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ON LARGE FAMILIES OF PSEUDORANDOM

BINARY LATTICES

Christian Mauduit — András Sárközy

ABSTRACT. In an earlier paper Hubert and the authors introduced and studied
the notion of pseudorandomness of binary lattices, and they also gave a construc-
tion for a binary lattice with strong pseudorandom properties. However, in the
applications one needs large families of “good” binary lattices; here a construc-
tion of this type is presented which uses the quadratic characters of finite fields
and polynomials.
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1. Introduction

In a series of papers the authors (partly with further coauthors) developed a
constructive theory of finite pseudorandom binary sequences. In particular, in
[6] they introduced the measures of pseudorandomness, and they showed that
the Legendre symbol sequence

(
1
p

)
,
(

2
p

)
, . . . ,

(
p−1

p

)
has strong pseudorandom

properties in terms of these measures. Later constructions for large families of
“good” sequences (finite binary sequences with strong pseudorandom properties
in terms of the introduced measures ) were also given. In terms of computa-
tional time and bounds for the pseudorandom measures, the best construction
is, perhaps, the one in [2].

This construction is based on the use of the Legendre symbol :
Assume that p is a prime number, f(x) ∈ Fp[x] has degree k(> 0), f(x) has no

multiple zero in Fp (the algebraic closure of Fp) and define the binary sequence
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Ep = (e1, . . . , ep) by

en =

{(
f(n)

p

)
for (f(n), p) = 1

+1 for p | f(n)
(for n = 1, . . . , p). (1.1)

It was shown in [2] that the so-called “well-distribution measure” of Ep is small,
and if one of the following conditions holds:

(i) k < p and ` = 2 ;
(ii) (4`)k < p ; (1.2)
(iii) k < p, ` < p, and 2 is a primitive root modulo p, then the “correlation of

order `” is also small (see [6] for the definition of the well-distribution measure
and correlation measure; see also [8]).

In [5] Hubert, Mauduit and Sárközy extended this constructive theory of
pseudorandomness to several dimensions. Let In

N denote the set of the n-dimen-
sional vectors whose all coordinates are selected from the set {0, 1, . . . , N − 1}:

In
N =

{
x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

We call this set n-dimensional N -lattice or briefly (if n is fixed) N -lattice.

Definition 1. A function of the type

η(x) : In
N → {−1,+1} (1.3)

is called n-dimensional binary N -lattice or briefly binary lattice.

(Note that in the special case n = 1 these functions are the binary sequences
EN ∈ {−1, +1}N .) In [5] the use of the following measures of pseudorandomness
of binary lattices was proposed:

Definition 2. If η = η(x) is an n-dimensional binary N -lattice of the form
(1.3), k ∈ N, and ui (i = 1, 2, . . . , n) denotes the n-dimensional unit vector
whose i-th coordinate is 1 and the other coordinates are 0, then write

Qk(η) = max
B,d1,...,dk,T

∣∣∣∣
t1∑

j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1) (1.4)

. . . η(j1b1u1 + · · ·+ jnbnun + dk)
∣∣∣∣ ,

where the maximum is taken over all n-dimensional vectors B = (b1, . . . , bn),
d1, . . . , dk, T = (t1, . . . , tn) such that their coordinates are non-negative integers,
b1, . . . , bn are non-zero, d1, . . . , dk are distinct, and all the points j1b1u1 + · · ·+
jnbnun +di occuring in the multiple sum belong to the n-dimensional N -lattice
In
N . Then Qk(η) is called the pseudorandom (briefly PR) measure of order k of

n.
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(Note that in the one-dimensional special case Qk(η) is the combined PR-
measure Qk of order k which was also introduced in [6] and which combines the
well-distribution measure and correlation measure of order k mentioned above.)

In [5] we proved that for a fixed k ∈ N and for a truly random n-dimensional
binary N -lattice η(x), we have

Nn/2 ¿ Qk(η) ¿ Nn/2(log Nn)1/2

with probability > 1−ε, while the trivial upper bound for Qk(η) is Nn. Thus an
n-dimensional binary N -lattice η can be considered as a “good” pseudorandom
binary lattice, if the PR measure of order k of η is “small” in terms of N (in
particular, Qk(η) = o(Nn) for fixed n and N → +∞) for small k.

