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ABSTRACT. In this paper, we obtain nontrivial bounds for character sums
involving the aliquot divisors function s(n) = σ(n)− n.
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1. Introduction

For every positive integer n, let s(n) be the sum of the aliquot divisors of n
given by

s(n) =
∑

d |n
d6=n

d = σ(n)− n,

where σ(n) is the sum of divisors function. Here, we consider some arithmetic
properties of the aliquot sequence (s(n))n>1. In particular, for a fixed prime p,
we obtain nontrivial estimates in certain ranges for character sums of the form

Sp(N) =
N∑

n=1

χ(s(n)) for N > 1,

where χ is a nonprincipal multiplicative character modulo p. Note that if n is
prime, it follows that s(n) = 1, therefore χ(s(n)) = 1. Hence, we are left with
giving a nontrivial upper bound on the expression Sp(N) − π(N), where π(N)
stands, as usual, for the number of primes q 6 N .

Our results for the sum Sp(N) depend on estimates for the cardinality of the
sets

U(p,N) = {1 6 n 6 N : σ(n) ≡ 0 (mod p)},
and

T (p,N) = {1 < n 6 N : s(n) ≡ 0 (mod p)}.
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Upper bounds for exponential sums involving s(n) have been obtained in [3],
and analogous results for the Euler function ϕ(n) have been obtained in [2, 4, 5].
We apply similar methods in the present paper although some modifications are
needed not only since s(n) is not a multiplicative function but also since it takes
any prime number to 1.

Our main results are the following.

Theorem 1. The following bound holds

#U(p, N) ¿ N

p
min{(log N)2/3, (log p)2(log log N)5/3}

uniformly in the prime p and in N .

Theorem 2. The inequality

#T (p,N) ¿ N(log N)2

p1/12

holds uniformly in the prime p and in N .

Using the above results, we prove the following estimate.

Theorem 3. The following bound holds
∣∣Sp(N)− π(N)

∣∣ ¿ N(log N)6

p1/12
+

N

vv/3+O(v(log log v)/ log v)
,

uniformly in the prime p and in N , where v = (log N)/(log p).

Using Theorem 3, we get the following nontrivial bound on Sp(N) in almost
the entire range of p versus N .

Theorem 4. The estimate

|Sp(N)| ¿ N

log log log N
+

N

vv/3+O(v(log log log v)/ log v)

holds uniformly in the prime p and in N , where again v = (log N)/(log p).

In particular, |Sp(N)| = o(N) holds uniformly in the range 3 6 p 6 No(1) as
N →∞.

In the above statements, as well as throughout the paper, any implied con-
stants in the symbols ¿, À and O are absolute unless indicated otherwise. We
recall that for positive functions F and G the notations F = O(G), F ¿ G and
G À F are all equivalent to the assertion that the inequality F 6 cG holds with
some constant c > 0, whereas F = o(G) means that F/G → 0.

Throughout the paper, the letters p, q, r with or without subscripts are used
to denote prime numbers, and k, `, m, n denote positive integers.
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2. Preliminaries

Let P (n) be the largest prime factor of an integer n > 1, where we put
P (1) = 1. An integer n > 1 is said to be y-smooth if P (n) 6 y. As usual, we
define

ψ(x, y) = #{n 6 x : n is y-smooth} (x > y > 1).
The following bound is a relaxed and simplified version of [12, Corollary 1.3]
(see also [6]).

Lemma 5. The estimate

ψ(x, y) 6 xu−u+O(u(log log u)/ log u), where u = (log x)/(log y),

holds uniformly in the range 2 6 y 6 x and u 6 y1/2.

For given coprime integers 1 6 a 6 b, we let π(x; b, a) be the number of
primes p 6 x such that p ≡ a (mod b). The next statement is a simplified form
of the Brun-Titchmarsh theorem (see, for example, [9, Section 2.3.1, Theorem 1]
or [10, Chapter 3, Theorem 3.7]).

Lemma 6. For any x > b, we have

π(x; b, a) ¿ x

ϕ(b) log(2x/b)
.

When b is bounded above by a power of the logarithm of x, then the Siegel-
Walfiz theorem (see, for example, page 133 in [7]) gives us a much more precise
estimate on π(x; b, a). We record this as follows.

