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A COMPARISON THEOREM FOR MATRIX

LIMITATION METHODS WITH APPLICATIONS

Rita Giuliano Antonini ∗ — Milan Paštéka ∗∗

ABSTRACT. A comparison Theorem for matrix limitation methods is proved
and the following applications are given:
- new results concerning the comparison between weighted densities generated by
different weights;
- new results concerning the comparison between weighted densities of a set E ⊆
N∗ and those of its transformed set π(E), where π is a given injective function
N∗ → N∗. In particular, a new class of permutations preserving the asymptotic
density is identified.

Communicated by Reinhard Winkler

1. Introduction

The upper and lower asymptotic densities of a subset A of N∗ (where N∗ is
the set of strictly positive integers) are defined respectively by

lim sup
n→∞

card{k ∈ A, 1 ≤ k ≤ n}
n

;

lim inf
n→∞

card{k ∈ A, 1 ≤ k ≤ n}
n

.

Notice that, setting

card{k ∈ A, 1 ≤ k ≤ n} =
∑

1≤k≤n
k∈A

ak; n =
∑

1≤k≤n

ak,
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where ak = 1 for every integer k, the above ratio takes the form
∑

1≤k≤n
k∈A

ak∑n
k=1 ak

,

and the corresponding upper and lower densities reveal now their nature of
“weighted” densities with constant “weights” equal to 1.

The notion of weighted upper and lower densities of a subset A of N∗ (with
general weights (ak)) was given for the first time in [Rohrbach et al.15] and later
in [Alexander 1]; it is recalled at the beginning of Section 3. It was used also
later in [Giuliano Antonini 4]. The problem of comparing two weighted densi-
ties generated by different sequences of weights is quite natural. In [Giuliano
Antonini 5] and [Fuchs et al. 3] some answers are given. In the present paper
we address the question from another point of view, as explained below.

As is well known, weighted densities of subsets of N∗ can be obtained by using
suitable limitation methods generated by Riesz matrices; see the beginning of
Section 3 for definitions and details.
Motivated by the preceding remark, we prove in the present paper a comparison
Theorem for matrix limitation methods and give some new applications in the
study of weighted densities.

Classical Theorems concerning the comparison of different matrix limitation
methods typically only treat the case of convergent sequences, and their as-
sumptions bear on the modulus of some quantities related to the elements of the
matrices involved, say U and V to fix ideas (see [Petersen 12] or [Peyerimhoff 13]
as references on the topic). In the present paper we consider the more general
case of bounded sequences. This generalization turns out to be important as
can be seen in our applications (see Sections 3 and 5).

More precisely, we prove a general statement (Theorem 2.7) with assumptions
less stringent than the usual ones: in fact, we need to control only a subset of the
whole set of elements of the product matrix UV−1 in order to obtain relations
(2.8) and (2.9) (i.e., the comparison between the two limitation methods). Note
that (2.8) and (2.9) are assertions concerning the lim sup and the lim inf of the
involved sequences (and not the limits, which need not exist). This is done in
Section 2. In the rest of the paper we give the announced applications of the
general comparison Theorem 2.7. The applications are in two directions:
(i) we prove many new results extending weighted density (Sections 3 and 4,
Theorem 3.9, Corollaries 3.10 and 3.11);
(ii) we study the problem of the comparison between the weighted densities of
a set E ⊆ N∗ and of its transformed set π(E), for a given injective function
π : N∗ → N∗ (Section 5, Theorem 5.4).
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In particular, we identify a class of permutations of N∗ that preserve weighted
densities (see Remark 5.7 and Corollary 5.8). As far as we know, results in this
direction have been previously obtained only for the case of asymptotic density
(see [Obata 10], where, in particular, the so called Lévy group is considered);
nevertheless, even in this case, the class of permutations of Corollary 5.8 seems
to be new.

Moreover our Theorem 5.4 generalizes, in the sense explained in Remark 5.6,
a recent result obtained in [Nathanson et al. 9].

A preliminary version of the present paper was presented in the preprint
[Giuliano Antonini et al. 7].

Notation 1.1. Let (an) and (bn) be two sequences of real numbers and C an
infinite subset of N∗. Throughout the whole paper the notation an ∼ bn, n →∞,
n ∈ C means that

lim
n→∞
n∈C

an

bn
= 1.

Acknowledgement. We wish to thank the referee, whose suggestions have
greatly improved the presentation of the results.

2. Preliminary definitions and the comparison Theorem

Let U = (un,k)n,k and V = (vn,k)n,k be two infinite matrices; let ε = (εn)n be a
sequence of numbers and Uε = η = (ηn)n and Vε = ξ = (ξn)n the two sequences
defined respectively by

ηn = (Uε)n =
∞∑

k=1

un,kεk, ξn = (Vε)n =
∞∑

k=1

vn,kεk (2.1)

(here and in the sequel we assume that all the series considered are convergent).

Remark 2.2. In [Petersen 12], p. 4, the following definition is given:
Definition. A limitation method is a linear transformation defined on the set
of all sequences of real numbers which maps bounded sequences into bounded
sequences.

