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OPTIMALLY SMALL SUMSETS IN GROUPS, I.

THE SUPERSMALL SUMSETS PROPERTY,

THE µ
(k)
G AND THE ν

(k)
G FUNCTIONS

Alain Plagne

ABSTRACT. We introduce the generalized supersmall sumsets property and
prove that it holds for all solvable groups. As applications, using this tool to-
gether with a generalized version of Kneser’s theorem, we establish, for G Abelian,

an explicit formula for the generalized µ
(k)
G functions in terms of the cardinalities

of the finite subgroups of G and we study the ν
(k)
G functions, which count the

minimal cardinality of a sumset containing an element with a single representa-
tion.

Communicated by Georges Grekos

1. Introduction

Let G be a group, k be a positive integer and r1, . . . , rk be k positive integers
≤ |G|. Here |G| denotes the cardinality of the group G if it is finite or +∞ if G
is infinite (in this case, a constraint like r1 ≤ |G| is clearly empty). The groups
we shall deal with in this paper will always (even the non-commutative ones) be
written additively and their neutral element will be always denoted by 0.

The function µ
(k)
G (r1, . . . , rk) is defined as the minimal cardinality of a (Min-

kowski) sumset A1 + · · · + Ak = {a1 + · · · + ak, a1 ∈ A1, . . . , ak ∈ Ak} with
A1, . . . ,Ak ⊂ G and |A1| = r1, . . . , |Ak| = rk, namely

µ
(k)
G (r1, . . . , rk) = min{|A1 + · · ·+Ak| such that A1, . . . ,Ak ⊂ G and

|A1| = r1, . . . , |Ak| = rk}.
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The function µG = µ
(2)
G is already classical in additive number theory (see [14] or

[15] for a general introduction to this field) and the functions µ
(k)
G are a natural

generalization of it.
It is known that if G is a finite Abelian group, then

µG(r, s) = µ
(2)
G (r, s) = min

d | |G|

(⌈ r

d

⌉
+

⌈ s

d

⌉
− 1

)
d. (1)

This type of formula was introduced by the author in [16]. It is not very aston-
ishing to those who know Kneser’s theorem, a central tool for obtaining such a
formula: the term dr/de + ds/de − 1 being clearly reminiscent of the condition
under which Kneser’s theorem ensures that a sumset A + B is periodic. Recall
first that the period of a subset A in a group G is the largest subset (and in fact,
subgroup) H such that A+H = A; if H 6= {0} then A is said to be periodic. For
the sake of completeness, we restate the fundamental Kneser’s theorem [12, 13]
now.

Theorem 1 (Kneser’s Theorem). Let A and B be two non-empty finite subsets
of an Abelian group G, satisfying |A+ B| ≤ |A|+ |B| − 1. If H is the period of
A+ B, then

|A+ B| = |A+ H|+ |B + H| − |H|.
In particular, if |A+ B| ≤ |A|+ |B| − 2, then A+ B is periodic.

In the above-quoted paper [16], formula (1) is proved to hold in the case of
cyclic groups and – via Theorem 10 in [1] – finite Abelian p-groups (the case of
Z/pZ reduces to the Cauchy-Davenport theorem [2, 3]) with an eye to applying
it to the explicit computation of the ubiquitous, and therefore important, Hopf-
Stiefel ◦ function (see for instance [20]). By developping the techniques used in
[4] and [16], formula (1) was then generalized to all finite Abelian groups in [7].
Ref. [5] contains the generalization to general Abelian groups.

A central tool, introduced by the authors of [7], in the proof of formula (1)
for Abelian groups, is the so-called small sumsets property. We say that a group
has the small sumsets property if for any 1 ≤ r, s ≤ |G|, there exist A,B ⊂ G,
with |A| = r, |B| = s and |A+ B| ≤ r + s− 1.

In the present paper, we first generalize this definition into two directions:
we allow more summands and ask for a slightly (but very useful, see the end of
this section and [18, 19]) more powerful upper bound. While the small sumsets
property has a “Kneser’s flavour”, our new definition will have a Kemperman’s
flavour. We do not recall here the powerful Kemperman’s theorem since it is
a slightly technical statement that we will not need here (the interested reader
may consult Kemperman’s original papers [10, 11]).
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Before giving the definition of what we call the generalized supersmall sumsets
property, we introduce a terminology: we say that an element x ∈ A1 + · · ·+Ak

has r representations (as an element of the sumset A1 + · · ·+Ak) if

|{(a1, . . . , ak) ∈ A1 × · · · × Ak, x = a1 + · · ·+ ak}| = r.

