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ABSTRACT: Aerobic oxidative cross-dehydrogenative coupling represents
one of the most straightforward and atom-economic methods for construction
of C−C and C−X (X = N, O, S, or P) bonds, especially when environmentally
friendly air is used as the oxidant. Herein, we report the development of an
inexpensive, stable, and highly dispersed ultrafine Ni2P nanoparticles with
narrow size distribution supported on N,P-codoped biomass-derived porous
carbon. The as-prepared catalyst is highly active and stable for the synthesis of
pharmaceutically important N-heterocycles, including quinazolines, quinazo-
linones, and imidazoles, through oxidative cross-dehydrogenative coupling of
a wide range of alcohols with diamines or 2-aminobenzamides using
atmospheric air as the sole oxidant under mild reaction conditions. This
work provides a new method to access N-heterocycles, which is operationally simple, widely applicable to various alcohols and
diamines (or 2-aminobenzamides), and capable for gram-scale synthesis, highlighting its practical potential. Mechanistic studies
reveal that the coupling proceeds in a cascade manner, with atmospheric air as a hydrogen acceptor that significantly boosts the
overall reaction efficiency.
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■ INTRODUCTION

N-heterocycles are key core structures that form the basis of
many pharmaceutical, agrochemical, and natural products.1−5

Among them, quinazolines, quinazolinones, and imidazoles are
well known to have a wide spectrum of biological and
medicinal properties, such as antibacterial,6−8 antiviral,9−11 and
anticancer activities.12−14 Nowadays, as privileged structures,
quinazoline, quinaolinone, and imidazole core skeleton are
found in many drugs available in the market or are under
investigation in clinical trials (Scheme 1).
Given their extreme importance, various synthetic ap-

proaches have been developed for the synthesis of quinazo-
lines, quinazolinones, and imidazoles over the past decades.
Traditionally, oxidative condensation of diamines (or 2-
aminobenzamides) with carbonyl compounds15−24,36−53,60−65

o r me t a l - c a t a l y z e d c oup l i n g o f mu l t i c ompo -
nents20,25−35,54−59,66−71 was frequently employed. However,
these methods generally involved large excess of hazardous
oxidants and suffered from limitations of substrate generality
and availability of starting material, which strongly hamper
their extensive application.
Recently, metal-catalyzed cross-dehydrogenative couplings

(CDCs), as a powerful synthetic strategy,72−74 have attracted
great attention for the sustainable synthesis of quinazolines,
quinazolinones, and imidazoles. It represents the most

straightforward and effective method owing to significantly
high overall reaction efficiencies and improved atom economy.
In this regards, abundantly available and low toxic primary
alcohols were used as coupling partners to react with diamines
or 2-aminobenzamides to produce their corresponding N-
heterocycles with evolution of molecular hydrogen or water as
sole by-products. As a result, various metal catalysts, including
Pt,75,76 Pd,77−79 Ir,80−82 Ru,83−85 Au,86−88 Co,89 Cu,90,91

Ni,92−94 and Mn,95 have been employed for CDCs. However,
the reactions were usually carried out in homogeneous solution
and generally required the assistance of sophisticated and
expensive ligands to achieve satisfactory reactivity thus far. As
such, product−catalyst separation remains a big challenge
because the homogeneous catalysts are difficult to separate
from the product mixture for recycles, which is a particularly
significant drawback for their application in the pharmaceutical
industry. Meanwhile, metal-catalyzed (e.g., Fe,96,97 Mn,98

Cu,99−101 and Co102,103) oxidative CDCs have also been
developed for construction of N-heterocycles, although
stoichiometric or excess amounts of hazardous oxidants, such
as TBHP, H2O2, IBX, DIB, or I2, are indispensable. Molecular

Received: September 6, 2019
Revised: November 13, 2019
Published: December 3, 2019

Research Article

pubs.acs.org/journal/ascecgCite This: ACS Sustainable Chem. Eng. 2020, 8, 267−277

© 2019 American Chemical Society 267 DOI: 10.1021/acssuschemeng.9b05298
ACS Sustainable Chem. Eng. 2020, 8, 267−277

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
L

IV
E

R
PO

O
L

 o
n 

A
ug

us
t 2

, 2
02

0 
at

 1
1:

12
:5

8 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/journal/ascecg
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acssuschemeng.9b05298
http://dx.doi.org/10.1021/acssuschemeng.9b05298


oxygen as the most desired oxidants have been widely used in
modern organic synthesis;104−106 however, sporadic examples
using molecular oxygen as the oxidant have also been reported
for the above conversion.97,99,101,103,107−109 Nonetheless,
despite the significance of these reports, it is highly desirable
to develop a facile, efficient approach to synthesize N-
heterocycles using an inexpensive heterogeneous catalyst,
with excellent activity, broad substrate scope, and high atom
economy, in an operationally simple and environmentally
friendly manner.
Herein, we developed a stable inexpensive heterogeneous

metal catalyst (denoted as Ni2P@NPC-800) in which ultrafine
Ni2P nanoparticles (NPs) with narrow size distribution were
homogeneously dispersed on N,P-codoped biomass-derived
porous carbon. The resultant catalyst Ni2P@NPC-800 shows
excellent catalytic activities for synthesis of quinazolines,
quinazolinones, and imidazoles via oxidative cross-dehydrogen-

ative coupling of alcohols and diamines or 2-aminobenzamides
using air as the sole oxidant under milder reaction conditions
(Scheme 2). To the best of our knowledge, this is the first
operationally simple, convenient, yet efficient catalytic process
for N-heterocycles in the presence of a robust heterogeneous
catalyst and atmospheric air as an oxidant. The high catalytic
activity, good functional group tolerance, broad substrate
scopes, and strong stability, accompanied by operationally
easy-handling and mild reaction conditions, highlight this
protocol to be practical for the synthesis of pharmaceutically
important N-heterocycles.

■ RESULTS AND DISCUSSION

Ultrafine and highly dispersed Ni2P NPs on biomass-derived
porous carbon was prepared in a sequential hydrothermal and
pyrolysis process according to our previous reports.110−114 The
biochar obtained from hydrothermal treatment of bamboo

Scheme 1. Selected Examples of N-Heterocyclic Moiety-Based Drugs

Scheme 2. Strategies for the Synthesis of Quinazolines, Quinazolinones, and Iminazoles Using Alcohols as Starting Materials
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shoots was homogeneously mixed with Ni(OAc)2 and phytic
acid (PA), as Ni and P sources, respectively, in aqueous
solution at 60 °C for 2 h. After evaporation of the water, the
solid powder was pyrolyzed under a constant nitrogen flow at
800 °C for 2 h. (See details in the Supporting Information).
The as-prepared catalyst was denoted as Ni2P@NPC-800. For
comparison, Ni2P@NPC-700 and 900 pyrolyzed at 700 and
900 °C were also prepared with the same preparation
procedure. The Ni content in the catalysts was determined
to be 3.0−4.9 wt % by the coupled plasma optical emission
spectrometry (ICP-OES) (Table S1).

The typical transmission electron microscopy (TEM)
images (Figure 1a) of Ni2P@NPC-800 disclose that the
ultrafine Ni2P NPs are uniformly dispersed with narrow size
distribution (3.2 ± 0.7 nm) on the graphitic carbon material.
The high-resolution TEM image (Figure 1b) clearly shows the
lattice fringe spacings of 0.192, 0.203, 0.223, and 0.338 nm
corresponding to the (210), (201), and (111) planes of Ni2P
and (002) plane of graphitic carbon, respectively. High-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) (Figure 1c) with energy-dispersive X-ray
(EDX) maps (Figure 1d−g) clearly shows the homogeneous
distribution of Ni, P, N, O, and C through the entire carbon

Figure 1. (a) TEM, (b) HR-TEM, and (c) HAADF STEM images of Ni2P@NPC-800. (d−g) EDX mappings of C, N, P, and Ni of Ni2P@NPC-
800. (h) Powder XRD pattern of Ni2P@NPC-800.
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framework. Powder X-ray diffraction (PXRD) pattern of the
catalyst Ni2P@NPC-800 (Figure 1h) discloses the formation
of Ni2P phase with distinct and sharp diffraction peaks at 40.8,
44.6, 47.3, 54.2, 54.9, 66.2, 72.7, and 74.7°, corresponding to
(111), (201), (210), (300), (211), (310), (311), and (400)
planes of Ni2P (JCPDS No. 03-0953), respectively, in good
consistency with the HR-TEM observation. Besides, a broad
diffraction peak at around 25°, assignable to the (002) plane of
graphitic carbon, was also observed, indicating the formation of
carbon with a relatively higher degree of graphitization, which
was further confirmed by Raman spectroscopy (Figure S1). N2
adsorption/desorption measurements demonstrate that the
catalyst Ni2P@NPC-800 prepared in this strategy possesses
hierarchically micro, meso, and macropores with high specific
surface area and large pore volume, as shown in Figure S2 and
Table S1.
X-ray photoelectron spectroscopy (XPS) measurement was

