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ON THE DISTRIBUTION OF THE ORDER OF

NUMBER FIELD ELEMENTS MODULO PRIME

IDEALS

Volker Ziegler∗

ABSTRACT. Let α be an algebraic integer in a number field K not a root
of unity nor zero. In this paper we investigate under the assumption of the
generalized Riemann hypothesis (GRH) the number of prime ideals p, such that
the order ordp(α) lies in a fixed arithmetic progression. We also investigate the
case, where p has to satisfy some congruence conditions.

Communicated by Werner Georg Nowak

1. Introduction

Let Pg be the set of rational primes p such that g is a primitive root modulo
p. In 1927 Artin conjectured that the set Pg is infinite, if g 6= −1, 0, 1 or if g is
not a perfect square. Moreover, Artin conjectured that the set Pg has a natural
density. But in the late 50’s of the twentieth century, it turned out that the
conjectured density, the Artin constant, is not consistent with numerical exper-
iments (see Lehmer [10]). For more details on the history of Artin’s constant
and its correction factor see Stevenhagen [19].

In 1967 Hooley [6] proved Artin’s conjecture under the assumption of the
generalized Riemann hypothesis (GRH). In particular, Hooley also computed
the natural density of Pg. Let Pg(x) be the number of primes p ∈ Pg with
p ≤ x. Then

Pg(x) =
x

log(x)

∞∑
n=1

µ(n)
[Q(ζn, g1/n) : Q]

+ O

(
x

log2(x)

)
,
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where ζn is a n-th root of untiy. Moreover, Hooley showed if g 6= ±1 nor a
perfect square then

∞∑
n=1

µ(n)
[Q(ζn, g1/n) : Q]

= C(g1, h)A(h),

where

A(h) =
∏

p|h

(
1− 1

p− 1

) ∏

p-h

(
1− 1

p(p− 1)

)
,

g = gh
0 , g0 not a perfect power, g1 the square-free part of g and C(g1, h) = 1 if

g1 6≡ 1 mod 4 and

C(g1, h) = 1− µ(|g1|)
∏
p|h
p|g1

1
p− 2

∏
p-h
p|g1

1
p2 − p− 1

otherwise. Note that for all products p denotes a rational prime. Usually C(g1, h)
is called the correction factor and A(1) ≈ 0.3739558 is called the Artin constant.
It is easy to see that A(h) and C(g1, h) are not zero and therefore Pg is infinite
under (GRH).

Inspired by Hooley’s proof many generalizations and variations have been
considered. Let us give some examples. First, one may impose restrictions on
the primes in Pg, i.e. we only consider primes that lie in a given arithmetic
progression. A second generalization is the following. Let K be some number
field, α a fixed algebraic integer of K and Pα(K) the set of primes p for which
the fixed algebraic integer α has order Np− 1 in O/pO, where O is the ring of
integers of K and Np is the Norm of p. Cooke and Weinberger [3] computed the
natural density of Pα(K) under the assumption of (GRH). Recently, Chinen and
Murata [1, 2], respectively Moree [13, 14, 15] considered the distribution of the
order of g modulo p, i.e. they investigated the set Pg(a, d) of primes p, for which
ordp(g) ≡ a mod d. By ordp(g) we denote the smallest positive integer k such
that gk ≡ 1 mod p, provided p - g. For further variations and an introduction
to Artin’s conjecture see [12].

The aim of this paper is to consider the set of primes Pα(K,F, C, a, d). Let
K be some number field, F/K a Galois extension and C a union of conjugacy
classes of Gal(F/K). Then Pα(K,F, C, a, d) denotes the set of primes p of K
such that (p, F/K) ∈ C, p - (α) and ordp(α) ≡ a mod d, where (p, F/K)
denotes the Frobenius automorphisms of p and ordp(α) denotes the order of the
algebraic integer α in O/pO. Now we can state the main theorem of this paper:
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Theorem 1. Let K be a number field, F/K a Galois extension and C a union
of conjugacy classes of Gal(F/K). Let α be an algebraic integer of K not a root
of unity nor zero and let a and d be rational integers. Let Pα(K,F, C, a, d)(x)
be the number of prime ideals with Np ≤ x and p ∈ Pα(K, F, C, a, d). Then we
have assuming (GRH)

Pα(K,F, C, a, d)(x) =
x

log(x)

∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(d,n)|a

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]

+ O

(
x

log3/2(x)

)
,

where Fs,t := F (ζs, α
1/t) and

c(n, a, d, t) = |{σ ∈ Gal(F[d,n]t,nt/K) : σ|F ∈ C, σ|Knt,nt
= id, σ|Q(ζdt) = σ1+ta}|

≤ |C|.

By σb we denote the automorphism induced by ζdt 7→ ζb
dt. The constant implied

by the O-term depends only on K, F, d and α.