Lemma 7. For every positive constant A, there is a constant B = B(A) depend-
ing on A, such that the estimate

π(x; b, a) =
π(x)
φ(b)

+ O

(
x

exp(B
√

log x)

)
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holds uniformly in coprime integers 1 6 a 6 b with b 6 (log x)A.

Furthermore, writing qb,a for the least prime in the arithmetic progression a
(mod b), the following Linnik type bound on qb,a is due to Heath-Brown (see
[11]).

Lemma 8. The inequality qb,a ¿ b5.5 holds uniformly in coprime integers 1 6
a 6 b.

We will also need the following lower bound for a linear form in logarithms.
For a rational number α = r/s with coprime integers r and s > 0, we write
H(α) = max{|r|, s}. The following result is a particular case of Baker’s theorem
on lower bounds for linear forms in logarithms (see [1], for example).

Lemma 9. Let α1, α2, α3 be rational numbers different from 0, ±1, and let
b1, b2, b3 be positive integers. Put B = max{b1, b2, b3, 3}. Assume that

Γ = αb1
1 αb2

2 αb3
3 − 1 6= 0.

Then

− log |Γ| ¿ (log B)
3∏

i=1

log(H(αi)).

The above lemmas are enough for the proof of Theorems 1 and 2. For the
proof of Theorem 3 however, we also need the following bound for character
sums over prime numbers, which is a relaxed version of [15, Theorem 1].

Lemma 10. For any nonprincipal multiplicative character χ modulo p > 2, any
integer a coprime to p, and any real z > 2,

∑

q6z

χ(q + a) 6 zpo(1)(log z)5
(

1
p1/2

+
p1/2

z1/2
+

1
z1/6

)
,

as p →∞.

3. Proof of Theorem 1

By the multiplicativity of the sum of divisors function, it follows that when-
ever n ∈ U(p,N), there is a prime power qk such that p | σ(qk) and qk‖n. Recall
that qk‖n means that qk | n and qk+1 - n. Note that since σ(qk) < 2qk 6 2N ,
it follows that unless p 6 2N , the set U(p,N) is empty. From now on, we as-
sume that p 6 2N and for simplicity we write U = U(p,N) (i.e., we omit the
dependence on either p or N).
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Let U0 be the subset of those n ∈ U for which there exists a prime q‖n such
that p | σ(q). Then p | q + 1. Since q | n, it follows that q 6 N . Let q ≡ −1
(mod p) be fixed. The number of positive integers n 6 N such that q | n does
not exceed N/q. Hence, summing up over all the possibilities for q, we get

#U0 6
∑

q6N
q≡−1 (mod p)

N

q
= N

∑

q62N
q≡−1 (mod p)

1
q
¿ N log log N

p
. (1)

In the above estimates, we used the familiar fact that if 1 6 a 6 b are coprime
then ∑

q6N
q≡a (mod b)

1
q
¿ 1

qb,a
+

log log N

φ(b)

holds uniformly for 1 6 a 6 b 6 N , where we recall that qb,a denotes the
smallest prime number q ≡ a (mod b). Indeed, the above estimate follows by
Abel’s summation formula from Lemma 6.

From now on, we assume that n ∈ U\U0. Every such n has the property that
p | σ(qk) for some prime power qk‖n, where k > 2. Note that 2k 6 qk 6 N ,
therefore k 6 c log N , where c = (log 2)−1. For fixed p and k, the congruence

σ(qk) = qk + qk−1 + · · ·+ 1 ≡ 0 (mod p)

puts q into sk 6 k arithmetical progressions q ≡ qi (mod p). Here, we write qi

for the smallest positive integer in the above progression and we assume that
1 6 q1 < q2 < · · · < qs 6 p− 1. Note that

2qk
i > qk

i

(
1 +

1
qi

+ · · ·
)

> p,

therefore qi À p1/k. Put λi,k = (qk+1
p,qi

− 1)/(p(qp,qi − 1)). Note that λi,k <

2qk
p,qi

/p, and that 1 6 λ1,k < · · · < λsk,k. Fix i ∈ {1, . . . , sk} and write Ui,k for
the subset of U\U0 formed by those integers n 6 N such that qk | n for some
q ≡ qi (mod p). Given such a prime q, the number of such integers n 6 N does
not exceed N/qk. Summing up the contributions to U\U0 over all such primes
q, we get

#Ui,k 6
∑

q6N
q≡qi (mod p)

N

qk
6 N

qk
p,qi

+
∑

`>1

N

(qi + `p)k
6 N

qk
p,qi

+
N

pk
ζ(2)

¿ N

pλi,k
+

N

pk
.