Moreover, in [5] we gave an example for a “good” n-dimensional binary lattice
(for any n):

Theorem A. Let p be an odd prime, n ∈ N, q = pn, and denote the quadratic
character of Fq by γ (setting also γ(0) = 0). Consider the linear vector space
formed by the elements of Fq over Fp, and let v1, . . . , vn be a basis of this vector
space, i.e., assume that v1, . . . , vn are linearly independent over Fp. Define the
mapping η(x) of type

η(x) : In
p → {−1, +1}

by

η(x) = η
(
(x1, . . . , xn)

)
=

{
γ(x1v1 + · · ·+ xnvn) for (x1, . . . , xn) 6= (0, . . . , 0)
1 for (x1, . . . , xn) = (0, . . . , 0)

(1.5)
for any x1, . . . , xn ∈ Fp. Then for any k ∈ N we have

Qk(η) < kq1/2(1 + log p)n.

However, in the applications (e.g., in cryptography) one usually needs not
just a few “good” PR binary lattices but we need a “large” family of binary
lattices with strong PR properties. Thus in this paper our goal is to construct
large families of n-dimensional binary lattices with strong pseudorandom prop-
erties. Indeed, we will show that by using also some ideas from [5], with some
further work the one-dimensional construction can be adapted and extended to
several dimensions. In particular, in [2] (and later also in [7] and [3]) and ad-
dition theorem (formulated as Lemma 3 in [1]) played a crucial role. In [1] we
analyzed this theorem, and we showed that it is nearly (apart from a log log p
factor) the best possible. The original proof of this result cannot be adapted to
several dimensions. Here in several dimensions we will present a different proof
which will also improve on the original one-dimensional theorem so that in this
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sharper form it will give the best possible estimate for min(|A|, |B|) (apart from
a constant factor).

Throughout this paper we will use the following notations: we write e(α) =
e2πiα, p denotes an odd prime, n ∈ N, q = pn, and γ, v1, . . . , vn are defined in
the same way as in construction (1.5).

2. The construction and pseudorandomness under
admissibility assumption

As in [2], first we have to define the notion of admissibility.

Definition 3. If q = pn is a prime power, A,B ⊂ Fq, and A + B represents
every element of Fq with even multiplicity, i.e., for all c ∈ Fq,

a + b = c, a ∈ A, b ∈ B (2.1)

has even number of solutions (including the case when there are no solutions),
then the sum A+ B is said to have property P .

Definition 4. If q = pn is a prime power, k, ` ∈ N and k, ` ≤ q, then (k, `, q)
is said to be an admissible triple if there are no A,B ⊂ Fq such that |A| = k,
|B| = `, and A+ B possesses property P .

We will prove the following theorem:

Theorem 1. Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x]
has degree ` with

0 < ` < p, (2.2)

f(x) has no multiple zero in Fq, and define the n-dimensional binary p-lattice

η(x) : In
p → {−1, +1}

by

η(x) = η
(
(x1, . . . , xn)

)
=

=

{
γ
(
f(x1v1 + · · ·+ xnvn)

)
for f(x1v1 + · · ·+ xnvn) 6= 0

1 for f(x1v1 + · · ·+ xnvn) = 0.

Assume also that k ∈ N and the triple (r, k, q) is admissible for all r ≤ `. Then
we have

Qk(η) < k`
(
q1/2(1 + log p)n + 2

)
. (2.3)
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We remark that if we take

f(x) =
∏
a

(
x + (a, 0, . . . , 0)

)

where a runs over the elements of the prime field Fp of Fq, then clearly we have

f(x) = f
(
x + (b, 0, . . . , 0)

)
for all b ∈ Fp.

Thus for k = 2, d1 = (0, 0, . . . , 0), b ∈ Fp, b 6= 0, d2 = (b, 0, . . . , 0) every term of
the n-fold sum in (1.5) is

γ
(
f(j1b1u1 + · · ·+ jnbnun)

)
γ
(
f(j1b1u1 + · · ·+ jnbnun + (b, 0, . . . , 0))

)
=

= γ2
(
f(j1b1u1 + · · ·+ jnbnun)

)
= 1

if f(j1b1u1 + · · ·+jnbnun) 6= 0, and the terms with f(j1b1u1 + · · ·+jnbnun) = 0
are also 1 by the definition of η. Thus we have

Q2(η) = max
t1,t2,...,tn

(t1 + 1)(t2 + 1) . . . (tn + 1) = pn = q

so that one cannot give a nontrivial bound for Q2(η). This example shows that
an assumption of type (2.2) is necessary.

