Models for Platinum–Rhenium Bimetallic Catalysts: Sulfidation of Pt$_3$Re Clusters

Leijun Hao, Jianliang Xiao, Jagadese J. Vittal, and Richard J. Puddephatt*
Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

Received December 17, 1996

Sulfidation of platinum-rhenium cluster complexes has been studied as a model for sulfidation of bimetallic Pt–Re/Al$_2$O$_3$ catalysts used in petroleum re-forming. Sulfidation of [Pt$_3$(Re(CO)$_3$)$_3$]([PF$_6$])$_3$; dppm = Ph$_2$PCH$_2$PPh$_2$) using propylene sulfide as reagent gives the clusters [Pt$_3$(Re(CO)$_3$)$_3$(dppm)$_2$][PF$_6$] and then [Pt$_3$(Re(CO)$_3$)$_3$-(µ$_3$-S)$_2$]([PF$_6$])$_3$. Similar sulfidation of the oxo clusters [Pt$_3$(Re(CO)$_3$)$_3$-µ$_3$-O]([PF$_6$])$_3$, [Pt$_3$(Re(CO)$_3$)$_3$-µ$_3$-O]_2([PF$_6$])$_3$, and [Pt$_3$(Re(CO)$_3$)$_3$-µ$_3$-O]$_2$(dppm)$_2$([PF$_6$])$_3$ gives the oxo-sulfido clusters [Pt$_3$(Re(CO)$_3$)_3(µ$_3$-O)]([PF$_6$])$_3$, and [Pt$_3$(Re(CO)$_3$)_3(µ$_3$-O)]$_2$(dppm)$_2$([PF$_6$])$_3$. Oxidation of the sulfido clusters 2 and 3 by Me$_3$NO or H$_2$O$_2$ gave the oxo-sulfido complexes [Pt$_3$(Re(CO)$_3$)S$_2$(µ$_3$-O)]([PF$_6$])$_3$, and [Pt$_3$(Re(CO)$_3$)µ$_3$-O]$_2$(µ$_3$-S)([PF$_6$])$_3$. The clusters 3–5 have been characterized crystallographically; addition of each µ$_3$-O or µ$_3$-S group leads to a decrease in metal–metal bonding in the cluster complexes.

Introduction

Supported bimetallic catalysts, of which Pt–Re on alumina is a prime example, are important in selective re-forming of petroleum. There is much evidence that the active catalyst contains small particles of Pt–Re alloy, perhaps bound to the oxide support through Re–O bonds. In industrial practice, the supported Pt–Re catalyst is sulfided before use. During sulfidation, it is thought that surface rhenium atoms are converted to Re$_2$S$_2$ groups and the rhenium centers are then deactivated. The Re$_2$S$_2$ units then act as an inert diluent and serve to reduce the size of local ensembles of platinum atoms. In turn, this reduces hydrogenolysis of alkanes, since this reaction requires several adjacent, active platinum atoms. Hence, the catalysts are more selective for the desirable dehydrocyclization and isomerization reactions which increase the octane rating of the petroleum. It is also thought that adjacent rhenium atoms decrease the strength of Pt–S binding and also allow reversible binding of sulfur in these positions. Overall, only about 10% of surface platinum atoms are irreversibly sulfided on the Pt–Re catalyst particles. The theory is based mostly on catalytic properties, but there is also some direct evidence for selective sulfidation of rhenium. A schematic illustration of Pt–Re and sulfided Pt–Re catalysts is shown in Figure 1.

It has been shown that the coordinatively unsaturated cluster cation [Pt$_3$(Re(CO)$_3$)$_3$]$_2$([PF$_6$])$_2$; dppm = Ph$_2$PCH$_2$PPh$_2$ can model some aspects of the bimetallic Pt–Re catalysts. Cluster 1 is remarkably versatile in binding additional ligands, and examples of ligand addition to rhenium only, to platinum only, or at a Pt$_2$–Re face are known. Of particular relevance to the present work are oxygen atom additions which occur according to Scheme 1. Initial addition occurs at Pt$_2$–Re faces with progressive loss of metal–metal bonding as more oxygen atoms are added. Under forcing conditions, conversion of the Re(CO)$_3$ group to Re=O$_3$ can occur and eventual oxidation to perrhenate may be observed. It was of interest to determine if sulfur atom additions to 1 might occur in an analogous way and serve as a model for the sulfidation of bimetallic Pt–Re catalysts. Fortunately, this was successful and the results, some of which have been communicated in preliminary form, are given below. Some relevant chemistry of platinum–rhenium complexes has been published recently.

Figure 1. Proposed surface structures of PtRe cluster catalysts shown in simplified form before and after sulfidation.

