|—

VP 1
PV E S+ 2) VAT

Every bound in (4), (5) and (6) contains some term multiplied by

where P =py ...p,.

(log M)?
Vv . In

this paper we find an upper bound of star discrepancy D3, of (2) which contains
(log M)*/2
—

THEOREM 1. Let M > 91andMJ[ha be for 1 < h < [v/M] (it holds if a < VM)
and assume that the quadratic generator ax®+bx+c (mod M) has the full period
of the length M. Then the star discrepancy Dy (%, Tni1) of the sequence (2)
satisfies

some term with

x 1/2 1 3/2
D <58MjL40 +\f\/7M (1_M) +\/;A.LM 1_M) +
2 (1OgM)3/2 (G,M) u(M)
+24 (m + (8V2 4 3) —— +36 Nili (log M)2 . (7

In our proof, by using a geometric approach, we transform the discrepancy
problem of a two-dimensional sequence to one-dimensional sequences. More pre-
cisely, to approximate the discrepancy D3, of (2) we use D} = maxyc(o,1] Dj;(v),
where Dj (y) is the star discrepancy of one-dimensional sequence

M [b%2—4dac . .
; WJrlermOdl, 7'*1727"'7]{7

1
We require it for 1 4 log vV M < log M.
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where y € [0,1] is arbitrary but fixed. Then, to approximate Dj(y) we use
Dy = maxycjo,1] Dk (t), where Dy (t) is the star discrepancy of one-dimensional
sequence
a
(i-l—t—l—B)QM modl, i=1,2,... K,
where ¢ € [0,1] is arbitrary but fixed and B is an integer depending on y.
To approximate D3 (t) we use an approximation of an incomplete Gaussian

quadratic sum by applying a result of C. Mauduit and A. Sarkézy [MS] and

3/2
then Erdds-Turén formula which gives the term %.

2. Geometric approach

For the quadratic congruent polynomial az? + bx + ¢ (mod M) we define the
function Fyy : [0,1] — [0, 00) such that

Fy(x) = Maz? + b + %

If the generator ax? + bz + ¢ (mod M) has a full period, then the sequence (2)
contains the same points as

(%,FM(%)modl), n=0,1,...,M—1. (8)
We begin to compute the star discrepancy D3, of (8) by using that all points
of (8) are lying on the graph of F),(z) mod 1, see Fig. 1. Define two auxiliary

] e

=l

0 o Ty Xtz bty by

FIGURE 1. Graph of Fjs(z) mod 1
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sequences t; and z; by equations Fi(t;) =i and Fir(x;) =i+ y. Explicitly

b fb+ 1 b274ac+_ B fb+ 1 b274ac+.+ (9)
T 2aM T Vald DT oaM T aM Mo
LEMMA 1. The star discrepancy Dy, (ﬁ, Fy (ﬁ) mod 1) satisfies

<t ( )+ 2kDj
M M Mt /z\r/rfla;(q To Yo 1§kH§12)1\{/1+b M’

where D}, = maxycpo,1] Df({Mx;}).

D} (10)

Proof. Abbreviating A (I; M; (35, Fa (45) mod 1)) = A(I) we distinguish
three following steps:

1°. Let y be fixed, y € [¢/M,1), I = [0,z) X [0,y) and x runs through the interval

. . A e
[0,1]. Then, we can express the discrepancy function =7 — |I| exactly (if x is

irrational):
(i)% —||l=z- {]\]/\[f} + & — ay for x € [0, zo);
(ii) A(I) — | =z — % + 4 — woy — y(xz — ) for x € [0, 11];

(i) 272 — 1| = wo — L7t + & + 300 (i — ) + 3 T2 ({Mts} — {Ma}) +
T —t, + {Mt"} M—ytk—y(ac—t;g) for « € [t, zk];

Ma k k
(iv) 447 |I| — Ao 4 L+ S () + 4 D (Mt} — {Ma}) -
yxy — Z/(x — ) fOT T € [Tk, tpq1];

A(I M aM+b—1 aM+4b— 1
WAP — 1 = 2o — 2572t + & + I @ — 1) + 4 ST (M) -
{Mz;}) —ytaM+b —y(x—topr4p) for z € [taM+b, 1]; In (v) we have used that the
interval [tonr+p, 1] does not contain terms from %, ﬁ, ce, MAZI since tg11 —tr <

wﬁﬁ which implies 1 — tanr4b < tanr4o+1 — taris < 757
Now, by the theorem of J.F. Koksma [SP, p. 1-42] we have

1 !
EZ{Mti}_/() xdx
i=1

< 1L.Dy({Mt;}),

which gives

< 28 max(Dy (ML), DY((Ma). (1)

k
7 oM — (M)

