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ON THE RIEMANN ZETA-FUNCTION AND THE
DIVISOR PROBLEM 1V

ALEKSANDAR Ivi¢

ABSTRACT. Let A(z) denote the error term in the Dirichlet divisor prob-
lem, and E(T') the error term in the asymptotic formula for the mean square of
|C(%+it)|. If E*(t) = E(t)—27A*(t/27) with A*(x) = —A(x)+2A(2x)—%A(4x),
then it is proved that

T
/ |E*(t)]® dt < T3/21¢
0
and (3 +it) < tP/2Fe if B*(t) <. tPTe.

Communicated by Werner Georg Nowak

1. Introduction and statement of results

This paper is the continuation of the author’s works [5], [6], where the anal-
ogy between the Riemann zeta-function ((s) and the divisor problem was inves-
tigated. As usual, let the error term in the classical Dirichlet divisor problem
be

Az) = Zd(n) —z(logz + 27— 1), (1.1)

n<x

and the error term in the mean square formula for |((3 + it)| be defined by

ﬂﬂ::ATQ§+MF&—TO%<;>+QW—Q. (1.2)

Here, as usual, d(n) is the number of divisors of n, {(s) is the Riemann zeta-
function, and v = —I"(1) = 0.577215... is Euler’s constant. The analogy
between ((s) and the divisor problem is more exact if, instead with A(z), we
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work with the modified function A*(x) (see M. Jutila [8], [9] and T. Meurman
[11], [12]), where

A*(z) = —A(2)+2A(20)—3A(4z) = § > (—1)"d(n)—z(logz+2y—1). (1.3)

M. Jutila (op. cit.) investigated both the local and global behaviour of the
difference

E*(t) = E(t) — 2nA" (2’;) (1.4)

This function may be thought of as a discrepancy between E*(t) and A*(z). In
particular, Jutila in [9] proved that

T
/ (E*(t))*dt < T*?1og®T, (1.5)
0
which was sharpened in [6] by the author to the full asymptotic formula
T
/ (E*(t))?dt = TY3Ps(logT) + O(T7/6+%), (1.6)
0
where P3(y) is a polynomial of degree three in y with positive leading coefficient,
and all the coefficients may be evaluated explicitly. Here and later € denotes
positive constants which are arbitrarily small, but are not necessarily the same

ones at each occurrence, while a <. b (same as a = O.(b)) means that the
< —constant depends on . In Part II of [5] it was proved that

T
/ |E*(1))°dt <. T, (1.7)
0
while in Part IIT we investigated the function R(T") defined by the relation
T N 3T
E*(t)dt = ZT+R(T), (1.8)
0

and proved, among other things, the asymptotic formula
T
/ R2(t) dt = T2Qs(l0g T) + O (T'/0+¢), (1.9)
0

where Q3(y) is a cubic polynomial in y with positive leading coefficient, whose
all coefficients may be evaluated explicitly.

The asymptotic formula (1.9) bears resemblance to (1.6), and it is proved by
a similar technique. The exponents in the error terms are, in both cases, less
than the exponent of T in the main term by 1/6. This comes from the use of
[6, Lemma 3], and in both cases the exponent of the error term is the limit of
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the method. Our first new result is an upper bound for the third moment of
|E*(t)|, which does not follow from any of the previous results. This is

THEOREM 1. We have
T
/ |EX(t)]Pdt <. T3/, (1.10)
0

In view of (1.6) it follows that (1.10) is, up to ‘c’, best possible.

COROLLARY 1. We have
T
/ IC(3 +at)[Bdt <. T3/t
0

The last result is, up to ‘c’, the sharpest one known (see [3, Chapter 8]). Tt
follows from Theorem 1.4 of [5, Part II], which says that the bound

T
/ |E*(t)|Fdt <. Tk)+e (1.11)
0
implies that
T
/ IC(L + )2 At <. Tt (1.12)
0

where k£ > 1 is a fixed real number.

COROLLARY 2. We have
T T
/ (E*(t)*dt <. T4+, / IC(L +it)[10dt <. TT/4Fe. (1.13)
0 0

The first bound in (1.13) follows by the Cauchy-Schwarz inequality for inte-
grals from (1.7) and (1.10). The second bound follows from (1.11)—(1.12) with
k = 4 and represents, up to ‘c’, the sharpest one known (see [3, Chapter 8]).
The first exponent in (1.13) improves on 16/9 + ¢, proved in [5, Part I].