Results

Sulfidation of [Pt$_3$(Re(CO)$_3$)$_2$(µ-dppm)$_3$][PF$_6$] (1) with Formation of the Clusters [Pt$_3$(Re(CO)$_3$)$_2$(µ-S)(µ-dppm)$_3$][PF$_6$] (2[PF$_6$]) and [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-S)$_2$(µ-dppm)$_3$][PF$_6$] (3[PF$_6$]). The reaction of [Pt$_3$(Re(CO)$_3$)$_2$](µ-δ)S)(µ-dppm)$_3$][PF$_6$] (1[PF$_6$]) with two molar equiv of propylene sulfide proceeded to give the red disulfido complex [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)$_2$(µ-dppm)$_3$][PF$_6$] (3[PF$_6$]) with the evolution of propene (Scheme 2).9 The disulfido cluster 3 is analogous to the known dioxo complex [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)$_2$(µ-dppm)$_3$][PF$_6$] (10[PF$_6$])5 and is definitely stable in air at room temperature. Complex 3 is sparingly soluble in acetone and precipitated as red prismatic crystals when the reaction was carried out in this solvent; 3 is more soluble in dichloromethane solution. Cluster 3 failed to react with excess propylene sulfide to give a trisulfido derivative. The reaction of 1 with propylene sulfide was approximately first order in the concentration of propylene sulfide, with a 6-fold excess of propylene sulfide the reaction was complete in 30 min at room temperature.

Interestingly, the formation of the disulfido cluster 3 proceeded via an intermediate species, identified as the red-brown monosulfide cluster [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-S)(µ-dppm)$_3$][PF$_6$] (2[PF$_6$]) (Scheme 2). However, complex 2 is not the analog of the monooxo cluster [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)(µ-dppm)$_3$][PF$_6$] (9[PF$_6$]) (Scheme 1) but is tentatively suggested to contain a terminal Re=S bond. Complex 2 was formed immediately after the addition of propylene sulfide to a solution of 1, and propene was evolved as detected by 1H NMR. However, its further transformation to the disulfido cluster 3 took several hours to complete, as monitored by 1H and 31P NMR spectroscopy. If only 1 equiv of propylene sulfide was used, 2 was the dominant product with the presence of trace amounts of 1 and 3. Complex 2 could be obtained in pure form by immediately precipitating the product by the addition of hexane, but attempts to grow single crystals were unsuccessful due to the limited stability of 2 in solution. In one experiment, a solution of complex 2 in CD$_2$Cl$_2$ under an atmosphere of dry nitrogen was shown to decompose completely over a period of 5 days at room temperature to give a complex mixture of products. When a solution of complex 2 in acetone was heated to 50 °C, complete decomposition took place in ca. 10 min. In the presence of air, a solution of complex 2 in CD$_2$Cl$_2$ decomposed completely in 1 day to give the dioxo complex [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)$_2$(µ-dppm)$_3$][PF$_6$] (10[PF$_6$])5

Mixed Oxo–Sulfido Clusters by Sulfidation of Oxo Clusters. Sulfur poisoning is a very important process in industrial catalytic re-forming and is usually applied to the oxide-supported bimetallic catalysts such as Pt–Re/Al$_2$O$_3$.1,2 Since many believe that such catalysts contain Re–O linkages, it was of interest to study sulfidation of the oxo clusters 9, 10, and 12 (Scheme 1)5 as a relevant model system.

The oxo clusters 9 and 10 each added one sulfur atom on reaction with propylene sulfide to give the red monooxo monosulfido cluster [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)(µ$_3$-S)(µ-dppm)$_3$][PF$_6$] (4[PF$_6$]) and the yellow dioxo monosulfido cluster [Pt$_3$(Re(CO)$_3$)$_2$(µ$_3$-O)$_2$(µ$_3$-S)(µ-dppm)$_3$][PF$_6$] (5[PF$_6$]), respectively, with the evolution of propene, as shown in eqs 1 and 2. Each reaction took ca. 4 h to reach completion, using a 10-fold excess of propylene sulfide, and no intermediate was detected in either case, as monitored by 1H and 31P NMR spectroscopy. The complexes 4 and 5 are air-stable both in the solid state and in solution.

The reaction of trioxo cluster [Pt$_3$(ReO$_3$)$_2$(µ-dppm)$_3$]$^+$ (12)5 with excess propylene sulfide afforded the new
propylene sulfide to form the disulfido cluster 7 and they yellow product [Pt 3 (CO) 3 S 2 (µ 3 -O)] 2+ (6) with the evolution of propene (eq 3). The reaction took ca. 16 h to reach completion, as monitored by 31P NMR spectroscopy. This reaction is analogous to that of cluster 1 with propylene sulfide to form the disulfido cluster 3. An intermediate was also observed in this reaction, as monitored by 31P NMR spectroscopy, with two broad resonances at δ 23.6 and −7.4 in the ratio 1:2. Efforts were made to isolate and to identify the intermediate, but these have not been successful so far due to its thermal instability.

Mixed Oxo–Sulfido Clusters by Oxygen Atom Addition to Sulfido Clusters. Reaction of the cluster [Pt 3 (ReO 3) (µ 3 -S) 2 (µ-dppm)] 3+ (6) with 1 equiv of hydrated Me 3 NO proceeded to give the new red cluster 7,[PF 6] which is proposed to have the structure [Pt 3 (Re(CO) 3 S) (µ 3 -O)] (µ-dppm) 3+ [PF 6], according to eq 4. Cluster 7 was characterized spectroscopically, and its spectra are very different from those of the isomeric cluster 4. Well-shaped red prismatic crystals of 7 could be obtained from CH 2 Cl 2 /hexane but were not of X-ray quality. Attempts to interconvert clusters 4 and 7 by refluxing in tetrahydrofuran or benzene solution were unsuccessful; both clusters were stable under these conditions, and more forcing conditions led to general decomposition.