Clearly the linear transformation ε 7→ Uε (resp. ε 7→ Vε) is a limitation
method if and only if

sup
n

∞∑

k=1

|un,k| < +∞ (resp. sup
n

∞∑

k=1

|vn,k| < +∞).
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Put {
l = lim infn→∞ ηn,

l = lim supn→∞ ηn,

{
m = lim infn→∞ ξn,

m = lim supn→∞ ξn.
(2.3)

Definition 2.4. Given the infinite matrix U, the sequence ε = (εn)n is said to
be U–limitable if the limit

l = lim
n→∞

ηn = (Uε)n

exists and is finite (i.e. l = l ∈ R).

In order to state our comparison Theorem, we need another definition.

Definition 2.5. Let α, β be two real numbers, with α ≤ β. We say that the
infinite matrix U = (un,k) is an (α, β)–matrix if for every sufficiently large n the
series

∑∞
k=1 un,k converges and

lim inf
n→∞

∞∑

k=1

un,k = α, lim sup
n→∞

∞∑

k=1

un,k = β.

An (α, β)–matrix U will be said to be regular if

lim
n→∞

un,k = 0, k = 1, 2, . . . .

Remark 2.6. We recall the classical definition of the Toeplitz matrix (see
[Kuipers and Niederreiter 8], p. 60 ff. as a reference):
Definition. The infinite matrix U = (un,k) is called a Toeplitz matrix if un,k ≥ 0
for all n and k and if

lim
n→∞

∞∑

k=1

un,k = 1.

Hence, a Toeplitz matrix is a (1,1)–matrix, according to Definition 2.5. Note
that in our Definition 2.5 we do not assume that un,k ≥ 0 for all n and k. This
extension will be crucial in the application of Section 5 (see Remark 5.18).

For every subset E of N∗, we denote by 1E the indicator function of E, i.e.

1E(k) =

{
1 ifk ∈ E,

0 ifk ∈ Ec.

The announced comparison Theorem is the following
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Theorem 2.7. Let U and V be two infinite matrices and η, ξ be defined as
in (2.1). Assume that U is invertible with inverse U−1 and suppose that the
infinite matrix

VU−1 = W = (wn,k)n,k

is a regular (α, β)–matrix, with α ≥ 0. For every integer n, consider the subset
Wn of N∗ defined by

Wn = {k ∈ N∗ : wn,k ≤ 0} ,

and assume that

σW := lim sup
n→∞

( ∞∑

k=1

|wn,k|1Wn
(k)

)
< +∞.

Assume that l, l, m and m (defined in (2.3)) are finite. Then
(i) if 0 ≤ l ≤ l,

σW(l − l) + α l ≤ m ≤ m ≤ σW(l − l) + β l; (2.8)

(ii) if l ≤ l < 0,

σW(l − l) + β l ≤ m ≤ m ≤ σW(l − l) + α l; (2.9)

Remark 2.10. The assumption α ≥ 0 is strictly weaker than the assumption
that wn,k ≥ 0 for each pair (n, k). A concrete example is given by the situation
considered in Theorem 5.4 below: see the first formula in (5.16) and formulas
(5.17).

P r o o f. We can write ε = U−1η, hence ξ = VU−1η = Wη. This means that,
for every n, we have the relation

ξn =
∞∑

k=1

wn,kηk. (2.11)

(i) Assume that 0 ≤ l ≤ l and fix δ > 0. By definition, there exists an n0 such
that, for n > n0, we have

l − δ ≤ ηn ≤ l + δ.

In order to simplify the notations, we put Dn = Wn ∩ [n0 + 1, +∞) and
En = Wc

n ∩ [n0 + 1,+∞); hence the right hand side of (2.11) is less than or
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equal to
n0∑

k=1

wn,kηk + (l + δ)
∑

k∈En

wn,k + (l − δ)
∑

k∈Dn

wn,k

=
n0∑

k=1

wn,kηk + (l + δ)

( ∞∑

k=n0+1

wn,k −
∑

k∈Dn

wn,k

)
+ (l − δ)

∑

k∈Dn

wn,k

=
n0∑

k=1

wn,k(ηk − l − δ) + (l + δ)
∞∑

k=1

wn,k − (l − l + 2δ)
∑

k∈Dn

wn,k

=
n0∑

k=1

wn,k(ηk − l − δ) + (l + δ)
∞∑

k=1

wn,k−

− (l − l + 2δ)

{ ∞∑

k=1

wn,k1Wn(k) −
n0∑

k=1

wn,k1Wn(k)

}
.

The first and last sums above tend to 0 as n →∞ since W is regular: in fact,
for the first sum, we observe that∣∣∣∣∣

n0∑

k=1

wn,k(ηk − l − δ)

∣∣∣∣∣ ≤
(

sup
1≤k≤n0

|ηk|+ l + δ

) n0∑

k=1

|wn,k|;

for the last sum, we notice that |wn,k1Wn(k)| ≤ |wn,k|.
The second sum above has a lim sup equal to β since W is an (α, β)–matrix.

Since l + δ > 0 and l − l + 2δ > 0, the last inequality of (2.8) now follows
immediately by the definition of σW and the arbitrariness of δ.

The first inequality of (2.8) (concerning the lim inf) is proved analogously if
l > 0: we fix δ, with 0 < δ < l and, by interchanging l + δ with l − δ and vice
versa and by repeating the above calculation, we get the lower bound

n0∑

k=1

wn,k(ηk − l + δ) + (l − δ)
∞∑

k=1

wn,k−

− (l − l − 2δ)

{ ∞∑

k=1

wn,k1Wn(k) −
n0∑

k=1

wn,k1Wn(k)

}
,

in which we can pass to the limit as n → ∞, concluding again using the arbi-
trariness of δ.