125



SANKA BALASURIYA — FLORIAN LUCA

Summing up the above inequality over all the possibilities for i ∈ {1, . . . , sk},
we get that

sk∑

i=1

#Ui,k ¿ N

p

sk∑

i=1

1
λi,k

+
Nk

pk
.

Finally, summing the above inequality up over all k > 2, we get
∑

26k6c log N

sk∑

i=1

#Ui,k ¿ N

p

∑

26k6c log N

sk∑

i=1

1
λi,k

+ N
∑

k>2

k

pk
. (2)

It is clear that the second sum is O(N/p). Thus, it remains to deal with the
first double sum. Let Λ = {λi,k : 2 6 k 6 c log N, i = 1, . . . , sk}. As (i, k) is
a pair such that 2 6 k 6 c log N and 1 6 i 6 sk, we have that λi,k ∈ Λ, but
each number from Λ might appear from more that one pair (i, k) (incidentally,
a well-known conjecture about the Goormaghtigh Diophantine equation asserts
that in fact the only such case is 31 = (53 − 1)/(5 − 1) = (25 − 1)/(2 − 1); see
[16]). Fixing λ ∈ Λ, the multiplicity with which is appears as λi,k is bounded
by the number of solutions (q, k) with q a prime of the Diophantine equation

pλ =
qk+1 − 1

q − 1
. (3)

It remains to count, for a fixed M = pλ, the number A(M) of solutions (q, k)
with q prime to the equation

M =
qk+1 − 1

q − 1
.

A result of Loxton [14], says that A(M) 6 (log M)1/2+o(1) as M → ∞. Since
for us M 6 2N , we get that

A(pλ) 6 (log N)1/2+o(1) as N →∞. (4)

When p is sufficiently small, one can do better as follows. Assume that A(pλ) > 2
and let (q1, k1) 6= (q2, k2) be two solutions to equation (3). If k1 = k2, then
q1 = q2, which is impossible. So, let us assume that k1 > k2. Then, q1 < q2.
Equation

qk1+1
1 − 1
q1 − 1

=
qk2+1
2 − 1
q2 − 1

,

can be rewritten as

qk1+1
1 (q2 − 1)− qk2+1

2 (q1 − 1) = (q2 − q1) > 0,

therefore

qk1+1
1 q

−(k2+1)
2

(
q2 − 1
q1 − 1

)
− 1 =

q2 − q1

qk2+1
2 (q1 − 1)

.
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The expression appearing above is positive and obviously < q−k2
2 . Applying

Lemma 9 with Γ being the expression appearing in the left hand side of the
above equation, where

α1 = q1, α2 = q−1
2 , α3 =

q2 − 1
q1 − 1

, b1 = k1 + 1, b2 = k2 + 1, b3 = 1

(note that H(α1) = q1, H(α2) = q2, H(α3) < q2), yields

k2 log q2 ¿ log q1(log q2)2 log k1,

leading to k2 ¿ (log q2)2 log k1. Obviously k1 ¿ log N . Furthermore, since the
numbers q1 and q2 are the first primes in certain arithmetic progression modulo
p, we get, by Lemma 8, that q2 ¿ p5.5. Thus, k2 ¿ (log p)2 log log N . This
shows that if A(pλ) > 2, then

pλ 6 2qk2
2 ¿ exp(k2 log q2) = exp(O((log p)3 log log N)),

and now Loxton’s result shows that

A(pλ) 6 (log pλ)1/2+o(1) 6 (log log N)1/2+o(1)(log p)3/2+o(1) as N →∞.
(5)

Thus, putting

A = max{A(pλi,k) : 2 6 k 6 c log N, 1 6 i 6 sk},
we get that

A 6 min{(log N)1/2+o(1), (log p)2(log log N)1/2+o(1)}
uniformly in both p and N as N →∞. In particular, the inequality

