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COMMON PRIME FACTORS OF an − b AND cn − d

Christian Ballot — Florian Luca

ABSTRACT. In this note, we study the set of primes such that the two congru-
ences an ≡ b (mod p) and cn ≡ d (mod p) have a simultaneous solution n under
some assumptions on the rationals a, b, c, d.

Communicated by Sergei Konyagin

1. Introduction

Motivated by a question of Schinzel, SkaÃlba [9] investigated the set S of primes
p dividing gcd(2n−3, 3n−2) for some positive integer n. Writing S(x) = S∩[1, x],
Skalba showed that

#S(x) ¿ x/(log x)ν+o(1), as x →∞, (1)

where ν = 8/9 + 2β log β, and β is the only solution in the interval (0, 1) of the
transcendental equation β log β − (1 + 6 log(10/9))β + 4/3 = 0. Numerically,
β = 0.642903968956 . . . and ν = 1.024362276264 . . . . He also noted that his
approach combined with results concerning divisors of shifted primes in short
intervals from [4] leads to the better exponent ν = 2 − (1 + log log 2)/ log 2 =
1.08607133206 . . . .

In this paper, a, b, c and d being non-zero rational numbers, we investigate
the set of primes for which the system of simultaneous exponential congruences

an ≡ b (mod p) and cn ≡ d (mod p), (2)

is solvable for some natural number n. We say that the prime p divides the
rational number r if p divides the numerator of r and an ≡ b (mod p) if p
divides an − b. We use again the same notation S = S(a, b, c, d) for the set of
primes for which (2) is solvable.

The set of primes for which only one, instead of two, such congruences is
solvable has been the subject of many studies. The set of primes arising as
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a factor of some term of an integral binary linear recurrence may yield such a
congruence. As explained in Section 3 of [1], our motivation came from the study
of the set of primes that are a factor of two consecutive terms of some integral
ternary linear recurrence, a set which can be expressed as the set of primes for
which a system like (2) is solvable.

Here we restrict our attention to the case when the rank of the multiplicative
group generated by the four numbers a, b, c and d inside Q∗ is 2 at most.

Two main cases are distinguished. Let

M(a, b, c, d) =
[
log |a| log |c|
log |b| log |d|

]
, (3)

where log stands for the natural logarithm. We say that (a, b, c, d) is in the sin-
gular case if the rational rank of M is 1. By this we mean that either the rows
of M or the columns of M are linearly dependent and the linear dependence
relation has rational coefficients. This case is thus divided into the row-singular
case and the column-singular case. The case of the rational rank of M being 2
is referred to as the regular case. Note that we end our paper with an appen-
dix containing a proof that the rational rank of M is 1 at most if and only if
detM = 0.

Our main result is the following theorem.

Theorem 1. Assume that a, b, c, d are non-zero rational numbers, a 6= 1, c 6=
1, and rank〈a, b, c, d〉Q∗ is 1 or 2. If (a, b, c, d) is in the regular case, then for
every ε > 0 the inequality

#S(x) ≤ x

log x(log log log x)1/2−ε

holds for all x > x(ε). Thus S has 0 natural density within the set of primes.
On the other hand, if (a, b, c, d) is in the singular case and b and d are positive,

then S has positive lower relative asymptotic density. In the row-singular case
our proof of the existence of a positive lower density is unconditional, whereas,
in the column-singular case, the result is unconditional in the rank 1 case, but
depends on the generalized Riemann hypothesis in the rank 2 case.

Note that (a, b, c, d) is in the regular case if and only if (a2, b2, c2, d2) is. More-
over, by squaring the congruences in (2), we see that S(a, b, c, d)⊂S(a2, b2, c2, d2),
so that to prove the result of our theorem in the regular case, we may replace
a, b, c, d by their squares and assume that they are all positive. In fact, we
do assume throughout Sections 3.2 and 3.3 that a, b, c, d are positive. But, in
the singular case, we determine a set of primes of positive lower density solving
(2) and see that it solves (2) irrespective of the signs of a and c, which explains
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the statement we have in this case. We also assume that a 6= 1 and c 6= 1 (for if
not, either the corresponding b or d is 1, in which case the resulting congruence
is trivial and gives no information, or it is not in which case S is finite). Our
results are always stated up to finitely many exceptional primes. In particular
primes dividing the numerators or the denominators of either a, b, c or d are
excluded from consideration.

