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ON THE RIEMANN ZETA-FUNCTION AND THE

DIVISOR PROBLEM IV

Aleksandar Ivić

ABSTRACT. Let ∆(x) denote the error term in the Dirichlet divisor prob-
lem, and E(T ) the error term in the asymptotic formula for the mean square of

|ζ( 1
2
+it)|. If E∗(t) = E(t)−2π∆∗(t/2π) with ∆∗(x) = −∆(x)+2∆(2x)− 1

2
∆(4x),

then it is proved that ∫ T

0
|E∗(t)|3 dt ¿ε T 3/2+ε

and ζ( 1
2

+ it) ¿ε tρ/2+ε if E∗(t) ¿ε tρ+ε.

Communicated by Werner Georg Nowak

1. Introduction and statement of results

This paper is the continuation of the author’s works [5], [6], where the anal-
ogy between the Riemann zeta-function ζ(s) and the divisor problem was inves-
tigated. As usual, let the error term in the classical Dirichlet divisor problem
be

∆(x) =
∑

n≤x

d(n)− x(log x + 2γ − 1), (1.1)

and the error term in the mean square formula for |ζ(1
2 + it)| be defined by

E(T ) =
∫ T

0

|ζ( 1
2 + it)|2 dt− T

(
log

(
T

2π

)
+ 2γ − 1

)
. (1.2)

Here, as usual, d(n) is the number of divisors of n, ζ(s) is the Riemann zeta-
function, and γ = −Γ′(1) = 0.577215 . . . is Euler’s constant. The analogy
between ζ(s) and the divisor problem is more exact if, instead with ∆(x), we
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work with the modified function ∆∗(x) (see M. Jutila [8], [9] and T. Meurman
[11], [12]), where

∆∗(x) := −∆(x)+2∆(2x)− 1
2∆(4x) = 1

2

∑

n≤4x

(−1)nd(n)−x(log x+2γ−1). (1.3)

M. Jutila (op. cit.) investigated both the local and global behaviour of the
difference

E∗(t) := E(t)− 2π∆∗
(

t

2π

)
. (1.4)

This function may be thought of as a discrepancy between E∗(t) and ∆∗(x). In
particular, Jutila in [9] proved that

∫ T

0

(E∗(t))2 dt ¿ T 4/3 log3 T, (1.5)

which was sharpened in [6] by the author to the full asymptotic formula
∫ T

0

(E∗(t))2 dt = T 4/3P3(log T ) + Oε(T 7/6+ε), (1.6)

where P3(y) is a polynomial of degree three in y with positive leading coefficient,
and all the coefficients may be evaluated explicitly. Here and later ε denotes
positive constants which are arbitrarily small, but are not necessarily the same
ones at each occurrence, while a ¿ε b (same as a = Oε(b)) means that the
¿–constant depends on ε. In Part II of [5] it was proved that

∫ T

0

|E∗(t)|5 dt ¿ε T 2+ε, (1.7)

while in Part III we investigated the function R(T ) defined by the relation
∫ T

0

E∗(t) dt =
3π

4
T + R(T ), (1.8)

and proved, among other things, the asymptotic formula
∫ T

0

R2(t) dt = T 2Q3(log T ) + Oε(T 11/6+ε), (1.9)

where Q3(y) is a cubic polynomial in y with positive leading coefficient, whose
all coefficients may be evaluated explicitly.

The asymptotic formula (1.9) bears resemblance to (1.6), and it is proved by
a similar technique. The exponents in the error terms are, in both cases, less
than the exponent of T in the main term by 1/6. This comes from the use of
[6, Lemma 3], and in both cases the exponent of the error term is the limit of
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the method. Our first new result is an upper bound for the third moment of
|E∗(t)|, which does not follow from any of the previous results. This is

Theorem 1. We have
∫ T

0

|E∗(t)|3 dt ¿ε T 3/2+ε. (1.10)

In view of (1.6) it follows that (1.10) is, up to ‘ε’, best possible.

Corollary 1. We have
∫ T

0

|ζ( 1
2 + it)|8 dt ¿ε T 3/2+ε.