employed to unveil the surface compositions and chemical
state of the Ni2P@NPC-800.The spectrum of Ni 2p region in

Figure 2a shows a doublet containing a lower energy (Ni
2p3/2) band and a higher energy (Ni 2p1/2) band. Of them, the
peaks at 853.3 and 870.4 eV correspond to the Ni 2p3/2 and Ni
2p1/2 of Ni2P, respectively, with the remaining two peaks at
856.7 and 873.9 eV corresponding to Ni 2p3/2 and Ni 2p1/2 of
Ni2+.115−118 The high-resolution N 1s spectrum (Figure 2b)
indicates the presence of four forms of nitrogen, namely,
pyridinic N (398.2 eV), pyrrolic N (399.6 eV), graphitic N
(401.2 eV), and oxidized N (402.8 eV), which come from the
decomposition of N-containing compounds in bamboo
shoots.110−114 The high-resolution P 2p spectrum (Figure
2c) reveals the existence of P 2p3/2 (129.5 eV) and P 2p1/2
(130.1 eV) of the P−Ni bond, as well as the P−C bond (132.4
eV) and P−O bond (133.4 eV). The observation of the P−C
bond indicates that P atoms were incorporated into the carbon
framework.115−118

With the as-prepared catalyst Ni2P@NPC-800 in hand, we
initiated our investigation by choosing synthesis of 2-
phenylquinazoline (2a) from coupling of benzyl alcohol with

Figure 2. High-resolution XPS spectra of (a) Ni 2p, (b) N 1s, and (c) P 2p for Ni2P@NPC-800.

Table 1. Optimization of Reaction Conditionsa

entry catalyst solvent base conv.(%)b selec.(%)b

1c Ni2P@NPC-800 toluene tBuOK (20 mol %) 12 >99
2 Ni2P@NPC-800 toluene tBuOK (20 mol %) 94 >99
3 Ni2P@NPC-800 toluene 5 >99
4 Ni2P@NPC-800 toluene tBuOK (5 mol %) 27 >99
5 Ni2P@NPC-800 toluene tBuOK (10 mol %) 61 >99
6d Ni2P@NPC-800 toluene tBuOK (20 mol %) 77 >99
7 Ni2P@NPC-800 toluene EtONa (20 mol %) 37 >99
8 Ni2P@NPC-800 toluene MeONa (20 mol %) 31 >99
9 Ni2P@NPC-800 toluene NaOH (20 mol %) 13
10 Ni2P@NPC-800 toluene Na2CO3 (20 mol %) 0 >99
11 Ni2P@NPC-800 CH3CN tBuOK (20 mol %) 9 >99
12 Ni2P@NPC-800 THF tBuOK (20 mol %) 0 >99
13 Ni2P@NPC-800 acetone tBuOK (20 mol %) 0 >99
14 Ni2P@NPC-800 tBuOH tBuOK (20 mol %) 11 >99
15 Ni2P@NPC-700 toluene tBuOK (20 mol %) 47 >99
16 Ni2P@NPC-900 toluene tBuOK (20 mol %) 91 >99
17 Ni@NC-800 toluene tBuOK (20 mol %) 39 >99
18 toluene tBuOK (20 mol %) 7 >99
19 NC-800 toluene tBuOK (20 mol %) 6 >99
20 NPC-800 toluene tBuOK (20 mol %) 4 >99
21 toluene 0 >99

aReaction conditions: benzyl alcohol (0.2 mmol), 2-(aminomethyl)aniline (0.22 mmol), catalyst (7.5 mol % of Ni), tBuOK (4.48 mg, 20 mol %),
toluene (2 mL), under atmospheric air, 120 °C, 12 h. bDetermined by NMR. cUnder atmospheric argon. dAt 100 °C.
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2-(aminomethyl)aniline (1a) as a benchmark reaction. The
reaction was first performed in the presence of Ni2P@NPC-
800 (7.5 mol % of Ni) and tBuOK (20 mol %) in toluene at
120 °C under atmospheric argon. In this case, only 12%
conversion of benzyl alcohol was observed with excellent
selectivity to the desired 2-phenylquinazoline 2a after 12 h