In order to prove this theorem we closely follow the ideas of Moree [14].
Also ideas of Cooke and Weinberger [3] and Lenstra [11] are an essential part
of the proof. In particular, these ideas are used to adapt Moree’s method of
proof to the algebraic integer case. In the next section we recall some facts on
algebraic number theory and prove some auxiliary results, concerning degrees
and discriminants of certain fields. We also investigate some properties of the
Artin symbol. At the end of that section we state some results on the sums∑

1/(nφ(n)) and
∑

1/φ(n). By an application of Hooley’s method (section 3)
we determine the asymptotic behavior of the function Rα(K,F, C, t)(x). This
function counts the primes p with Np ≤ x such that (p, F/K) ∈ C, p - (α) and
rp(α) := [(O/pO)∗ : 〈ᾱ〉] = t, where ᾱ is the reduction modulo p of α and 〈ᾱ〉
is the group generated by ᾱ. We will show in section 4 that Pα(K,F, C, a, d)(x)
can be written as an infinite sum of R-functions defined above:

Pα(K, F,C, a, d)(x) =
∞∑

t=1

Rα(K, Fd, Ca,d,t, t)(x),

where Fd respectively Ca,d,t depends only on d respectively a, d and t. More-
over, we show that this sum restricted to t ≥

√
log(x) can be estimated by

O
(

x
log3/2(x)

)
. In section 5 we complete the proof of Theorem 1. The last sec-

tion shows how we can deduce the results of Moree [14, Theorem 1 and 2] using
Theorem 1.
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2. Preliminaries

In this section we investigate several lemmas that will help us to prove Theo-
rem 1. The concern of the following lemmas is the relative degree of extensions
and properties of Artin symbols. We also remind the reader of some facts about
the distribution of primes and the sums

∑
1/φ(n) and

∑
1/(nφ(n)).

First we want to fix some notations for the rest of the paper. As mentioned
above K is a fixed number field, F/K a Galois extension with Galois group G
and C ⊂ G is a union of conjugacy classes of G. For a fixed α ∈ K we write
Kt1,t2 := K(ζt1 , α

1/t2) and Ft1,t2 := FKt1,t2 . In most cases we will be concerned
with fields of the form Kt,t and Ft,t. Remember that a and d denote positive
integers. The ring of integers of K is denoted by O. Let α ∈ O not zero and
p - (α) some prime ideal of O. We obviously have ordp(α)rp(α) = Np − 1 =
pf(p) − 1, where p is the rational prime below p and f(p) is the residue class
degree of p over p.

Note that by e(p) respectively f(p) we always denote the ramification index
respectively the residue class degree of p over p, the rational prime below p.
It is well known that the primes p which are ramified or have residue class
degree f(p) ≥ 2 over Q have zero density, i.e. |{p : Np ≤ x, e(p)f(p) ≥ 2}| =
o(x/ log(x)). Indeed we can show more:

Lemma 1.
|{p : Np ≤ x, e(p)f(p) ≥ 2}| = O

( √
x

log(x)

)

P r o o f. We know that |{p : Np ≤ x, e(p) ≥ 2}| = O(1), so we investigate the
set of primes p with f(p) ≥ 2. We find

|{p : Np ≤ x, f(p) ≥ 2}| ≤ [K : Q]|{p ∈ P : p2 ≤ x}| = O
(
π(
√

x)
)
= O

( √
x

log(x)

)
,

where P denotes the set of rational primes. ¤

We also need a quantitative version of Chebotarev’s density theorem. Since
the unconditional form of this theorem is not sufficient for our purposes we use
following version (see [7, 18]), which depends on (GRH).

Theorem 2. Let π(K, F, C)(x) denote the number of primes p in K which are
unramified in F/K, Np ≤ x and (p, F/K) ∈ C. Then

π(K, F,C)(x) = Li(x)
|C|
|G| + O

( |C|
|G|

√
x log

(
|dF |x[F :Q]

))

under the assumption of (GRH), where dF denotes the absolute discriminant of
F .
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By Li(x) :=
∫ x

2
dx

log x we denote the logarithmic integral. After these analytic
preliminaries we pay our attention on algebraic topics. We start with the fol-
lowing lemma which describes the divisors t of |rp(α) in terms of Artin symbols.

Lemma 2. Let e(p)f(p) = 1 and p - (α). Then

t|rp(α) ⇐⇒
(

p

Kt,t/K

)
= idK .

P r o o f. First, note that since f(p) = 1 we have N(p) = p. Because of

t|rp(α)|Np− 1 = p− 1

we have Np ≡ 1 mod t. Since O/pO ' Fp there exists a primitive root of
O/pO. Therefore α has to be at least a t-th power of this primitive root, i.e.
α(Np−1)/t ≡ 1 mod p. Now remember that p is unramified and is of degree 1.
We get

t|rp(α) ⇐⇒ p ≡ 1 mod t and xt ≡ α mod p is solvable.

The ⇐ conclusion directly follows from the definition of rp(α) and the fact that
O/pO∗ is cyclic.