SkaÃlba’s method does not only apply to the case (a, b, c, d) = (2, 3, 3, 2), but
to a more general situation, where a, b, c and d satisfy some technical condition
(see [9]). This technical condition is satisfied, for instance, when a and b are
multiplicatively independent and the ordered pairs (a, b) and (d, c) are identical.
It does not cover all the cases we cover, nor do we cover all instances of ratio-
nals satisfying his technical condition. In fact, under SkaÃlba’s hypothesis, the
multiplicative group generated by the four rationals a, b, c and d may have rank
equal to 3.

For instance, consider the following systems of congruences

2n ≡ 25 (mod p) and 15n ≡ 36 (mod p), (4)
(

s

t

)n

≡ 1
t

(mod p) and sn ≡ − 1
ts2

(mod p), (5)

where t is an integer satisfying |t| ≥ 2 and s = t2 − t + 1, and

3n ≡ 2 (mod p) and 5n ≡ 3 (mod p). (6)

The sets S associated to system (4) or to the systems in (5) all have a 0
natural density of primes. System (4) falls under SkaÃlba’s condition. Note
that 〈2, 25, 15, 36〉 = 〈2, 32, 3 · 5〉 and our theorem does not apply here. How-
ever Skalba’s conditions are not satisfied by any system in (5), but by squaring
the two congruences of such a system, we get a regular rank 2 system since
〈s2/t2, 1/t2, s2, 1/t2s4〉 = 〈s2, t2〉. Thus our result applies. But system (6) is a
simple rank 3 system to which neither our work nor SkaÃlba’s result apply.

Throughout this paper, we use the Vinogradov symbols À and ¿ and the
Landau symbols O and o with their regular meanings. The constants implied by
them might depend on some other parameters such as a, b, c, d, K, ε, etc. For
coprime integers 1 ≤ k ≤ `, we write π(x; k, `) for the number of primes p ≤ x
in the arithmetic progression ` (mod k). For a matrix A we use AT to denote
its transpose.
Acknowledgements. This paper was initiated during a very enjoyable visit by
the second author to the Laboratoire Nicolas Oresme of the University of Caen;
he wishes to express his thanks to that institution for its hospitality and support.
During the preparation of this paper, F. L. was also partly supported by grants
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2. Preliminary Results

The first preliminary result is essentially an argument due to Hooley from [3].
Let a and b be any fixed non-zero rational numbers. Let Ta,b be the set of all
primes dividing some non-zero expression of the form at − b for some positive
integer t. Note that, by Fermat’s Little Theorem, if p ∈ Ta,b is sufficiently large
(i.e., it does not divide either the numerator or the denominator of either a or
b), then p divides some non-zero expression of the form at − b for some positive
t ≤ p− 1. For any real numbers 1 ≤ y ≤ x we put

Ta,b(x, y) = {p ≤ x : p | at − b for some t ≤ y and at − b 6= 0}.

The result we will use is the following:

Proposition 2. Uniformly for 1 ≤ y ≤ x, we have

#Ta,b(x, y) ¿ y2 + x1/2

log x
.

P r o o f. We may assume |a| > 1, for if |a| < 1, then we may replace a by 1/a
and b by 1/b. Writing a = a1/a2, b = b1/b2, with a1, a2, b1, b2 integers and
a1 > 0 and putting T1 = {p ≤ √

x}, we get by the Prime Number Theorem that
#T1 ¿ x1/2/ log x. Put T2 = Ta,b(x, y)\T1. Then

x#T2/2 ≤
∏

p∈Ta,b(x,y)

p≥x1/2

p ≤
∏

1≤t≤y
at−b6=0

|b2a
t
1 − b1a

t
2| ≤ O

(
(|b1|+ |b2|)y

)|a1|
∑

1≤t≤y t

= exp(O(y2)),

which gives #T2 ¿ y2/ log x and completes the proof of the proposition. ut

The next result appears in [4].