We shall say that a group G has the generalized supersmall sumsets prop-
erty if for any positive integer k, any 1 ≤ r1, . . . , rk ≤ |G|, there exist subsets
A1, . . . ,Ak ⊂ G containing 0, with |A1| = r1, . . . , |Ak| = rk and either

(i) |A1 + · · ·+Ak| ≤ r1 + · · ·+ rk − k, or
(ii) |A1 + · · ·+Ak| = r1 + · · ·+ rk − k + 1 and the neutral element 0 has the

unique representation 0+ · · ·+0 as an element of the sumset A1 + · · ·+Ak.

In this definition (and in the following), the word generalized refers evidently to
the number of summands.

Our first result will be the following.

Theorem 2. Every solvable group has the generalized supersmall sumsets pro-
perty.

Since the generalized supersmall sumsets property implies trivially the small
sumsets property (and even a generalized small sumsets property), a subproduct
of this theorem implies immediately the result mentionned at the end of [7]
(section 5, point (2.3)) that every finite solvable group has the small sumsets
property (for a proof in this special case only, see Proposition 6 of [5] and [6]).

As a first application of the generalized supersmall sumsets property, we prove
the following result (for which we shall also need a generalized form of Kneser’s
theorem, see Theorem 6) which generalizes (1).

Theorem 3. Let k be a positive integer and G be a finite Abelian group. Then
for any integers r1, . . . , rk satisfying 1 ≤ r1, . . . , rk ≤ |G|, we have

µ
(k)
G (r1, . . . , rk) = min

d | |G|

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d.

Having this result at hand, it is almost immediate to generalize it to the case
of general Abelian groups.

Theorem 4. Let k be a positive integer and G be an arbitrary Abelian group.
Then for any integers r1, . . . , rk satisfying 1 ≤ r1, . . . , rk ≤ |G|, we have

µ
(k)
G (r1, . . . , rk) = min

d∈D

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d,

where D is the set of integers that are the cardinality of a finite subgroup of G.
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We give two proofs of Theorem 4. In the first one, we use the same approach
as in [5] (where a proof in the special case k = 2 is presented), namely the
methods and proofs used in the case of a finite group (elaborated in [16] and [7])
are – in a quite immediate way – adapted. The second proof is also short and
elementary (having the preceding Theorem 3 at hand) and we find it particularly
instructive since we deduce Theorem 4 from Theorem 3, using a “cyclification”
principle which allows us to use the whole strength of the result for the case of
finite groups. This second approach, which is independent of that of [5], was
introduced some years ago by the author (in an early version of this paper,
Optimally small sumsets in general Abelian groups, an unpublished manuscript
where the case k = 2 was already treated) in order to extend the main result of
[7] to the case of infinite Abelian groups.

As a second application of the problematic of the generalized supersmall sum-
sets property, we show that it can be useful in the study of the following quite
natural function (at least in the context of additive number theory, having Kem-
perman’s theorem in mind). Let

ν
(k)
G (r1, . . . , rk) =





min {|A1 + · · ·+Ak| with A1, . . . ,Ak ⊂ G,

|A1| = r1, . . . , |Ak| = rk and there is an element in
A1 + · · ·+Ak having a unique representation},

if there are any such sets A1, . . . ,Ak ⊂ G;
∞, otherwise.

There are good reasons why this function is mysterious and therefore interesting.
Indeed it has a typical “extremal combinatorics” behaviour since two opposite
forces have to collaborate in it: a small sumset |A1 + · · · + Ak| implies some
kind of structure – this is the general philosophy of the so-called structural
theory of set addition (see [8] or [9]) – while structure implies, in general, many
representations of the elements in the sumset.

In the final section, we will give already several results on these ν
(k)
G functions.

In particular, we shall prove the following general theorem.

Theorem 5. Let G be an Abelian group. As soon as r1 + · · ·+ rk ≥ |G|+ k, we
have

ν
(k)
G (r1, . . . , rk) = ∞.

Moreover, if r1 + · · ·+ rk ≤ |G|+ k − 1, we have

ν
(k)
G (r1, . . . , rk) ≥ r1 + · · ·+ rk − k + 1.

Some other results on ν
(k)
G will be stated and proved in Section 5, to which

the reader is referred.
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This paper is the first one in a series in which we intend to derive some other
new results related to the present problematic (the reader is referred to [18, 19]
which will be put soon on the arXiv.org). We hope this series will convince
the reader that the extension of the small sumsets property to the generalized
supersmall sumsets property is far from being anecdotic. In [18, 19], this new
tool (and more elaborate versions of it) will be applied – among others – in
order to obtain new bounds on functions related to the problem of optimally
small sumsets in groups.

2. Proof of Theorem 2

Let us first mention as a lemma a simple but useful remark.

Lemma 1. Let G be a group and H be an infinite subgroup of G. If H has the
generalized supersmall sumsets property then so does G itself.

P r o o f. It is enough to take the required sets in H where they have to exist
since H is infinite and has itself the generalized supersmall sumsets property. ¤

Now, in order to prove Theorem 2, we start with a very important lemma.