Since t and p are relative prime we obtain by [16, Lemma 4.8], that p splits
completely in K(ζt), i.e. (p,K(ζt)/K) = idK is equivalent to p ≡ 1 mod t.
Similarly we obtain by [16, Theorem 4.15] that (q,Kt,t/K(ζt)) = idK(ζt) for
every prime ideal q above p is the same as saying xt ≡ α mod p is solvable.
Therefore we conclude

p splits completely in Kt,t ⇐⇒
(

p

Kt,t/K

)
= idK ⇐⇒ t|rp(α).

¤

We have seen in the lemma above that we have to work with fields of the
form Krt,t. Lemma 3 and Lemma 5 give us information on the degree and the
discriminant of such fields.

Lemma 3. Let K be a number field and let α = αh
0 , with α0 ∈ K not an exact

power nor zero nor a root of unity. Then
kφ(kr)

[K : Q]!2h
≤ [Kkr,k : K] ≤ kφ(kr).

The right hand side inequality is deduced from

[Kkr,k : K] = [K(ζrk, α1/k) : K(ζkr)][K(ζkr) : K] ≤ kφ(kr).

Before we start with the proof of the left hand side in Lemma 3, we prove
following lemma due to Schinzel [17] in the case of K = Q.
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Lemma 4. Let K be a totally real number field and consider the normal extension
Kn,n := K(ζn, α1/n)/Kn := K(ζn), where α = ±αh

0 with h maximal, α0 6= 1
and α0 > 0. Then [Kn,n : Kn] ≥ n

2(n,h) .

P r o o f. We follow the ideas of the proof of Lemma 4 in [17]. Let n1 = n/(n, h),
then we know that (α1/n)n1 ∈ K. First, let us assume that the + sign holds. Let
0 < t ∈ Z be minimal such that α

t/n1
0 ∈ K(ζn). Now we have K ⊂ K(αt/n1

0 ) ⊂
K(ζn). By the fundamental theorem of Galois theory every intermediate field
of an Abelian extension is also Abelian, therefore also normal. We conclude
that with K(ζn)/K also K(αt/n1

0 )/K is normal. Because K(αt/n1
0 ) has one real

embedding, we know that all conjugates of α
t/n1
0 are real. Therefore the real

extension K(αt/n1
0 )/K is of degree 1 or 2, hence t = n1 or t = n1/2. In other

words we have proved the lemma in this case.
In the case for which the − sign holds, the proof is analogous. We conclude

that ζ2nα
t/n1
0 ∈ K(ζn), hence α

t/n1
0 ∈ K(ζ2n). Now one can complete the proof

by the same arguments as above. ¤

Now we complete the proof of Lemma 3. In order to get an estimation of the
degree we utilize the following diagram:

L(ζkr, α
1/k) = L(ζkr, ᾱ

1/k)
≥1

TTTTTTTTTTTTTTT

L

?≥
iiiiiiiiiiiiiiiiiiiii

([K:Q]−1)!≥ <<
<<

<<
<<

K(ζkr, α
1/k)

≤([K:Q]−1)!

L(ζkr, |α|1/k)

K

?
mmmmmmmmmmmmmmm

[K:Q]

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C Q(ζkr, |α|1/k)

≥1

Q(ζkr, |α|)

≥ k
2(k,h)

Q
≥φ(kr)

jjjjjjjjjjjjjjjjjjj

By L we denote the normal closure of K over Q. All degrees can be estimated
trivially or by Lemma 4 applied to K = Q(|α|), n = kr and |α|r instead of α.
If we go from Q to L(ζkr, α

1/k) along different paths in the diagram we obtain
the lemma. ¤
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Lemma 5. Let K be a number field with absolute discriminant dK . Then

log
(|dKkr,k

|) ≤ φ(rk)k
(
log(|NK/Q(α)|) + [K : Q](2 log(k) + log(r)) + log(|dK |)

)

and

log
(|dKk,k

|) ≤ φ(k)k
(
log(|NK/Q(α)|) + 2[K : Q] log(k) + log(|dK |)

)

P r o o f. First we estimate the relative discriminant dKrk,k/K . Since Krk,k is the
compositum of K(ζkr) and K(α1/k) we have

dKrk,k/K |d[Krk,k:K(ζkr)]

K(ζkr)/K d
[Krk,k:K(α1/k)]

K(α1/k)/K

and moreover

dK(ζrk)/K ⊇dQ(ζrk)/Q ⊇
(
(rk)φ(rk)

)
,

dK(α1/k)/K ⊇




∏
i,j≤k
i 6=j

(α1/kζi
k − α1/kζj

k)


 ⊇

(
αk−1kφ(k)

)
.

Therefore we have

dKrk,k/K ⊇
(
(rk)φ(rk)kkφ(k)φ(rk)α(k−1)φ(rk)

)
.

In order to obtain the absolute discriminant we use the formula

dF/k = NK/kNF/K

(DF/KDK/k

)
=

(
NK/kdF/K

)
d
[F :K]
K/k ,

where DF/K respectively DK/k denotes the relative different of F/K respectively
K/k, with F ⊃ K ⊃ k. Now we have

|dKrk,k
| = |dKrk,k/Q| =

∣∣NK/Q
(
dKrk,k/K

)∣∣ |dK/Q|[Krk,k:K].