(Table 1, entry 1). Surprisingly, when the reaction was carried
out under atmospheric air under otherwise identical con-
ditions, 94% NMR yield of 2a was achieved (Table 1, entry 2),
indicating the key effect of air as an oxidant for boosting the
reaction efficiency. Based on this significant finding, a set of
parameters, including reaction temperature and types of bases

Table 2. Substrate Scopes for Synthesis of Quinazolines and Imidazolesa,b

aReaction conditions: alcohol (0.2 mmol), amines (0.22 mmol), Ni2P@NPC-800 (20 mg, 7.5 mol % of Ni), tBuOK (4.48 mg, 20 mol %), toluene
(2 mL), under atmospheric air, 120 °C, 12 h. b140 °C for 12 h. Yields of isolated product are reported.
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and solvents, were subsequently screened. A decrease in the
amount of tBuOK or reaction temperature resulted in a
significantly lower reactivity (Table 1, entries 3−6). Other
bases such as NaOMe, NaOEt, NaOH, and Na2CO3 all gave
poor reactivity or no reactivity (Table 1, entries 7−10). Among
the solvents investigated, toluene was found to be the best
choice (Table 1, entries 11−14). Control experiments, either
in the absence of Ni2P@NPC or base or in the presence of
NPC-800 without Ni loading as a catalyst, all gave negligible
reactivity (Table 1, entries 3, 18−20). No reaction took place
at all for the blank reaction (Table 1, entry 21). These
observations clearly indicate the critical role of the base and
catalyst for the success of the reaction.
For comparison, the catalyst Ni2P@NPC-700 showed a

relatively lower activity, while a comparable reactivity was
observed for the catalyst Ni2P@NPC-900 (Table 1, entries 15
and 16), compared with that of Ni2P@NPC-800 under
otherwise identical conditions. PXRD pattern and XPS
measurement disclose no formation of Ni2P NPs in the
catalyst Ni2P@NPC-700, while the catalysts Ni2P@NPC-800
and Ni2P@NPC-900 have very similar structural properties
(Figure S3). Besides, the catalyst Ni@NC-800 with the
presence of metallic Ni phases, which was prepared in the
same procedure but without addition of PA, also demonstrated
a considerably lower activity (Table 1, entry 17). The
introduction of appropriate amount of PA is also found to
be greatly important for achieving high catalytic efficiency due
to the formation of different Ni phases, as shown in Table S2

and Figure S4. Such observations indicate that ultrafine and
highly dispersed Ni2P NPs are primarily responsible for the
high catalytic activity.
After identifying the optimized reaction conditions, we next

explored the generality of this protocol for the synthesis of N-
heterocyclic compounds. First, 2-(aminomethyl)aniline (1a)
was coupled with a set of aromatic and aliphatic alcohols to
afford quinazolines. As shown in Table 2, various alcohols
could be efficiently coupled, affording their corresponding
quinazolines in good to high yields. Benzyl alcohols bearing
either electron-donating (−Me and −OMe) or electron-
withdrawing groups (−O2CMe and −CF3) were smoothly
transformed into their respective quinazoline, and a relatively
higher yield was achieved for the benzyl alcohol with an
electron-donating group (1f−i) than with an electron-with-
drawing one (1j and 1k), while Me substitution on the ortho-
position of phenyl ring gave slightly lower yields compared
with that substituted on the para position, indicating the steric
effect on the reaction efficiency. Halogen-substituted benzyl
alcohols (1b−e) were well tolerated. Moreover, thiophen-2-
ylmethanol (1l) and naphthalen-2-ylmethanol (1m) were also
suitable for the construction of quinazolines in 87 and 90%
yields, respectively. More importantly, primary and secondary
aliphatic alcohols, which are challenging in previously reported
methods,75,78,92,93,100 such as cyclopropylmethanol (1n),
cyclohexylmethanol (1o), and heptanol (1p), were found to
be compatible with the present conditions to furnish their
desired quinazolines in good yields at slightly elevated reaction