The last result is, up to ‘ε’, the sharpest one known (see [3, Chapter 8]). It
follows from Theorem 1.4 of [5, Part II], which says that the bound

∫ T

0

|E∗(t)|k dt ¿ε T c(k)+ε (1.11)

implies that ∫ T

0

|ζ( 1
2 + it)|2k+2 dt ¿ε T c(k)+ε, (1.12)

where k ≥ 1 is a fixed real number.

Corollary 2. We have
∫ T

0

(E∗(t))4 dt ¿ε T 7/4+ε,

∫ T

0

|ζ( 1
2 + it)|10 dt ¿ε T 7/4+ε. (1.13)

The first bound in (1.13) follows by the Cauchy-Schwarz inequality for inte-
grals from (1.7) and (1.10). The second bound follows from (1.11)–(1.12) with
k = 4 and represents, up to ‘ε’, the sharpest one known (see [3, Chapter 8]).
The first exponent in (1.13) improves on 16/9 + ε, proved in [5, Part I].

Corollary 3. If, for k > 0 a fixed constant and 1 ¿ G = G(T ) ¿ T ,

Jk(T, G) :=
1√
πG

∫ ∞

−∞
|ζ( 1

2 + iT + iu)|2ke−(u/G)2 du,

then ∫ 2T

T

J4
1 (t, G) dt ¿ε T 1+ε (1.14)

holds for T 3/16 ≤ G = G(T ) ¿ T .
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Namely it was proved in [6] that, for T ε ¿ G = G(T ) ≤ T and fixed m ≥ 1
we have
∫ 2T

T

Jm
1 (t, G) dt ¿ G−1−m

∫ G log T

−G log T

(∫ 2T

T

|E∗(t + x)|m dt

)
dx + T log2m T.

(1.15)
Thus (1.14) follows from (1.13) and (1.15) with m = 4, and improves on the
range T 7/36 ≤ G = G(T ) ¿ T stated in Theorem 1 of [6], since 3/16 < 7/36.

Both (1.6) and (1.10) imply that, in the mean sense, E∗(t) ¿ε t1/6+ε. The
true order of this function is, however, quite elusive. If we define

ρ := inf
{

r > 0 : E∗(T ) = O(T r)
}

, (1.16)

then we have unconditionally

1/6 ≤ ρ ≤ 131/416 = 0.314903 . . . , (1.17)

and there is a big discrepancy between the lower and upper bound in (1.17). The
lower bound in (1.17) comes from the asymptotic formula (1.6), which in fact
gives E∗(T ) = Ω(T 1/6(log T )3/2). The upper bound comes from the best known
bound for ∆(x) of M.N. Huxley [2] and E(T ) of N. Watt (unpublished). It
remains yet to see whether a method can be found that would provide sharper
bounds for ρ than for the corresponding exponents of E(T ) and ∆(x). This
is important, as one can obtain bounds for ζ( 1

2 + it) from bounds of E∗(t).
More precisely, if as usual one defines the Lindelöf function for ζ(s) (the famous
Lindelöf conjecture is that µ( 1

2 ) = 0) by the relation

µ(σ) = lim inf
t→∞

log |ζ(σ + it)|
log t

(1.18)

for any σ ∈ R, then we have

Theorem 2. If ρ is defined by (1.16) and µ(σ) by (1.18), then we have

µ( 1
2 ) ≤ 1

2ρ. (1.19)

It may be remarked that, if ρ ≤ 1/4 holds, then θ = ω, where

θ = inf
{

c > 0 : E(T ) = O(T c)
}

, ω = inf
{

d > 0 : ∆(T ) = O(T d)
}

.

Namely as θ ≥ 1/4 and ω ≥ 1/4 are known to hold (this follows e.g., from mean
square results, see [4]) θ = ω follows from (1.4) and ω = σ, proved recently by
Lau–Tsang [10], where

σ = inf
{

s > 0 : ∆∗(T ) = O(T s)
}

.
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The reader is also referred to M. Jutila [8] for a discussion on some related
implications. The limit of (1.19) is µ( 1

2 ) ≤ 1/12 in view of (1.17).
The plan of the paper is as follows. In Section 2 the necessary lemmas are

given, while the proofs of Theorem 1 and Theorem 2 will be given in Section 3.

2. The necessary lemmas

In this section we shall state the lemmas which are necessary for the proof of
our theorems.