A ¿ min{(log N)3/5, (log p)2(log log N)2/3} (6)

holds uniformly in N and p. Thus,

∑

26k6c(log N)

sk∑

i=1

1
λi,k

¿ A
∑

λ∈Λ

1
λ
¿ A log #Λ. (7)

Since
#Λ 6

∑

26k6c log N

sk 6
∑

26k6c log N

k ¿ (log N)2,

we get that log #Λ ¿ log log N , which together with estimates (1), (2), (6),
(7), and the fact that (log N)3/5 log log N ¿ (log N)2/3 completes the proof of
Theorem 1.
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4. Proof of Theorem 2

We may assume that p is sufficiently large otherwise there is nothing to prove.
We also assume that T (p,N) is nonempty. Since there exists a number n0 6 N
such that p | s(n0) and s(n0) 6= 0 (because n0 > 1), it follows that

p 6 s(n0) < σ(n0) ¿ N log log N. (8)

We let α ∈ (0, 1/10) be a number to be determined later. Recall that a number
m is squarefull if q2 | m whenever q is a prime factor of m. The set T1 of numbers
n 6 N such that d | n for some squarefull d > p2α has cardinality at most

#T1 6
∑

p2α6d6N
d squarefull

∑

1<n6N
d|n

1 6
∑

p2α<d
d squarefull

⌊
N

d

⌋

¿ N
∑

p2α<d
d squarefull

1
d
¿ N

pα
. (9)

For the last inequality above, we used the fact that the estimate
∑

t6d
d squarefull

1
d
¿ 1

t1/2

holds uniformly in t (with the particular value t = p2α), which in turn follows via
the Abel summation formula from the fact that the counting function of the set
of squarefull integers d 6 t is O(t1/2) (see, for example, Theorem 14.4 in [13]).

For the remaining n, let n = qm, where q = P (n). Assume first that q > pα.
Then q > P (m). In this case, s(n) = qs(m)+σ(m). Note that m 6= 1 since when
m = 1, we get that s(n) = 1, but this is not a multiple of p. Let T2 be the subset
formed by these n such that p | qs(m). Then p | σ(m), so m ∈ U(p,N/pα).
Since for a fixed m the number of values of q 6 N/m is 6 N/m (in this last
count we ignore the fact that q is a prime), we get that

#T2 6 N
∑

m∈U(p,N/pα)

1
m

. (10)

Theorem 1 tells us that the inequality

#U(p, t) ¿ t log N

p
(11)
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holds uniformly for t 6 N , and now by the Abel summation formula we get that

#T2 ¿ N(log N)2

p
.

Let T3 be the set of such numbers n 6 N such that p - qs(m) and still q > pα. If
n = qm ∈ T3, we then have that p - qs(m)σ(m), and q ≡ −σ(m)s(m)−1 (mod p),
where s(m)−1 stands for the inverse of s(m) modulo p. Let am ∈ {1, . . . , p− 1}
be such that am ≡ −σ(m)s(m)−1 (mod p). Thus, if m is fixed, then q is in the
fixed arithmetic progression am (mod p), and the number of such numbers is
6 N/(pm) + 1 6 2N/pαm (here, we ignore again the fact that q is prime, and
we use the fact that mpα < mq 6 N). Thus,

#T3 6 2N

pα

∑

m6N

1
m
¿ N log N

pα
. (12)

Let us now consider the set T4 of the remaining n in T (p, N). Then P (n) 6 pα.
Since σ(n) ¿ n log(P (n)) ¿ n log p, p | s(n), and s(n) 6= 0, we get that p 6
s(n) < σ(n) ¿ n log p, therefore n À p/ log p. Let λ be the smallest divisor of
n such that n/λ < p1/2/ log p. Write n = λd. Thus, d < p1/2/ log p. Note that
d > p1/2−α/(log p) because n is pα-smooth.

