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UNIFORM DISTRIBUTION OF SOME RATIOS

INVOLVING THE NUMBER OF PRIME AND

INTEGER DIVISORS

Florian Luca — Igor E. Shparlinski

ABSTRACT. We show that the fractional parts of the ratios n/ω(n), n/aω(n),

n/τ(n) and n/aτ(n), where a ≥ 2 is a fixed integer and, as usual, ω(n) and
τ(n) denote the number of prime divisors and the total number of divisors of
n > 1, respectively, are uniformly distributed in the unit interval [0, 1]. This
complements results of several authors about the scarcity of integral values taken
by the above fractions.

Communicated by Sergei Konyagin

1. Introduction

In this paper, we study the distribution of fractional parts of the ratios

ρ(n) =
n

ω(n)
, ϑa(n) =

n

aω(n)
, ξ(n) =

n

τ(n)
, ζa(n) =

n

aτ(n)
, (1)

where a ≥ 2 is a fixed integer and, as usual, ω(n) and τ(n) denote the num-
ber of prime divisors and the total number of divisors of n > 1, respectively.
We also put ω(1) = ρ(1) = 0. It has been shown in [20] that ρ(n) ∈ Z for
(1 + o(1))x/ log log x positive integers n ≤ x as x →∞.

Several more general results are obtained in [7, 11]. The integrality of the
function ϑa(n) has been studied in [16], where the exact order of magnitude of
the number of positive integers n ≤ x with ϑa(n) ∈ Z is established.
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Several more problems with a similar flavor have been treated previously
in [1, 2, 4, 7, 11, 15, 16, 20, 21, 22] (see also the references therein).

Here, we obtain nontrivial bounds for exponential sums with the functions (1)
which imply that the sequences of fractional parts {ρ(n)}, {ϑa(n)}, {ξ(n)} and
{ζa(n)}, n = 1, 2, . . ., are uniformly distributed over the unit interval [0, 1]. Our
method is a variant of that of [1].

The functions (1) are of rather different rates of growth and arithmetic struc-
ture. Accordingly, although the general scheme of derivation of each bound is
the same, each case requires some specific adjustments and slightly different
technical tools.

Throughout this paper, for any real number x > 0 and any integer ν ≥ 1, we
write logν x for the function defined inductively by log x = max{ln x, 1} (where
ln x is the natural logarithm of x), and logν x = log(logν−1 x) for ν > 1 (with
log1 x = log x).

In what follows, we use the Landau symbol O, as well as the Vinogradov
symbols¿,À and³ with their usual meanings, with the understanding that any
implied constants may occasionally, where obvious, depend on our parameters a
and ε and are absolute otherwise. We recall that the notations A ¿ B, B À A
and A = O(B) are equivalent, and that A ³ B is equivalent to A ¿ B ¿ A. We
always use the letters p and q to denote prime numbers, while m and n always
denote positive integers.

2. Preliminary results

Here, we collect some known results that are used in this paper.
We use π(x) to denote the number of primes p ≤ x, and we use π(x; f, d) to

denote the number of primes p ≤ x in the fixed arithmetic progression p ≡ f
(mod d). By the classical Page bound (see Chapter 20 of [8]), and using partial
summation (see the remark in Chapter 22 of [8]), it follows that for some absolute
constant A > 0, the estimate

π(x; f, d) =
x

ϕ(d) log x
+ O

(
x

exp(A
√

log x)

)
(2)

holds provided that 1 ≤ d ≤ √
log x and gcd(f, d) = 1.

The bound (2) is completely effective. However, we also need the more pre-
cise but not effective Siegel–Walfisz bound which asserts that for any positive
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constants A and C ∣∣∣∣π(x; f, d)− x

ϕ(d) log x

∣∣∣∣ ≤
x

(log x)A
(3)

holds provided that 1 ≤ d ≤ (log x)C , gcd(f, d) = 1 and x ≥ x0(A, C), where
x0(A,C) depends only on A and C (see Chapter 22 of [8]).