Lemma 2. Let G be a group and H be a normal subgroup of G. If both G/H
and H have the generalized supersmall sumsets property then so does G itself.

P r o o f. If H is infinite, since by assumption it has the generalized supersmall
sumsets property, then so does G itself by Lemma 1. From now on, we assume
that H is finite.

Let k be an arbitrary positive integer. Write, for 1 ≤ i ≤ k, ρi = dri/|H|e
(the ceiling of ri/|H|). Note that, since each ri is an integer, we have

ρi =
⌈

ri

|H|
⌉
≤ ri + |H| − 1

|H| . (2)

We write π : G → G/H the canonical homomorphism.
Since G/H has the generalized supersmall sumsets property, there are subsets

A′1, . . . ,A′k containing 0 in G/H verifying |A′i| = ρi (1 ≤ i ≤ k) such that either

(i) |A′1 + · · ·+A′k| ≤ ρ1 + · · ·+ ρk − k or
(ii) |A′1 + · · ·+A′k| = ρ1 + · · ·+ ρk− k +1 and 0 has the unique representation

0 + · · ·+ 0 in A′1 + · · ·+A′k.
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If we are in case (i), we may select for each index i, a set Ai in G such that
0 ∈ Ai, |Ai| = ri and Ai ⊂ π−1(A′i). Therefore

|A1 + · · ·+Ak| ≤ |A′1 + · · ·+A′k| × |H|
≤ (ρ1 + · · ·+ ρk − k) |H|
≤

(
r1 + |H| − 1

|H| + · · ·+ rk + |H| − 1
|H| − k

)
|H|

= r1 + · · ·+ rk − k,

thanks to (2).
In case (ii), since H satisfies the generalized supersmall sumsets property,

we may select some subsets Xi ⊂ H (1 ≤ i ≤ k) containing 0 and of respective
(positive and≤ |H|) cardinalities ri−(ρi−1)|H| such that they satisfy themselves
the property required by the generalized supersmall sumsets property in H.

Now, we define A1, . . . ,Ak ⊂ G as follows

Ai = π−1(A′i \ {0}) ∪ Xi (1 ≤ i ≤ k).

We check that

|Ai| = (|A′i| − 1)|H|+ |Xi| = (ρi − 1)|H|+ |Xi| = ri.

Since (A1 + · · · + Ak) ∩ H reduces to X1 + · · · + Xk (by the unicity of the
representation of 0 in A′1 + · · ·+A′k), we finally have

|A1 + · · ·+Ak| = (|A′1 + · · ·+A′k| − 1)× |H|+ |X1 + · · ·+ Xk|
≤ (

(ρ1 + · · ·+ ρk − k + 1)− 1
)|H|+ |X1|+ · · ·+ |Xk| − k + 1

=
(
(ρ1 − 1)|H|+ |X1|

)
+ · · ·+ (

(ρk − 1)|H|+ |Xk|
)− k + 1

= r1 + · · ·+ rk − k + 1.

What remains to be proved is that if equality holds in this inequality, that
is if |A1 + · · · +Ak| = r1 + · · · + rk − k + 1, then 0 can be written in a unique
way in A1 + · · · + Ak. But if equality holds, we must have |X1 + · · · + Xk| =
|X1|+· · ·+|Xk|−k+1 and by the definition of the generalized supersmall sumsets
property in H, this implies that 0 (viewed in the sumset X1 + · · · + Xk ⊂ H)
can be written in a unique way. It follows from the fact that the elements in
X1 + · · · + Xk are exactly those of (A1 + · · · + Ak) ∩ H that 0 has a single
representation in A1 + · · ·+Ak.

From the two cases considered above, the result follows. ¤

Before starting the proof of Theorem 2, we need yet another preliminary
lemma.
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Lemma 3. Let G be a group isomorphic to Z or a cyclic group. Let k be a positive
integer. If r1, . . . , rk are positive integers, such that r1+· · ·+rk ≤ |G|+k−1, then
there are subsets A1, . . . ,Ak ⊂ G containing 0 such that |Ai| = ri (1 ≤ i ≤ k),

|A1 + · · ·+Ak| = r1 + · · ·+ rk − k + 1

and 0 has a unique representation in the sumset A1 + · · ·+Ak.

P r o o f. In both cases, for any positive integer k and any r1, . . . , rk ≥ 1, we
consider A1 = {0, . . . , r1 − 1}, . . . ,Ak = {0, . . . , rk − 1} which implies

A1 + · · ·+Ak = {0, . . . , r1 + · · ·+ rk − k}.
If G = Z or G is a cyclic group (and r1 + · · · + rk − k ≤ |G| − 1), then |A1| =
r1, . . . , |Ak| = rk and |A1 + · · ·+Ak| = r1 + · · ·+ rk − k + 1. The result follows
since, in both cases, the element 0 in the sumset A1 + · · · +Ak can be written
in the unique way 0 + · · ·+ 0. ¤

We are now ready to prove Theorem 2.