We now fix λ. We count the number of n = λd 6 N which are multiples
of λ. Write d = d1d2, where d1 and d2 are coprime, d1 is divisible only by
primes dividing λ, and d2 is coprime to λ. Note that d1 < p2α. Indeed, for
if not, then d1 > p2α, so n is divisible by d1

∏
r|d1

r, where, as stated in the
Introduction, we use r to denote a prime number. The last number above is
squarefull and exceeds p2α. However, positive integers n with such a divisor
have already been accounted for in T1. Thus, d1 < p2α. Write d2 = d3d4, where
d3 and d4 are coprime, d3 is squarefull, and d4 is squarefree. Since n 6∈ T1,
we get that d3 < p2α. Fix λ, d1 and d3, and write ` = λd1d3. Then d4 >
d/(d1d3) > p1/2−5α/(log p). Note that β = 1/2− 5α > 0 since we are assuming
that α ∈ (0, 1/10). Thus, ` 6 N/d4 6 N(log p)/pβ . We now show that the
number d4 is uniquely determined. Indeed, assume that there exist two distinct
values d4 and d′4 both < p1/2/ log p and coprime to `, such that both numbers
n = `d4 and n′ = `d′4 have the property that p | s(n) and p | s(n′). Since d4 and
` are coprime, we get s(n) = σ(`)σ(d4)−`d4 ≡ 0 (mod p). Since P (n) 6 pα < p,
we get that p does not divide n. Thus, p does not divide σ(`) either, and so
σ(d4)d−1

4 ≡ `σ(`)−1 (mod p). The same congruence holds when d4 is replaced
by d′4. Thus, σ(d4)d−1

4 ≡ σ(d′4)d
′−1
4 (mod p), leading to

p | σ(d4)d′4 − σ(d′4)d4. (13)
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Since max{d4, d
′
4} < p1/2/ log p, it follows that

max{σ(d4), σ(d′4)} ¿
p1/2 log log p

log p
.

In particular, for large p, we have

|σ(d4)d′4 − σ(d′4)d4| < p. (14)

Inequality (14) and congruence (13) yield σ(d4)/d4 = σ(d′4)/d′4. It is however
easy to see that the function s 7→ σ(s)/s is injective when restricted to square-
free numbers s (hint: observe that σ(s)/s determines uniquely P (s) when s is
squarefree). Since d4 and d′4 are squarefree, we get that d4 = d′4, which is a con-
tradiction. Hence, we see that n is uniquely determined by the triple (λ, d1, d3),
where ` = λd1d3 6 N(log p)/pβ . Given `, the divisor λ can be chosen in at most
τ(`) ways, where for a positive integer k we define τ(k) to be the number of
divisors of k. Given both ` and λ, we have that d1d3 = `/λ is such that d1 is
divisible only by primes dividing λ, and d3 is coprime to λ, therefore the pair
(d1, d3) is uniquely determined. Thus, we just showed that

#T4 6
∑

`6N(log p)/pβ

τ(`) ¿ N(log p)(log N)
pβ

¿ N(log N)2

pβ
. (15)

In the last estimate (15) above, we used the known fact that the estimate
∑

m6t

τ(m) ¿ t log t

holds uniformly in t, together with the bound (8) which implies that log p ¿
log N . Note that T1, T2, T3 and T4 cover T (p,N). Now the desired result follows
from estimates (9), (10), (12) and (15) by noticing that if one chooses α = 1/12,
then α = β = 1/12. ¤

Remark. We point out that a different bound on T (p, N) appears also in [3].

5. Proof of Theorem 3

We may clearly assume that N is arbitrarily large, that p > (log N)72, and
that v > 100, since the result is trivial otherwise. Put K = p3 and let E1 be the
set of integers n 6 N such that n is K-smooth. Clearly, #E1 = Ψ(N,K). Note
that

u =
log N

log K
=

log N

3 log p
=

v

3
. (16)
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Since p > (log N)72, we have that the inequality u 6 p1/2 holds uniformly in our
range for p and N once N is sufficiently large. Now Lemma 5 yields

#E1 = ψ(N,K) 6 N

uu+O(u(log log u)/ log u)
6 N

vv/3+O(v(log log v)/ log v)
(17)

uniformly in p and N .
Next, let E2 be the set of integers n 6 N not in E1 such that P 2(n) | n. For

each such integer n there is a prime q > p such that q2 | n. Thus,

#E2 6
∑
q>p

∑

n6N
q2 |n

1 6
∑
q>p

N

q2
¿ N

p
. (18)

Let E3 be the set of primes n 6 N . Clearly, s(n) = 1 for all n ∈ E3.
Now let N = {1, . . . , N}\ (E1 ∪ E2 ∪ E3). From the above bounds (17)-(18),

it follows that

Sp(N) =
∑

n∈N
χ(s(n)) + π(N) + O(#E1 + #E2)

= π(N) +
∑

n∈N
χ(s(n)) + O

(
N

vv/3+O(v(log log v)/ log v)
+

N

p

)
. (19)

Every integer n ∈ N can be uniquely represented in the form n = mq, where

2 6 m < N/K and Lm = max{K, P (m)} < q 6 N/m.