COROLLARY 3. If, for k > 0 a fized constant and 1 < G =G(T) < T,
1 o0
IT.6) = [ 14T i Phe O du,

then

2T
/ JHt,G)dt <. T (1.14)
T

holds for T3/' < G = G(T) < T.
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Namely it was proved in [6] that, for T° < G = G(T) < T and fixed m > 1
we have
27

GlogT 2T
J(t,G) dt<<G_1_m/ (/ |E*(t + z)|™ dt) dz + Tlog®™ T.

T —GlogT \JT

(1.15)
Thus (1.14) follows from (1.13) and (1.15) with m = 4, and improves on the
range T7/3% < G = G(T) <« T stated in Theorem 1 of [6], since 3/16 < 7/36.
Both (1.6) and (1.10) imply that, in the mean sense, E*(t) <. t*/6*¢. The
true order of this function is, however, quite elusive. If we define

p = inf{ r>0: E*(T)=O0(T") } (1.16)
then we have unconditionally

1/6 < p<131/416 = 0.314903.. ., (1.17)

and there is a big discrepancy between the lower and upper bound in (1.17). The
lower bound in (1.17) comes from the asymptotic formula (1.6), which in fact
gives E*(T) = Q(T"/%(log T')?>/?). The upper bound comes from the best known
bound for A(z) of M.N. Huxley [2] and E(T) of N. Watt (unpublished). It
remains yet to see whether a method can be found that would provide sharper
bounds for p than for the corresponding exponents of E(T) and A(z). This
is important, as one can obtain bounds for (1 + it) from bounds of E*(t).
More precisely, if as usual one defines the Lindel6f function for {(s) (the famous
Lindeldf conjecture is that z(3) = 0) by the relation

(o) = liminf 710g|(:(0 +it)]

1.18
t—o0 logt ( )

for any o € R, then we have
THEOREM 2. If p is defined by (1.16) and p(o) by (1.18), then we have
w(s) < 30 (1.19)
It may be remarked that, if p < 1/4 holds, then § = w, where
0= inf{ ¢c>0 : E(T) =0T } w= inf{ d>0: A(T) =0T }

Namely as § > 1/4 and w > 1/4 are known to hold (this follows e.g., from mean
square results, see [4]) § = w follows from (1.4) and w = o, proved recently by
Lau-Tsang [10], where

J:inf{s>0 . AY(T) = O(T?) }
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The reader is also referred to M. Jutila [8] for a discussion on some related
implications. The limit of (1.19) is u(3) < 1/12 in view of (1.17).

The plan of the paper is as follows. In Section 2 the necessary lemmas are
given, while the proofs of Theorem 1 and Theorem 2 will be given in Section 3.

2. The necessary lemmas

In this section we shall state the lemmas which are necessary for the proof of
our theorems.

LeEMMA 1 (O. Robert—P. Sargos [13]). Let k > 2 be a fized integer and 6 > 0 be
giwen. Then the number of integers ny,no,ng, ng such that N < ni,nq,ng,ng <
2N and
\n}/k —H”L;/k —né/k —ni/k| < SNk
is, for any given ¢ > 0,
<. N¥(N*6 4+ N?). (2.1)

This Lemma (with k& = 2) is crucial in treating the fourth power of the sums

in (2.5) and (2.12).

LEMMA 2. Let T° < G < T/logT. Then we have
2 (o)
E*(T) < G /0 E*(T +u)e /% du+ 0.(GT?), (2.2)

and
2 o0 2 2
E*(T) > —— E*(T —u)e % /G (GT®). 2.
Mz 2z [ @t T oGy ey

Lemma 2 follows on combining Lemma 2.2 and Lemma 2.3 of [4, Part I].
The next lemma is F.V. Atkinson’s classical, precise asymptotic formula for
E(T) (see [1], [3] or [4]).
LEMMA 3. Let 0 < A < A’ be any two fixed constants such that AT < N < A'T,
and let N' = N'(T) = T/(27) + N/2 — (N?/4 + NT/(27))"/2. Then

E(T) = %1(T) + %2(T) + O(log? T), (2.4)
where
Su(T) = 2Y2(T/(2m))/* Y (1) d(n)n= 3 *e(T,n) cos(f(T,n)),  (2.5)
n<N
Yo (T) = -2 Z d(n)n=2(log T/(27n)) ! cos(T log T/ (2mn)—T+x/4), (2.6)

n<N'
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with
f(T,n) = 2Tarsinh (y/7n/(2T)) + V/2mnT + 72n? — 7 /4