In the case l = 0, we get the lower bound
n0∑

k=1

wn,k(ηk + δ)− δ

∞∑

k=1

wn,k + (l + 2δ) ·
{ ∞∑

k=1

wn,k1Wn(k) −
n0∑

k=1

wn,k1Wn(k)

}
,

92



A COMPARISON THEOREM FOR MATRIX LIMITATION METHODS

which, by passing to the limit as n →∞, becomes

−δ β − σW(l + 2δ)

whence the first of inequalities (2.8) follows, once again by the arbitrariness
of δ.

(ii) If l ≤ l < 0 we can apply the argument used for (i) to the sequence ε̃ = (ε̃n)n,
where ε̃n = −εn. Then a change of sign gives the inequalities (2.9). ¤

The following two Corollaries are obvious:

Corollary 2.12. Assume that σW < +∞ and α = β. Then every U–limitable
sequence is also V–limitable, and the original limit is multiplied by α. (In par-
ticular, if W is Toeplitz, it remains unchanged).

Corollary 2.13. Assume that σW = 0 (which means that wn,k ≥ 0 for all n
and k). Then the following inequalities hold

α l ≤ m ≤ m ≤ β l.

Example 2.14. We begin with a definition:

Definition 2.15. Let (an) be a sequence of positive numbers. For every k, n ∈
N∗ put

an,k =

{
ak/Sn for k ≤ n

0 for k > n,

where

Sn =
n∑

k=1

ak.

The infinite matrix A = (an,k) is called a Riesz matrix.

It is easy to see that the Riesz matrix A is invertible and its inverse
A−1 = (ãh,k) is given by

ãh,k =





Sk/ak if h = k,

−Sk/ak+1 if h = k + 1,

0 otherwise.
(2.16)

Let V be any regular (α, β)–matrix and, in order to maintain the notations of
Theorem 2.7, put U = A. Then the matrix W = VU−1 is regular and (α, β);
in fact in this case we have

wn,k =
∞∑

h=1

vn,hãh,k = vn,k
Sk

ak
− vn,k+1

Sk

ak+1
,
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so that W is regular since V is so. Moreover, by summing over k in the above
relation we get
∞∑

k=1

wn,k =
∞∑

k=1

vn,k
Sk

ak
−

∞∑

k=2

vn,k
Sk−1

ak
= vn,1 +

∞∑

k=2

vn,k
Sk − Sk−1

ak
=

∞∑

k=1

vn,k,

and this shows that W is (α, β) since V is so.
Note that in this case we have

Wn =
{

k ∈ N∗ :
vn,k

ak
− vn,k+1

ak+1
≤ 0

}
.

Remark 2.17. In particular, all the above considerations hold true if V is
another Riesz matrix (say B, defined by the sequence (bn)); if this is the case,
we have α = β = 1 and

Wn = W =
{

k ∈ N∗ :
bk

ak
− bk+1

ak+1
≤ 0

}
.

3. Applications to the extension of a weighted density

In this Section we present the first application of Theorem 2.7. We begin by
describing the framework of our discussion.

Let a = (an) and b = (bn) be two sequences of non negative numbers; put

Sn :=
n∑

k=1

ak, Tn :=
n∑

k=1

bk

and, for every subset E of N∗ and every integer n,

sn(E) :=
∑

1≤k≤n
k∈E

ak =
n∑

k=1

ak1E(k), tn(E) :=
∑

1≤k≤n
k∈E

bk =
n∑

k=1

bk1E(k). (3.1)

We assume that
lim

n→∞
Sn = lim

n→∞
Tn = +∞.

Denote by da(E) (resp. da(E)) the upper (resp. lower) weighted density of E
with respect to the defining sequence (an):

da(E) := lim sup
n→∞

sn(E)
Sn

, da(E) := lim inf
n→∞

sn(E)
Sn

. (3.2)

If da(E) = da(E) = da(E) we say that E has a da-density, equal to da(E). The
symbols db(E), db(E) and db(E) will have analogous meanings, with respect to
the defining sequence (bn).
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Looking at the present situation in the setting of infinite matrices (see Section
2), we see that the sequences(

sn(E)
Sn

)

n

and
(

tn(E)
Tn

)

n

are obtained by transforming the initial sequence (1E(n))n by means of the
limitation methods defined by the Riesz matrices A = (an,k) and B = (bn,k),
where

an,k =

{
ak/Sn for k ≤ n,

0 for k > n,
and bn,k =

{
bk/Tn for k ≤ n,

0 for k > n,

respectively (for the definition of a Riesz matrix, see 2.15).
Going back to the notion of weighted density, we give three definitions.

Definition 3.3. We say that the pair (db, db) extends the pair (da, da) if, for
any subset E of N∗ the following relations hold

da(E) ≤ db(E) ≤ db(E) ≤ da(E).

Definition 3.4. We say that db extends da if every set E ⊆ N∗ which has
da-density possesses also a db-density and

db(E) = da(E).

Remark 3.5. Of course, if (db, db) extends (da, da), then db extends da.

Definition 3.6. We say that da and db are equivalent if da is an extension of
db and conversely (in the sense of Definition 3.4).