Proposition 3. Let K be any positive constant. The set of primes p ≤ x such
that p−1 has a divisor in the interval [x1/2/(log x)K , x1/2(log x)K ] has cardinality
O(x log log x/(log x)1+ν), where ν = 2− (1 + log log 2)/ log 2 = 0.08607133 . . ..
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Let f(X) be any integer valued irreducible polynomial with rational coef-
ficients of degree > 1. For a positive real number x and a rational number
a 6= 0, ±1, we write

Ua,f (x) = {p ≤ x : p | af(n) − 1 for some positive integer n}.
Proposition 4. Let f(X) ∈ Q[X] be integer valued, irreducible and of degree
d ≥ 2. For every ε > 0 there exists xε > 0 such that the inequality

#Ua,f (x) <
x

log x(log log log x)(d−1)/d!−ε
holds for x > xε.

P r o o f. This result appears in [1], but only for an integer a not 0 or ±1. Here,
we merely indicate to the reader how to adjust the proof in [1] to the case of
a ∈ Q. To prove the result in [1], we needed an estimate for #A(x,m), the
number of prime numbers p ≤ x such that m divides the order of a modulo p,
with an error term uniform in the natural number m. To be precise, we had for
every ε > 0

#A(x,m) = κm

(
1 + O

(
m1−2ε

(log x)1/8−ε

))
π(x),

for some explicit positive constant κm, uniformly in m and x.
Now by Theorem 2 of [6], for m odd and squarefree, and g a rational, the

natural density δg(m) of the set of primes p for which m divides the order of g
modulo p exists and is again equal to

δg(m) = κm =
∏

`|m

`2

`2 − 1
, (` prime),

where κm is the real number that appeared above in the expression of #A(x,m),
as long as g is not a k-th power of a rational for any k ≥ 2. This last condition
may be achieved by replacing f(X) by the integer valued polynomial h(X) =
kf(X).

Now Lemma 1 of [6], gives an estimate for the number of primes p ≤ x for
which m divides the order of g modulo p with an error term E given as

E = π(x) Om

(
(log log x)ω(m)

(log x)1/8

)
.

However, by working out the dependency of E on m in Lemma 2 and in the
proof of Lemma 1 in [6], and in particular using the estimate ω(m)/ϕ(m) ¿
(log m)/m, we got

E = π(x) O

(
log m (log log x)ω(m)

(log x)1/8

)
. (7)
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With the above remarks, we can reiterate the proof of Theorem 1 in [1]. For
x large and y = 1

20 log log x, we considered all odd primes q1, . . . , qs ≤ y not
dividing the polynomial sequence (f(n))n≥0 so as to get an asymptotic formula
with a main term and an error term bounding above #Ua,f (x). This argument
carries over to the case of a rational. Indeed, the expression of the main term
remains identical if we set y = α log log x, for any positive real number α. Also,
in this proof, m being any factor of the integer q1 . . . qs, we have for x large
enough ω(m) ≤ s ≤ π(y) =

(
1 + o(1)

)
y/ log y ≤ 2α(log log x)/log log log x,

implying (log log x)ω(m) ≤ (log x)2α. Noting that log m ≤ m, we end up with
the exact same error term we got in [1], i.e. E = π(x) O

(
(log x)−1/20

)
, if we

choose α = 1/40. ut

3. The Proof

3.1. A basic lemma

In this subsection we prove a lemma valid in both the regular and the singular
cases. The signs of the non-zero rationals a, b, c and d are also irrelevant.

Lemma 5. If an ≡ b (mod p) and cn ≡ d (mod p) and the rank of 〈a, b, c, d〉Q∗
is at most 2, then there are three rational integers A,B and C such that the
congruence

xAn2+Bn+C ≡ 1 (mod p), (8)
holds for x = a, b, c or d.

P r o o f. Since the rank of 〈a, b, c, d〉Q∗ is 2 at most, it follows that there exist
at least two linearly independent vectors (αi, βi, γi, δi) ∈ ZZ4 for i = 1, 2, such
that

aαibβicγidδi = 1, for i = 1, 2. (9)
Raising the two congruences

an ≡ b (mod p), and cn ≡ d (mod p), (10)

to the powers αi and γi, respectively, and multiplying the resulting relations, we
get

aαincγin ≡ bαidγi (mod p), for i = 1, 2.