We denote by πν(x) the number of positive integers n ≤ x with ω(n) = ν.
A particular case of the version of the classical Hardy and Ramanujan in-

equality given in [18] and [19] implies that the estimate

πν(x) ³ x(log2 x)ν−1

(ν − 1)! log x
(4)

holds uniformly for 0.5 log2 x ≤ ν ≤ 2 log2 x.
Let e(x) = exp(2πix) for all x ∈ R.
Finally, we also need the following bound for exponential sums with prime

numbers,

max
gcd(b,d)=1

∣∣∣∣∣∣∣∣

∑

p≤x
p prime

e(bp/d)

∣∣∣∣∣∣∣∣
¿ x

(
d−1/2 + x−1/4d1/8 + d1/2x−1/2

)
log3 x (5)

which holds for any real x ≥ 1 and integer d ≥ 1 and follows immediately from
Theorem 2 of [24] by partial summation (see [3]).

3. Exponential sums

For any integers c and N with N ≥ 1, we consider the exponential sums with
the functions (1) given by

S(c; N) =
N∑

n=1

e(cρ(n)), Ta(c;N) =
N∑

n=1

e(cϑa(n)),

U(c; N) =
N∑

n=1

e(cξ(n)), Va(c;N) =
N∑

n=1

e(cζa(n)),

where as before e(x) = exp(2πix) for all x ∈ R.

Theorem 1. For every integer c 6= 0, the following inequality holds:

S(c; N) ¿ |c|1/2 N log3 N

(log2 N)1/4
.
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P r o o f. Let P (n) denote the largest prime divisor of n ≥ 2, and put P (1) = 1.
As usual, we say that an integer n ≥ 1 is y-smooth if and only if P (n) ≤ y, and
we put

ψ(x, y) = #{1 ≤ n ≤ x : n is y-smooth}.
Following [1], we now define the following sets Ei, i = 1, . . . , 6.
We choose Q = N1/u, where

u =
2 log3 N

log4 N
,

and we denote by E1 the set of Q-smooth positive integers n ≤ N .
Next, we denote by E2 the set of the positive integers n ≤ N not in E1 such

that P (n)2 |n.
Now let

k = b(1− γ) log2 Nc and K = b(1 + γ) log2 Nc ,

where γ > 0 is a sufficiently small absolute constant and let E3 denote the set of
positive integers n ≤ N such that either ω(n) < k or ω(n) > K.

Let E4 denote the set of positive integers n ≤ N/ log2 N .
Now let n ≤ N be a positive integer not in ∪4

i=1Ei. This integer n has a
unique representation of the form n = mp, where m is such that m < N/Q, and
p = P (n) is a prime number in the half-open interval p ∈ Lm, where

Lm = max
{

Q, P (m),
N

m log2 N

}
and Lm = (Lm, N/m].

Let E5 be the set of those n ≤ N such that Lm = Q.
Finally, let E6 be the set of those positive integers n ≤ N which are not in

∪5
i=1Ei and such that Lm = P (m).
For each i = 1, . . . , 6, the estimate

#Ei ¿ N

log2 N
(6)

has been established in [1].
Finally, we put

∆ =
⌊
|c|−1/2(log2 N)3/4 log3 N

⌋
,

and remark that if ∆ < 1, then the bound asserted by Theorem 1 is trivial.
We define E7 as the set of those positive integers n ≤ N which are not in

∪6
i=1Ei and such that gcd(n, ω(n)) ≥ ∆. Let us fix a positive integer ν ∈ [k, K],

and a divisor δ of ν. We see that if for n ≤ N we have gcd(n, ν) = δ and
ω(n) = ν, then n = mδ, where ω(m) = ω(n) + O(ω(δ)) = ν + O(log ν).
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Since

πη(x) ¿ x√
log2 x

uniformly over η ∈ Z (see [10, Theorem 21.5]), we have

#E7 ¿
K∑

ν=k

∑

δ|ν
δ>∆

N log ν

δ
√

log2 N
¿ N log3 N

∆
√

log2 N

K∑

ν=k

τ(ν).