Table 3. Substrate Scope for Synthesis of Quinazolinonesa,b

aReaction conditions: alcohol (0.2 mmol), 2-aminobenzamide (0.22 mmol), Ni2P@NPC-800 (20 mg, 7.5 mol % of Ni), tBuOK (4.48 mg, 20 mol
%), toluene (2 mL), under atmospheric air, 120 °C, 12 h. b140 °C for 12 h. Yields of isolated product are reported.
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temperatures. This represents a significant advancement for the
synthesis of quinazolines.
Subsequently, o-phenylenediamine was subjected to the

optimal reaction conditions to couple with a variety of alcohols
for the synthesis of benzimidazoles (3a). We were pleased to
find that various benzimidazoles were smoothly obtained in
good to excellent yields. Electron-donating group-substituted
benzyl alcohols (3b and 3c) showed relatively higher catalytic
activity compared with those electron-withdrawing group-
substituted ones (3d−f). Aliphatic alcohols such as heptanol
(3h), 3-phenylpropan-1-ol (3i), and 2-phenylethan-1-ol (3j)
were also good coupling partners to afford their corresponding
benzimidazoles in 74−77% yields. Besides, many valuable
functional groups, for example, for example, −Br-, −CN-,
−OMe-, and −CO2Me-substituted o-phenylenediamines
(3m−p), were also compatible with this protocol conditions.
We also applied this heterogeneous catalytic protocol for the
synthesis of Pimobendan, which is a novel cardiotonic
vasodilator available in many countries for use in canine
heart failure.119 Pimobendan (3q) was obtained in 57% yield
under optimized conditions, highlighting the practical
application of this protocol for the synthesis of bioactive
molecules.
Finally, we further extended this protocol to the synthesis of

quinazolinones using 2-aminobenzamides as coupling partners,
and the results are compiled in Table 3. Aromatic, heterocyclic,
and aliphatic alcohols were efficiently coupled with 2-
aminobenzamide (4a) to deliver their corresponding quinazo-
linones in 64−91% yields. Similar to the observations in the
synthesis of quinazolines and benzimidazoles, benzyl alcohols
with electron-donating groups gave relatively higher reactivity
than those with electron-withdrawing ones, and the aliphatic
alcohols required elevated reaction temperatures to achieve
decent yields. Halogen-substituted benzyl alcohols are also
compatible with the present conditions to afford their
corresponding quinazolinones in high yields. In addition,
methyl- and chloro-substituted 2-aminobenzamides (4q and
4r) could serve as coupling partners to yield the desired
quinazolinones in 86 and 93% yields, respectively.
Durability/recyclability of a heterogeneous catalyst is critical

for practical applications. To test the durability of Ni2P@NPC-
800, the used catalyst was collected, washed, and dried after
completion of an oxidative coupling experiment for the
synthesis of 2-phenylquinazoline (2a). As shown in Figure
S6, the catalytic activity and selectivity remained high with
negligible changes after five recycles, demonstrating the high
durability of this catalyst. Furthermore, ICP analysis of the
recycled catalyst gave a very close nickel content to the fresh
one (4.49 vs 4.58 wt %). XRD and XPS analyses of the
recycled catalyst also confirmed the good reservation in the
structure (Figures S7 and S8 in the Supporting Information).
Furthermore, reactions with a 25 times higher amount of the

substrate (5 mmol) were performed to demonstrate the
applicability of this novel catalyst system for gram-scale
synthesis of quinazoline, quinazolinone, and imidazole, as
shown in Schemes S1−S3. The yields are in agreement with
the 0.2 mmol reactions. Notably, in these cases, the pure
desired products could be easily obtained upon filtration of the
catalyst followed by washing with water and evaporation of the
solvent after the reaction, and column purification workup
process is not required, highlighting the highly practical
potential for synthesis of N-heterocycles using the present
method.