Using relations (9) to replace aαicγi by b−βid−δi , we get

b−βind−δin ≡ bαidγi (mod p), for i = 1, 2,

which we rewrite as

bβin+αidδin+γi ≡ 1 (mod p), for i = 1, 2. (11)
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Raising congruence (11) above to the power β2n + α2, for i = 1, and to the
power β1n + α1, for i = 2, and dividing the two resulting relations, we get

d(β2n+α2)(δ1n+γ1)−(β1n+α1)(δ2n+γ2) ≡ 1 (mod p). (12)

If instead we would have raised congruence (11) for i = 1 to δ2n + γ2 and the
one for i = 2 to δ1n + γ1 and divided the resulting congruences we would have
gotten the same congruence as (12) with d replaced by b.

Thus, if we write

A = β2δ1 − β1δ2,

B = (β2γ1 − β1γ2) + (α2δ1 − α1δ2),
C = α2γ1 − α1γ2,

we get that
bAn2+Bn+C ≡ 1 (mod p), (13)

and that the same congruence holds true with b replaced by d.
If instead we had raised the two congruences (10) to the powers βi and δi,

respectively, and multiplied them out we would have gotten, using (9)

aβincδin ≡ bβidδi ≡ a−αic−γi (mod p), for i = 1, 2,

giving
aβin+αicδin+γi ≡ 1 (mod p) for i = 1, 2. (14)

Now raising congruences (14) above to the power β2n+α2, for i = 1, and to the
power β1n + α1, for i = 2, we get

c(β2n+α2)(δ1n+γ1)−(β1n+α1)(δ2n+γ2) ≡ 1 (mod p),

which shows that congruence (13) holds with b replaced by c. Finally, a similar
argument also shows that congruence (13) holds when b is replaced by a. ut
3.2. The regular case

We proceed in several steps. Recall that, for convenience, we assume the ratio-
nals a, b, c and d positive so that

M(a, b, c, d) =
[
log a log c
log b log d

]
.

Step 1. One of the two vectors (βi, δi) is zero for i = 1 or 2.

Assume, say that (β1, δ1) = (0, 0) and p to be a prime in S. Then the
first relation (9) is aα1cγ1 = 1. This leads, upon exponentiation by n, and
using aα1n ≡ bα1 (mod p) and cγ1n ≡ dγ1 (mod p), to the relation bα1dγ1 ≡ 1
(mod p). So, S is finite unless bα1dγ1 = 1. But if bα1dγ1 = 1 = aα1cγ1 , we get

25



CHRISTIAN BALLOT — FLORIAN LUCA

that (α1, γ1)T is a non-trivial rational zero of the matrix M(a, b, c, d), which is
a contradiction. ut

From now on, we assume that (βi, δi) 6= 0 for i = 1, 2. We analyze the
expression

f(n) = An2 + Bn + C.

Step 2. The case A = B = C = 0.

We are about to show that this case cannot occur under our hypotheses. Since
A = 0, there is a λ ∈ Q such that

(β2, δ2) = (λβ1, λδ1).

Also C = 0 implies the existence of a rational µ with

(α2, γ2) = (µα1, µγ1).

Therefore, B = (λβ1γ1−β1µγ1)+(δ1µα1−α1λδ1) = (λ−µ)(β1γ1−α1δ1). Since
B = 0, one has λ = µ or β1γ1 − α1δ1 = 0. But λ = µ cannot be for it would
mean that the two vectors vi = (αi, βi, γi, δi), i = 1, 2, are linearly dependent.
Hence λ− µ is a non-zero rational number.

Now β1γ1 − α1δ1 = 0 implies the existence of a ν ∈ Q with

β1 = να1,

δ1 = νγ1.

Note that since (β1, δ1) is not the zero vector, ν is non-zero and the vector
(α1, γ1) is not the zero vector.

Let us rewrite relations (9)

1 = aα1bνα1cγ1dνγ1 ,

1 = aµα1bλνα1cµγ1dλνγ1 .

Raising the first relation to the λth power (resp. µth power) and dividing through
by the second yields respectively

aα1(λ−µ)cγ1(λ−µ) = 1 and bνα1(λ−µ)dνγ1(λ−µ) = 1,

implying aα1cγ1 = 1 and bα1dγ1 = 1. But these two identities mean that the
non-zero vector (α1, γ1)T is in the kernel of M(a, b, c, d), which contradicts our
hypothesis. ut

So, from now on, we may and will assume that f(X) is not zero.

Step 3. f(X) is of degree 0 or 1.