By the estimation above we get

log |dKrk,k
| ≤(k − 1)φ(rk) log(|NK/Q(α)|) + [K : Q](φ(rk)(k + φ(k))) log(k)

+ [K : Q]φ(rk)k log(r) + φ(rk)k log(|dK |)
≤φ(rk)k

(
log(|NK/Q(α)|) + [K : Q](2 log(k) + log(r)) + log(|dK |)

)
.

¤
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Since we have to consider sums of the type
∑

µ(n)/[Knt,nt : K] and because
of Lemma 3 the following lemma will be helpful.

Lemma 6. Let A(α, t) =
∑∞

n=1
µ(n)

[Knt,nt:K] . Then
y∑

t=1

A(α, t) = 1 + O

(
1
y

)
,

P r o o f. First we prove that A(α, t) converges absolutely and A(α, t)= O
(

1
tφ(t)

)
.

This is obvious since [Knt,nt : K] ≥ nφ(n)tφ(t)/(2h[K : Q]!) and the next lemma.

Lemma 7. The sum
∑∞

n=1
1

nφ(n) converges and we have
∑
n>x

1
nφ(n)

= O(1/x).

P r o o f. For a proof of Lemma 7 see [8, page 184]. ¤

By the second statement of Lemma 7 we know that
∞∑

t=1

A(α, t) (1)

converges absolutely and
y∑

t=1

A(α, t) = 1 + O

(
1
y

)
,

provided the sum (1) is equal to 1. Since the sum converges absolutely we have
∞∑

t=1

A(α, t) =
∞∑

t=1

∞∑
n=1

µ(n)
[Knt,nt : K]

=
∞∑

n=1

∑

d|n

µ(d)
[Kn,n : K]

=
∞∑

n=1

1
[Kn,n : K]

∑

d|n
µ(d) =

1
[K1,1 : K]

= 1.

¤

Lemma 7 yields information on the sum
∑

1/(nφ(n)). For later investigations
we also need properties of the sum

∑
1/φ(n). This sum has been considered by

Landau [8].

Lemma 8. We have ∑
n<x

1
φ(n)

= O(log(x)).
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3. Application of Hooley’s method

The aim of this section is to compute the asymptotics of the function
Rα(K, F,C, t)(x), i.e., we prove

Proposition 1. Let K,F and C be as in Theorem 1 and let t ≤ x1/3 be some
positive integer. Then

Rα(K,F, C, t)(x) :=
∣∣∣∣
{

p : Np ≤ x, p - (α), rp(α) = t,

(
p

F/K

)
∈ C

}∣∣∣∣

=Li(x)
∞∑

n=1

µ(n)c(n)
[Fnt,nt : K]

+ O

(
x

log2(x)

)
+ O

(
x log(log(x))
φ(t) log2(x)

)
,

where c(n) = |{σ ∈ Gal(Fnt,nt/K) : σ|F ∈ C, σ|Knt,nt = id}| ≤ |C|.

By the inclusion exclusion principle and by Lemma 1, Lemma 2 and the fact
that there are only finitely many p with p|(α) we obtain (see [6, 13])

Rα(K, F,C, t)(x) =
∞∑

n=1

µ(n)
∣∣∣∣
{

p : Np ≤ x,

(
p

Knt,nt/K

)
= idK ,

(
p

F/K

)
∈ C

}∣∣∣∣

+ O

( √
x

log(x)

)
.

(2)

In order to obtain an asymptotic for (2) we follow Hooley [6] and get

Rα(K, F,C, t)(x) = Mα(K, F,C, t, ξ1)(x) + O(Mα(K, F, C, t, ξ1, ξ2)(x))

+O(Mα(K, F, C, t, ξ2, ξ3)(x))+O(Mα(K, F,C, t, ξ3, x−1)(x))+O

( √
x

log(x)

)
,

where

Mα(K, F, C, t, ξ)(x) :=
∣∣∣∣
{

p : Np ≤ x,

(
p

F/K

)
∈ C, t|rp(α), tq - rp(α), q ≤ ξ

}∣∣∣∣ ,

Mα(K, F, C, t, ξ, η)(x) :=
∣∣∣∣
{

p : Np ≤ x,

(
p

F/K

)
∈ C, tq|rp(α), ξ ≤ q ≤ η

}∣∣∣∣ ,

ξ1 = 1/6 log(x), ξ2 =
√

x
log2(x)

, ξ3 =
√

x log(x) and q denotes a rational prime. We
start with the estimation of Mα(K, F,C, t, ξ3, x− 1)(x).
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Lemma 9.

Mα(K, F,C, t, ξ3, x− 1)(x) = O

(
x

log2(x)

)
.

P r o o f. Let M denote the set of primes counted by M(x) := Mα(K,F, C, t, ξ3,
x−1)(x). By Lemma 1 we may assume e(p)f(p) = 1. From the proof of Lemma
2 we know that (p,Kt,t/K) = idK is equivalent to Np = p ≡ 1 mod t and
α(Np−1)/t = α(p−1)/t ≡ 1 mod p. Therefore we get the estimation

M(x) ≤
∣∣∣
{

p : Np ≤ x, α(Np−1)/tq ≡ 1 mod p, ξ3 ≤ q ≤ x− 1
}∣∣∣ .