P r o o f o f T h e o r e m 1. Write di = (d(i)
1 , . . . , d

(i)
n ) (for i = 1, . . . , k), and

consider the general term of the n-fold sum in (1.4):

η
(
j1b1u1 + · · ·+ jnbnun + d1

)
. . . η

(
j1b1u1 + · · ·+ jnbnun + dk

)
= (2.4)

= η
(
(j1b1 + d

(1)
1 , . . . , jnbn + d(1)

n )
)
. . . η

(
(j1b1 + d

(k)
1 , . . . , jnbn + d(k)

n )
)
.

Now write
z = j1(b1v1) + · · ·+ jn(bnvn) (2.5)

so that z belongs to the box

B′ =
{ n∑

i=1

ji(bivi) : 0 ≤ ji < ti for i = 1, . . . , n

}
, (2.6)

and set
zi = d

(i)
1 v1 + · · ·+ d(i)

n vn. (2.7)

If z ∈ B′ is such that f(z + z1) . . . f(z + zk) 6= 0, and we write f(z) = cf1(z)
with c ∈ Fq, where f1(z) is a monic polynomial, then by the definition of η and
the multiplicativity of γ, the product in (2.4) is

γ
(
f(z + z1)

)
. . . γ

(
f(z + zk)

)
= γ(ck)γ

(
f1(z + z1) . . . f1(z + zk)

)
.
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It follows that
∣∣∣∣

t1∑

j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1) . . . η(j1b1u1 + · · ·+ jnbnun + dk)−

−γ(ck)
∑

z∈B′
γ
(
f1(z + z1) . . . f1(z + zk)

)∣∣∣∣ ≤

≤
∑

z∈B′
f(z+z1)...f(z+zk)=0

(1 + 1) ≤ 2
∑

z∈Fq

f(z+z1)...f(z+zk)=0

1 ≤ 2k`. (2.8)

Now we need the following result of Winterhof:

Lemma 1. If p, n, q, v1, v2, . . . , vn are defined as above, χ is a multiplicative
character of Fq of order d > 1, f ∈ Fq[x] is a nonconstant polynomial which is
not a d-th power and which has m distinct zeros in its splitting field over Fq,
and k1, . . . , kn are non-negative integers with k1 ≤ p, . . . , kn ≤ p, then, writing

B =
{ n∑

i=1

jivi : 0 ≤ ji < ki

}
, we have

∣∣∣∣
∑

z∈B

χ(f(z))
∣∣∣∣ < mq1/2(1 + log p)n.

Proof of Lemma 1. This is a part of Theorem 2 in [10] (where its proof was based
on A. Weil’s theorem [9]).

Write h(z) = f1(z + z1) . . . f1(z + zk). Then in order to prove (2.3), it suffices
to show:

Lemma 2. If q, f, k, ` are defined as in Theorem 1, then h(x) has at least one
zero in Fq whose multiplicity is odd.

Indeed, assuming that Lemma 2 has been proved, the proof of (2.3) can be
completed in the following way: by Lemma 2, we may apply Lemma 1 with γ,
2, h(x) and B′ in place of χ, d, f(x) and B, respectively (since h(x) has at
least one zero of odd multiplicity, it cannot be a square). The number m of the
distinct zeros of h(x) is ≤ deg h(x) = k deg f1 = k`, thus applying Lemma 1 we
obtain ∣∣∣∣

∑

z∈B′
γ(h(z))

∣∣∣∣ < k`q1/2(1 + log p)n. (2.9)

(2.3) follows from (2.8) and (2.9).
Thus it remains to prove Lemma 2.
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Proof of Lemma 2. We will say that the polynomials ϕ(x) ∈ Fq[x], ψ(x) ∈ Fq[x]
are equivalent: ϕ ∼ ψ if there is an a ∈ Fq such that ψ(x) = ϕ(x + a). Clearly,
this is an equivalence relation.