Using Theorem 320 of [13], we estimate the sum over ν as O(K log K) and derive

#E7 ¿
N

√
log2 N(log3 N)2

∆
. (7)

We now let N be the set of positive integers n ≤ N which do not belong to
any of the sets Ei for i = 1, . . . , 7. We see from (6) and (7) that

S(c;x) =
∑

n∈N
e(cρ(n)) + O

(
N

√
log2 N(log3 N)2

∆

)
. (8)

Again, as in [1], we note that each n ∈ N admits a unique representation of
the form n = pm, where p > P (m). Moreover, by our choice of the sets E5 and
E6, we see that in this case p ∈ Lm = (N/(m log2 N), N/m]. Let M be the set
of permissible values for m.

Let Nν be the subset of n ∈ N with ω(n) = ν. Note that each such n is of
the form n = pm, where m ∈M has ω(m) = ν−1 and p ∈ Lm. We write Mν−1

for the set of those m ∈M with ω(m) = ν − 1.
Note that

#N =
∑

m∈M
π(Lm) (9)

and for k ≤ ν ≤ K we have

#Nν =
∑

m∈Mν−1

π(Lm), (10)

where we use π(Lm) to denote the number of primes in the interval Lm.
With the above notations, we can write

∑

n∈N
e(cρ(n)) =

K∑

ν=k

∑

m∈Mν−1

∑

p∈Lm

e(cmp/ν).
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By the Page bound (2), for any integers b and d with gcd(b, d) = 1 and
1 ≤ d ≤ √

log x, we have

∑

p≤x

e(bp/d) =
x

ϕ(d) log x

∑

1≤f≤d
gcd(f,d)=1

e(bf/d) + O

(
x

exp(0.5A
√

log x)

)

The sum over f is the classical Ramanujan sum which equals µ(d) because
gcd(b, d) = 1 (see, for example, Theorem 272 of [13]). Here, µ(d) denotes the
Möbius function. Consequently, writing νc(m) = ν/ gcd(cm, ν) and noting that

νc(m) ≤ ν ≤ 2 log2 N < log1/2

(
Q

log2 N

)
< log1/2

(
N

m log2 N

)

holds for all m ∈M and all sufficiently large N , we derive that

∑

n∈N
e(cρ(n)) ¿

K∑

ν=k

∑

m∈Mν−1

(
π(Lm)

ϕ(νc(m))
+

Nνc(m)
m exp

(
0.5A

√
log Q

)
)

.

We have
K∑

ν=k

∑

m∈Mν−1

Nνc(m)
m exp

(
0.5A

√
log Q

) ¿ N log2 N

exp
(
0.5A

√
log Q

)
∑

m<N

1
m

¿ N log N log2 N

exp
(
0.5A

√
log Q

) ¿ N

log2 N
.

Therefore
∑

n∈N
e(cρ(n)) ¿

K∑

ν=k

∑

m∈Mν−1

π(Lm)
ϕ(νc(m))

+
N

log2 N
. (11)

We now substitute the inequality

ϕ(νc(m)) = ϕ

(
ν

gcd(cm, ν)

)
≥ ϕ(ν)

gcd(cm, ν)
≥ ϕ(ν)
|c|∆

in (11), which, in combination with (10) implies

∑

n∈N
e(cρ(n)) ¿

K∑

ν=k

|c|∆
ϕ(ν)

#Nν +
N

log2 N
. (12)
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Using the trivial inequality #Nν ≤ πν(N) in combination with (4) (we assume
that γ < 1/2, thus (4) applies for k ≤ ν ≤ K), we deduce that

∑

n∈N
e(cρ(n)) ¿ |c|∆N

log N

K∑

ν=k

(log2 N)ν−1

ϕ(ν)(ν − 1)!
+

N

log2 N
. (13)

It has been shown in [1] that if γ is sufficiently small, then
K∑

ν=k

(log2 N)ν−1

ϕ(ν)(ν − 1)!
¿ log N

log2 N
,

which together with (8) and (13) leads to the bound

S(c;x) ¿ N
√

log2 N(log3 N)2

∆
+
|c|∆N

log2 N
.