To gain insight into the reaction pathway, a set of control
experiments were subsequently carried out, adopting the
synthesis of 2-phenylquinazoline as a model reaction. Under
the standard reaction conditions, benzyl alcohol could be
dehydrogenated into benzaldehyde in 98% GC yield (Scheme
3, eq a). However, the reaction became significantly sluggish

when it was performed using inert atmospheric argon instead
of air under otherwise identical conditions, giving only 17%
conversion of benzyl alcohol. As indicated in the reaction
conditions optimization, 7.8 times higher catalytic activity was
accomplished for the reaction in the standard conditions than
in the presence of atmospheric argon under otherwise identical
conditions (Table 1, entry 1 versus 2). It is well known that
alcohol dehydrogenation is a thermodynamically uphill
process. The presence of air as a hydrogen acceptor to form
H2O is expected to favorably drive the shift of the reaction
equilibrium, thereby altering the thermodynamics of the
reaction and boosting the rate of the forward reaction. To
confirm the necessity of hydrogen acceptor, the reaction was
conducted under atmospheric argon but in the presence of
styrene as a hydrogen acceptor instead of air (Scheme 3, eq d).
In this case, the reaction proceeded efficiently, affording the
desired 2-phenylquinazoline in 81% yield accompanied by the
concomitant formation of ethyl benzene in 74% yield. This
observation firmly evidences the critical role of a hydrogen
acceptor in the entire reaction process. Theoretically, Ni2P
NPs could interact with benzyl alcohol to form [Ni−H]
species,120−122 which could release molecular hydrogen to
complete the catalysis cycle. However, the hydrogen evolution
process from metal hydride is kinetically difficult due to the
need of a sufficient energy to drive the combination of
hydrogen. Consequently, the presence of air severing as an
ideal hydrogen acceptor could promote the catalytic process.
The generated benzaldehye could readily undergo direct

condensation with 2-aminobenzylamine to form 2-phenyl-
1,2,3,4-tetrahydroquinazoline in toluene at 120 °C within 4 h
without the assistance of a catalyst or base (Scheme 3, eq b).
Furthermore, 2-phenyl-1,2,3,4-tetrahydroquinazoline could be
quantitatively dehydrogenated into 2-phenylquinazoline under
standard conditions within 2 h, while a considerably lower

Scheme 3. Control Experiments
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conversion (ca. 17%) was achieved in the absence of Ni2P@
NPC-800 under otherwise identical conditions, confirming the
essential role of the catalyst for the dehydrogenative
aromatization process to afford quinazolines (Scheme 3, eq c).
Taking all control experiments into account, we can infer

that the synthesis of N-heterocycles in this protocol undergoes
a cascade reaction process following (i) the oxidative
dehydrogenation of alcohol to aldehyde to generate the
[Ni−H] species in the presence of base, (ii) condensation
between aldehyde and diamine or 2-aminobenzamide to form
tetrahydrohydroquinazoline, dihydroquinazolin-4(1H)-one or
dihydrobenzoimidazole, and (iii) oxidative dehydrogenative
aromatization assisting with the Ni2P catalyst and base to
afford the desired N-heterocycles with the release of H2O to
complete the catalytic cycle (Scheme 4). Further kinetic
studies show that the dehydrogenative oxidation of alcohol to
aldehyde is the rate-limiting step in the whole process (Figure
S9).

■ CONCLUSIONS

In conclusion, we have developed an inexpensive, stable, and
highly dispersed ultrafine Ni2P NPs with narrow size
distribution supported on N,P-codoped biomass-derived
hierarchical porous carbon. The resultant best catalyst
Ni2P@NPC-800 exhibited high catalytic activity for synthesis
of N-heterocycles, including quinazolines, quinazolinones, and
imidazoles through aerobic cross-dehydrogenative coupling of
alcohols with diamines or 2-aminobenzamides using atmos-
pheric air as the most environmentally friendly oxidant under
milder reaction conditions. A broad spectrum of quinazolines,
quinazolinones, and imidazoles could be efficiently synthesized
in high yields with good tolerance of multifunctional groups for
both coupling partners. Furthermore, the catalyst Ni2P@NPC-
800 is highly stable, allowing for facile recycling and gram-scale
transformation. This study provides an operationally simple,
practical, and highly efficient synthetic method for the
expedient construction of a variety of pharmaceutically
important N-heterocycles using an inexpensive and stable
heterogeneous non-noble metal catalyst with abundant,
available, safe air as green oxidant.
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