Conversely, if the numbers m and q satisfy the above inequalities, then n = mq
lies in N . Observing that s(mq) = s(m)q + σ(m), we arrive at

∑

n∈N
χ(s(n)) =

∑

26m<N/K

∑

Lm<q6N/m

χ(s(m)q + σ(m))

=
∑

26m<N/K
p-σ(m)s(m)

∑

Lm<q6N/m

χ(s(m)q + σ(m))

+ O


 ∑

m∈U(p,N/K)∪T (p,N/K)

N

m


 . (20)

Let us deal first with the “errors” in (20). For the sum over the first subset, we
get

∑

m∈U(p,N/K)

N

m
6 N

∑

m∈U(p,N/K)

1
m
¿ N(log N)2

p
, (21)
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where the last estimate above follows like in the proof of Theorem 2 based on
the estimate (11) and on Abel’s summation formula. As for the sum over the
second one, we get

∑

m∈T (p,N/K)

N

m
¿ N

∑

m∈T (p,N/K)

1
m
¿ N(log N)3

p1/12
. (22)

The last estimate above follows also from Abel’s summation formula via the fact
that, by Theorem 2, the estimate

#T (p, t) ¿ t(log N)2

p1/12

holds uniformly in t 6 N .
We now deal with the “main term” in (20). Assuming that p - s(m)σ(m), let

am ∈ {1, . . . , p − 1} be the least positive integer in the arithmetic progression
σ(m)s(m)−1 (mod p). We have

∑

26m<N/K
p-σ(m)s(m)

∑

Lm<q6N/m

χ(s(m)q + σ(m))

=
∑

26m<N/K
p-σ(m)s(m)

∑

Lm<q6N/m

χ(s(m)(q + am))

=
∑

26m<N/K
p-σ(m)s(m)

χ(s(m))
∑

Lm<q6N/m

χ(q + am). (23)

Since am is not a multiple of p, by Lemma 10, we have that

∑

Lm<q6N/m

χ(q+am) 6 N

m

(
p−1/2 + N−1/2m1/2p1/2 + N−1/6m1/6

)
po(1)(log N)5,

as p →∞. For m < N/K, the first term inside the above parentheses dominates
the other terms, and we thus obtain

∑

Lm<q6N/m

χ(q + am) 6 Npo(1)(log N)5

mp1/2
as p →∞.
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Substituting the above inequality in equation (23), we get,
∑

26m<N/K
p-σ(m)s(m)

∑

Lm<q6N/m

χ(s(m)q + σ(m)) 6
∑

26m<N/K
p-σ(m)s(m)

Npo(1)(log N)5

mp1/2

≤ Npo(1)(log N)5

p1/2

∑

16m<N/K

1
m

¿ N(log N)6

p1/2+o(1)

as p →∞. In particular, the estimate
∑

26m<N/K
p-σ(m)s(m)

∑

Lm<q6N/m

χ(s(m)q + σ(m)) ¿ N(log N)6

p1/3
(24)

holds uniformly in N and p. The desired estimate follows now from estimates
(19), (20), (21), (22), and (24).

6. Proof of Theorem 4

For a set A of positive integers and a positive real number t we put A(t) =
A ∩ [1, t].

We may assume that v > 100, otherwise there is nothing to prove. By Theo-
rem 3 and the Prime Number Theorem, it follows that

|Sp(N)| ¿ N

log N
+

N

vv/3+O(v(log log v)/ log v)

provided that p > (log N)100. So, from now on we may assume that p < M =
(log N)100. Then v > (log N)/(log M) = (log N)/(100 log log N), therefore

N

vv/3+O(v(log log v)/ log v)
6 N1−1/300+o(1), (N →∞),

therefore certainly the above expression is¿ N/(log log log N). Thus, it remains
to show that

|Sp(N)| ¿ N

log log log N
for p 6 M. (25)

Lemma 4 in [8], shows that there exists a constant c1 > 0 such that σ(n)
is a multiple of all primes q 6 c1 log log N/ log log log N for all n 6 N with
O(N/(log log log N)2) exceptions. Set L = c1 log log N/(log log log N), assume
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that p 6 L, and suppose that p | σ(n). Then s(n) ≡ −n (mod p), therefore
χ(s(n)) = χ(−n) = χ(−1)χ(n). Thus,

Sp(N) = χ(−1)
∑

n6N

χ(n) + O

(
N

log log log N

)
= O

(
p +

N

log log log N

)

= O

(
N

log log log N

)
.

