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Abstract:. Hydrogenation of tiglic acid in supercritical CO2 catalyzed by a chiral Hs-BINAP-Ru(II ) 
complex procecds cleanly with cis stereochemistty to afford 2-methylbutanoic acid in up to 89% e¢ and 
over 99% yield. Copyright © 1996 Elsevier Science Ltd 

Asymmetric catalysis is becoming viable as an efficient method for the synthesis of  optically active 

compounds not only in laboratories but also at the industrial level, l Supercritical CO2 (scCO2) (critical point, 

Tc = 31.0 °C, Pc = 72.9 atm) is a practical medium for chemical reactions because of  its non-toxicity, non- 

flammability, ease of  removal from the product, and low cost. Furthermore, novel behavior or improved 

performance of  reactions in scCO2 have excited a great deal of  interest. 2-5 Principal causes of  drastic 

changes in rate or selectivity include the high miscibility of  reactant gases in scCO2, efficient mass transfer, 

local clustering, and possible weakening of  the solvation of  reacting species. This report describes the 

asymmetric catalytic hydrogenation of  an olefinic substrate in scCO2. 6 
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The hydrogenation of tiglic acid catalyzed by [Ru(OCOCH3)2((S)-Hs-binap)] [(S)-I] (Hs-BINAP = 

2,2'-bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl) 7 with a substrate/catalyst mole ratio 

(S/C) of 150-160 proceeds smoothly in scCO2 under 25-35 atm H2 and 175 atm CO2 in a 50-mL reactor at 

50 °C overnight to give (S)-2-methylbutanoic acid in over 99% yield and up to 81% ¢e. 8 The observed 

enantioselectivity is comparable with that observed in methanol (82% ee) and hexane (73% ee) at 30 atm H2 

and 50 °C. The reaction in scCO2 occurs slowly under H2 pressure below 10 attn. Table 1 summarizes the 

results obtained in scCO2 and in protic and aprotic liquid solvents, together with the results obtained using 

the analogous catalyst precursors [Ru(OCOCH3)2((R)-binap)] [(R)-2] (BINAP = 2,2'- 

bis(diphenylphosphino)-l,l'-binaphthyl) and [Ru(OCOCH3)2((R)-tolbinap)] [(R)-3] (TolBINAP = 2,2'- 

bis[di(p-tolyl)phosphino]-l,l'-binaphthyl). It Complex I showed a higher activity and enantioselectivity than 

2 and 3 in the hydrogenation in scCO2. For comparison, a reaction in liquid CO2 (liqCO2) at 20 °C using 1 

was attempted, affording no hydrogenated product (Table 1). The hydrogenation of the olefin in scCO2 

occurs cleanly; no formic acid from CO2 hydrogenation is detected, although Ru(II) complexes are known to 

be active in scCO2 for this reaction in the presence of bases. 12-15 

Table 1. Asymmetric Hydrogenation of Tiglic Acid by Ru(II) Catalysts in scCO2 and Other Media a 

product 

catalyst reaction medium Hg, atm % yield % ee confi~n 

(S)-I b liqC02 30 0 - - 

(S)-I scC02 33 99 81 S 

(S)-1 scC02 7 23 71 S 

(S)-I scCO2/RFOH c 5 99 89 S 

(S)-I scCO2/CD3OD d 6 81 78 S 

(S)-I e methanol 30 100 82 S 

(S)-I hexane 30 100 73 S 

(R)-2 scCO2 33 50 37 R 

(R)-3 scCOg 29 100 36 R 

a Reactions were conducted overnight (12-15 h) at 50 °C with S/C = 150-160 (catalyst = 4.4--4.7 

Ixmol) in a 50-mL reactor unless otherwise indicated. For reactions in scCO2, the pressure of CO2 

was 170-180 atm. b 180 atm CO2, at 20 °C. CRFOH = CF3(CF2)6CH2OH, 1.5 rnmol. 

d 7.4 rnrnol, e Reaction time 6 h. 

Experiments in a window-equipped reactor showed that no liquid phase exists under the conditions 

used; therefore the reaction takes place in the homogeneous supercritical phase. Both tiglic acid and the 

saturated product are highly soluble in scCO2. Qualitative tests demonstrated that the solubilities of the chiral 

diphosphine ligands in scCO2 follow the order, H8-BINAP > TolBINAP ~ BINAP. The solubilities of the 

Ru(II) complexes were too low to measure, but it is likely that the Hs-BINAP complexes, either catalyst 

precursor or reaction intermediates, are more soluble than the BINAP and TolBINAP complexes. This must 

contribute to the higher activity of 1 compared to 2 or 3.12 
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The addition of alcohols is known to increase the solubility of aromatic compounds in scCO2.16 In the 

present study, adding fluorinated alcohols caused an increase in both the conversion and enanrioselectivity of 

the hydrogenation, up to 89% ee in the case of CF3(CF2)6CH2OH (Table 1). 17 

The extent of asymmewic induction has often been found to depend on the hydrogen pressure in liquid 

solvents. 1"9 This is also true for the hydrogenation of tiglic acid in methanol catalyzed by 1. Thus, when the 

H2 pressure was lowered from 30 to 5 ann the ¢nantiomeric purity of the product increased from 82% ee to 

95% ee. In scCO2, however, such an effect was not observed. Instead, upon decrease of the H2 pressure 

from 33 to 7 atm, the optical yield of the product remained similar or slightly decreased (75-81% to 71-  

72%). 

The origin of the hydrogens incorporated into the saturated products has been determined by deuterium 

labeling experiments. During the reaction of tiglic acid with I>2 (4 alto) catalyzed by the BINAP catalyst 2 in 

methanol, deuterium from D2 is primarily introduced to the C(2) position while protons from the solvent arc 

incorporated into the C(3) position. 18 These observations are in accord with a monohydride mechanism. 10,18 

In scCO2, unlike in methanol, isotope exchange between molecular hydrogen and protic compounds proceeds 

rapidly. As a consequence, the labeling experiments gave the isotope scrambled products, regardless of the 

operating mechanism. 19 Thus the reaction of tiglic acid in scCO2 with D2 in the presence of (S)-I 

(D2:substrate:catalyst = 12,000:155:1, 28 aim D2, 175 aim CO2, 50 °C, 14 h) gave (2S,3S)-2,3-dideuterio-2- 

methylbutanoic acid, a cis-dideuterated product. The deuterium incorporation at the C(2), C(3), and acid 

positions was 97, 97, and 76%, respectively, as judged by IH NMR spectroscopy. When CD3OD was added 

to the reaction of tiglic acid with H2 in scCO2 (H2:CD3OD:substrate:catalyst = 2,600:1,600:160:1, 6 arm H2, 

170 arm CO2, 50 °C, 14 h), the deuterium was incorporated about equally at the C(2) and C(3) positions of 

the product. The NMR analysis of the product indicated the incorporation of 0.31 D and 0.37 D at the C(2) 

and C(3) positions, respectively. The cis hydrogenation of tiglic acid in scCO2 may proceed via Ru 

monohydride or polyhydride (either classical or nonclassical) species. 1,18,20-22 

In summary, our results clearly show that scCO2 can be used as a medium for homogeneous catalytic 

hydrogenation of certain classes of olefinic substrates. 6 
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