Assume now that an 6= 0 for all n and define the sequence (cn) by

cn :=
bn

an
, ∀n ∈ N∗.

It is proved in the paper [Rajagopal 14] that, if (cn) is not increasing, then (db, db)
extends (da, da); by applying our comparison Theorem 2.7 to the matrices U =
A and V = B, we are now in a position to prove a much more general result;
following Remark 2.17, we define the sets

C = {n ∈ N∗ : cn − cn+1 ≤ 0}, D = {n ∈ N∗ : cn − cn+1 ≥ 0}
and, in view of Theorem 2.7, we are interested in the quantities

σ1 := lim sup
n→∞

∑n
k=1 Sk(ck+1 − ck)1C(k)

Tn
, (3.7)

σ2 := lim sup
n→∞

∑n
k=1 Tk(c̃k+1 − c̃k)1D(k)

Sn
, (3.8)
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where we have put

c̃n :=
1
cn

=
an

bn
,

provided that bn 6= 0 for every n. Observe that both σ1 ≥ 0 and σ2 ≥ 0 (since
cn+1 ≥ cn for every n ∈ C and c̃n ≤ c̃n+1 for every n ∈ D).

Recalling that α = β = 1 (see Remark 2.17), we get from Theorem 2.7

Theorem 3.9. (i) Assume that σ1 < +∞. Then, for every subset E of N∗, we
have the relations

σ1

(
da(E)− da(E)

)
+ da(E) ≤ db(E) ≤ db(E) ≤ σ1

(
da(E)− da(E)

)
+ da(E).

(ii) Assume that σ2 < +∞. Then, for every subset E of N∗, we have the relations

σ2

(
db(E)− db(E)

)
+ db(E) ≤ da(E) ≤ da(E) ≤ σ2

(
db(E)− db(E)

)
+ db(E).

Corollaries 2.12 and 2.13 now become:

Corollary 3.10. Assume as above that σ1 < +∞. Then db extends da. A dual
statement holds (of course with the roles of da and db interchanged) if σ2 < +∞.

Corollary 3.11. Assume that σ1 = 0. Then (db, db) extends (da, da). Once
more, a dual statement holds (with the roles of (da, da) and (db, db) interchanged)
if σ2 = 0.

4. Some examples

This Section is concerned with the study of sequences on the right hand sides
of (3.7) and (3.8). The aim is to investigate some situations in which σ1 < +∞
or σ1 = 0 (resp. σ2 < +∞ or σ2 = 0) in order to apply Corollary 3.10 or
Corollary 3.11.

We shall perform the calculations only for σ1, since they are analogous for
σ2.

We first introduce two new quantities (τ1 and τ2 below) which will be useful
in our discussions (see Propositions 4.3 and 4.4). For this purpose, observe that,
by summing and subtracting the term 1C(k)ckSk−1 in the k-th summand of the
numerator of the fraction on the right hand side of (3.7), we get

∑n
k=1 Sk(ck+1 − ck)1C(k)

Tn
=

=
∑n

k=1(ck+1Sk − ckSk−1)1C(k)
Tn

−
∑n

k=1 bk1C(k)
Tn

; (4.1)
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Denote by

τ1 := lim sup
n→∞

∑n
k=1(ck+1Sk − ckSk−1)1C(k)

Tn
. (4.2)

From the relation

1C(k) ck+1Sk ≥ 1C(k) ckSk ≥ 1C(k) ckSk−1,

we deduce that τ1 ≥ 0.

From relation (4.1) we get the following result, which states a condition on
the finiteness of σ1 in terms of τ1.

Proposition 4.3. σ1 is finite if and only if τ1 is, and in this case we have

db(C) ≤ τ1 − σ1 ≤ db(C).
As a consequence, if db(C) exists, then

τ1 − σ1 = db(C).
Put

τ2 := lim sup
n→∞

∑n
k=1(c̃k+1Tk − c̃kTk−1)1D(k)

Sn
.

Then we have the dual statement

Proposition 4.4. σ2 is finite if and only if τ2 is, and in this case we have

da(D) ≤ τ2 − σ2 ≤ da(D).

As a consequence, if da(D) exists, then

τ2 − σ2 = da(D).

We can apply Propositions 4.3 and 4.4 also to the problem of finding condi-
tions under which σ1 = 0 (or σ2 = 0).

A first easy remark is that σ1 = 0 (resp. σ2 = 0) if cn+1 = cn for sufficiently
large n ∈ C (resp. n ∈ D) (see the definitions of σ1 and σ2 in (3.7) and (3.8)).

By Propositions 4.3 (resp. 4.4), a less trivial condition assuring that σ1 = 0
(resp. σ2 = 0) is that db(C) (resp. da(D)) exists and τ1 = db(C) (resp. τ2 =
da(D) ). Apart from the obvious case of a finite set C (resp. D), it is not difficult
to see that this happens for instance if C (resp. D) is infinite with density db(C)
(resp. da(D)) and

cn+1Sn − cnSn−1 ∼ bn, n →∞, n ∈ C, (4.5)

(resp. c̃n+1Tn − c̃nTn−1 ∼ an as n →∞, n ∈ D).
In order to be sure that the above set of conditions is consistent, we provide

a non trivial example.
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Example 4.6. Let an = 1 for every n (asymptotic density). We look for a
sequence (bn) such that (4.5) holds; by the equality Sn = n, in this case (4.5)
becomes

bn+1n− bn(n− 1) ∼ bn, n →∞, n ∈ C,
or, equivalently

bn+1

bn
= 1 + o(1/n), n →∞, n ∈ C. (4.7)

Define

cn = bn =

{
log n if n is even;
log(n + 1) + (

√
log n)/n if n is odd.