Furthermore absolute values of — AI/\[/Iw} + 2. — {NJ[V%} + 37 {]\;\[;’“} {%f b oare
small than 7; and other parts of (i)-(v) depend on z linearly and thus their
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extremes appear on boundary points of intervals. Denoting
k

Vk—$0+z ; —yzp, Te=xz0+ Y (2 —Yter1,  (12)
=1
we have
'%ﬁﬂwéﬁ+%—wm
(ii ‘7) |I|‘ < M + max(xg — yxo, |20 — yt1]);
(iii) | 42

1

,_.

|I|’ > M+M maX(Dl:({Mti})vDZ({Mxi}))_FmaXuTk—lL |Vk|)a where

k=1, 2 ,alM + b—1;
(iv)‘A €)) |[|‘ &+ 22 max(Dj ({Mt;}), Di({M=;})) +max(|Vi|, | Tk|), where
k=0,1,2 aM+b—L

A a b— * *
(V)| 37 |I|\ i+ R max(Diay g (M), Doy o ({Mai})) +
max(|TaM+b 1l, |x0 + ZGMH’ Yai —t;) —y)). Here the final part of (v) obtains
at © = 1 and we shall replace it by ‘ Al |I|’ , since for I =1[0,1) x [0,y)
we have AJS/II) =y— {Aff} + 47 (if y is irrational).
Thus, for every fixed y € [¢/M, 1] and any z € [0, 1] we have

A(I) 2k . .
a2 a3 max(Di((Me). DY)
+ max(ogé&%ﬁbq Vil ogkglgfauxw—l IT5). (13)

In the following, we extend maxima also for £ = aM + b. We can see that Vy >
Vi>-> VaM+b, To < Ty < -+ < Tapr+b, Vi > Ty for k =0,1,...,aM + b
and Vy > 0. Thus we have

To<Ty <To < <Tapggp < Vamp <--- < V1 <V (14)
and from this

Vi Ty|) = Tol|, Ve
max(oglgg%ﬁw' Kl 0<k<a M+b| kl) = max(|To, Vo).

2°. Now, let y vary in the interval [c/M,1]. Putting o = z and y = aM2z? +

br + 17, we rewrite functions Ty(y) = ¢ — yt1 and Vo(y) = xo — yxo to forms

To(z) =z — (aMx2 + bx + i) t1, and Vp(z) = = — (aMx2 + bx + ﬁ) T
and we shall find their maxima for = € [0,¢;]. By definition, for = 0 we have
To(x) = —47t1 and for x = t; we have Ty(x) = 0. Since by (14) for Ty(x) > 0
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we have Ty(z) < Vy(x), then

C
< — .
s [To(o)] < max (Mtl,xgm vo<x>) (15)

3°. Let y € [0,c¢/M]. Omitting all parts of (ii)-(v) which include zy and replacing
Vi and Ty, by Vi and T}, defined as

k k

V= (wi—ti) —yax, Th=Y (v —ti) — ytry1, (16)

=1 i=1

we find (13) in the form

A(D) 2 2%
7 < = - * . * .
A7 | < e S max(DE((Me). DY)
% Ty ). 1
a1y Ve o2 1) ()
Again,
To<Ty <To < <Topggr < Varigp <---<Vi <Vo=0 (18)
and from this
s 5 - c
maX(og&‘%% ‘Vkl’ogggﬁwb IT3l) = ye%,%?(M]UTO(y)D o Mtl'
Summing up 19,29 3% we find (10). O
Note that for any I = [0,z) x [0,y) we have
A(D) 1
29 nl<y+— 1
AP | < g (19)

since |40 — 11| < max (4P,11)), 11 <y, AP < ALLDD _ g,

6] < ﬁ, where we apply the full period

n n
{M,n—(),l,...,M—l}—{FM(M> modLn—O,l,...,M—l}.

For y € [0, ¢c/M] this gives worse estimation ‘% - |I|‘ <&+ 5
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3. Discrepancy of f(n) (mod 1) for special increasing f(x)

Looking for bound of Dy by (10) we must find a bound of
Dy = max Dp({Mz;(y)}),
y€[0,1]

where Dj ({Mz;( ) is the star discrepancy of the sequence

|M [b* —4dac
{Mz;(y)} = TE +i+ymodl, i=1,2,...,k  (20)

and y 6 [0,1] is ﬁxed but eaurbltraury7 see definition (9). Now, we exclude the
term —5~. We employ that for an arbitrary real sequence wy,...,wy and any
constant ¢ the extremal discrepancy Dy (w, mod 1) = Dy(w, + ¢mod 1) and
for the star discrepancy Dy < Dy < 2D3%, then we have D} (wy, mod 1) <
2D% (wy, + ¢ mod 1). Thus

Dy({Mz;i(y)}) < 2Dg(f(i) mod 1)
for the star discrepancy of the sequence f(i) mod 1,i=1,2,...,k, where

—4

=1/— \/ ac +x +y— B, where (21)
— 4dac

A — \/ +1+y

and y is fixed but arbitrary in [0, 1].