Lemma 1 (O. Robert–P. Sargos [13]). Let k ≥ 2 be a fixed integer and δ > 0 be
given. Then the number of integers n1, n2, n3, n4 such that N < n1, n2, n3, n4 ≤
2N and

|n1/k
1 + n

1/k
2 − n

1/k
3 − n

1/k
4 | < δN1/k

is, for any given ε > 0,
¿ε Nε(N4δ + N2). (2.1)

This Lemma (with k = 2) is crucial in treating the fourth power of the sums
in (2.5) and (2.12).

Lemma 2. Let T ε ¿ G ¿ T/ log T . Then we have

E∗(T ) ≤ 2√
πG

∫ ∞

0

E∗(T + u) e−u2/G2
du + Oε(GT ε), (2.2)

and
E∗(T ) ≥ 2√

πG

∫ ∞

0

E∗(T − u) e−u2/G2
du + Oε(GT ε). (2.3)

Lemma 2 follows on combining Lemma 2.2 and Lemma 2.3 of [4, Part I].
The next lemma is F.V. Atkinson’s classical, precise asymptotic formula for

E(T ) (see [1], [3] or [4]).

Lemma 3. Let 0 < A < A′ be any two fixed constants such that AT < N < A′T ,
and let N ′ = N ′(T ) = T/(2π) + N/2− (N2/4 + NT/(2π))1/2. Then

E(T ) = Σ1(T ) + Σ2(T ) + O(log2 T ), (2.4)

where

Σ1(T ) = 21/2(T/(2π))1/4
∑

n≤N

(−1)nd(n)n−3/4e(T, n) cos(f(T, n)), (2.5)

Σ2(T ) = −2
∑

n≤N ′
d(n)n−1/2(log T/(2πn))−1 cos(T log T/(2πn)−T+π/4), (2.6)
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with

f(T, n) = 2Tarsinh
(√

πn/(2T )
)

+
√

2πnT + π2n2 − π/4

= − 1
4π + 2

√
2πnT + 1

6

√
2π3n3/2T−1/2 + a5n

5/2T−3/2 + a7n
7/2T−5/2 + . . . ,

(2.7)

e(T, n) = (1 + πn/(2T ))−1/4
{

(2T/πn)1/2arsinh (
√

πn/(2T )
}−1

= 1 + O(n/T ) (1 ≤ n < T ), (2.8)

and arsinhx = log(x +
√

1 + x2 ).

Lemma 4 (M. Jutila [8, Part II]). For A ∈ R a constant we have

cos
(√

8πnT + 1
6

√
2π3n3/2T−1/2 + A

)
=

∫ ∞

−∞
α(u) cos(

√
8πn(

√
T + u) + A) du,

(2.9)
where α(u) ¿ T 1/6 for u 6= 0,

α(u) ¿ T 1/6 exp(−bT 1/4|u|3/2) (2.10)

for u < 0, and

α(u) = T 1/8u−1/4
(
d exp(ibT 1/4u3/2) + d̄ exp(−ibT 1/4u3/2)

)
+ O(T−1/8u−7/4)

(2.11)
for u ≥ T−1/6 and some constants b (> 0) and d.

We need also an explicit formula for ∆∗(x) (see [3, Chapter 15]). This is

Lemma 5. For 1 ≤ N ¿ x we have

∆∗(x) =
1

π
√

2
x

1
4

∑

n≤N

(−1)nd(n)n−
3
4 cos(4π

√
nx− 1

4π)+Oε(x
1
2+εN− 1

2 ). (2.12)

3. Proofs of the theorems

The proof of (1.10) of Theorem 1 is based on the method of [5]. We seek an
upper bound for R = R(V, T ), the number of points

{tr} ∈ [T, 2T ] (r = 1, . . . , R), V ≤ |E∗(tr)| < 2V (|tr − ts| ≥ V if r 6= s).
(3.1)

We consider separately the points where E∗(tr) is positive or negative. Suppose
the first case holds (the other one is treated analogously), using in either case
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the notation R for the number of points in question. Then from Lemma 2 we
have