Then it is easy to see that C is the set of even numbers. Relation 4.7 holds,
since, if n is even, we have

bn+1

bn
=

log(n + 2)
log n

+

√
log(n + 1)

(n + 1) log n
= 1 +

log
(
1 + (2/n)

)

log n
+

√
log(n + 1)

(n + 1) log n

= 1 + o(1/n).

There remains to show that db(C) exists. In fact, we can even calculate db(C)
(proving that it is equal to 1/2). Put rn = [n/2]; then we have




∑
1≤k≤n

k∈C

bk





 ∑

1≤k≤n

bk



−1

=
∑rn

k=1 b2k∑rn

k=1 b2k +
∑rn−1

k=1 b2k+1

=

(
rn∑

k=1

log(2k)

)(
2

rn∑

k=1

log(2k)− log 2 +
rn−1∑

k=1

√
log(2k + 1)
2k + 1

)−1

.

Dividing both factors above by
∑rn

k=1 log(2k), the claim follows since
∑

k log(2k)
= +∞ and

lim
n→∞

(
n−1∑

k=1

√
log(2k + 1)
2k + 1

)(
n∑

k=1

log(2k)

)−1

= lim
n→∞

√
log(2n− 1)

(2n− 1)(log(2n))
= 0,

by Cesaro’s Theorem.

Going back to our original questions (in which cases is σi < +∞?, in which
cases is σi = 0?) the following Proposition 4.8 indicates another interesting
approach:
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Proposition 4.8. Put

Φn =
Sn

an
, Ψn =

Tn

bn

and assume that

L1 := lim sup
n→∞

(
cn+1

cn
− 1

)
Φn1C(n) < +∞;

(
resp. L2 := lim sup

n→∞

(
cn

cn+1
− 1

)
Ψn1D(n) < +∞

)
.

Then σ1 ≤ L1db(C) (resp. σ2 ≤ L2da(D)). In particular, σ1 = 0 if db(C) = 0
(resp. σ2 = 0 if da(D) = 0).

P r o o f. We consider only the case of L1. Fix ε > 0, and let n0 ∈ N∗ be such
that, for n > n0, (

cn+1

cn
− 1

)
Φn 1C(n) < L1 + ε.

Putting, moreover, Rn := (1/Tn)
∑n0

k=1(ck+1 − ck)Sk1C(k), we observe that
limn→∞Rn = 0. Then we have, for n > n0

1
Tn

n∑

k=1

(ck+1 − ck)Sk1C(k) = Rn +
1
Tn

n∑

k=n0+1

(ck+1 − ck)Sk1C(k)

= Rn +
1
Tn

n∑

k=n0+1

(
ck+1

ck
− 1

)
Φkbk1C(k)

≤ Rn + (L1 + ε)
1
Tn

n∑

k=n0+1

bk1C(k) ≤ Rn + (L1 + ε)
1
Tn

n∑

k=1

bk1C(k),

and we conclude using the arbitrariness of ε. ¤

We point out some interesting applications of Proposition 4.8; the first one is
concerned with the asymptotic density:

Corollary 4.9. Assume that C is infinite and let (bn) be a sequence of strictly
positive numbers such that

bn+1

bn
= 1 + O(1/n), n →∞, n ∈ C.

Then the db-density extends the asymptotic density.
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Remark 4.10. Examples of sequences (bn) satisfying the hypotheses of Corol-
lary 4.9 can be constructed as follows. Define

bn =

{
ln if n is even;
ln+1 + (ln/n) if n is odd,

where (ln) is a fixed positive increasing sequence such that the two sequences
(ln+1/ln) and

(
n(ln+2 − ln)/ln

)
are bounded (ln = n2 for instance). We omit

the details for the sake of brevity.

Before stating the second application of Proposition 4.8, we recall the concept
of slowly varying function and give some of their properties.

Definition 4.11. A strictly positive function H (not necessarily monotone),
defined on some half line (a, +∞) is said to be slowly varying as x → ∞ if, for
every t > 0, it satisfies the condition

lim
x→∞

H(tx)
H(x)

= 1.

(see [Feller 2] for a reference, p. 276).

The following Lemmas 4.12 and 4.14 are concerned with some properties of
slowly varying functions. For the proof of the first lemma, see [Feller 2], p. 282.

Lemma 4.12 (the “representation Lemma”). A function H varies slowly as
x →∞ iff it can be put into the form

H(x) = ψ(x) exp
(∫ x

1

φ(t)
t

dt

)
,

where {
limx→∞ ψ(x) = c with 0 < c < ∞;
limx→∞ φ(x) = 0.

(4.13)

The next lemma relates the behaviour of H(x) to the behaviour of the sum∑n
k=1 kαH(k); a more complete version of it is proved in [Giuliano Antonini et

al. 6] (Lemma (4.8)).