Then f(n) = Bn + C. Thus,

aBn+C ≡ 1 (mod p), which yields bBaC ≡ 1 (mod p),
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and
cBn+C ≡ 1 (mod p) yielding dBcC ≡ 1 (mod p),

so either S is finite, or aCbB = cCdB , giving that (C, B)T is a non-zero rational
vector in the kernel of M(a, b, c, d)T , which is again not the case we are consid-
ering. ut

Therefore in the last three steps, we assume f(X) to be of degree 2.

Step 4. f(X) ∈ Q[X] is irreducible.

In this case, by Proposition 4, we get that

#S(x) = O

(
x

log x(log log log x)1/2−ε

)
.

ut
Step 5. f(X) has two distinct rational roots.

The crux of our proof is, in this case, embedded in the lemma below.

Lemma 6. Let a, b ∈ Q∗\{±1}, α, β, γ and δ be rational integers such that
∣∣∣∣
α β
γ δ

∣∣∣∣ 6= 0.

Then the set R of primes p for which the system

aαn+β ≡ 1 (mod p),

bγn+δ ≡ 1 (mod p),

is solvable (for some n in IN), satisfies

#R(x) ¿ x log log x

(log x)1+ν
,

where ν = 2− (1 + log log 2)/ log 2 > 0.

P r o o f. Assume x is large and p is in R(x). Putting e = ordp(a) and f =
ordp(b), we have, for some n in IN, e | αn + β, f | γn + δ, and therefore
gcd(e, f) | γ(αn + β) − α(γn + δ) = γβ − αδ, a non-zero integer by our hy-
pothesis. Thus, gcd(e, f) = O(1). Since lcm[e, f ] divides p − 1, we get that
ef = lcm[e, f ] gcd(e, f) = O(p − 1) = O(x) if p ∈ R(x). Hence, writing
y = x1/2/ log x, at least one of the three statements below holds true : e < y, or
f < y, or e ∈ [y, x1/2 log2 x]. Indeed, for x large enough, if f were larger than
y and e larger than x1/2 log2 x, then we would have ef > x log x contradicting
ef = O(x).
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Writing R1(x) = {p ∈ R(x) : e < y}, R2(x) = {p ∈ R(x) : f < y}, and
R3(x) = R(x)\(R1(x) ∪R2(x)), we get, by Proposition 2, that

#R1(x) ≤ #Ta,1(x, y) ¿ y2

log x
=

x

(log x)3
,

#R2(x) ≤ #Tb,1(x, y) ¿ y2

log x
=

x

(log x)3
,

and by Proposition 3, that

#R3(x) ¿ x log log x

(log x)1+ν
.

Hence,

#R(x) ≤ #R1(x) + #R2(x) + #R3(x) ¿ x log log x

(log x)1+ν
.

ut
Now since f(X) has two distinct roots, we may write Af(n) as (r1n+s1)(r2n+

s2)/` for some integers r1, r2, s1, s2, ` with r1r2` 6= 0 and −s1/r1 6= −s2/r2.
Replacing f(X) by `Af(X), congruences (8) imply that

a(r1n+s1)(r2n+s2) ≡ 1 (mod p),

and that the same congruence holds true with a replaced by b, c or d. The
congruences an ≡ b (mod p) and cn ≡ d (mod p) lead to arin+si ≡ bi (mod p)
and crin+si ≡ di (mod p), where bi = briasi and di = dricsi for i = 1, 2. Assume
first that neither b1 nor d2 is 1. Then

br2n+s2
1 ≡ a(r1n+s1)(r2n+s2) ≡ 1 (mod p),

and
dr1n+s1
2 ≡ c(r2n+s2)(r1n+s1) ≡ 1 (mod p).

Now the result follows by applying Lemma 6.
A similar argument applies when neither one of b2 or d1 is 1. Now if both b1

and d2 are 1, then ar1n+s1 ≡ 1 (mod p), and cr2n+s2 ≡ 1 (mod p), so Lemma
6 can again be applied. Thus, we may assume that one and only one of b1 and
d2 is 1. Similarly, if both b2 and d1 are 1, we get that ar2n+s2 ≡ 1 (mod p),
and cr1n+s1 ≡ 1 (mod p) and Lemma 6 applies. So, we may assume that one
and only one of b2 and d1 is 1. To fix ideas, assume that b1 = 1. Then d2 6= 1.
If d1 = 1, then br1as1 = b1 = 1 and cr1ds1 = d1 = 1, therefore (s1, r1)T is a
non-zero zero of M(a, b, c, d)T , which is impossible. So d1 6= 1, which forces
b2 = 1. Hence, ar1n+s1 ≡ b1 = 1 (mod p) and ar2n+s2 ≡ b2 = 1 (mod p). Thus,
e = ordp(a) divides both r1n + s1 and r2n + s2; hence, e = O(1), which shows
that S is finite. This completes the proof of this case. ut
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Step 6. f(X) has a double root.