V ≤ E∗(tr) ≤ 2√
πG

∫ ∞

0

E∗(tr + G + u) e−u2/G2
du + Oε(GT ε), (3.2)

and the integral may be truncated at u = G log T with a very small error. We
may suppose that V satisfies

T 1/6 ≤ V ≤ T 1/4. (3.3)

Indeed, if

I1(T ) :=
∫ 2T

T,|E∗|≤T 1/6
|E∗(t)|3 dt, I2(T ) :=

∫ 2T

T,|E∗|≥T 1/4
|E∗(t)|3 dt,

then from (1.6) it follows that

I1(T ) ≤ T 1/6

∫ 2T

T

|E∗(t)|2 dt ¿ T 3/2 log3 T, (3.4)

while from (1.7) we obtain that

I2(T ) ≤ T−1/2

∫ 2T

T

|E∗(t)|5 dt ¿ε T 3/2+ε. (3.5)

Thus supposing that (3.3) holds we estimate

I(V, T ) :=
∫ T

T,V≤|E∗(t)|≤2V

|E∗(t)|3 dt

by splitting the interval [T, 2T ] into R (= R(V, T )) disjoint subintervals Jr of
length ≤ V , where in the r-th of these intervals we define tr (r = 1, . . . , R) by

|E∗(tr)| = sup
t∈Jr

|E∗(t)|.

The proof of Theorem 1 will be a consequence of the bound

R ¿ε T 3/2+εV −4, (3.6)

provided that (3.1) holds (considering separately points with even and odd in-
dices so that |tr − ts| ≥ V (r 6= s) is satisfied). Namely we have

I(V, T ) ¿ V

R∑

j=1

|E∗(tr)|3 ¿ε V T 3/2+εV −4V 3 = T 3/2+ε, (3.7)

and from (3.4), (3.5) and (3.7) we obtain
∫ 2T

T

|E∗(t)|3 dt ¿ε T 3/2+ε. (3.8)

131



ALEKSANDAR IVIĆ

The bound (1.10) follows from (3.8) if one replaces T by T2−j and sums the
corresponding results for j = 1, 2, . . . .

We continue the proof of Theorem 1 by noting that, like in [5, Part I], the in-
tegral on the right-hand side of (3.2) is simplified by Atkinson’s formula (Lemma
3) and the truncated formula for ∆∗(x) (Lemma 5). We take G = cV T−ε (with
sufficiently small c > 0) to make the O-term in (3.2) ≤ 1

2V , and then we obtain

V ¿
6∑

j=4

V −1T ε

∫ G log T

0

∑
j
(tr + G + u) e−u2/G2

du (r = 1, . . . , R), (3.9)

where we choose X = T 1/3−ε, N = TG−2 log T and, similarly to [5], for t ³ T
we set (in the notation of Lemma 3)

∑
4
(t) := t1/4

∑

X<n≤N

(−1)nd(n)n−3/4e(t + u, n) cos(f(t + u, n)), (3.10)

∑
5
(t) := t1/4

∑

X<n≤N

(−1)nd(n)n−3/4 cos(
√

8πn(t + u)− π/4),

∑
6
(t) := t−1/4

∑

n≤X

(−1)nd(n)n3/4 cos(
√

8πn(t + u)− π/4). (3.11)

The sums in (3.10)–(3.11) over n are split into O(log T ) subsums over the ranges
K < n ≤ K ′ ≤ 2K. We denote these sums by Σj(t,K) and let ϕ(t) denote a
smooth, nonnegative function supported in [T/2, 5T/2] , such that ϕ(t) = 1
when T ≤ t ≤ 2T . There must exist a set of M = M(K) points {τm} ∈ {tr}
such that M(K) À R/ log T for some j, K, so that it suffices to majorize M(K),
which we shall (with a slight abuse of notation) henceforth denote again by R.
The contribution of

∑
6(t,K) is estimated by raising the relevant portion of (3.9)

to the fourth power and summing over r, noting that |tr−ts| ≥ V (r 6= s), so that
the sum of integrals over the intervals [tr+G, tr+G+G log T ] is majorized by the
integral over [T/2, 5T/2]. We proceed as in [5, Part I and Part II] integrating
by parts, and using ϕ(`)(t) ¿` T−` (` ≥ 0). It transpires, when we develop∑4