P r o o f o f T h e o r e m 2.

Step 1: The group Z has the generalized supersmall sumsets property.
This follows directly from Lemma 3 (and we are always in case (ii) of the

definition of the property).

Step 2: Every cyclic group has the generalized supersmall sumsets property.
Indeed, if r1+ · · ·+rk−k < |G| then the result (case (ii)) follows by Lemma 3.

Otherwise, r1 + · · · + rk − k ≥ |G| and we have |A1 + · · · + Ak| ≤ |G| ≤
r1 + · · ·+ rk − k (and this is case (i)).

We shall now apply several times Lemma 2.

Step 3: Any finite Abelian group has the generalized supersmall sumsets prop-
erty.

By the general structure theorem of finite Abelian groups (see for instance
Chapter I.5 in [21]), in order to prove this assertion, it is enough to show – by
induction (on the number m of factors) – that a product of a finite number of
cyclic groups has the generalized supersmall sumsets property. If m = 1, Step
2 gives the result. If the result holds for a product of m cyclic groups, then
considering a product G = Z/n1Z × · · · × Z/nm+1Z of m + 1 ones, we get the
result by Lemma 2 (taking H = {0}×· · ·×{0}×Z/nm+1Z ∼ Z/nm+1Z, a group
having the desired property by Step 2), since the factor group

G/H = (Z/n1Z× · · · × Z/nmZ× Z/nm+1Z)/({0} × · · · × {0} × Z/nm+1Z)
∼ Z/n1Z× · · · × Z/nmZ,
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is a product of m cyclic groups.

Step 4: Any Abelian group has the generalized supersmall sumsets property.

If this group, say G, is finite, the result follows from Step 3. Otherwise, for any
positive integer k and integers r1, . . . , rk ≥ 1, we choose max(r1, . . . , rk) arbitrary
elements in G. Let H be the subgroup of G generated by these elements. It is by
definition finitely generated. But, by the general structure theorem on finitely
generated Abelian groups (see Chapter I.5 of [21] again), either H is finite in
which case the result follows by Step 3, or H contains a subgroup isomorphic to
Z in which case the result follows by Lemma 1 and the result of Step 1.

Step 5: Any solvable group has the generalized supersmall sumsets property.

Let G be a solvable group. There exists a finite normal series of subgroups

{0} = H0 C H1 C H2 C · · ·C Hk = G,

with Abelian factors Hi+1/Hi (0 ≤ i ≤ k − 1).
Now, the result follows by induction: we show below that each Hi (0 ≤ i ≤ k)

has the generalized supersmall sumsets property; in particular G = Hk, which
gives the result of Step 5.

Indeed, this is clear for H0 (and H1 as well) and if we suppose the result to
be true for the subgroup Hi (for some 0 ≤ i ≤ k − 1), then the result follows
for Hi+1, by Lemma 2, since the factor group Hi+1/Hi, being Abelian, has
the generalized supersmall sumsets property (by Step 4) as well as Hi (by the
induction hypothesis).

The proof is complete. ¤

From Theorem 2, we deduce the following corollary.

Corollary 1. Let G be an arbitrary solvable group, k be a positive integer and
r1, . . . , rk be any integers satisfying 1 ≤ r1, . . . , rk ≤ |G|. Then, for any finite
normal subgroup H of G, we have

µ
(k)
G (r1, . . . , rk) ≤

(⌈
r1

|H|
⌉

+ · · ·+
⌈

rk

|H|
⌉
− k + 1

)
|H|.

P r o o f. Since G is solvable and H C G, the factor group G/H itself is solvable.
By Theorem 2, it follows that G/H has the generalized supersmall sumsets
property. In particular, if we put ρi = dri/|H|e (1 ≤ i ≤ k), we obtain that
there exist subsets A′1, . . . ,A′k containing 0 in G/H, with respective cardinalities
|A′i| = ρi (1 ≤ i ≤ k), satisfying |A′1 + · · ·+A′k| ≤ ρ1 + · · · + ρk − k + 1. Since
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ρi = dri/|H|e, if we put π : G → G/H the canonical homomorphism, we may
find subsets Ai ⊂ G, with |Ai| = ri such that Ai ⊂ π−1(A′i). We obtain

µ
(k)
G (r1, . . . , rk) ≤ |A1 + · · ·+Ak|

≤ |A′1 + · · ·+A′k| × |H|
≤ (ρ1 + · · ·+ ρk − k + 1) |H|
=

(⌈
r1

|H|
⌉

+ · · ·+
⌈

rk

|H|
⌉
− k + 1

)
|H|,

as announced. ¤

3. Proof of Theorem 3

We shall use a generalized version of Kneser’s theorem, namely the following.