Thus, we may assume that p ∈ (L,M ]. Put U = N1/ log log log N and V =
N1/(log log log N)2 . Write n = PQ`, where P = P (n) and Q = P (n/P ). The set
E1 of n 6 N such that P 6 U is, by Lemma 5, of cardinality O(N/ log log N)
as N → ∞. Thus, we may restrict our attention to the positive integers n 6
N not in E1. The set E2 of such integers such that Q = P is of cardinality
O(N/U) = O(N/ log log log N) (see, for example, the estimate for #E2 in the
proof of Theorem 3). We claim that the set E3 of n 6 N such that Q 6 V is
also of cardinality O(N/ log log log N). To see this, assume that m = Q` < N/U
is some number with P (m) = Q 6 V . Fixing m, the number of possibilities for
P 6 N/m is at most

π(N/m) 6 N

m log(N/m)
¿ N

m log U
=

N log log log N

m log N
.

Summing up over all m with P (m) 6 V , we get that the number of possibilities
for such n 6 N is

#E3 ¿ N log log log N

log N

∑

16m
P (m)6V

1
m
¿ N log log log N

log N

∏

p6V

(
1− 1

p

)−1

¿ N(log log log N) log V

log N
=

N

log log log N
.

Here, we used Mertens’s estimate for the product
∏

p6t (1− 1/p) with the choice
t = V .

We also discard the set E4 of positive integers n 6 N divisible by the square of
a prime > V since the number of such n 6 N is O(N/V ) = O(N/ log log log N).
On the remaining set of n 6 N , we have that P > Q > P (`), Q > V and P > U .
Let M be the set of positive integers m < N/U , mP (m) 6 N , P (m) = Q > V
and P (m)‖m. Put, as in the proof of Theorem 3, Lm = max{P (m), U}. Then
all but O(N/ log log log N) of the positive integers n 6 N are of the form mP ,
for some m ∈ M and P ∈ (Lm, N/m], and distinct pairs (m, P ) of this form
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give rise to distinct n’s. Thus,

N =
∑

m∈M
(π(N/m)− π(Lm)) + O

(
N

log log log N

)
.

Furthermore, as in the proof of Theorem 3, we also have

Sp(N) =
∑

m∈M

∑

Lm<P6N/m

χ(s(m)P + σ(m)) + O

(
N

log log log N

)
.

We next need to understand the subset M1 of M formed by numbers m such
that p | s(m). Let m = Q` be such a number. Then s(m) = Qs(`) + σ(`) ≡ 0
(mod p). LetM2 be the subset ofM1 such that p | s(`). Then p | σ(`), therefore
p | `. Furthermore, p | σ(`) | σ(m). Write m = pm1. Let t 6 N and let us
bound the cardinality of M2(t). If p | m1, then p2 | m and the number of such
m is 6 t/p2. If p - m1, then σ(m) = (p + 1)σ(m1), therefore m1 6 t/p is a
number such that p | σ(m1). Theorem 1 shows that the number of such m1 is

#U(p, t/p) ¿ t(log log t)5/3(log p)2

p2
¿ t(log log N)5/3(log p)2

p2
.

Thus, we just proved that the estimate

#M2(t) ¿ t(log log N)5/3(log p)2

p2
(26)

holds uniformly in t 6 N .
Next, let us look at M3 = M1\M2. In this case, Qs(`) ≡ −σ(`) (mod p).