The disulfido cluster 3 failed to react with Me 3 NO, but it did react slowly with the stronger oxidant H 2 O 2 , as shown in eq 5. In a typical experiment, the reaction of 3 with excess H 2 O 2 in CH 2 Cl 2 solution, as monitored by 31P NMR spectroscopy, took about 1 day to reach completion and the yellow product [Pt 3 (Re(CO) 3 S) (µ 3-O)-

(µ 3-S) 2 (µ-dppm)] 3+ [PF 6] (8) was formed in about 50% yield, with the other 50% giving the dioxide of dppm and uncharacterized material. Cluster 3 has low reactivity with other reagents also. For example, no reaction occurred on treatment with phosphate or phosphite ligands, and no CO exchange occurred on reaction with 13CO, whereas the analogous dioxo cluster 10 does react under these conditions to give CO substitution or exchange.5

Structures of the Sulfido Clusters 3–5. The structures of the clusters 3–5 are shown in Figures 2–4, and selected bond distances and angles are given in Tables 1–3. The complexes are isomorphous, and the cell volume follows the trend 3 > S > 4, reflecting the core expansion with larger substituents (Table 4). The molecular ion 3 contains a cluster of one rhenium and three platinum atoms with distorted-tetrahedral geometry. The three platinum atoms define an approximately isosceles triangle with each edge bridged by a µ-dppm ligand. The atoms Pt(3), Re, and C(10) define an approximate mirror plane; the most obvious distortions from Cs symmetry arise from the orientations of the phenyl rings. The incorporation of two µ 3-S bridging atoms is accompanied by a significant lengthening of all the metal–metal distances compared to those in 1 (Table 1). The distances Pt(3)–Re, Pt(3)–Pt(1), and Pt(3)–Pt(2) at 3.625(2), 3.270(2), and 3.213(2) Å, respectively, are too long for significant bonding, and so Pt(3) appears to have square-planar cis-Pt 2 S 2 coordination only, with no metal–metal bonding. The metal–metal distances Pt(1)–Pt(2) = 3.038(2) Å and Pt(1)–Re and Pt(2)–Re = 2.946(2) and 3.002(2) Å, respectively, are also longer than the average Pt–Pt and Pt–Re distances of 2.602 and 2.726 Å, respectively, in 1, indicating weak metal–metal bonding within the Pt(1)Pt(2)Re triangle in 3. Furthermore, in comparison to Pt(1)–Pt(2) = 2.826(1) Å and Pt(1)–Re and Pt(2)–Re = 2.834(1) and 2.854(2) Å, respectively, in [Pt 3 (Re(CO) 3) (µ 3-O)] (µ-dppm) 3+ (10), in which two µ 3-O ligands instead of the two µ 3-S ligands cap the open Pt 2 Re triangular faces, the metal–metal distances Pt(1)–Pt(2), Pt(1)–Re, and Pt(2)–Re in 3 also appear to be long. The expansion of the metal tetrahedron in 3 compared to that in 10 is attributed to the larger size of the sulfido compared to the oxo ligands.10,11 The triply bridging sulfido ligands span the two open Pt 2 Re triangular faces in a nearly symmetrical fashion. The platinum–sulfur distances span the range 2.322(8)–2.356(7) Å and are similar to those Pt–S bond distances observed in other sulfido-bridged platinum-containing clusters.12
sulfur–sulfur distance of 3.088 Å indicates no S–S bonding.13,14 The Re–S distances Re–S(1) = 2.463(8) Å and Re–S(2) = 2.470(8) Å are normal in comparison to other sulfido-bridged rhenium-containing clusters.15,16

The Pt₃S₂ ring displays an envelope conformation characterized by an S(1)–Pt(1)–Pt(2)–S(2) torsion angle of less than 3°, with the Pt(3) flap directed away from the Re atom. The Pt–P distances Pt(2)–P(3) = 2.290(8) Å and Pt(1)–P(6) = 2.300(8) Å, which are trans to a metal–metal bond, are longer than those (2.256(8)–2.286(8) Å) trans to a sulfur atom. In the dioxo cluster 10, the Pt–P bond distances trans to the metal–metal bonds are very similar, while the Pt–P bond lengths...
Table 2. Selected Bond Lengths (Å) and Angles (deg) for 4