Theorem 6 (Generalized Kneser’s Theorem). Let G be an Abelian group and
A1, . . . ,Ak be k non-empty finite subsets of G such that |A1 + · · · + Ak| ≤
|A1|+ · · ·+ |Ak|−k. Then the sumset A1 + · · ·+Ak is periodic and if H denotes
its period one has

|A1/H + · · ·+Ak/H| ≥ |A1/H|+ · · ·+ |Ak/H| − k + 1

where for each Ai we denote Ai/H the projection of Ai by the canonical map
G → G/H.

For the reader’s convenience, we include a proof of this folkloric easy result.

P r o o f o f t h e g e n e r a l i z e d K n e s e r’s T h e o r e m. Assume that A1+
· · ·+Ak is aperiodic. Then none of the sums A1+· · ·+Aj for j = 2, . . . , k can be
periodic. By Kneser’s theorem, the fact that A1 + · · ·+Aj is aperiodic implies
|A1 + · · · +Aj | ≥ |A1 + · · · +Aj−1| + |Aj | − 1. Summing all these inequalities
for j = 2 to k, we obtain

|A1 + · · ·+Ak| ≥ |A1|+ · · ·+ |Ak| − k + 1,

a contradiction.
We denote by H the period of A1 + · · · +Ak. Assume that the second part

of the Theorem is false, namely

|A1/H + · · ·+Ak/H| ≤ |A1/H|+ · · ·+ |Ak/H| − k.

By what we have just proved applied to the sets A1/H, . . . ,Ak/H in G/H, the
sumset A1/H + · · ·+Ak/H is periodic (in G/H). But this contradicts the fact
that H, being the period of A1 + · · ·+Ak, is maximal. ¤
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We are now ready to embark for the proof of Theorem 3.

P r o o f o f T h e o r e m 3. Let 1 ≤ r1, . . . , rk ≤ |G| be integers.
Let d be any divisor of |G| and H be a subgroup of order d of G (recall that

G is assumed to be Abelian). By Corollary 1, we get

µ
(k)
G (r1, . . . , rk) ≤

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d.

Since this is true for any divisor d of |G|, we obtain

µ
(k)
G (r1, . . . , rk) ≤ min

d | |G|

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d, (3)

which gives the upper bound.

To prove the lower bound, we choose subsets Ai ⊂ G with |Ai| = ri (for
1 ≤ i ≤ k) such that

|A1 + · · ·+Ak| = µ
(k)
G (r1, . . . , rk).

In particular, we have (taking d = 1 in (3))

|A1 + · · ·+Ak| ≤ |A1|+ · · ·+ |Ak| − k + 1.

If this inequality is an equality then we are done. Otherwise

|A1 + · · ·+Ak| ≤ |A1|+ · · ·+ |Ak| − k

and the generalized Kneser’s theorem (Theorem 6) implies that the sumset
A1 + · · ·+Ak is periodic and, if we denote by H its period, that

|A1/H + · · ·+Ak/H| ≥ |A1/H|+ · · ·+ |Ak/H| − k + 1. (4)

Finally, we obtain (in view of the H-periodicity of the sumset A1 + · · ·+Ak and
of (4))

|A1 + · · ·+Ak| = |A1/H + · · ·+Ak/H| × |H|
≥ (|A1/H|+ · · ·+ |Ak/H| − k + 1)|H|
≥

(⌈
r1

|H|
⌉

+ · · ·+
⌈

rk

|H|
⌉
− k + 1

)
|H|,

since a subset of G with ri elements meets at least dri/|H|e H-cosets. Since |H|
is a divisor of |G|, the lower bound follows.

The theorem is proved. ¤
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4. Two proofs of Theorem 4

F i r s t p r o o f. The argument given for the proof of the upper bound in Theo-
rem 3 (preceding section) is still valid if we replace the set of divisors of |G| by
the set of cardinalities of the finite subgroups H of G (see Corollary 1).

The argument given in the proof of the lower bound in Theorem 3 (preceding
section) is also still valid since Kneser’s theorem (and its generalized version,
Theorem 6, as well) does not require G to be finite. ¤

S e c o n d p r o o f. Let us fix positive integers 1 ≤ r1, . . . , rk ≤ |G|. We choose
sets A1, . . . ,Ak ⊂ G with |Ai| = ri, in which the quantity µ

(k)
G (r1, . . . , rk)

is attained. We consider the subgroup of G generated by A1, . . . ,Ak, say
H = 〈A1 ∪ · · · ∪ Ak〉. We clearly have |A1 + · · · + Ak| = µ

(k)
G (r1, . . . , rk) =

µ
(k)
H (r1, . . . , rk) since H ≤ G and the definitions of the µ(k) functions imply
|A1 + · · ·+Ak| = µ

(k)
G (r1, . . . , rk) ≤ µ

(k)
H (r1, . . . , rk) ≤ |A1 + · · ·+Ak|. Since H

is a finitely generated Abelian group, by the general structure theorem, it is iso-
morphic to Zr×T where r is some nonnegative integer and T is a finite product
of cyclic groups. Without loss of generality, we shall assume that H = Zr × T .