——— s

fin

it

FIGURE 2. Graph of f(z) mod 1

LEMMA 2. Let u;,v; be two sequences defined by f(u;) = i and f(v;) = t +
i. For given k find K such that k € (ux,ury1]. Then the star discrepancy
D;(f(¢) mod 1) satisfies

a (K-1) UK41 — UK (K —1)Dy 4

Uy
i<l 2-L 19 2
PSR R TR T k + k

(22)
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where D} = maxye(o,1) Djc ({vi})-

Proof. Abbreviating A(t) = A([0,t); k; f(¢) mod 1) and by definition

a0y

D; =
k max %

t€(0,1]

Using Fig. 2, for ¢t € [f(1), 1], we have

A vo—{w} [ ZE i w) S ({u} = {vi)
k_t_okOJr( 2 _t>+ %
min(k —ug + {uK},vzz— ur +{ur} — {UK})) (23)

and for ¢ € [0, f(1)] the first term in (23) must be omitted. From definition of
u; and v; we have

2i_b2—4ac 21_b2—4ac

and
Vi — U; - t—t2
i1 —u; 20+ 2B+1’

which gives

S wimw) N (e K1 w k—uk
( 3 t] =—t (1 t)M A +k+ A .

Adding

1]0—{1}0}‘ U1 1
< =4 -
‘ k - k+k’

,zfiﬁ{ui} S GNP S
k - k ’
where D}, = max(D3 ({u;}), D3 ({vi})) and

min(k —ug + {ux}, v —urx + {ux} — {vk}) < UK+l UK 1
k - k
we find (22). O
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4. Discrepancy of {(i+t+ B)?£} i=1,2,...,K

For application of (22) we must approximate D}, = max;cjo,1) D ({vi(t)})
where D7 ({v;(t)}) is the star discrepancy of the sequence in (24)

) a b? — dac

and ¢ € [0, 1] is arbitrary but fixed. We see that D} ({v;(t)}) < Dk, where Dg
is the extremal discrepancy of the sequence

(i+t+B2 2V i=12. . K,
{ 3

—ymod1l, i=12,..., K,

for ¢ € [0, 1].

LEMMA 3. For every t,y € [0,1] the extremal discrepancy Dy of the sequence
{i+t+B)*5},i=1,2,...,K satisfies

1 8 VM , 6
W‘i‘ (\/?—F?)K) (10gM)3/ +\/7M

assuming that M { ha for 1 < h < [V M].

[
Dr <3

VIl
> E\/(ha, M) | (25)
h=1

Proof. We start with the result of C. Mauduit and A. Sarkézy [MS, p. 207,
Lemma 8]:

LEMMA 4. Let ay,as be any real numbers, p,q be integers such that ¢ > 1,

’ag — %‘ < qiz and (p,q) = 1. Then

N
, N
Z 627r1(042n2+041n) S (8\/N + 3\/6) 1/ logq + 6—.
n=1 \/5
Putting a; = 0, ag = h—]v‘; and g = %7 then ‘042 — %‘ =0< q%, where for

coprimality of p and ¢ we give ¢ = % By Lemma 4, assuming % > 1,
we have

N
E 627rihn2 o
n=1

M M N
f;G¢N+3¢wmﬂn>V%gmmM)+6¢w%m

g@%ﬁ+3%ﬂ)¢mpw+&%%v@@ﬁﬂ. (26)
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The same bound holds for [V 62”}‘("*”3(?’))2%‘ for every t,y € [0,1]. Ap-

plying Erd&s-Turan formula, for any positive integer m > 3 we have

1 8 VM 6 <=1
D <3 <m+ <\/R+3K> \/IOgM.QIOgm—F\/Mhz_:lh\/(ha,M)>.

Putting m = [V M] we find (25). O

5. Proof of Theorem 1

We use the following four steps:

19, Denote by Dy the right-hand side of (25). Because Dy is independent
on t € [0,1], then also D} = maxy¢jo,1) Dj({vi(t)}) < Dg. Replacing D%,
by Dg_1 in (22) and using Di({Mxz;(y)}) < 2D;(f(i) mod 1) and that K Dy
increases, we find

kDZ({sz(y)}) 4 a K UK+1 — UK KDk

R < +2MM+4M+4 e o)
Then, using K = f(uk) < f(k), k < aM + b and by (24) we find

M
K<\ /—(k-1)41<2M,
a

<5
=

u1 1
UK+1 — UK
M M2
Substituting preceding in (27) we have
EDp({Mai(y)}) _ 28 KDx