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–O(1)</td>
<td>2.071</td>
<td>Pt(1)–P(1)</td>
<td>2.237</td>
</tr>
<tr>
<td>Pt(1)–P(6)</td>
<td>2.292</td>
<td>Pt(1)–Re(1)</td>
<td>2.882</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.957</td>
<td>Pt(1)–Re(1)</td>
<td>3.152</td>
</tr>
<tr>
<td>Pt(2)–P(2)</td>
<td>2.264</td>
<td>Pt(2)–P(3)</td>
<td>2.289</td>
</tr>
<tr>
<td>Pt(2)–P(2)</td>
<td>2.356</td>
<td>Pt(2)–Re(1)</td>
<td>3.051</td>
</tr>
<tr>
<td>Pt(2)–P(3)</td>
<td>3.115</td>
<td>Pt(3)–O(3)</td>
<td>2.091</td>
</tr>
<tr>
<td>Pt(2)–P(4)</td>
<td>2.264</td>
<td>Pt(2)–P(5)</td>
<td>2.289</td>
</tr>
<tr>
<td>Pt(3)–P(3)</td>
<td>2.262</td>
<td>Pt(3)–Re(1)</td>
<td>1.833</td>
</tr>
<tr>
<td>Re(1)–C(1)</td>
<td>1.853</td>
<td>Re(1)–C(2)</td>
<td>1.883</td>
</tr>
<tr>
<td>Re(1)–O(1)</td>
<td>2.161</td>
<td>Re(1)–S(1)</td>
<td>2.439</td>
</tr>
</tbody>
</table>

Models for Pt-Re Bimetallic Catalysts

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 5

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–Pt(2)</td>
<td>3.254</td>
<td>Pt(2)–Pt(3)</td>
<td>3.143</td>
</tr>
<tr>
<td>Pt(1)–Pt(3)</td>
<td>3.157</td>
<td>Pt(1)–Pt(1)</td>
<td>3.132</td>
</tr>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.243</td>
<td>Pt(1)–P(6)</td>
<td>2.244</td>
</tr>
<tr>
<td>Pt(2)–P(2)</td>
<td>2.720</td>
<td>Pt(2)–P(3)</td>
<td>2.257</td>
</tr>
<tr>
<td>Pt(2)–P(3)</td>
<td>2.231</td>
<td>Pt(3)–P(5)</td>
<td>2.285</td>
</tr>
<tr>
<td>Pt(2)–S(1)</td>
<td>2.357</td>
<td>Pt(3)–S(1)</td>
<td>2.329</td>
</tr>
<tr>
<td>Re(1)–O(2)</td>
<td>2.515</td>
<td>Re(1)–O(1)</td>
<td>2.021</td>
</tr>
<tr>
<td>Re(1)–O(2)</td>
<td>2.062</td>
<td>Re(1)–C(1)</td>
<td>1.833</td>
</tr>
<tr>
<td>Re(1)–C(2)</td>
<td>1.903</td>
<td>Re(1)–C(3)</td>
<td>1.873</td>
</tr>
</tbody>
</table>

Organometallics, Vol. 16, No. 10, 1997 2169

Table 4. Comparison of Metal–Metal Distances (Å) and Unit Cell Volumes (Å³) in 1, 10, 4, 3, and 5

<table>
<thead>
<tr>
<th>Compound</th>
<th>Metal–Metal Distance</th>
<th>Unit Cell Volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2.227(3)–2.243(3) Å) trans to the oxygen atom are much shorter than those trans to sulfur in 3.

The structure of the cluster cation 4 is similar to those of 3 and 10, but in this case one Pt2Re face is capped by a μ3-oxo ligand and one by a μ3-sulfido ligand. Again, the distances Pt(3)–O = 3.426(1) Å and Pt(3)–Pt(1) and Pt(3)–Pt(2) = 3.152(1) and 3.115(1) Å, respectively, are too long for significant bonding and so Pt(3) appears to have square-planar cis-PtP3SO coordination with no metal–metal bonding. The metal–metal distances Pt(1)–Pt(2) = 2.957(1) Å, Pt(1)–Re = 2.882(1) Å, and Pt(2)–Re = 3.051(1) Å are also long, indicating weak metal–metal bonding within the Pt(1)Pt(2)Re triangle. The Pt(2)–Re distance is longer than the Pt(1)–Re distance, presumably due to the proximity to the larger sulfido ligand, compared to oxo bridging ligand. The Pt(1)–Pt(2) distance in 4 is longer than in 10 but shorter than that in 3. Indeed, all the metal–metal distances in 4 fall between the corresponding distances in 3 and 10 (Table 4). The Pt–P bond distances span the range 2.237(6)–2.292(6) Å, with the order Pt–P bonds trans to metal–metal bond > Pt–P bonds trans to sulfur >
Figure 5. 31P NMR spectrum (121.5 MHz) of complex 3.

a capping oxo or sulfido ligand. The incorporation of two μ_3-O ligands and one μ_3-S ligand is accompanied by a significant lengthening of all the metal--metal distances compared to those in 1 and even those in 3, 4, and 10 (Table 4). The Pt⋯Re distances of 3.132(2), 3.378(2), and 3.465(2) Å are too long for significant bonding, as are the Pt⋯Pt distances of 3.254(2), 3.157(2), and 3.143(2) Å. Therefore, the rhenium atom may be considered to have an octahedral geometry with cis-PtO2P2 or cis-PtO2S2 coordination. As expected, the Pt–P bonds trans to oxygen (Pt–P = 2.231(7)–2.252(7) Å) are shorter than those trans to sulfur (2.270(7) and 2.285–(7) Å). The Pt–O bond distances (2.02(1)–2.049(6) Å) are in the normal range Pt–O distances. There is no disorder of the oxo and sulfido ligands in either 4 or 5.