Furthermore, p - s(`), and Q > V > M > p, therefore p - σ(`). Thus,
−σ(`)s(`)−1 (mod p) is a nonzero congruence class modulo p and we denote
its residue by a` ∈ {1, . . . , p − 1}. This shows that the congruence class of Q
modulo p is determined by ` whenever m ∈M2. Fixing ` with p - s(`) and t such
that t > `V , the number of possible values of Q 6 t/` such that Q ≡ −σ(`)s(`)−1

(mod p) is, by Lemma 6,

π(t/`; p, a`) ¿ t

p` log(2t/(`p))
¿ t

p` log(V 1/2)
¿ t(log log log N)2

p` log N
.

Here, we used the fact that the inequalities

t

`p
> V

p
> V

M
> V 1/2

hold whenever N is sufficiently large. The above bound is uniform in our range
for t and `. Summing up over all the possibilities for ` 6 t/V once t is fixed, we
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get that

#M3(t) ¿ t(log log log N)2

p log N

∑

`6N

1
`
¿ t(log log log N)2

p
. (27)

Estimates (26), (27), and the fact that #M1(t) 6 #M2(t) + #M3(t), show
that

#M1(t) ¿ t

(
(log log N)5/3(log p)2

p2
+

(log log log N)2

p

)
.

By Abel’s summation formula, we get that

∑

m∈M1

1
m
¿

(
(log log N)5/3(log p)2

p2
+

(log log log N)2

p

)
log N.

Thus,
∑

m∈M1

(π(N/m)− π(Lm)) 6
∑

m∈M1

N

m log(N/m)

6
∑

m∈M1

N

m log U
¿ N log log log N

log N

∑

m∈M1

1
m

¿ N

(
(log log N)5/3(log log log N)(log p)2

p2
+

(log log log N)3

p

)
.

Since p > L, it follows that the last bound above is

¿ N(log log log N)5

(log log N)1/3
¿ N

log log log N
.

Thus, putting M0 = M\M1, we have just proved that both formulae

N =
∑

m∈M0

(π(N/m)− π(Lm)) + O

(
N

log log log N

)
, (28)

and

Sp(N) =
∑

m∈M0

∑

Lm<P<N/m

χ(s(m)P + σ(m)) + O

(
N

log log log N

)
(29)

hold uniformly in our range for p and N . Now let m ∈M0, and let λ be any con-
gruence class modulo p different from σ(m). Primes P ∈ (Lm, N/m] such that
s(m)P +σ(m) ≡ λ (mod p) are precisely those such that P ≡ (λ− σ(m))s(m)−1

(mod p). Let a := a(λ,m) ∈ {1, . . . , p− 1} be such that a ≡ (λ− σ(m))s(m)−1
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(mod p). Since p 6 (log N)100 6 (log U)200 6 (log Lm)200 uniformly for large
N , we get, by Lemma 7 with A = 200, that the number of such primes is

π(N/m; p, a)− π(Lm; p, a) =
π(N/m)− π(Lm)

φ(p)
+ O

(
N

m exp(c2

√
log U)

)

with some positive constant c2. This shows that, for a fixed m ∈ M0, we have
that the inner sums in (29) can be estimated as

∑

Lm<P6N/m

χ(s(m)P + σ(m)) =
π(N/m)− π(Lm)

p− 1

∑

λ (mod p)
λ 6≡σ(m) (mod p)

χ(λ)

+ O

(
pN

m exp(c2

√
log U)

)
.

Since ∑

λ (mod p)
λ 6≡σ(m) (mod p)

χ(λ) = O(1),

we get, summing up over all the possible values of m ∈M0, and using estimates
(29) and (28), that

Sp(N) =
∑

m∈M0

∑

Lm<P6N/m

χ(s(m)P + σ(m)) + O

(
N

log log log N

)

¿
∑

m∈M0

(
π(N/m)− π(Lm)

p− 1
+

Np

m exp(c2

√
log U)

)
+

N

log log log N

=
1

p− 1

( ∑

m∈M0

(π(N/m)− π(Lm))

)
+

Np

exp(c2

√
log U)

∑

m6N

1
m

+
N

log log log N
¿ N

p− 1
+

Np log N

exp(c2

√
log U)

+
N

log log log N

¿ N

L
+

N(log N)101

exp((log N)1/3)
+

N

log log log N
¿ N

log log log N
,

which completes the proof of this theorem.
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Nombres Bordeaux 5 (1993), 411–484.
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C.P. 58089, Morelia, Michoacán,
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