For any positive integer p, denote by πp the canonical projection from H =
Zr×T onto (Z/pZ)r×T . Clearly, if p is large enough, we have |πp(Ai)| = |Ai| for
all 1 ≤ i ≤ k and |πp(A1)+ · · ·+πp(Ak)| = |πp(A1 + · · ·+Ak)| = |A1 + · · ·+Ak|
(this is in some sense a “cyclification principle” in contrast to the so-called
rectification principle). It follows that for p large enough,

µ
(k)
H (r1, . . . , rk) = |πp(A1) + · · ·+ πp(Ak)| ≥ µ

(k)
(Z/pZ)r×T (r1, . . . , rk).

We apply this formula with p a prime larger than µ
(k)
H (r1, . . . , rk) + 1. By the

result in the finite case (Theorem 3), we obtain

µ
(k)
H (r1, . . . , rk) ≥ min

d | pr|T |

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d.

If d0 is a divisor of pr|T | in which the minimum in the right-hand side of this
inequality is attained, then p cannot divide d0 otherwise

p− 1 ≥ µ
(k)
H (r1, . . . , rk) ≥

(⌈
r1

d0

⌉
+ · · ·+

⌈
rk

d0

⌉
− k + 1

)
d0 ≥ d0 ≥ p,
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a contradiction. Therefore, we finally get

µ
(k)
G (r1, . . . , rk) = µ

(k)
H (r1, . . . , rk) (5)

≥ min
d | |T |

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d

≥ min
d∈D

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d,

because any divisor of |T | is the cardinality of a finite subgroup of T and thus
of G.

To finish the proof, we shall show that for an arbitrary d ∈ D, we have

µ
(k)
G (r1, . . . , rk) ≤

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d. (6)

This yields

µ
(k)
G (r1, . . . , rk) ≤ min

d∈D

(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− 1

)
d,

which, with (5), implies the Theorem.
Let us thus consider any d ∈ D. By definition, there is a subgroup W

of G such that |W | = d. We now select an arbitrary subset S of G, having
max(r1, . . . , rk, d) elements and containing W and we define V to be the sub-
group of G generated by S.

If the subgroup V of G is finite, then d clearly divides |V | and r1, . . . , rk ≤ |V |.
Therefore µ

(k)
G (r1, . . . , rk) ≤ µ

(k)
V (r1, . . . , rk) and using Theorem 3 for V , we

obtain

µ
(k)
G (r1, . . . , rk) ≤ min

t | |V |

(⌈r1

t

⌉
+ · · ·+

⌈rk

t

⌉
− k + 1

)
t

≤
(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d,

which proves (6).
If the subgroup V of G is infinite, since it is finitely generated, it contains a

subgroup isomorphic to Z × W (again, this follows from the general structure
theorem on finitely generated Abelian groups). Taking any Ai ⊂ {0, . . . , dri/de−
1} ×W (which is always possible), implies

A1 + · · ·+Ak ⊂
{

0, . . . ,
⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k

}
×W.
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It follows that

µ
(k)
G (r1, . . . , rk) ≤ |A1 + · · ·+Ak|

≤
(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
|W |

=
(⌈r1

d

⌉
+ · · ·+

⌈rk

d

⌉
− k + 1

)
d,

which implies (6) and finishes the proof. ¤

5. On the ν
(k)
G functions

We start with a useful result in our context, known as the Scherk or the
Kemperman-Scherk theorem (see [10, 22]). Since this result is now well known
and several proofs widely spread (see for instance Théorème 10 in [17]), we state
it without proof.

Theorem 7. Let A and B be two finite non-empty subsets of an Abelian group
G. Then, any element of A+B has at least |A|+ |B| − |A+B| representations.

An immediate corollary is the following.

Corollary 2. Let A and B be two finite non-empty subsets of an Abelian
group G such that A+B contains an element with a unique representation, then
|A+ B| ≥ |A|+ |B| − 1.

We therefore obtain

Corollary 3. Let A1, . . . ,Ak be finite non-empty subsets of an Abelian group
G such that A1 + · · · + Ak contains an element with a unique representation,
then

|A1 + · · ·+Ak| ≥ |A1|+ · · ·+ |Ak| − k + 1.

P r o o f. Indeed, if A1 + · · · + Ak contains an element with a unique represen-
tation, then so do A1 + A2,. . . , A1 + · · · + Ak−1. Therefore Corollary 2 yields
consecutively

|A1 +A2| ≥ |A1|+ |A2| − 1
|A1 + · · ·+A3| ≥ |A1 +A2|+ |A3| − 1

...
|A1 + · · ·+Ak| ≥ |A1 + · · ·+Ak−1|+ |Ak| − 1,
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and, summing these inequalities, we obtain

|A1 + · · ·+Ak| ≥ |A1|+ · · ·+ |Ak| − k + 1.