Characterization of the Sulfido Clusters by Spectroscopic Methods. The IR spectra of the rhenium tricarbonyl complexes generally contained three terminal carbonyl bands with similar values of ν(CO), as in the parent cluster 1. This is rationalized if the bridging sulfur or oxygen atom addition reactions lead to formal oxidation at platinum, while the oxidation state at rhenium remains at +1 throughout.

The 1H NMR spectra of the new clusters are all consistent with the proposed structures and require little comment. For example, the 1H NMR spectrum in the CH2CI2 region of 3 shows four broad resonances at 6.54, 4.85, 4.00, and 3.53 ppm in the ratio 1:1:2:2, consistent with the presence of dppm ligands in two different chemical environments in a 2:1 ratio and with the protons of each CH2H2B group being nonequivalent.

The 31P NMR spectra of the complexes are useful in defining both the cluster symmetry and the presence or absence of Pt–Pt bonds. For example, the spectrum of 3 contains three resonances due to the nonequivalent phosphorus atoms Pa, Pb, and Pc (Figure 5), each with satellites due to 3I(PtP)(1I(PtP) = 167 Hz are observed and indicate the presence of an approximately linear P–Pt–P–Pt unit containing a metal–metal bond. The corresponding long-range couplings 3I(PtP) and 3I(Pdppm) are not observed in the multiplets assigned for Pa and Pc, indicating that there is no Pt–Pt bond connecting Pa and Pc. The spectrum therefore supports the conclusion from the structure determination in terms of the distribution of Pt–Pt bonds in 3, and it is then possible to use the 31P NMR spectra to deduce the structures of related complexes.

The 31P NMR spectrum of the oxo–sulfido cluster 4 is more complex, since there is no plane of symmetry, and so all six dppm phosphorus atoms are nonequivalent. In agreement, six resonances were observed in the 31P NMR spectrum. The assignments were made on the basis of the pattern of coupling constants due to 3I(PtP), 3I(PtP), and 3I(PP). For example, the values of 3I(PP) follow the series 3I(PP) to oxygen > 3I(PP) to sulfur > 3I(PP) to a Pt–Pt bond, while large values of 3I(PP) and 3I(PP) are observed only when the coupling occurs through a Pt–Pt bond.

Complex 2 was fluxional at room temperature, and so NMR spectra were also obtained at low temperature down to −90 °C in CD2Cl2 solution. The 1H NMR spectrum of 14 at room temperature displays two broad resonances at δ 6.21 and 4.69 in the ratio 1:1. The 31P NMR spectrum at room temperature shows a singlet resonance at δ 3.17 with satellites due to 3I(PtP) = 2700 Hz. Clearly, all six phosphorus atoms of the μ_3-dppm ligands are effectively equivalent on the NMR time scale, and this is interpreted in terms of fast rotation of the (Re(CO)3S) unit around the Pt3 triangle. The observation of long-range couplings 3I(PtP) = 600 Hz and 3I(PP) = 170 Hz indicates the presence of Pt–Pt bonds in 2. At −90°C, the 31P NMR spectrum contained six broad resonances due to six nonequivalent dppm phosphorus atoms, indicative of low symmetry for the cluster cation of 2; the coalescence temperature was ca. −60 °C. These data are consistent with the proposed structure of 2, with the terminal Re=, group in a low-symmetry conformation, but not with the alternative structure [Pt3(Re(CO)3)(μ3-S)(μ3-S)(μ3-dppm)]+. Thus, a μ_3-S group would surely prevent rotation of the Re(CO)3S group, needed to give the observed fluxionality, just as the bridging oxo ligand prevents fluxionality in cluster 9. Terminal Re=5 groups are well-known, and examples are found in the complexes [(S2)3Re], and [ReS5], but, of course, triply bridging sulfide ligands are also common, for example in the structure of ReS5. Further evidence that the first sulfidation occurs at rhenium is found by comparing the XPS binding energies for 1–3. The following energies (eV) are for the Re 4f7/2 and Pt 4f7/2 levels: 1, 41.6 and 72.6; 2, 42.0 and 72.9; 3, 41.7 and 73.0. The sequence of Re 4f7/2 binding energies 2 > 3 > 1 suggests that the first sulfidation leads to formal oxidation at rhenium in forming 2.

The 31P NMR spectrum of [Pt3(Re(CO)3)2(S)(μ3-O)(μ3-dppm)][PF6]2 ([PF6]3) is complex but quite different from that of its isomer 4. There are six resonances,

indicating low symmetry. Two singlet resonances at δ = -9.9 and -10.1 can be readily assigned to phosphorus atoms trans to oxygen on the basis of the large J (PtP) coupling constants of 3880 and 3856 Hz, respectively, demonstrating the presence of a μ-3-O group. Assignment of the other four resonances is based on the pattern of couplings to these phosphorus atoms and is tentative. These data are insufficient to define the structure, but since the complex clearly has a different structure from that of 4 and since the precursor very likely contains a terminal Re=S group, the structure 7 appears most reasonable and is consistent with the spectroscopic data. The structural conclusion is tentative in this case.