Recalling our choice of ∆, we finish the proof. ¤
Theorem 2. Let a ≥ 2 be integer. Then for any fixed ε > 0 and every integer
c 6= 0 with |c| ≤ (log N)log a−ε, the following inequality holds:

Ta(c; N) ¿ N

log2 N
.

P r o o f. We proceed as in the proof of Theorem 1. In particular, we put

γ =
ε

2 log a

(we assume that ε > 0 is small enough, so γ < 1/2) and define the same
parameters Q, k and K and the same sets E1, . . . , E6 for which we have the
estimate (6).

Finally, we put

L =
⌊

k

2
− log |c|

2 log a

⌋
,

and define E7 as the set of those positive integers n ≤ N which are not in ∪6
i=1Ei

and such that aL|n. Clearly,

#E7 ≤ Na−L ¿ |c|1/2Na−k/2 ¿ N(log N)−ε/4. (14)

We now let N be the set of positive integers n ≤ N which do not belong to
any of the sets Ei for i = 1, . . . , 7. We see, from (6) and (14), that

Ta(c; x) =
∑

n∈N
e(cϑa(n)) + O

(
N

log2 N

)
. (15)

As before, we define the sets Nν and Mν−1. In particular, we have complete
analogues of (9) and (10).
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With the above notations we can write

∑

n∈N
e(cϑa(n)) =

K∑

ν=k

∑

m∈Mν−1

∑

p∈Lm

e(cmp/aν).

By the Siegel–Walfisz bound (3), for any integers b and d with gcd(b, d) = 1 and
1 ≤ d ≤ (log x)2, we have

∑

p≤x

e(bp/d) =
x

ϕ(d) log x

∑

1≤f≤d
gcd(f,d)=1

e(bf/d) + O

(
x

log2 x

)
.

Consequently, writing λc(m) = aν/ gcd(cm, aν) and noting that

λc(m) ≤ aν ≤ aK ≤ (log N)2 < log3

(
Q

log2 N

)
< log3

(
N

m log2 N

)

holds for all m ∈M and all sufficiently large N , we have
K∑

ν=k

∑

m∈Mν−1

N

m log2 Q
¿ N log N

log2 Q
¿ N

log2 N
.

Therefore

∑

n∈N
e(cϑa(n)) ¿

K∑

ν=k

∑

m∈Mν−1

π(Lm)
ϕ(λc(m))

+
N

log2 N
. (16)

We now substitute the inequality

ϕ(λc(m)) = ϕ

(
aν

gcd(cm, aν)

)
≥ aν−L−1|c|−1

in (16), which, in combination with analogues of (9) and (10) implies

∑

n∈N
e(cϑa(n)) ¿

K∑

ν=k

|c|
aν−L−1|c|−1

#Nν +
N

log2 N

¿ |c|aL−k
K∑

ν=k

#Nν +
N

log2 N
¿ |c|aL−kN +

N

log2 N
.

Recalling (15) and our choice of L, we finish the proof. ¤

We now estimate the sums U(c; N). Clearly, the functions ϑ2(n) and ξ(n) are
quite similar to each other. So, both the resulting bound and its proof are very
similar to those of Theorem 2.
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Theorem 3. Let a ≥ 2 be integer. Then for any fixed ε > 0 and every integer
c 6= 0 with |c| ≤ (log N)log 2−ε, the following inequality holds:

U(c;N) ¿ N

log2 N
.

P r o o f. As have already noticed, the proof is very similar to that of Theorem 2.
Thus, we only concentrate only on the new elements. In particular, we put

γ =
ε

2 log 2

(we assume that ε > 0 is small enough, so γ < 1/2), and define the same
parameters Q, k and K and the same sets E1, . . . , E6 for which we have the
estimate (6) and the set E7 (with respect to a = 2), for which we have the
estimate (14).