¤

These preliminaries are enough to prove Theorem 5.

P r o o f o f T h e o r e m 5. It follows from Corollary 3 that

ν
(k)
G (r1, . . . , rk) ≥ r1 + · · ·+ rk − k + 1

and in particular since this has to be always ≤ |G| we deduce immediately the
result that as soon as r1 + · · ·+ rk ≥ |G|+ k, we have

ν
(k)
G (r1, . . . , rk) = ∞.

¤

The behaviour of the function ν
(k)
G (r1, . . . , rk) for some types of Abelian

groups follows.

Theorem 8. Let G be either a cyclic group or an Abelian group containing a
subgroup isomorphic to Z. Then

ν
(k)
G (r1, . . . , rk) = r1 + · · ·+ rk − k + 1

as long as r1 + · · ·+ rk ≤ |G|+ k − 1 and ∞ otherwise.

P r o o f. The upper bound follows from Lemma 3 and the lower bound from
Theorem 5. ¤

In general, ν
(k)
G (r1, . . . , rk) 6= r1 + · · ·+rk−k+1 as follows from the following

ultra-basic example: take G = (Z/2Z)2, k = 2 and r1 = r2 = 2. Since any subset
of G with two elements is either a subgroup or a coset modulo a subgroup, it
follows that |A1 +A2| can only be equal to 2 or 4. Henceforth

ν
(2)
(Z/2Z)2(2, 2) = 4.

A slightly less trivial example is G = (Z/3Z)2, k = 2 and r1 = 2, r2 = 3. In
this case, we may compute

ν
(2)
(Z/3Z)2(2, 3) = 5,

a value different from r1 + r2 − 1 but also from a multiple of the cardinality of
any non-trivial subgroup.

The following lemma is of interest in the present context. It is clearly remi-
niscent of Lemma 2 and the proof of it follows indeed the same lines.
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Lemma 4. Let G be a group and H be a finite normal subgroup of G. Let k be
a positive integer. We assume that there are finite subsets A′1, . . . ,A′k ⊂ G/H,
containing 0 (in G/H) such that |A′1 + · · · + A′k| = |A′1| + · · · + |A′k| − k + 1
and 0 has a unique representation in A′1 + · · ·+A′k. We also assume that there
are finite subsets X1, . . . ,Xk ⊂ H, containing 0, such that |X1 + · · · + Xk| =
|X1|+ · · ·+ |Xk| − k + 1 and 0 has a unique representation in X1 + · · ·+ Xk.

Then there are (finite) subsets A1, . . . ,Ak ⊂ G containing 0 with |Ai| =
(|A′i| − 1)|H|+ |Xi| such that |A1 + · · ·+Ak| = |A1|+ · · ·+ |Ak| − k + 1 and 0
has a unique representation in the sumset A1 + · · ·+Ak.

P r o o f. We define A1, . . . ,Ak ⊂ G as follows

Ai = π−1(A′i \ {0}) ∪ Xi (1 ≤ i ≤ k)

and we check that |Ai| = (|A′i| − 1)|H|+ |Xi|.
Since (A1 + · · · + Ak) ∩ H reduces to X1 + · · · + Xk (by the unicity of the

representation of 0 in A′1 + · · ·+A′k), we have

|A1 + · · ·+Ak| = (|A′1 + · · ·+A′k| − 1)× |H|+ |X1 + · · ·+ Xk|
=

(
(|A′1|+ · · ·+ |A′k| − k + 1)− 1

)× |H|
+|X1|+ · · ·+ |Xk| − k + 1

=
(
(|A′1| − 1)|H|+ |X1|

)
+ · · ·

+
(
(|A′k| − 1)|H|+ |Xk|

)− k + 1
= |A1|+ · · ·+ |Ak| − k + 1.

Since 0 (viewed as an element of the sumset X1 + · · ·+Xk ⊂ H) can be written
in a unique way, it follows from the fact that the elements in X1 + · · · + Xk

are exactly those of (A1 + · · · + Ak) ∩ H that 0 has a single representation in
A1 + · · ·+Ak. ¤

From this lemma, we shall deduce a theorem leading to other situations where
Theorem 8 gives in fact the true value of the ν

(k)
G functions.

First, recall that if n1, . . . , nr are r positive integers, any integer n ≤ n1 · · ·nr−
1 can be written in a unique way as a sum

n = α1n2 · · ·nr + α2n3 · · ·nr + · · ·+ αr−1nr + αr,

where each αi is an integer verifying 0 ≤ αi ≤ ni − 1 (for 1 ≤ i ≤ r).