Lemma 4.14. Let H be a slowly varying function. Then for every α, with
α > −1 we have

lim
n→+∞

nα+1H(n)∑n
k=1 kαH(k)

= α + 1.
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We are now ready to study the following situation. Let α > −1 and β > −1
be two real numbers. Let H1 and H2 be two slowly varying functions; denote
by ψ1 (resp. ψ2) the corresponding function of the representation Lemma 4.12
relative to H1 (resp. H2), and assume that

lim sup
n→∞

n |ψ1(n + 1)− ψ1(n)| < +∞, and (4.15)

lim sup
n→∞

n |ψ2(n + 1)− ψ2(n)| < +∞. (4.16)

Remark 4.17. Since both ψ1 and ψ2 have strictly positive finite limits as
x → ∞ (see (4.13)), it is easy to see that the above assumptions imply (in
fact, are equivalent to)

lim sup
n→∞

n
∣∣∣ log

ψ1(n + 1)
ψ1(n)

∣∣∣ < +∞, and

lim sup
n→∞

n
∣∣∣ log

ψ2(n + 1)
ψ2(n)

∣∣∣ < +∞.

Moreover, by Olivier’s Theorem (which states that, if (ρn)n is a non-increasing
strictly positive sequence such that

∑
n ρn < ∞, then limn→∞ nρn = 0; see

[Olivier 11] for a reference) it is easy to see that, if the sequence (ψi(n))n is
increasing and the sequence (ψi(n + 1)− ψi(n))n is non–increasing, then

lim
n→∞

n(ψi(n + 1)− ψi(n)) = lim
n→∞

n log
ψi(n + 1)

ψi(n)
= 0, i = 1, 2.

In the setting described above, we have the following

Corollary 4.18. Let α > −1 and β > −1 be two real numbers and H1 and H2

be two slowly varying functions such that the corresponding functions ψ1 and ψ2

of the representation Lemma 4.12 verify (4.15) and (4.16) respectively. Consider
the two sequences defined by

an = H1(n)nα, bn = H2(n)nβ .

Then the da-density and the db-density are equivalent.

Remark 4.19. The particular case of H1 = H2 = 1 is proved in [Fuchs et al.
3] by a different technique.

P r o o f. Put

R(n) =
H2(n)
H1(n)

.
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Then cn = nβ−αR(n). Moreover, with the notations of Proposition 4.8 we have,
by Lemma 4.14

Φn =
∑n

k=1 kαH1(k)
nαH1(n)

∼ n

α + 1
, n →∞. (4.20)

Following Proposition 4.8, we prove that L1 and L2 are finite. By (4.20) we have

(cn+1

cn
− 1

)
Φn1C(n) ≤

∣∣∣cn+1

cn
− 1

∣∣∣Φn ∼
∣∣∣cn+1

cn
− 1

∣∣∣ n

α + 1
,

as n →∞. Now

n
∣∣∣cn+1

cn
− 1

∣∣∣ = n

∣∣∣∣∣
(n + 1

n

)β−α R(n + 1)
R(n)

− 1

∣∣∣∣∣

∼
∣∣∣∣∣n|β − α| log

(
1 +

1
n

)
+ n log

R(n + 1)
R(n)

∣∣∣∣∣.

The first term above is clearly bounded. As to the second term, by the repre-
sentation Lemma 4.12, we can write

n

∣∣∣∣∣ log
R(n + 1)

R(n)

∣∣∣∣∣

=

∣∣∣∣∣n log
ψ2(n + 1)

ψ2(n)
− n log

ψ1(n + 1)
ψ1(n)

+ n

∫ n+1

n

φ2(t)− φ1(t)
t

dt

∣∣∣∣∣

≤ n

∣∣∣∣∣ log
ψ2(n + 1)

ψ2(n)

∣∣∣∣∣ + n

∣∣∣∣∣ log
ψ1(n + 1)

ψ1(n)

∣∣∣∣∣ + n

∣∣∣∣∣
∫ n+1

n

φ2(t)− φ1(t)
t

dt

∣∣∣∣∣;

now, the two first terms in the sum above are bounded according to Remark
4.17. As to the third term, by the properties of φ1 and φ2 (see (4.13)) we have,
for sufficiently large n,

n

∣∣∣∣∣
∫ n+1

n

φ2(t)− φ1(t)
t

dt

∣∣∣∣∣ ≤ n

∫ n+1

n

1
t
dt < +∞.

This shows that L1 is finite. The argument for L2 is identical: it is enough to
interchange the roles of (an) and (bn) everywhere above. ¤
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5. Applications to the problem of the weighted density of
a transformed set

Here we discuss the second application of the general comparison Theorem
2.7.

We focus our attention on the following situation. Let (an) be a sequence of
positive numbers and π : N∗ → N∗ be an injective function; (an) and π will be
fixed throughout. The aim of the present section is to establish a comparison
between the da–densities (upper and lower) of a given set E ⊆ N∗ and those of
the transformed set π(E) in terms of some suitable features of (an) and π. Put

ek =
aπ(k)

ak
, k ∈ N∗, e0 = 0

and

σ′π := lim sup
n→∞

1
Sn

∑
π(k+1)≤n<π(k)

Skek+1; (5.1)

σ′′π := lim sup
n→∞

1
Sn

∑
π(k)≤n

π(k+1)≤n

Sk

∣∣ek − ek+1

∣∣; (5.2)

σπ := σ′π + σ′′π. (5.3)

Let π(N∗) be the image of π and put

` = da(π(N∗)); ` = da(π(N∗)).