We recall that an integer s is called square-full if p2 | s for each prime divisor
p of s. We also consider the set E8 of those positive integers n ≤ N which are
not in ∪7

i=1Ei and such that s | n for some square-full integer s ≥ (log2 N)2. It
is well known that the number of square-full s ≤ x is O(x1/2) (see [5, 12, 23]).
Therefore, by partial summation, we derive

#E8 ≤
∑

s≥(log2 N)2

s square−full

N

s2
¿ N

log2 N
. (17)

We now let N be the set of positive integers n ≤ N which do not belong to
any of the sets Ei for i = 1, . . . , 8. We see from (6), (14) and (17), that

U(c; x) =
∑

n∈N
e(cξ(n)) + O

(
N

log2 N

)
.

For every square-full integer s we define the setsNs,ν of those n ∈ N which are
of the form n = sr, where s is largest square-full divisor of n (thus gcd(s, r) = 1
and r is square-free) and ω(r) = ν. We write every n ∈ Ns,ν as n = mp
where p = P (n) and put Ms,ν−1 for the set of all possible values of m in such
representations.

In particular, instead of (10) we have

#Ns,ν =
∑

m∈Ms,ν−1

π(Lm).

We also note that for n = sr ∈ Ns,ν we have

ω(n) ≥ ω(r) ≥ ω(n)− ω(s) = ω(n) + O(log3 N/ log4 N).
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Thus, defining
k0 = k − blog3 Nc ,

we see that for a sufficiently large N we have

∑

n∈N
e(cξ(n)) =

∑

s<(log2 N)2

s square−full

K∑

ν=k0

∑

m∈Ms,ν−1

∑

p∈Lm

e(cmp/(τ(s)2ν)).

The rest of the proof is fully analogous to that of Theorem 2 (one can easily
verify that the extra summation over s does not change either the proof, or the
final bound). ¤

Theorem 4. Let a ≥ 2 be integer. Then for any fixed ε > 0 and every integer
c 6= 0 with |c| ≤ a(log N)log 2−ε

, the following inequality holds:

Va(c;N) ¿ N

log2 N
.

P r o o f. Using the same notation and arguing exactly as in the proof of Theo-
rem 3, we arrive to the identity

Va(c; x) =
∑

n∈N
e(cζa(n)) + O

(
N

log2 N

)

=
∑

s<(log2 N)2

s square−full

K∑

ν=k0

∑

m∈Ms,ν−1

∑

p∈Lm

e(cmp/aτ(s)2ν

) + O

(
N

log2 N

)
.

We now observe that

gcd(cm, aτ(s)2ν

) ≤ |c| gcd(m, aτ(s)2ν

) ≤ a2(log N)log 2−ε

,

and using (5) after simple calculations we conclude the proof. ¤

4. Concluding remarks

Clearly the bounds of Theorems 1, 2, 3 and 4 imply the desired uniformity of
distribution property of the fractional parts {ρ(n)}, {ϑa(n)}, {ξ(n)} and {ζa(n)}
for n = 1, 2, . . .. Moreover, coupled with the Erdős–Turán inequality (see [9, 14]),
they give an explicit bound on the discrepancy of the above sequences.

There is no doubt that a more careful analysis of the numbers m ∈Mν−1 with
a given value of either gcd(cm, ν) or gcd(cm, aν) may lead to improvements of
Theorems 1 and 2, respectively (with respect to both the dependence on c and the
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saving with respect to N). The same comments also apply to Theorems 3 and 4.
However, here we mainly concentrated on giving simple proofs of the uniformity
of distribution property rather than on extracting the best possible bounds on
the discrepancy which would involve several more technical complications.

One can also use the same approach to study many other ratios of the form
f(n)/g(ω(n)) for some “natural” integer-valued functions f and g, for example
polynomials with integer coefficients. However, it is not clear how to formulate
a general result which would incorporate our Theorems 1, 2, 3 and 4. Certainly,
the final bounds may depend on a variety of properties of f and g (including
their rate of growth and multiplicative structure).

Finally, we note that our methods do not apply to study the distribution of
the fractional parts {n1/ω(n)} for n = 1, 2, . . ., which has been studied in [17]
using a different approach.
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