Write f1(x) as the product of irreducible monic polynomials over Fq. It follows
from our assumption on f(x) that these irreducible factors are distinct, and by
(2.2), their degree is ≤ deg f1 = deg f = ` < p. Let us group these factors so
that in each group the equivalent irreducible factors are collected. Consider a
typical group ϕ(x + a1), . . . , ϕ(x + ar).

Then writing h(x) as the product of monic irreducible polynomials over Fq,
all the polynomials ϕ(x + ai + zj) with 1 ≤ i ≤ r, 1 ≤ j ≤ k occur amongst the
factors. All these polynomials are equivalent, and no other irreducible factor
belonging to this equivalence class will occur amongst the irreducible factors
of h(x).

Distinct monic irreducible polynomials cannot have a common zero, and if
ϕ(x) ∈ Fq[x], 0 < deg ϕ < p and b, c ∈ Fq, b 6= c, then ϕ(x + b) 6= ϕ(x + c).
(Namely, if h ∈ Fq, h 6= 0, then ϕ(y + h) 6= ϕ(y) since the derivative of ϕ(y)
is not identically 0 by 0 < deg ϕ < p.) Thus the conclusion of Lemma 2 fails,
i.e., each of the zeros of h(x) is of even multiplicity, if and only if in each group,
formed by equivalent irreducible factors ϕ(x+ai +zj) of h(x), every polynomial
of the form ϕ(x + c) occurs with even multiplicity, i.e., for even number of pairs
ai, zj . In other words, writing A = {a1, . . . , ar}, Z = {z1, . . . , zk}, for each
group A + Z must possess property P . Now consider any of these groups (by
deg f > 0 there is at least one such group).

Since A + Z possesses property P , thus (r, k, q) (with r = |A|) is not an
admissible triple. Here we have r ≤ deg f1 = deg f = ` which contradicts our
assumption in Theorem 1 on the triples r, k, q so that, indeed, the conclusion of
Lemma 2 cannot fail, and this completes the proof of Theorem 1. ¤

3. Criteria for admissibility

To be able to use Theorem 1 one needs sufficient criteria for admissibility. We
will prove two criteria of this type.

Theorem 2. (i) For every prime power q = pn and for ` ∈ N, ` < p the triple
(`, 2, q) is admissible.

(ii) If q = pn is a prime power, k, ` ∈ N, and

4n(k+`) < p, (3.1)

then the triple (k, `, q) is admissible.
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Note that in the special case q = p in [2], Theorem 2 there was a further
criterion: if p is a prime such that 2 is a primitive root modulo p, then every
triple (k, `, p) with k < p, ` < p is admissible. Unfortunately, we have not been
able to prove a similar criterion for general q; we will return to this subject in
Section 4.

P r o o f o f T h e o r e m 2. Some of the ideas in the proof was also used in the
proof of Theorem 2 in [2], thus we will leave some details to the reader.

(i) Assume that contrary to the assertion

0 < ` < p, (3.2)

and there are A,B ⊂ Fq such that |A| = `, |B| = 2, and (2.1) has even number
of solutions for all c ∈ Fq, and write B = {b, b + d} (with d 6= 0). Then every
element of A + b has at least 2 representations in form (2.1) whence it follows
that A+b = A+b+d. Therefore, A+b = A+b+rd for any r ∈ {0, 1, . . . , p−1}.
For any fixed a ∈ A we have a + b + rd ∈ A+ b + rd = A+ b whence

` = |A| = |A+ b| ≥
∣∣{a + b + rd : r ∈ {0, 1, . . . , p− 1}}

∣∣ = p

which contradicts (3.2).
(ii) For a ∈ Z, let r(a) denote the absolute least residue of a modulo p, i.e.,

define r(a) ∈ Z by

r(a) ≡ a (mod p), |r(a)| ≤ p− 1
2

.

First we will prove

Lemma 3. If p is an odd prime, t ∈ N,

4t < p (3.3)

and h1, . . . , ht ∈ Z, then there is an integer m such that 0 < m < p and

|r(mhi)| ≤
[p

4

]
. (3.4)

Proof of Lemma 3. For h ∈ Z define y(h) as the least non-negative such that h
is congruent to one of the integers in the interval

(
y(h)

([p

4

]
+ 1

)
, (y(h) + 1)

([p

4

]
+ 1

)]

modulo p. Clearly, we have y(h) ∈ {0, 1, 2, 3} for every y. For u = 1, 2, . . . , p,
consider the t-tuple

(
y(uh1), . . . , y(uht)

)(∈ {0, 1, 2, 3}t
)
. The number of these

t-tuples is p which, by (3.3), is greater than the number of the distinct t-tuples
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in {0, 1, 2, 3}t. Thus by the pigeonhole principle there are at least two of these
t-tuples which coincide:

(
y(uh1), . . . , y(uht)

)
=

(
y(vh1), . . . , y(vht)

)
with 1 ≤ u < v ≤ t.