= —37+2V2mnT + é\/271'3713/2T_1/2 + asn® T3/ 4 an/2T752 4
(2.7)

e(T,n) = (1 +m/(2T))*1/4{(2T/7m)1/2arsmh(\/W)}
=1+4+0(n/T) (1<n<T), (2.8)
and arsinhx = log(z + /1 + 22).
LEMMA 4 (M. Jutila [8, Part IT]). For A € R a constant we have

cos (\/ 8mnT + ¢V om3n3/2—1/2 ¢ A) = / a(u) cos(V8mn(VT + u) + A) du,
B (2.9)

where a(u) < TYC for u # 0,
au) < T exp(—bT 4 |ul?/?) (2.10)

foru <0, and

afu) = T8y~ 1/4 (dexp(ibT1/4u3/2) + Jexp(—ibT1/4u3/2)) +O(T~ V8774
(2.11)
for u > T=% and some constants b (> 0) and d.

We need also an explicit formula for A*(x) (see [3, Chapter 15]). This is

LEMMA 5. For1 < N < x we have

1 zi Z(71)"d(n)n’%cos(4ﬂ\/ﬁ7iﬂ)+05($%+aN7%)- (2.12)
™2 n<N

At(x) =

3. Proofs of the theorems

The proof of (1.10) of Theorem 1 is based on the method of [5]. We seek an
upper bound for R = R(V,T), the number of points
{t-} e [T,2T)(r=1,..., R), V <|E*(t.)| <2V (|tr —ts| >V ifr#s).
(3.1)
We consider separately the points where E*(¢,) is positive or negative. Suppose
the first case holds (the other one is treated analogously), using in either case
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the notation R for the number of points in question. Then from Lemma 2 we
have

2 e 2 2
< E*(t,) < —=— E* —ut/G .(GT® 2
V< (tr)_ﬁG/o (b +G+u)e ™/ dut0.(GT7),  (32)

and the integral may be truncated at u = GlogT with a very small error. We
may suppose that V satisfies

TYS < v <1V (3.3)
Indeed, if
2T 2T
I(T) := / |E*()|*dt, I(T):= / |E*(1)]? dt,
T,|E*|<T1/6 T,|E*|>Tt/4
then from (1.6) it follows that
2T
I(T) < Tl/ﬁ/ |E*(8))? dt < T3/ ?10g® T, (3.4)
T
while from (1.7) we obtain that
2T
L(T) < T—1/2/ |E*(1)|° dt <. T3/%F=. (3.5)
T

Thus supposing that (3.3) holds we estimate

T

.7 ;:/ B ()] dt

T,V<|E*(t)|<2V
by splitting the interval [T, 27 into R (= R(V,T)) disjoint subintervals .J,. of
length < V| where in the r-th of these intervals we define ¢, (r =1,..., R) by

|E*(tr)| = sup [E"(t)].
ted,

The proof of Theorem 1 will be a consequence of the bound
R <. T3/**ey—4, (3.6)
provided that (3.1) holds (considering separately points with even and odd in-
dices so that |t —ts| > V (r # s) is satisfied). Namely we have
R

I(V,T) < VY |E*(t,)]P <. VT32Hey—4ys = 78/2+, (3.7)
j=1
and from (3.4), (3.5) and (3.7) we obtain

2T
/T B dt <. T2, (3.8)
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The bound (1.10) follows from (3.8) if one replaces T' by 7277 and sums the
corresponding results for j =1,2,....

We continue the proof of Theorem 1 by noting that, like in [5, Part I], the in-
tegral on the right-hand side of (3.2) is simplified by Atkinson’s formula (Lemma
3) and the truncated formula for A*(z) (Lemma 5). We take G = ¢VT ¢ (with
sufficiently small ¢ > 0) to make the O-term in (3.2) < 1V, and then we obtain

6 GlogT
V< ZV‘lTE/ St +G+we™/du (r=1,...,R), (3.9)
0 J

j=4

where we choose X = T/37¢ N = TG~2logT and, similarly to [5], for t < T
we set (in the notation of Lemma 3)

Z4(t) = ¢1/4 Z (=1)™d(n)n=3/*e(t 4+ u,n) cos(f(t + u,n)), (3.10)