We can then write Af(n) as (rn+ s)2/`2 for some integers r, s, `, with r > 0
and ` > 0. By replacing f(n) by A`2f(n) in congruences (8), we get

a(rn+s)2 ≡ 1 (mod p),

and the same is true if we replace a by either one of b, c or d. From an ≡ b
(mod p), we get arn+s ≡ b1 (mod p), where b1 = bras. Similarly, cn ≡ d
(mod p) leads to crn+s ≡ d1 (mod p), where d1 = drcs. Again, not both b1 and
d1 can be 1, since this would lead to the fact that (s, r)T is a non-zero rational
zero of M(a, b, c, d)T .

Let Q(x) be the set of primes p ≤ x such that p− 1 contains a square factor
e > z = log x. We will first show that the cardinality of Q(x) is o(π(x)).

Fix any square number e ≤ x. Then the number of primes p < x such that
e | p− 1 is π(x; e, 1). If e ≤ x1/2, then, by the Brun-Titchmarsh Theorem,

π(x; e, 1) ¿ e

φ(e)
1
e

x

log(x/e)
¿ x log log x

e log x
,

where we used the minimal order φ(e)/e À (log log x)−1 when e is in the interval
[1, x]. If e > x1/2, we use the trivial bound π(x; e, 1) ≤ x/e. Thus,

#Q(x) ¿ x log log x

log x

∑

e>log x
e square

1
e

+ x
∑

e>x1/2

e square

1
e

¿ x log log x

(log x)3/2
+ x3/4 ¿ x log log x

(log x)3/2
,

where in the above estimates we used the fact that the estimate
∑
e>t

e square

1
e
¿ 1

t1/2

holds uniformly in t > 1.
Now let S1(x) = S(x)\Q(x). Recall that not both b1 and d1 can be 1 so

assume for instance that b1 6= 1. Since a(rn+s)2 ≡ 1 (mod p), it follows that
ordp(a) | (rn + s)2. Since also ordp(a) | p− 1 and p 6∈ Q(x), it follows that there
exists a number u < log x, such that ordp(a) | u(rn + s). But then au(rn+s) ≡ 1
(mod p), giving bu

1 ≡ 1 (mod p). This shows using Proposition 2 that

#S1(x) ≤ Tb1,1(z, x) ¿ log2 x + x1/2

log x
¿ x1/2

log x
.

29



CHRISTIAN BALLOT — FLORIAN LUCA

Hence, we showed that

#S(x) ≤ #Q(x) + #S1(x) ¿ x log log x

(log x)3/2
.

This completes the proof of the regular case. ut
3.3. The singular case

We recall that, in opposition to the regular case, we are to show that there is
a positive lower asymptotic density of primes p for which the system of simulta-
neous exponential congruences (2) is solvable for some natural number n. Here
a, b, c, d are assumed positive.

3.3.1. The row-singular case

Saying that (a, b, c, d) is in the row-singular case comes down to asserting the
existence of two coprime integers r and s, s not zero (since a 6= 1), such that
the vector equality

r · (log a, log c) = s · (log b, log d) holds. (15)

But (15) says that ar = bs and cr = ds. Assume first that the rank of the group
generated by a, b, c and d in Q∗+ is 2. Let g1 and g2 be two generators of this
group. Then there are integers m1, m2, n1 and n2 with

a = gm1
1 gm2

2 and b = gn1
1 gn2

2 . (16)

Therefore grm1
1 grm2

2 = gsn1
1 gsn2

2 , implying rm1 = sn1 and rm2 = sn2. Thus
there exist integers λ1 and λ2 with n1 = λ1r, m1 = λ1s and n2 = λ2r, m2 = λ2s.
Putting ρ1 = gλ1

1 gλ2
2 , we thus obtain a = ρs

1 and b = ρr
1.