Then we have p ⊇ (
α(Np−1)/tq − 1

)
for each p ∈ M . By combining all possibili-

ties we get ∏

p∈M

p ⊇
∏

ζ3≤q≤x−1
q prime

(
α(Np−1)/tq − 1

)

and if we apply the norm from K to Q to this relation we obtain

2M(x) ≤
∏

p∈M

Np ≤
∏

1≤m<
√

x/ log x

NK/Q (αm − 1) . (3)

Let A := maxσ∈Gal(K/Q){|σα|}. Then

NK/Q(αm − 1) ≤ (Am + 1)[K:Q] ≤ (2A)m[K:Q]

and by (3) we obtain
2|M | ≤ (2A)[K:Q]

∑
m,

where the sum in the exponent is taken over all m with 1 ≤ m <
√

x
log x . Now we

solve this inequality for M(x) and obtain

M(x) ≤ log(2A)
log(2)

[K : Q]
b√x/ log(x)c∑

m=1

m = O

(
x

log2(x)

)
.

¤
Next, we consider the expression Mα(K, F,C, t, ξ2, ξ3)(x):

Lemma 10. Let t ≤ x1/3. Then

Mα(K,F, C, t, ξ2, ξ3)(x) = O

(
x log(log(x))
φ(t) log2(x)

)
.
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P r o o f. Let us write M(x) := Mα(K, F,C, t, ξ2, ξ3)(x). From the proof of
Lemma 2 we know

M(x) ≤
∑

ξ2≤q<ξ3

|{p : Np ≤ x, e(p)f(p) = 1, p - (α), Np ≡ 1 mod tq}|

≤[K : Q]
∑

ξ2≤q<ξ3

|{p ∈ P : p ≤ x, p ≡ 1 mod tq}| .

We use the Brun-Titchmarsh inequality (see e.g. [4]) in order to estimate the
last sum and get

M(x) ≤[K : Q]
∑

ξ2≤q<ξ3
q prime

3x

φ(tq) log(x/tq)

≤ [K : Q]
φ(t)

O


 x

log x

∑
ξ2≤q<ξ3
q prime

1
φ(q)




= O

(
x log(log(x))
φ(t) log2(x)

)
,

where the last equation is due to Hooley [6, page 211]. ¤

Note that the Lemmas 9 and 10 are unconditional, contrary to the next
lemma.

Lemma 11. Assume (GRH) and t ≤ x1/3. Then

Mα(K, F,C, t, ξ1, ξ2)(x) = O

(
x

log2(x)

)
.

P r o o f. Again we write M(x) := Mα(K,F, C, t, ξ1, ξ2)(x). Then we have

M(x) ≤
∑

ξ1≤q≤ξ2

∣∣∣∣
{

p : Np ≤ x,

(
p

F/K

)
∈ C,

(
p

Ktq,tq/K

)
= idK

}∣∣∣∣

+ O

( √
x

log(x)

)

≤
∑

ξ1≤q≤ξ2

∣∣∣∣
{

p : Np ≤ x,

(
p

Ktq,tq/K

)
= idK

}∣∣∣∣ + O

( √
x

log(x)

)
.
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Since Theorem 2, Lemmas 3 and 5 we have (remember α = αh
0 with α0 not an

exact power)

M(x) ≤
∑

ξ1≤q≤ξ2

Li(x)([K : Q])!2h

φ(tq)tq

+ O


 ∑

ξ1≤q≤ξ2

[K : Q]!2h

φ(tq)tq
√

x log
(
x[Ktq,tq :Q]dKtq,tq

)



=O


 1

tφ(t)
x

log(x)

∑

ξ1≤q≤ξ2

1
q2


 + O


√x log(x)

∑

ξ1≤q≤ξ2

[Ktq,tq : Q]
φ(tq)tq




+ O


√x

∑

ξ1≤q≤ξ2

(
log(|NK/Q(α)|) + 2[K : Q] log(tq) + log(|dK |)

)



=O

(
x

log(x)
1
ξ1

)
+ O

(√
xπ(ξ2) log(x)

)
+ O


√x

∑

q≤ξ2

log(q)




=O

(
x

log2(x)

)
+ O


√x

∑

q≤ξ2

log(q)


 ,

where π(x) denotes the number of rational primes ≤ x. Note that we also used
the estimation

∑
x≥n 1/n2 = O(1/x). It is well known (see e.g. [5, Theorem

414]) that θ(x) :=
∑

q≤x log(q) = O(x), where the sum is taken over all primes
q ≤ x. Therefore we get

M(x) = O

(
x

log2(x)

)
+ O

(√
xθ(ξ2)

)
= O

(
x

log2(x)

)

¤
Now we estimate the main term Mα(K, F,C, t, ξ1)(x).