Theorem 9. Let G be an Abelian group. Let k be a positive integer and
r1, . . . , rk be positive integers. Assume that G contains a subgroup isomorphic
to the product Z/n1Z× · · · × Z/nrZ and that we may write for each 1 ≤ i ≤ k

ri = α
(i)
1 n2 · · ·nr + α

(i)
2 n3 · · ·nr + · · ·+ α

(i)
r−1nr + α(i)

r
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with integers 0 ≤ α
(i)
j ≤ nj − 1 (1 ≤ j ≤ r).

If we have

• for each 1 ≤ j ≤ r − 1, α
(1)
j + · · ·+ α

(k)
j ≤ nj − 1,

• for each 1 ≤ i ≤ k, α
(i)
r > 0 , and

• α
(1)
r + · · ·+ α

(k)
r ≤ nr + k − 1,

then
ν

(k)
G (r1, . . . , rk) = r1 + · · ·+ rk − k + 1.

P r o o f. Write H = Z/n1Z× · · · × Z/nrZ ⊂ G. We shall show that

ν
(k)
H (r1, . . . , rk) ≤ r1 + · · ·+ rk − k + 1.

This yields ν
(k)
G (r1, . . . , rk) ≤ r1 + · · · + rk − k + 1 and the result follows by

Theorem 5.
The proof is mainly by induction. We show that for any 1 ≤ j ≤ r− 1, there

are subsets A1, . . . ,Ak containing 0 in Z/n1Z× · · · × Z/njZ, with

|Ai| = α
(i)
1 n2 · · ·nj + α

(i)
2 n3 · · ·nj + · · ·+ α

(i)
j + 1 (1 ≤ i ≤ k)

such that |A1 + · · · + Ak| = |A1| + · · · + |Ak| − k + 1 and 0 has a unique
representation in A1 + · · ·+Ak ⊂ Z/n1Z× · · · × Z/njZ.

For j = 1, the result follows from the assumption that

(α(1)
1 + 1) + · · ·+ (α(k)

1 + 1) ≤ n1 + k − 1

and Lemma 3 applied to the cyclic group Z/n1Z.
Assume now the result to be proved for some integer j − 1, with 1 ≤ j − 1 ≤

r − 2.
First, as above, by Lemma 3 applied to the cyclic group Z/njZ and since

(α(1)
j + 1) + · · ·+ (α(k)

j + 1) ≤ nj + k − 1,

there are subsets A′1, . . . ,A′k containing 0 in Z/njZ, with |A′i| = α
(i)
j + 1 such

that |A′1 + · · ·+A′k| = |A′1|+ · · ·+ |A′k|−k+1 and 0 has a unique representation
in A′1 + · · ·+A′k ⊂ Z/njZ.

Second, the induction hypothesis implies the existence of such a k-tuple of
subsets A′′1 , . . . ,A′′k containing 0 in Z/n1Z× · · · × Z/nj−1Z, with

|A′′i | = α
(i)
1 n2 · · ·nj−1 + α

(i)
2 n3 · · ·nj−1 + · · ·+ α

(i)
j−1 + 1

such that |A′′1 + · · · + A′′k | = |A′′1 | + · · · + |A′′k | − k + 1 and 0 has a unique
representation in A′′1 + · · ·+A′′k ⊂ Z/n1Z× · · · × Z/nj−1Z.
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With these two points, we are in a position to apply Lemma 4. We deduce
that there are subsets A1, . . . ,Ak containing 0 in Z/n1Z× · · · × Z/njZ with

|Ai| = (|A′′i | − 1)nj + |A′i|
= (α(i)

1 n2 · · ·nj−1 + α
(i)
2 n3 · · ·nj−1 + · · ·+ α

(i)
j−1)nj + α

(i)
j + 1

such that |A1 + · · · + Ak| = |A1| + · · · + |Ak| − k + 1 and 0 has a unique
representation in the sumset A1 + · · ·+Ak. This gives the induction step for j.

Now, making the same reasoning at the r-th step and using the assumptions
α

(i)
r > 0 (1 ≤ i ≤ k) and

α(1)
r + · · ·+ α(k)

r ≤ nr + k − 1,

we obtain that there are subsets A1, . . . ,Ak containing 0 in Z/n1Z×· · ·×Z/nrZ
with

|Ai| = (α(i)
1 n2 · · ·nr−1 + α

(i)
2 n3 · · ·nr−1 + · · ·+ α

(i)
r−1)nr + α(i)

r

such that |A1 + · · · + Ak| = |A1| + · · · + |Ak| − k + 1 and 0 has a unique
representation in the sumset A1 + · · ·+Ak. This gives the result. ¤

Notice that a less conceptual proof of this result could be obtained by giving
explicit subsets Ai having the required properties.

We also underline the fact that this result is clearly reminiscent of Kemper-
man’s Theorem [11]. It is certainly no chance.
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