Following a similar argument one would get c = ρs
2 and d = ρr

2 where ρ2 =
gµ1
1 gµ2

2 for some integers µ1 and µ2. Now (2) is equivalent to

ρsn−r
1 ≡ 1 (mod p) and ρsn−r

2 ≡ 1 (mod p). (17)

The above system (17) is clearly solvable if sn ≡ r (mod p − 1). For s odd,
this last congruence is solvable in n for any odd prime p ≡ −1 or 2 (mod s).
These primes have positive density by the Dirichlet Density Theorem.

For generic s, say |s| = 2αs′, s′ odd ≥ 1, we claim that there also is a set of
primes p of positive density such that (17) is solvable.

In fact any prime p ≡ −1 (mod s′) splitting in Q(
√

ρ1 ,
√

ρ2 ) and inert
in Q(i), say, will do. Indeed, such primes satisfy p ≡ 3 (mod 4), ρ

(p−1)/2
1 ≡

ρ
(p−1)/2
2 ≡ 1 (mod p). Moreover s is prime to p−1

2 . Hence the congruence
sn ≡ r (mod e), where e is the least common multiple of the orders of ρ1 and ρ2

(mod p), is solvable. Therefore (17) is solvable for such primes.
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Now by the Chebotarev Density Theorem such primes have positive density
provided the congruence p ≡ −1 (mod s′) and the congruences resulting from
the condition that p splits completely in Q(

√
ρ1 ,

√
ρ2 ) be non exclusive of each

other. This is the case if none of the two real quadratic fields Q(√ρj ), j = 1 or
2, is included in the cyclotomic field Q( e2iπ/s′ ). Otherwise, say if Q(√ρj ) ⊂
Q( e2iπ/s′ ), then we must check that the congruence p ≡ −1 (mod s′) implies
that p splits in Q(√ρj ). But p ≡ −1 (mod s′) implies that p splits completely in
Q( e2iπ/s′ + e−2iπ/s′ ), since the Frobenius automorphism of p for the extension
Q( e2iπ/s′ ) over Q is, for p ≡ −1 (mod s′), of order 2 and corresponds to
complex conjugation. Now Q( e2iπ/s′ + e−2iπ/s′ ) contains any real subfield of
Q( e2iπ/s′ ) and therefore Q(√ρj ). Hence, in this case, p splits completely in
Q(√ρj ) follows from the fact that p ≡ −1 (mod s′).

Therefore we have shown that (17) is solvable for a set of primes of positive
lower density.

Note that our result is valid whether a and c are negative or positive rationals.
Indeed, in the set of primes we constructed for generic s, the modulus e of
the congruence sn ≡ r (mod e) is odd, so that, by the Chinese Remainder
Theorem, we may impose the additional condition that n be even. And for n
even, congruences (2) also hold when we replace one (or both) rationals a or c
by respectively −a and −c.

Finally if the rank of the group generated by a, b, c and d in Q∗+ is 1 and g is
a generator of this group, then (2) is equivalent to

gλ(sn−r) ≡ 1 ≡ gλ′(sn−r) (mod p),

for some integers λ and λ′ that depend on a, b, c and d. This actually comes
down to a single congruence

ρsn−r ≡ 1 (mod p), where ρ = ggcd(λ,λ′),

for which we can show in the same manner as above the existence of a positive
lower density of primes solving it. ut

3.3.2. The column-singular case

Here we have coprime non-zero integers r and s with ar = cs and br = ds.
Following the argument of the row-singular case, we end up with a = ρs

1, c = ρr
1,

b = ρs
2 and d = ρr

2, where ρ1 and ρ2 are two positive rationals. Thus (2) is
equivalent to

ρsn
1 ≡ ρs

2 and ρrn
1 ≡ ρr

2 (mod p),
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which will certainly hold if ρn
1 ≡ ρ2 (mod p). When ρ1 and ρ2 are multiplica-

tively independent in Q∗, then Theorem 2 of [7], for instance, yields the exis-
tence, conditional to the generalized Riemann hypothesis, of a positive density
of primes for which ρn