The 31P NMR spectra of 5 and 8 each contain three singlet resonances with J (195Pt-31P) satellites. Since these compounds contain no Pt–Pt bonds, there are no long-range couplings J (PtP) or 3 (PP). The phosphorus atoms trans to oxygen have larger values of J (PtP) than do those trans to sulfur.

The 31P NMR spectrum of cluster 6 contained three resonances and was similar to that of 3. Of course, the IR spectrum of 6 contains no carbonyl bands but contains a strong band at v(Re=O) = 906 cm⁻¹ due to the ReO3 fragment; the value of v(Re=O) in 6 is similar to that in the precursor [Pt3(ReO3)(μ-dppm)]⁺ (12; 904 cm⁻¹).

Discussion

These bimetallic Pt-Re clusters containing sulfur or both sulfur and oxygen ligands provide the first molecular bimetallic cluster models for the structure and nature of presulfided and sulfided supported Pt-Re bimetallic catalysts, which are important as petroleum re-forming catalysts. The reaction of propylene sulfide with the coordinatively unsaturated cluster cation [Pt3{Re(CO)3}(μ-dppm)]⁺ (1) occurs under very mild conditions to give the sulfido clusters [Pt3{Re(CO)3}(μ-S)2(μ-dppm)]⁺ (2) and [Pt3{Re(CO)3}(μ-S)2(μ-dppm)]⁺ (3) without loss of any ligands. That organic episulfides can act as sulfur-transfer agents was already known,10 but there are few known reactions in which sulfido transition-metal clusters have been formed by the use of episulfides, and these occur with displacement of ligands by sulfide.12,23,24 The addition of the two sulfur atoms to 1 to form 3 leads to an increase in the cluster electron count from 54 to 62 electrons and results in loss of metal–metal bonding. Although the metal–metal distances Pt(1)–Pt(2) = 3.038(2) Å, Pt(1)–Re = 2.946(2) Å, and Pt(2)–Re = 3.002(2) Å are longer than those in 1, there is still evidence for metal–metal bonding within the Pt(1)Pt(2)Re triangle. The observation of long-range couplings 3 (PtP) = 632 Hz and 3 (PP) = 175 Hz across the Pt(1)–Pt(2) bond confirms this conclusion.10,25 According to the simple bonding model shown in Chart 1, the bonding in 3 may be illustrated in terms of two 16-electron Pt(I) atoms, Pt(1) and Pt(2), having similar distorted-square-planar cis-PtS2P2 and cis-PtS2P2 environments with a Pt(1)–Pt(2) bond, a square-planar 16-electron Pt(II) atom, Pt(3), with a cis-PtS2P2 center, and an octahedral fac-Re(S)2(CO)3 center in which rhenium can achieve an 18-electron configuration by accepting 2 electrons from the Pt(1)–Pt(2) bond and 2 electrons from each sulfur atom. Thus, the formal metal oxidation states in 3 may be considered to be Pt(1)PT(II)ReVII. Besides the dioxo analog 10 and the monooxo monosulfido analog 4, clusters which are structurally related to 3 include [Os3(μ3-S)2(CO)12]24,26 and [Os3W(CO)12(PMe2Ph)(μ3-S)2]24,27 and they can readily react with 2-electron-donor ligands CO and PMe2Ph to form adducts.24 In contrast, complex 3 is rather stable and does not react with either σ-donor or π-acceptor ligands under mild conditions. In particular, it does not undergo the type of ligand substitution reaction found for the dioxo analog 10.

Since both clusters 1 and 12 have 54-electron counts and similar metal–metal bonding, and since both clusters 3 and 6 have 62-electron counts, it is reasonable to expect a pattern of metal–metal bonding in 6 similar to that established in 3. However, the oxidation states in cluster 6 may be considered to be Pt(1)PT(II)ReVII (Chart 1). This formulation is fully consistent with the spectroscopic data.

The highest cluster electron counts of 66e are observed for the dioxo sulfido and the oxo disulfido clusters 5 and 8, respectively. The structure of 5 confirms that all platinum atoms have square-planar stereochemistry28,29 while rhenium has octahedral stereochemistry.

Figure 6. Possible structure of a sulfided Pt-Re catalyst on an oxide support. The atoms M may be platinum or rhenium. It is likely that the more oxophilic rhenium may be concentrated at the oxide interface, with exposed rhenium atoms also being sulfided.

and that no metal–metal bonding is present. The Re center adopts an octahedral geometry in which rhenium has an 18-electron configuration. Thus, the structures are consistent with the predictions of the Wade-Mingos rules, adapted for platinum having a 16-electron count. For these complexes, the metal oxidation states are considered to be Pt\(^{ii}\)Re\(^{iii}\), (Chart 1).