X<n<N

ZS(t) =4 3" (=1)"d(n)n”** cos(/Smn(t + u) — m/4),

Zﬁ(t) =g/ z:_(—l)”cl(n)ng/4 cos(y/8mn(t + u) — 7 /4). (3.11)
n<X

The sums in (3.10)—(3.11) over n are split into O(log T') subsums over the ranges
K <n < K" <2K. We denote these sums by ¥;(¢, K) and let ¢(t) denote a
smooth, nonnegative function supported in [T/2, 5T/2], such that ¢(t) = 1
when T < ¢t < 2T. There must exist a set of M = M(K) points {r,} € {¢}
such that M(K) > R/logT for some j, K, so that it suffices to majorize M (K),
which we shall (with a slight abuse of notation) henceforth denote again by R.
The contribution of ) ¢ (, K) is estimated by raising the relevant portion of (3.9)
to the fourth power and summing over r, noting that |t,—ts| > V (r # s), so that
the sum of integrals over the intervals [¢t,.+G, t,.+G+G log T is majorized by the
integral over [T'/2, 5T/2]. We proceed as in [5, Part I and Part II] integrating
by parts, and using () (t) <¢ T~ (¢ > 0). It transpires, when we develop
Zé(u K) and set

A= /T + /i3 — /T — v/

that the contribution of A > T¢~1/2 is negligible (i.e., it is smaller than 7—4
for any given A > 0). The contribution of A < T°71/2 is treated by Lemma 1
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and trivial estimation of the ensuing integral. We obtain

2T 4
RV* < V7IT®  sup / e(t)> (t,K) dt
|[u|<GlogT JT/2 6

<<5 Tl-‘r&v—l sup T—1K3(K4K—1/2‘A‘ + K2)
|u|<Glog T,|A|<Te—1/2
< TV HTTV2X2 4 XP) <, TP/ ey =L

since K <« X = T"'/3=¢. This gives, since (3.3) holds,
R <<€ T5/3+€v—5 <<E T3/2+EV_4,

which is the desired bound (3.6).

The contributions of > ,(t, K) and of ) .(t,K) are estimated analogously,
with the remark that in the case of }_ (¢, K') one has to use Lemma 4 to deal
with the complications arising from the presence of cos(f(t+wu,n)), coming from
(2.5). This procedure was explained in detail in [5, Part I and Part II]. The non-
negligible contribution of ). (¢, K') will, again by raising the relevant expression
to the fourth power, be for A < T°~1/2 again. The application of Lemma 1
gives in this case

RV <« VTITYW T K3 (KAT~Y? 4 K?)
< T2+6v—1(K1/2T1/2 +K—1)
& T34y —IRY2 L 75/3+ey -1 (3.12)
because K > X = T'/3¢ holds. For K < V? the bound (3.12) reduces to
(3.6), and we are done. If V2 < K < TV =2 (note that V2 < T**¢V 2 holds

by (3.3)), then the relevant expression is squared, and not raised to the fourth
power. We obtain

5T/2 9
RV? <« V1 / t t, K)dt
< B o o( )25( )

5T/2
=TY2y~'  max / o(t)x
|[u|<Glog T T/2

XY (D dm)d(n) (mn) VIR gy
K<mn<2K

<TPVEN T @ mym 24 TRV N [m =/l
m>K K<m#n<2K
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Here we used trivial estimation for the diagonal terms m = n, and the first
derivative test ([3, Lemma 2.1]) for the remaining terms. Since V? < K and

Z lVm—vn|™! < Z VK Z im—n|"' < K*?log K,
K<m#n<2K K<m<2K K<n<2K,n#m

we obtain that
RV? < TPV IK 210 T+ TV < T3y 2,

and (3.6) follows again. The proof of Theorem 1 is complete.

For the proof of Theorem 2 note that, by [4, Theorem 1.2], (1.4) and (1.19),
we have

T+1
CE +iT)? < logT/ €L +it)2dt + 1
T—1

< 10gT<logT +E(T+1)— E(T - 1))

<. logT <1ogT +orA* (%) —orA* (T2;1)> L et

< Tre, (3.13)

since, from (1.3) and d(n) <. n®, it is seen that

AT+ H)—A"(T)=O0(HlogT)+3 Y (=1)"d(n) < HT*
4T <n<4(T+H)

holds for 1 <« H <« T'. Therefore (3.13) implies that
C(5 +iT)]* < T,

and this gives pu(3) < 3p, as asserted.
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