Then writing m = v − u, it follows from y(uhi) = y(vhi) that

|r(mhi)| = |r((v − u)hi

)| = |r(vhi − uhi)| ≤
[p

4

]
for i = 1, . . . , t

which proves (3.4).
In order to complete the proof of case (ii) in Theorem 2, clearly it suffices to

show:

Lemma 4. If q = pn, k, ` ∈ N,

4n(k+`) < p, (3.5)

A,B ⊂ Fq, |A| = k and |B| = `, then there is a c ∈ Fq such that the equation

a + b = c, a ∈ A, b ∈ B
has exactly one solution.

We remark that in the special case q = p in [2] we used a weaker result of this
type (in which (3.5) was replaced by a stronger assumption). The proof given in
[2] cannot be extended to the case of general q. However, introducing new ideas
and, in particular, an “ordering” as defined below, we can prove this both more
general and sharper result here.

Proof of Lemma 4. Again we represent every element u ∈ Fq in the form

u = x1v1 + · · ·+ xnvn

where v1, . . . , vn is a basis for the vector space Fq over Fp, and x1, . . . , xn belong
to the prime field Fp. We identify Fp by the field of the residue classes mod p,
and we do not distinguish between the residue classes and their representant
elements. We write xi = xi(u). Now we apply Lemma 3 with the numbers xi(a)
(with i = 1, . . . , n, a ∈ A) and xj(b) (with j = 1, . . . , n, b ∈ B) in place of
h1, . . . , ht. Then we have

t = n|A|+ n|B| = n(k + `)

so that (3.3) holds by (3.1) and thus, indeed, Lemma 3 can be applied. We
obtain that there is an m ∈ N with

0 < m < p (3.6)
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and
∣∣r(mxi(a)

)∣∣,
∣∣r(mxj(b)

)∣∣ ≤
[p

4

]
for i = 1, . . . , n, a ∈ A, j = 1, . . . , n, b ∈ B.

(3.7)

Let W denote the set of the n tuples (w1, . . . , wn) with − [
p
4

] ≤ wi ≤ +
[

p
4

]
for i = 1, . . . , n. We introduce an ordering in W : if w = (w1, . . . , wn) ∈ W ,
w′ = (w′1, . . . , w

′
n) ∈ W and w 6= w′, then we say that w < w′ if and only

if defining i by w1 = w′1, . . . , wi−1 = w′i−1, wi 6= w′i (if w1 6= w′1 then we
take i = 1), we have wi < w′i. This ordering clearly possesses the following
fundamental properties:

(i) if w ∈ W , w′ ∈ W , then exactly one of the relations w = w′, w < w′,
w′ < w holds;

(ii) it is transitive: w < w′, w′ < w′′ implies w < w′′.
Then clearly, any subset of W has a uniquely determined the greatest element.
By (3.7), both sets WA =

{(
r(mx1(a)), . . . , r(mxn(a))

)
: a ∈ A}

and WB ={(
r(mx1(b)), . . . , r(mxn(b))

)
: b ∈ B}

are subsets of W . Denote the greatest
elements of A and B by wA and wB, and assume that they correspond to
a ∈ A and b ∈ B, respectively: wA =

(
r(mx1(a)), . . . , r(mxn(a))

)
, wB =(

r(mx1(b)), . . . , r(mxn(b))
)
. Then by the maximality of wA and wB, the sum

wA + wB has no other representation in the form

w + w′ with w ∈ WA, w′ ∈ WB. (3.8)

By (3.7), the coordinates of any sum of form (3.8) belong to the interval
[
−2

[p

4

]
, +2

[p

4

]]
⊂

[
−

[p

2

]
,+

[p

2

]]
,

and the integers in this interval are incongruent modulo p. Thus if two sums
of the form (3.8) are different (as vectors from Zn), then they are also different
modulo p (i.e., as vectors from Fn

p ). But then for any a ∈ A, b ∈ B we have

m(a + b) =
(
r(mx1(a)) + r(mx1(b))

)
v1 + · · ·+ (

r(mxn(a)) + r(mxn(b))
) 6=

6= (
r(mx1(a)) + r(mx1(b))

)
v1 + · · ·+ (

r(mxn(a)) + r(mxn(b))
)
vn =

= m(a + b).