1 ≡ ρ2 (mod p) holds. Note that since ρ2
1 and ρ2 are also

multiplicatively independent in Q∗ we may further impose that n be even in
ρn
1 ≡ ρ2 (mod p). Thus again the result holds irrespective of the signs of a and

c.
When ρ1 and ρ2 are multiplicatively dependent, which in particular is the

case when rank〈a, b, c, d〉Q∗ is 1, then

ρn
1 ≡ ρ2 (mod p) ⇐⇒ gλn−µ ≡ 1 (mod p),

for some rational g and integers λ and µ. The fact that a 6= 1 implies that λ 6= 0.
We have shown in the proof of the row-singular case the existence of a set of
primes of positive density solving a congruence such as gλn−µ ≡ 1 (mod p). ut

4. Appendix

Here, we show that if a, b, c, d are non-zero rationals generating a multiplica-
tive subgroup of Q∗ of rank at most 2, then M(a, b, c, d) has rational rank at
most 1 if and only if its determinant is zero.

Proposition 7. Assume that a, b, c and d are positive rational numbers such
that rank〈a, b, c, d〉Q∗ ≤ 2. Then the rational rank of M(a, b, c, d) is at most 1 if
and only if detM(a, b, c, d) = 0.

P r o o f. If 〈a, b, c, d〉Q∗ = {1}, then M(a, b, c, d) is the zero matrix and there is
nothing to prove. If 〈a, b, c, d〉Q∗ = 〈ρ〉 for some positive rational number ρ 6= 1,
then M(a, b, c, d) is a non-zero scalar multiple of a matrix with rational entries
(the scalar being exactly log ρ), and the equivalence to be shown clearly holds.
Assume now that 〈a, b, c, d〉Q∗ = 〈ρ, δ〉, where ρ and δ are some positive rational
numbers which are multiplicatively independent. Then detM = F (log ρ, log δ),
where F (X, Y ) ∈ Q[X, Y ] is either zero, or is a homogeneous polynomial with
rational coefficients of degree two. Thus, if F (X, Y ) is not identically zero, then
detM = 0 implies that log ρ/ log δ is either quadratic or rational. However,
log ρ/ log δ cannot be quadratic by the well-known Gelfond-Schneider Theorem
(see [2] and [8]), and the case when log ρ/ log δ is rational is also impossible
because it implies that ρ and δ are multiplicatively dependent. Thus, it remains
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to look at the case when F (X, Y ) is identically zero and to show that the rational
rank of M is ≤ 1. Writing

a = ρx1δx2 , b = ρx3δx4 , c = ρy1δy2 , and d = ρy3δy4 ,

we get that

detM(a, b, c, d) = F (log ρ, log δ) = (x1y3 − y1x3)(log ρ)2

+ (x1y4 + x2y3 − x4y1 − x3y2) log ρ log δ

+ (x2y4 − x4y2)(log δ)2.

Thus, F (X, Y ) is the zero polynomial if and only if

x1y3 = y1x3, x2y4 = x4y2, and x1y4 + x2y3 = x4y1 + x3y2. (18)

If y1 = y3 = 0, then x2y4 = x4y2 and x1y4 = x3y2. Thus, if both y2 and y4 are
also zero, then the second row of M(a, b, c, d) is zero (hence, the rational rank
of M is ≤ 1), while if not both y2 and y4 are zero, we see that

y4

[
log a
log c

]
− y2

[
log b
log d

]
= 0,

which again shows that the rational rank of M(a, b, c, d) is ≤ 1. A similar
argument applies if both y2 and y4 are zero (just interchange ρ and δ). Finally,
assume that not both y1 and y3 are zero, and that not both y2 and y4 are zero.
The first and second relations of (18) show that

(x1, x3) = λ(y1, y3) and (x2, x4) = µ(y2, y4),

with some rational numbers λ and µ, and now the last relation in (18) shows
that

(λ− µ)(y1y4 − y2y3) = 0.

If y1y4 = y2y3, we get that (y2, y4) = γ(y1, y3), and now one checks easily that

y1

[
log a
log c

]
− y3

[
log b
log d

]
= 0,

which again shows that the rational rank of M(a, b, c, d) is ≤ 1. Finally, if
λ − µ = 0, we then get that the first row of M(a, b, c, d) equals λ times the
second row of M(a, b, c, d), so that again the rational rank of M(a, b, c, d) is ≤ 1.

ut
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