6(t,K) and set

∆ :=
√

n1 +
√

n2 −√n3 −√n4 ,

that the contribution of ∆ ≥ T ε−1/2 is negligible (i.e., it is smaller than T−A

for any given A > 0). The contribution of ∆ < T ε−1/2 is treated by Lemma 1
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and trivial estimation of the ensuing integral. We obtain

RV 4 ¿ V −1T ε sup
|u|≤G log T

∫ 2T

T/2

ϕ(t)
∑4

6
(t,K) dt

¿ε T 1+εV −1 sup
|u|≤G log T,|∆|≤T ε−1/2

T−1K3(K4K−1/2|∆|+ K2)

¿ε T εV −1(T−1/2X13/2 + X5) ¿ε T 5/3+εV −1,

since K ¿ X = T 1/3−ε. This gives, since (3.3) holds,

R ¿ε T 5/3+εV −5 ¿ε T 3/2+εV −4,

which is the desired bound (3.6).
The contributions of

∑
4(t,K) and of

∑
5(t, K) are estimated analogously,

with the remark that in the case of
∑

4(t,K) one has to use Lemma 4 to deal
with the complications arising from the presence of cos(f(t+u, n)), coming from
(2.5). This procedure was explained in detail in [5, Part I and Part II]. The non-
negligible contribution of

∑
5(t,K) will, again by raising the relevant expression

to the fourth power, be for ∆ ≤ T ε−1/2 again. The application of Lemma 1
gives in this case

RV 4 ¿ε V −1T 1+εTK−3(K4T−1/2 + K2)

¿ε T 2+εV −1(K1/2T 1/2 + K−1)

¿ε T 3/2+εV −1K1/2 + T 5/3+εV −1, (3.12)

because K À X = T 1/3−ε holds. For K ≤ V 2 the bound (3.12) reduces to
(3.6), and we are done. If V 2 < K ≤ T 1+εV −2 (note that V 2 < T 1+εV −2 holds
by (3.3)), then the relevant expression is squared, and not raised to the fourth
power. We obtain

RV 2 ¿ε V −1 max
|u|≤G log T

∫ 5T/2

T/2

ϕ(t)
∑2

5
(t,K) dt

= T 1/2V −1 max
|u|≤G log T

∫ 5T/2

T/2

ϕ(t)×

×
∑

K<m,n≤2K

(−1)m+nd(m)d(n)(mn)−3/4ei
√

8π(t+u)(
√

m−√n) dt

¿ T 3/2V −1
∑

m>K

d2(m)m−3/2 + T 1+εK−3/2V −1
∑

K<m 6=n≤2K

|√m−√n|−1.
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Here we used trivial estimation for the diagonal terms m = n, and the first
derivative test ([3, Lemma 2.1]) for the remaining terms. Since V 2 < K and

∑

K<m 6=n≤2K

|√m−√n|−1 ¿
∑

K<m≤2K

√
K

∑

K<n≤2K,n 6=m

|m−n|−1 ¿ K3/2 log K,

we obtain that

RV 2 ¿ε T 3/2V −1K−1/2 log3 T + T 1+εV −1 ¿ε T 3/2+εV −2,

and (3.6) follows again. The proof of Theorem 1 is complete.
For the proof of Theorem 2 note that, by [4, Theorem 1.2], (1.4) and (1.19),

we have

|ζ(1
2 + iT )|2 ¿ log T

∫ T+1

T−1

|ζ(1
2 + it)|2 dt + 1

¿ log T
(
log T + E(T + 1)− E(T − 1)

)

¿ε log T

(
log T + 2π∆∗

(T + 1
2π

)
− 2π∆∗

(T − 1
2π

))
+ T ρ+ε

¿ε T ρ+ε, (3.13)

since, from (1.3) and d(n) ¿ε nε, it is seen that

∆∗(T + H)−∆∗(T ) = O(H log T ) + 1
2

∑

4T<n≤4(T+H)

(−1)nd(n) ¿ε HT ε

holds for 1 ¿ H ¿ T . Therefore (3.13) implies that

|ζ( 1
2 + iT )|2 ¿ε T ρ+ε,

and this gives µ( 1
2 ) ≤ 1

2ρ, as asserted.
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