It follows that writing c = a+b, this element of Fq has exactly one representation
in the form

c = a + b, a ∈ A, b ∈ B,

namely, the one with a = a, b = b, and this completes the proof of Lemma 4
and thus also of (ii) in Theorem 2. ¤
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4. Examples

Finally, we remark that we conjecture that, as in [2], a further sufficient
criterion can be added to Theorem 2:

(iii) If q = pn is a prime power such that

2 is a primitive root modulo p, (4.1)

then for every pair k, ` ∈ N with

k < p, ` < p, (4.2)

the triple (k, `, q) is admissible.
In the special case q = p in [2] we proved this but the proof given there cannot

be adapted to the general case, and we have not been able to find a proof of
different nature to prove the conjecture.

Note that in the conjecture above both conditions (4.1) and (4.2) are neces-
sary. Indeed, we proved in [2] that if 2 is not a primitive root modulo p, then
there are A,B ⊂ Fp such that 1 < |A|, |B| < p and A+ B possesses property P
(in Fp). Then clearly, for each i = 1, 2, . . . , n, the sum of the sets

A(i) = {avi : a ∈ A}
and

B(i) = {bvi : b ∈ B}
possesses property P in Fq, which shows that (4.1) is necessary.

Moreover, if A is the prime field Fp of Fq, B is any subset of Fp with |B| = 2,
then we have |A| = k = p and |B| = ` = 2 (so that the first inequality in (4.2)
just fails while the second one holds for p > 2), and clearly, (2.1) has exactly 2
solutions for every c ∈ Fp and 0 solution for c ∈ Fq \ Fp so that A+B possesses
property P , and thus the triple (k, `, q) = (p, 2, q) is not admissible.

In this counterexample we constructed subsets A,B ⊂ Fq such that

1 < |A|, |B| < q, (4.3)

A+ B possesses property P, (4.4)

and A was a subspace of the linear vector space formed by Fq over Fp. It is easy
to construct further examples such that (4.3) and (4.4) hold, and

either A or B is a subspace of the linear vector space Fq over Fp; (4.5)

we may call these examples trivial examples.
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One can construct nontrivial examples in the following way: in [2] we pre-
sented primes and subsets A,B ⊂ Fp such that 1 < |A|, |B| < p, and A+B pos-
sesses property P in Fp (see Examples 1, 2 and 3 there). Further one-dimensional
examples can be constructed in a similar manner.

It is much more difficult to construct nontrivial examples which are more than
one-dimensional. The polynomial method described in Section 4 of [2], which
was also used in [2] for proving the special case q = p of the conjecture above,
can be extended easily to a method involving polynomials in several variables,
which can be used for looking for nontrivial examples but, unfortunately, we
have not been able to prove the general form of this conjecture in this way. This
method of polynomials in several variables is the following:

To simplify and shorten the discussion we restrict ourselves to the special
case q = p2. Then again we represent every element of Fq as x1 + x2v, where
0 ≤ x1, x2 < p and v ∈ Fq \ Fp. Then to any C ∈ Fq we assign the polynomial
PC(x, y) ∈ F2[x, y] defined by

PC(x, y) =
∑

x1+x2v∈Fq

xs(x1)ys(x2)

where s(n) denotes the least non-negative element of the residue class n mod-
ulo p. Moreover, if

f(x, y) =
∑

m∈M

∑

n∈N
xmyn ∈ F[x, y],

then define ϕ(f(x, y)) by

ϕ(f(x, y)) =
∑

m∈M

∑

n∈N
xs(m)ys(n).

Then clearly, for A,B ⊂ Fq, the sum A+ B possesses property P if and only if

ϕ
(
PA(x, y)PB(x, y)

)
= 0

(
in F2[x, y]

)
. (4.6)

In [2] the analogous statement was sufficient to prove the special case q = p of
conjecture (iii) above and also to construct counterexamples. Here in the case
of the general q statement (4.6) above is not enough for proving the conjecture
but still it helps to find counterexamples.