We shall prove the following

Theorem 5.4. (i) Assume that σπ < +∞. Then

σπ(da(E)− da(E)) + ` da(E) ≤ da(π(E)) ≤ da(π(E))

≤ σπ(da(E)− da(E)) + ` da(E).

(ii) Assume that the sequence (en) is non–increasing, and that

σ′′′π := lim sup
n→∞

1
Sn

∑
π(k+1)≤n<π(k)

Sk < +∞.

Then σ′π < +∞ and

σ′π(da(E)− da(E)) + ` da(E) ≤ da(π(E)) ≤ da(π(E))

≤ σ′π(da(E)− da(E)) + ` da(E).

The following Corollary is an immediate consequence of Theorem 5.4.
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Corollary 5.5. In addition to the assumptions of Theorem 5.4 (i) or those
of Theorem 5.4 (ii), suppose that π(N∗) has a da-density equal to `. Then, if
da(E) exists, then also da(π(E)) exists and

da(π(E)) = ` da(E).

Remark 5.6. In the recent paper [Nathanson et al. 9] the authors prove a
result in the same direction as our Theorem 5.4 but with different assumptions.
It must be noted that they take into account only the particular case an = 1,
∀n (i.e. the considered a-density is the asymptotic density, called d); moreover
they assume that l = l = 1 (i.e. d(π(N∗)) exists and is equal to 1) and that
d(E) = d(E) (i.e. d(E) exists). Hence in this sense our result is more complete
(see Corollary 5.8 below). Moreover it enlightens the fact that the densities
(upper and lower) of the transformed set π(E) are governed in some sense by
the sets of “inversions” of π (see the definitions of the sets Dr, Er, Fr, Gr in the
proof of Theorem 5.4).

Remark 5.7. (i) Let G =
{
π : π permutation of N∗, σπ < +∞}

. Since in this
case ` = da(π(N∗)) = da(N∗) = 1, the above Corollary implies that every π ∈ G
preserves the da density. In fact, if da(E) = da(E) = da(E), Theorem 5.4 (i)
gives (by substitution)

da(E) ≤ da(π(E)) ≤ da(π(E)) ≤ da(E),

hence da(π(E)) exists and is equal to da(E).
(ii) If (en)n is non–increasing, the same is true for every permutation π belonging
to G′ =

{
π : π permutation of N∗, σ′π < +∞}

. This follows from Theorem 5.4
(ii).

We point out the following particular case of Corollary 5.5, concerning the
case of the asymptotic density:

Corollary 5.8. Let π be a permutation of the integers such that l = l = 1 and

lim sup
n→+∞

1
n

∑

π(k+1)≤n<π(k)

k < +∞.

Then π preserves the asymptotic density.

P r o o f o f T h e o r e m 5.4. We rephrase our problem in the setting of infinite
matrices, in order to apply the general comparison Theorem 2.7.

Concerning the function π, we make the following remarks. Any fixed integer
n can be identified with the indicator function 1{n}, which in turn can be viewed
as the infinite (column) vector v(n) of its values: more precisely

v(n) =
(
v
(n)
k

)
k
, with v

(n)
k = 1{n}(k) = δk,n. (5.9)
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Here and in the sequel δk,n is the usual Kronecker symbol.
Consider the infinite matrix Mπ = (mh,k)h,k, with

mh,k = δh,π(k). (5.10)

We can associate Mπ to π in the sense that π(n) = j if and only if Mπv(n) = v(j).
This is justified by the following chain of equalities, where we use relations (5.9)
(twice) and (5.10):

(
Mπv(n)

)
h

=
∑

k

mh,kv
(n)
k =

∑

k

δh,π(k)δk,n = δh,π(n) = v
(π(n))
h = v

(j)
h ,

(h ∈ N∗). The above relation simply means that

Mπv(n) = v(π(n)),

and can easily be extended by linearity to any set E ⊆ N∗, by noting that the
column vector v(E) corresponding to 1E has the representation

v(E) = 1E =
∑

n∈E

1{n} =
∑

n∈E

v(n),

whence

Mπv(E) =
∑

n∈E

Mπv(n) =
∑

n∈E

v(π(n)) =
∑

j∈π(E)

v(j) = v(π(E)),

since π is injective.
In order to have less cumbersome notations, we shall write the above (with a

slight abuse of notation) as
Mπ1E = 1π(E). (5.11)

Let now A = (an,k) be the Riesz matrix associated to the sequence (an), ac-
cording to Definition 2.15. The matrix A defines the da–weighted density, as
explained in Section 3. For future use, we remark that an,k can be written in
the more compact form

an,k =
ak

Sn
1{1,2,...,n}(k), (5.12)

where, as in Section 2, we put Sn =
∑n

k=1 ak.
Consider the inverse matrix A−1 = (ãh,k) (see Section 2). We rewrite here

the formula for ãh,k given in Section 2 (see (2.16)) as

ãh,k = (−1)h−k Sk

ah
1{k,k+1}(h). (5.13)

Relation (5.11) implies that

da(π(E)) = lim inf
n→∞

(
A1π(E)

)
n

= lim inf
n→∞

(
(AMπ)1E

)
n
,
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and an analogous relation holds for da(π(E)). Hence we see that we can apply
our general Theorem 2.7 with U = A and V = AMπ. This means that we must
study the matrix W = VU−1 = AMπA−1 and calculate σW.