The greatest uncertainty concerns the structure and bonding in the clusters 2 and 7, which are proposed to have terminal Re\(^{vii}\)S groups. For 2 the main evidence comes from the observation of fluxionality, which is not expected for a cluster with a bridging sulfido ligand, while for 7 the structural conclusion is based on the major differences in NMR parameters compared to the structurally characterized complex 4. We have not succeeded in growing crystals of either 2 or 7 of diffraction quality. Hence, the structural conclusions are tentative. If they are correct, the electron counts would be 56 and 60 and the oxidation states Pt\(^{ii}\)3Re\(^{ii}\) and Pt\(^{ii}\)2Pt\(^{ii}\)Re\(^{iii}\) for 2 and 7 respectively.

In terms of the cluster–surface analogy, the formation of the series of sulfide cluster complexes discussed above can be thought to mimic the sulfidation of supported Pt–Re catalysts. It can be predicted that the sulfidation of these catalysts will probably occur initially at rhenium and that the sulfide is likely to be most stable as a surface \(\mu_3\)-S ligand with Pt\(^{ii}\)Re\(^{ii}\)(\(\mu_3\)-S) groups. In this way a surface sulfide is likely to deactivate toward catalyst not only the surface rhenium atom but also the immediately adjacent surface platinum atoms, so rationalizing the observed sulfur effect on the Pt–Re catalysts at low sulfur coverage.\(^{3,31}\) Therefore, this model system supports and adds new detail to the current interpretation on the role of sulfidation in supported Pt–Re catalysts. Considering that the Pt–Re catalysts are supported on the surface of oxide supports, the structure of the sulfided supported Pt–Re catalysts may be depicted as shown in Figure 6. The oxygen atoms from the oxide support may also likely function as surface \(\mu_3\)-O ligands, and the metals are simultaneously singly bonded to several oxygen atoms in the oxide surface, while the sulfur atoms are bonded on the other faces of the Pt–Re clusters in a \(\mu_2\) bonding mode and thus a Pt\(^{ii}\)(\(\mu_3\)-O)(\(\mu_2\)-S) unit is formed. A similar surface oxygen–metal bonding structure has been proposed for mononuclear metal catalysts on oxide supports on the basis of EXAFS studies.\(^{32}\) It has been found that a metal-oxygen distance of about 2.1 Å is characteristic of second- and third-row transition metals that are present in low positive oxidation states and are singly bonded to oxygen on the basis of the study of surface catalysts.\(^{32}\) In the same range as the values found for 3–5. The Pt-Re cluster catalysts described in this paper thus provide good models for the structure and bonding in sulfided oxide-supported Pt–Re catalysts. Of course, further proof is needed and must be obtained from the direct study of Pt–Re catalysts.

Experimental Section

General methods and the synthesis of starting materials have been described previously.\(^{3,5}\) In NMR data, all \(\delta\) values are in units of ppm and \(\nu\) values are in Hz.

\[\text{[Pt}_3\text{(CO)}_3\text{S}_2\text{(\(\mu_3\)-dppm)]PF}_6\text{ (3[PFA]).}\]

To a solution of 1 (87 mg, 0.04 mmol) in acetonitrile (25 mL) was added propylene sulfide (10 μL) via microsyringe. The dark brown solution changed to red in 5 min. After 2 h of stirring, the solution was concentrated, followed by addition of hexane to give the product as a yellow-brown powder in 90% yield. Anal. Calcd for C\(_{78}\)H\(_{66}\)F\(_6\)O\(_3\)P\(_7\)Pt\(_3\)ReS\(_2\): C, 41.79; H, 2.89. IR (Nujol): \(\nu\) 2992, 2921, 2860, dppm\]; 1H, 3.02. Found: C, 41.86; H, 2.89. IR (Nujol): \(\nu\) 2860, 2700, 2672, 2652, 2562, 2517, 2462, 2363, 2253, 2160, 1932, 1701, 1656, 1572, 1454, 1422, 1387, 1323, 1236, 1152, 1105, 1024, 994, 962, 839, 759, 682, 600, 549, 490, 435, 371, 315, dppm\]. 1H NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)] 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)] cm\(^{-1}\). NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)]. 19F NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)] cm\(^{-1}\). NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)].

To a solution of 2 (31 mg, 0.016 mmol) in CH\(_2\)Cl\(_2\) (15 mL) was added Me\(_3\)NO (1.2 mg). The solution was concentrated, followed by addition of hexane to give a precipitate of complex 3, which was further washed with hexane. A red crystalline product was obtained. Well-shaped red prismatic crystals could be obtained from acetone/hexane. Yield: 95%. Anal. Calcd for C\(_{78}\)H\(_{66}\)F\(_6\)O\(_3\)P\(_7\)Pt\(_3\)ReS\(_2\): C, 41.79; H, 2.89. IR (Nujol): \(\nu\) 2860, 2700, 2672, 2652, 2562, 2517, 2462, 2363, 2253, 2160, 1932, 1701, 1656, 1572, 1454, 1422, 1387, 1323, 1236, 1152, 1105, 1024, 994, 962, 839, 759, 682, 600, 549, 490, 435, 371, 315, dppm\]. 1H NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)] cm\(^{-1}\). NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)]. 19F NMR (CDCl\(_3\)): \(\delta\) 6.54 [br, 1H, H\(^4\)], 1.65 [br, 1H, H\(^5\)], 0.67 [br, 1H, H\(^6\)]; 13C NMR (CDCl\(_3\)): \(\delta\) 6.55 [br, 2H, H\(^4\)], 1.67 [br, 2H, H\(^5\)], 0.68 [br, 2H, H\(^6\)].
overnight. Distilled water was then added several times to the solution so that the reaction became complete in 12 h. The product was precipitated with hexane to give an orange powder. Well-shaped bright yellow crystals of \(\text{Pt}_{3}\text{H} \) could be obtained from CH2Cl2/hexane. Yield: 45 mg, 0.021 mmol.