When looking for counterexamples, we may start out from the observation
that if a polynomial f(x, y) is given, then ϕ(f(x, y)) can be obtained from f(x, y)
by reducing the x powers in f(x, y) modulo xp + 1 in F2[x] and reducing the y
powers modulo yp +1 in F2[y]. Thus as in [2], we use the fact that xp +1 can be
factorized in F2[x] in a nontrivial way (nontrivial: the factors are of degree ≥ 2)
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if (and only if) 2 is not a primitive root modulo p. Thus if p is of this type, then
there are P1(x), P2(x) with

xp + 1 = P1(x)P2(x) (4.7)

(and deg P1, deg P2 ≥ 2). Then we are looking for polynomials PA(x, y), PB(x, y)
(which determine A, B uniquely) satisfying (4.6) by trying to represent the 0
polynomial as

P1(y)(xp + 1) + P1(x)(yp + 1) = P1(y)P1(x)P2(x) + P1(x)P1(y)P2(y) =

=
(
P1(x)P1(y)

)(
P2(x) + P2(y)

)
= 0

(where P1, P2 are the polynomials in (4.7)), and then we take

PA(x, y) = P1(x)P1(y) (4.8)

and
PB(x, y) = P2(x) + P2(y). (4.9)

Example 1. We take q = 72. Then we have

x7 + 1 = (x3 + x + 1)(x4 + x2 + x + 1) (in F2[x])

so that now in (4.7) we may choose P1(x) = x3+x+1 and P2(x) = x4+x2+x+1.
Then (4.8) and (4.9) become

PA(x, y) = P1(x)P1(y) = (x3 + x + 1)(y3 + y + 1) =

= x3y3 + x3y + x3 + xy3 + xy + x + y3 + y + 1

and

PB(x, y) = P2(x)P2(y) = (x4 + x2 + x + 1)(y4 + y2 + y + 1) =

= x4 + x2 + x + y4 + y2 + y

and, indeed, it is easy to check that for these polynomials (4.6) holds. These
polynomials correspond to the subsets

A = {3 + 3v, 3 + v, 3, 1 + 3v, 1 + v, 1, 3v, v, 0}
and

B = {4, 2, 1, 4v, 2v, v},
and then the sum A + B possesses property P , which proves that the triple
(9, 6, 49) is not admissible.

In this example we have |A| = 9 > 7 = p. One also might like to see a
construction with q = p2, |A|, |B| < p. For such a construction we have to go
higher with p.
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Example 2. Take q = 312 so that now

xp + 1 = x31 + 1 = (x5 + x2 + 1)
(
x26 + x23 + x21 + x20 + x17 + x16+

+ x15 + x14 + x13 + x9 + x8 + x6 + x5 + x4 + x2 + 1
)

whence
P1(x) = x5 + x2 + 1

and

P2(x)=x26+x23+x21+x20+x17+x16+x15+x14+x13+x9+x8+x6+x5+x4+x2+1.

Then we have

PA(x, y) = P1(x)P1(y) = (x5 + x2 + 1)(y5 + y2 + 1) =

= x5y5 + x5y2 + x5 + x2y5 + x2y2 + x2 + y5 + y2 + 1

and

PB(x, y) = P2(x) + P2(y) =

= x26 + x23 + x21 + x20 + x17 + x16 + x15 + x14 + x13+

+ x9 + x8 + x6 + x5 + x4 + x2 + y26 + y23 + y21 + y20+

+ y17 + y16 + y15 + y14 + y13 + y9 + y8 + y6 + y5 + y4 + y2.

Again (4.6) holds, and these polynomials define the subsets

A = {5 + 5v, 5 + 2y, 5, 2 + 5v, 2 + 2v, 2, 5v, 2v, 1}
and

B = {26, 23, 21, 20, 17, 16, 15, 14, 13, 9, 8, 6, 5, 4, 2, 26v, 23v, 21v,

20v, 17v, 16v, 15v, 14v, 13v, 9v, 8v, 6v, 5v, 4v, 2v}
whose sumA+B possesses property P , which proves that the triple (9, 30, 312 =
961) is not admissible.
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