Lemma 12. Assume (GRH) and t ≤ x1/3. Then

Mα(K, F, C, t, ξ1)(x) = Li(x)
∞∑

n=1

µ(n)c(n)
[Fnt,nt : K]

+ O

(
x

log2(x)

)
.
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P r o o f. Let M(x) := Mα(K, F, C, t, ξ1)(x). By the inclusion exclusion principle
and Lemma 1 we have

M(x) =
∑

n∈P (ξ1)

µ(n)
∣∣∣∣
{

p : Np ≤ x,

(
p

F/K

)
∈ C,

(
p

Knt,nt/K

)
= idKnt,nt

}∣∣∣∣

+ O

( √
x

log(x)

)

=
∑

n∈P (ξ1)

µ(n)
∣∣∣∣
{

p : Np ≤ x,

(
p

Fnt,nt/K

)
∈ C̃

}∣∣∣∣ + O

( √
x

log(x)

)
,

where C̃ is the union of conjugacy classes of Gal(Fnt,nt/K) such that σ ∈ C̃ if
and only if σ|F ∈ C and σ|Knt,nt

= idKnt,nt
. Furthermore P (ξ1) denotes the set

of all rational numbers that can be written as a product of primes q with q ≤ ξ1.
By Chebotarev’s density theorem (see Theorem 2) we have

M(x)−Li(x)
∑

n∈P (ξ1)

µ(n)c(n)
[Fnt,nt : K]

=O


 ∑

n∈P (ξ1)

|C̃|
[Fnt,nt : K]

√
x log

(
x[Fnt,nt:Q]dFnt,nt

)



=O


 ∑

n∈P (ξ1)

√
x log(x)


 + O


√x

∑

n∈P (ξ1)

log(|dFnt,nt |)



=O
(
x5/6 log(x)

)
+ O


√x

∑

n∈P (ξ1)

log(n)


 + O


√x

∑

n∈P (ξ1)

log(t)




=O
(
x5/6 log(x)

)
+ O

(√
x log

(
Γ(x1/3)

))
= O

(
x5/6 log(x)

)
,

since every element of P (ξ1) is less than x1/3 (see e.g. [6, page 212]). Note that
log

(
Γ(x1/3)

)
= O

(
x1/3 log(x)

)
by Stirling’s formula. Let us consider the sum
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over all n ∈ P (ξ1):

∑

n∈P (ξ1)

µ(n)c(n)
[Fnt,nt : K]

=
∞∑

n=1

µ(n)c(n)
[Fnt,nt : K]

+ O


 ∑

n>ξ1

µ(n)c(n)
[Fnt,nt : K]




=
∞∑

n=1

µ(n)c(n)
[Fnt,nt : K]

+ O


 ∑

n>ξ1

1
nφ(n)




=
∞∑

n=1

µ(n)c(n)
[Fnt,nt : K]

+ O

(
1

log(x)

)
.

The last equality holds because of Lemma 7. If we combine these estimations
the proof of this lemma is complete. ¤

Proposition 1 follows now by the combination of the Lemmas 1, 9, 10, 11 and
12. ¤

4. Large indices

In this section we want to write the function Pα(K,F, C, a, d)(x) as a sum of
R-functions which we considered in section 3. Let rp(α) = t, since rp(α) ordp(α) =
Np − 1 the condition ordp(α) ≡ a mod d can also be written as rp(α) = t and
ta + 1 ≡ Np mod dt. If we sum the number of primes with these additional
properties over all t ≥ 1 we obtain

Pα(K, F, C, a, d)(x) =
∞∑

t=1

Vα(K, F, C, a, d, t)(x) + O

( √
x

log(x)

)
, (4)

where

Vα(K, F,C, a, d, t)(x) :=∣∣∣∣
{

p : Np ≤ x, p - (α),
(

p

F/K

)
∈ C, rp(α) = t,Np = p ≡ ta + 1 mod td

}∣∣∣∣ .

It is well known (see e.g. [9, page 200]) that p ≡ a mod d and p - d is
equivalent to (p,Q(ζd)/Q) = σa, where σa is induced by ζd 7→ ζa

d . Note that
if 1 + ta and d are not relative prime then the function Vα(K, F,C, a, d, t)(x)
counts at most [K : Q] primes. Moreover these primes lie above a single prime
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that divides d. On the other hand if 1+ta and d are relative prime the condition
Np = p ≡ ta + 1 mod td can be written as

(
p

K(ζtd)/K

)∣∣∣∣
Q(ζtd)

=
(

Np

Q(ζtd)/Q

)
= σ1+ta. (5)

Now we can write the V -functions as a special R-function and obtain by Propo-
sition 1 also an asymptotic formula for the V -functions.

Proposition 2. The V -functions can be written as R-functions, i.e.

Vα(K, F,C, a, d, t)(x) = Rα(K, Fd, Ca,d,t, t)(x),

where Fd = F (ζd) and

Ca,d,t :=

{
σ ∈ Gal(Fd/K) :

(
p

Fd/K

)∣∣∣∣
F

∈ C,

(
p

Fd/K

)∣∣∣∣
Q(ζtd)

= σ1+ta

}
.