< — 20 L 4 nCK 28
M M+ M+ M (28)

The right-hand side of (28) does not depend on y € [0, 1], thus for
Dy = max Dy ({Mwzi(y)})

— (2K +2B+1)<4

:\ -

y€[0,1]
we have ~
Dp _ 28 KDy
1§kr225\(4+b M — M * 207 * 41<III%<2M M (29)
Here -
KDy

max ——2 —=92Dy;.
1<K<2M M 2M
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Substituting (29) in (10) we have

58 D
L4024 7751 + max (zo —yxo) + 16Dapy, (30)

D*
M S qp M ' M o/ M<y<1

where D}, = D3, (4%, Far (4%) mod 1) and

1 8 3 6 W
Doy =3 + + log M)3/% 4+ — —/(ha, M
=3 | 57+ (o * vy o) 7 2 Ve

20, We simplify (31). We have

because

SacIl(i-75) s

d|M p|M

where w(M) is the number of distinct prime divisors of M. From this we have

63\/7
Fz V(30 <

and we substitute it in (31).
39. For max/nr<y<1(To — YZo) = MaxX,eo.4,]) Vo(z) we have

2 1 c p2 %2 p2 /2
\% =—-— 1— — — _

- (1 B ﬁ) 3ab]\4 (32)

directly and this maximum is required at

1
= 1-—
V3aM (\/( 3aM 3aM)
Let us simplify (32) by using Lagrange difference theorem.
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Ifb < (1 — ﬁ) 3aM then we use

2 1 c 2 \*? 2 \*/?
<2 - - -
Jnax Volw) < 3= ((( i)+ 3aM) <3aM>

1 (1—i) P u (we(0,1—¢/M)

3aM M 3aM
1 ¢\ 3/2

L5y
3aM M

Ifo >4/ (1 — ﬁ) 3aM and repeating application of Lagrange difference theorem
on (32) we find

c 1 1
a. V ={1—-— — c 0’17 M, c 0’
vel0ts) o) ( M) \/3aMu2\/3b§M +v el D€ 0]
c\21 1 c\3/21
< —— ) =< - -
*(1 M) 26— 3aM( M) 2
Altogether
1 c 3/2
Vi < V2 1 - — . 33
o Vole) < V2 (1= ) (33)

4°. Now, we simplify 5t1, where ¢; defined in (9) can also be rewritten as

= (VO )+ o)

Ifb < (1 — ﬁ) 4aM we see

1 c b2 1 c\1/2
“<\W\/(1‘M)+4QMS,W(1‘M) V2
Ifo> (1 — ﬁ) 4aM we see

tlzi@_i)%; (u e (0,1— c/M))

Summarizing
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Finally, all above results give (7).

6. Concluding remarks

19, For lower bound of Dys(2,,7,11) in Fig. 1 we see that the intervals I; =
[0,2) x (y,1] and |I3| = [z,t1) X [0,y) do not contain any point of (8) and thus
the extremal discrepancy Dy of (8) satisfies

Dy > max( max |[1], max |I3])
z€[0,t1] x€[0,t1]

Furthermore, directly from definitions we have Vo(x) = |I1| and Ty(z) = |I1] —
|I5]. Thus, we can use

Dy > max( max Vy(x),|To(0)|),
zE[O,tl]

where |T5(0)| = 47t1, but it is worse than in [EHN1] and [S].

20. H. Niederreiter [N2] proved the following quantitative form of well-known
Fejer’s theorem: If a function f(z), x > 1, satisfies

(i) f(z) — oo monotonically,
(i) zf'(z) — oo,
(iii) f/(x) — 0 monotonically as x — oo,
then the star discrepancy Dj of the sequence f(i) mod 1,47 =1,2, ...,k satisfies
f(k) 1
D=0 |—= . 35
o (5 7w )
This can be employed for f(z) = y/z. Our function in (21) also satisfies (i)—(iii),
but for the left-hand side of (29) the (35) gives

kD; f(aM +b) 1
: _O( M +Mf’(aM+b)>

:0<J\1/[\/42j\/[+(1—]\C/I>+aM+b<\/¥+2\/E>>7

where ﬁ\/aM—i—bw/% > 1.
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3°. Finally, we compare order of magnitudes of upper bounds in (4), (5), (6) and

(7):

In (4) we have (og M) o0 M = 2%,

VM

in (5) we have %—&—\/% for M = p®,

in (6) wehave%+,/% for M = p7*...p% and P =p;...p,, and

in (7) we have T T T

Gog S 1 T2 (log M)220D) -

Replacing the modulus M by M®, for sufficiently large integer exponent a, we
see that the order in (7) is better than in (4), (5) and (6), in this case.

(DT]

[EHHW]

[EHN1]

[EHN2)

(K]

[KN]

[MS]

(N]

[N2]
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