So, put AMπA−1 =
(
dr,n

)
; we shall first calculate dr,n in terms of π and

(an). We shall use the representations (5.10), (5.12) and (5.13). We have

dr,n =
∑

h,k

ar,hmh,kãk,n =
∑

k

ãk,n

∑

h

ar,hmh,k

=
∑

k

(−1)k−n Sn

ak
1{n,n+1}(k)

∑

h

ah

Sr
1{1,2,...,r}(h)δh,π(k)

=
∑

k

(−1)k−n Sn

ak
1{n,n+1}(k)

aπ(k)

Sr
1{1,2,...,r}(π(k))

=
Sn

Sr

∑

k

(−1)k−nek1{n,n+1}(k)1{1,2,...,r}(π(k)). (5.14)

The (α, β) condition in Theorem 2.7 is concerned with the lim inf and the lim sup
of

∑
n dr,n as r →∞. We get from the above calculation

∑
n

dr,n =
1
Sr

∑
n

Sn

∑

k

(−1)k−nek1{n,n+1}(k)1{1,2,...,r}(π(k))

=
1
Sr

∑

k

ek1{1,2,...,r}(π(k))
∑

n

(−1)k−nSn1{n,n+1}(k)

=
1
Sr

∑

k

ek1{1,2,...,r}(π(k))
∑

n=k−1,k

(−1)k−nSn

=
1
Sr

∑

k

ek1{1,2,...,r}(π(k))
(
Sk − Sk−1

)

=
1
Sr

∑

k

ek1{1,2,...,r}(π(k))ak

=
1
Sr

∑

k

aπ(k)1{1,2,...,r}(π(k)) =
∑r

k=1 ak1π(N∗)(k)
Sr

. (5.15)

Hence we have

α = lim inf
r→∞

∑
n

dr,n = `; β = lim sup
r→∞

∑
n

dr,n = `. (5.16)
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In order to prove that W = AMπA−1 is regular and calculate σW, we write
dr,n more explicitly. For simplicity we put, for every integer r,

Dr = {k ∈ N∗ : π(k) ≤ r, π(k + 1) ≤ r};
Er = {k ∈ N∗ : π(k + 1) ≤ r < π(k)};
Fr = {k ∈ N∗ : π(k) ≤ r < π(k + 1)};
Gr = {k ∈ N∗ : π(k) > r, π(k + 1) > r}.

Then it is easy to see that the last expression of relation (5.14) is equal to

Sn

Sr

∑

k

(−1)k−nek1{n,n+1}(k)1π−1({1,2,...,r})(k)

and this means that

dr,n =





Sn

Sr

{
en − en+1

}
if n ∈ Dr

Sn

Sr
en if n ∈ Fr

−Sn

Sr
en+1 if n ∈ Er

0 if n ∈ Gr.

(5.17)

The regularity of W is now immediate since Sr →∞ as r →∞ (though not
relevant, we remark that, n being fixed, π(n) ≤ r and π(n+1) ≤ r for sufficently
large r, hence n ∈ Dr).

As to σW, we observe that dr,n ≤ 0 if n ∈ Er and dr,n ≥ 0 if n ∈ Fr or
n ∈ Gr, while, if n ∈ Dr, dr,n has the same sign as en − en+1; these remarks
lead to the equality σW = σπ and prove Theorem 5.4 (i).

In order to prove Theorem 5.4 (ii), it remains only to observe that, in this
case, we need not consider σ′′π since en − en+1 ≥ 0 for every n; moreover, en

being bounded by e1, σ′π < +∞ if σ′′′π < +∞. ¤

Remark 5.18. As we have just seen in formulas (5.17), W may indeed have
some negative terms; hence it is important not to assume positivity in our general
comparison Theorem 2.7.

Remark 5.19. Referring to Theorem 5.4 (ii), we see that, by its very definition,
Er (defined during the proof of the Theorem) is formed of isolated integers (i.e.,
if k ∈ Er, then neither k + 1 nor k − 1 belong to Er). Moreover Er is a finite
set (otherwise π could not be injective). Hence we can write

Er = {u1,r, u2,r, . . . , utr,r}
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for suitable integers tr and uj,r, and

∑
π(k+1)≤r<π(k)

Sk =
∑

k∈Er

Sk =
tr∑

i=1

Sui,r ≤ trSutr,r .

Hence, if (tr)r and (Sutr ,r/Sr) are bounded sequences, we have σ′′′π < ∞. The
next example shows such a situation.

Example 5.20. We consider the permutation π that interchanges any odd
number with its successor (1 with 2, 3 with 4 and so on), i.e. in formula,
π(k) = k + (−1)k−1.

Let (an) be such that, for every odd integer n, we have an = an+1. Then it is
immediate to see that en = 1 for each n, hence the first condition of (5.4) (ii) is
satisfied. Moreover, for every r, we have Er = {r}, hence (using the notations
of Remark 5.19), we easily get tr = 1 and utr,r = r for every r.

Remark 5.21. Example 5.20 shows that the set of pairs (π, (an)) verifying
the assumptions of Theorem 5.4 is not empty. Moreover it is interesting since
it contains the case of asymptotic density as a particular one, and we get the
following result: the permutation considered in Example 5.20 does not change
the asymptotic density of any set E.
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