Moreover, if we assume (GRH) and t ≤ x1/3, then we have

Vα(K,F, C, a, d, t)(x) = Li(x)
∞∑

n=1
(d,n)|a

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]

+ O

(
x

log2(x)

)

+ O

(
x log(log(x))
φ(t) log2(x)

)
,

where [d, n] denotes the least common multiple of d and n and where

c(n, a, d, t) = |{σ ∈ Gal(F[d,n]t,nt/K) : σ|F ∈ C, σ|Knt,nt = id, σ|Q(ζdt) = σ1+ta}|
≤ |C|.

P r o o f. By the discussion above we see that the V -functions are special R-
functions of the form described in the proposition. To obtain the statement
about the asymptotic we apply Proposition 1. Note that F (ζd)nt,nt = F[d,n]t,nt.
Then we get

Vα(K, F,C, a, d, t)(x) = Li(x)
∞∑

n=1

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]

+ O

(
x

log2(x)

)

+ O

(
x log(log(x))
φ(t) log2(x)

)
.
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Therefore we have to prove that c(n, a, d, t) > 0 can only occur if (d, n)|a. First
we note that σ ∈ Gal(F[d,n]t,nt/K) is counted by c(n, a, d, t), only if σ|Q(ζnt) =
idQ(ζnt) and σ|Q(ζdt) = σ1+ta, i.e.

σ|Q(ζ(d,n)t) = idQ(ζ(d,n)t) = σ1+ta|Q(ζ(d,n)t).

Therefore we have ζ(d,n)t = ζ1+ta
(d,n)t or equivalently ζta

(d,n)t = 1. But this is
(d, n)t|ta, hence (d, n)|a. ¤

Next, we want to show that it is sufficient to compute the sum (4) only for
“small” t. In particular we prove a variant of [13, Lemma 7] respectively [1,
Lemma 2.4].

Lemma 13. Let us assume (GRH) holds. Then we have

∣∣∣{p : Np ≤ x, p - (α), rp(α) >
√

log(x)}
∣∣∣ = O

(
x

log3/2(x)

)
.

P r o o f. We follow a proof of Moree [13, Lemma 7]. Let y = b
√

log(x)c. Then
we have

Eα(x) :=
∣∣∣{p : Np ≤ x, p - (α)rp(α) >

√
log(x)}

∣∣∣

=|{p : Np ≤ x}| −
y∑

t=1

Rα(K, K, {idK}, t)(x) + O

( √
x

log(x)

)
.

An application of Theorem 2 and Proposition 1 yields

Eα(x) =
x

log(x)
+ O

(
x

log2(x)

)
− Li(x)

y∑
t=1

∞∑
n=1

µ(n)c(n)
[Knt,nt : K]

+ O

(
x log(log(x))

log2(x)

y∑
t=1

1
φ(t)

+
xy

log2(x)

)

=
x

log(x)
− Li(x) + O

(
Li(x)

y
+

x log(log(x))
log2(x)

y∑
t=1

1
φ(t)

+
xy

log2(x)

)
,
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because of Lemma 6. Note that in this case c(n) = 1 for each n (see Proposition
1). Now the proposition follows from the fact that

√
log(x)− 1 < y ≤

√
log(x),

y∑
t=1

1
φ(t)

= O(log(y)) = O(log(log(x)))

(see Lemma 8) and

x/ log(x)− Li(x) = O(x/ log2(x)).

¤

Now we can prove the main result of this section, which states that it is
sufficient to sum up the sum (4) only for small indices t, i.e., we prove the
following:

Proposition 3. Let x1 =
√

log(x) and assume (GRH). Then

Pα(K, F,C, a, d)(x) =
∑
t≤x1

(1+ta,d)=1

Vα(K,F, C, a, d, t)(x) + O

(
x

log3/2(x)

)
. (6)

P r o o f. In the discussion at the beginning of this section we have already men-
tioned that in the case of (1+ta, d) > 1 the function Vα(K, F, C, a, d, t)(x) counts
at most [K : Q] primes p and these fulfill p|(d). For fixed d we have

∑

(1+ta,d)>1

Vα(K, F,C, a, d, t)(x) = O(1).

Moreover, by Lemma 13 we have
∑
t>x1

Vα(K,F, C, a, d, t)(x) = O

(
x

log3/2 x

)
.

By these two estimations and by (4) we obtain the proposition. ¤

5. Proof of the Main Theorem

The proof of Theorem 1 is now rather easy. We only have to combine the
various lemmas and propositions. First, we have by Proposition 3 combined
with Proposition 2 the relation
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Pα(K,F, C, a, d)(x)

=
x

log(x)

∑
t≤x1

(1+ta,d)=1







∞∑
n=1

(d,n)|a

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]


 + O

(
x

log2(x)
+

x log(log(x))
φ(t) log2(x)

)



+ O

(
x

log3/2(x)

)

=
x

log(x)

∑
t≤x1

(1+ta,d)=1

∞∑
n=1

(d,n)|a

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]

+ O


 x

log3/2(x)
+

x log(log(x))
log2(x)

∑

t≤x1

1
φ(t)




=
x

log(x)

∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(d,n)|a

µ(n)c(n, a, d, t)
[F[d,n]t,nt : K]

+ O

(
x

log(x)

∑
t>x1

∞∑
n=1

1
[F[d,n]t,nt : K]

)

+ O

(
x

log3/2(x)

)
.