The solution was then concentrated to 2 mL. Hexane was added, followed by stirring for 4 h. The mixture was stirred for 4 h. The solution was then concentrated to 2 mL. Hexane was added to the product, which was then further washed with hexane by vacuum drying to give the product as bright yellow crystals in 98% yield. Well-shaped bright yellow prismatic crystals could be obtained from CH2Cl2/CH2Cl2, C1. 41.72; H, 2.99. Found: C, 41.90; H, 2.84. IR (Nujol): 3400, 2900, 2800, 1750, 1660, 1500 cm\(^{-1}\).

X-ray Structure Determination for 3\(\frac{1}{2}\)MeO. Dark red distorted-pyramidal single crystals were grown by diffusion of hexane into the acetone solution at room temperature. In all, 12 032 reflections were collected in the 2\(\theta\) range 3.5–45\(^\circ\) (16 mg, 0.07 mmol) in CH2Cl2 (15 mL) was added. The solution became lighter in colour. The mixture was stirred with complexes \(\text{Pt}_{3}\text{H} \) being formed in the ratio 5:1. There was no obvious colour change at this stage. Then, propylene sulfide (2.5 \(\mu\)L) was added. The solution became red immediately. \(\text{Pt}_{3}\text{H} \) NMR monitoring showed that the reaction was complete in 12 h. The product was precipitated with hexane to give an orange powder. Well-shaped bright yellow crystals of \(\text{Pt}_{3}\text{H} \) could be obtained from CH2Cl2/hexane. Yield: 45 mg, 0.021 mmol.

The solution was then concentrated to 2 mL. Hexane was added to the product, which was then further washed with hexane by vacuum drying to give the product as bright yellow crystals in 98% yield. Well-shaped bright yellow prismatic crystals could be obtained from CH2Cl2/CH2Cl2. C1. 41.72; H, 2.99. Found: C, 41.90; H, 2.84. IR (Nujol): 3400, 2900, 2800, 1750, 1660, 1500 cm\(^{-1}\).
rotation along the F(1)–P(7)–F(2) axis (occupancies 0.63 and 0.37). Ideal octahedral geometry constraints were imposed and a common P–F length was refined in the least-squares cycles. Common isotropic thermal parameters were refined for each set of fluorine atoms in the least-squares cycles. Half-molecules of hexane and dichloromethane located in the crystal lattice were also disordered. Ideal constraints were imposed (C–C = 1.54 Å, and C–C–Cl = 109.5° for hexane and C–C–Cl = 1.65 Å for dichloromethane). Common isotropic thermal parameters were assigned for each solvent and refined. Hydrogen atoms were not included for the solvent molecules. The oxygen atom O(4) of one carbonyl group was found to have two orientations. Both the disordered O(4) positions and their isotropic temperature factors were refined.

X-ray Structure Determination for 5·Et$_2$O. Light yellow platelike crystals were grown from a dichloromethane/diethyl ether mixture by the diffusion method at room temperature. A total of 11 974 reflections were collected in the 2θ range 1.8–23.0° (–1 ≤ h ≤ 18, –1 ≤ k ≤ 25, –21 ≤ l ≤ 21) in the ω scan mode at variable scan speeds (2–10°/min). The faces of the data crystal were indexed, the distances between them were measured, and a numerical absorption correction was applied to the data. The maximum and minimum transmission factors were 0.728 and 0.459, respectively. The fluorine atoms in the PF$_6^-$ anion were disordered around P(7), in the same sense as in 3, and were treated in the same way. A common isotropic thermal parameter was refined for each set of fluorine atoms in the least-squares cycles. One molecule of diethyl ether solvate in the crystal lattice was also found to be disordered. Ideal constraints were imposed (C–O = 1.40 Å and C–C = 1.54 Å) for the two disorder models (multiplicity ratio 0.6:0.4). Common isotropic thermal parameters were assigned for each set of disorder fragments and refined. No hydrogen atoms were included for the solvent molecule.

Acknowledgment. We thank the PRF and NSERC of Canada for financial support.

Supporting Information Available: Text giving experimental details of the X-ray structure determinations for 3–5 and tables of crystal data, positional and thermal parameters, bond distances and angles, anisotropic thermal parameters, and hydrogen atom coordinates (31 pages). Ordering information is given on any current masthead page.

OM9610612