Note that the last equation holds because of Lemma 8. It remains to estimate
the first O-term in the last equation. We have

O

(∑
t>x1

∞∑
n=1

1
[F[d,n]t,nt : K]

)
= O

(∑
t>x1

∞∑
n=1

1
nφ(n)tφ(t)

)

= O

(∑
t>x1

1
tφ(t)

)
= O

(
1
x1

)
= O

(
1√

log(x)

)
,

because of Lemma 7. Therefore the considered O-term can be estimated by
O

(
x

log3/2(x)

)
and Theorem 1 is proved. ¤

6. Two corollaries

In this last section we want to show that the results of Moree [14, Theorem
1 and 2] can easily be deduced from Theorem 1. Note that Moree proved these
corollaries for rational g. For technical reasons we assume g to be integral. Let
us note that for rational g = g0/g1 with (g0, g1) = 1 we define ordg(p) = min{k :
0 < k ∈ Z, gk

0 ≡ gk
1 mod p}. Moreover, the constant implied by the O-term

would depend also on g0 and g1 in the rational case.
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Corollary 1. Let g be a fixed integer. Then the number of primes p ≤ x such
that ordp(g) ≡ a mod d is given by

Pg(a, d)(x) =
x

log(x)

∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(d,n)|a

µ(n)c̃g(1 + ta, dt, nt)
[Q[d,n]t,nt : Q]

+ O

(
x

log3/2(x)

)
,

where, for (b, f) = 1,

c̃g(b, f, v) =
{

1 if σb|Q(ζf )∩Qv,v
= id,

0 otherwise,

where σb is induced by ζf 7→ ζb
f .

P r o o f. Apply Theorem 1 with g = α, K = F = Q and C = {idQ}. Then we
only have to check that c(n, a, d, t) = c̃g(1 + ta, dt, nt), which is easily done (see
also the proof of Corollary 2). ¤

Corollary 2. Let g be a fixed integer. Then the number of primes p ≤ x and
p ≡ a1 mod d1 such that ordp(g) ≡ a2 mod d2 is given by

Pg(a1, d1, a2, d2)(x)

=
x

log(x)

∞∑
t=1,(1+ta2,d2)=1

1+ta2≡a1 mod (d1,d2t)

∞∑
n=1

(d,n)|a

µ(n)c̃g(a1, d1, 1 + ta2, d2t, nt)
[Qnt,nt(ζd1 , ζd2t) : Q]

+ O

(
x

log3/2(x)

)
,

where, for (b1, f1) = (b2, f2) = 1 and b1 ≡ b2 mod (f1, f2)), we have

c̃g(b1, f1, b2, f2, v) =
{

1 if τ |Q(ζ[f1,f2])∩Qv,v
= id,

0 otherwise,

where τ ∈ Gal(Q(ζf1 , ζf2)/Q) is induced by ζf1 7→ ζb1
f1

and ζf2 7→ ζb2
f2

.

P r o o f. This time we apply Theorem 1 to K = Q, F = Q(ζd1), C = {σa1}, d =
d2 and a = a2. Note that F[d2,n]t,nt = Q(ζd1 , ζd2t, ζnt, g

1/nt) = Qnt,nt(ζd1 , ζd2t).
First, we prove if c(n, a2, d2, t) > 0, then 1 + ta2 ≡ a1 mod (d1, d2t). Since
c(n, a2, d2, t) > 0 there exists a σ ∈ Gal(Qnt,nt(ζd1 , ζd2t)/Q) such that σ|Q(ζd1 ) =
σa1 and σ|Q(ζd2t) = σ1+ta2 , i.e. ζa1

(d1,d2t) = ζ1+ta2
(d1,d2t) or equivalently a1 ≡ 1 + ta2

mod (d1, d2t).
Assume now a1 ≡ 1 + ta2 mod (d1, d2t), then c(n, a2, d2, t) = 1 if and only

if there exists a σ ∈ Gal(Qnt,nt(ζd1 , ζd2t)) such that σ|Q(ζd1 ) = σa1 , σ|Qnt,nt = id
and σ|Q(ζd2t) = σ1+a2t. By these conditions σ is uniquely determined. Now let
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τ = σ|Q(ζ[d1,d2t]). This τ is the same as the one defined in the corollary, with
b1 = a1, b2 = 1 + a2t, f1 = d1 and f2 = d2t. Moreover, since σ is a lifting of
τ , we deduce that τ has to be the identity on Qnt,nt, i.e., τ |Q(ζ[f1,f2])∩Qv,v

= id,
with v = nt. ¤
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