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ABSTRACT: Hydroamination allows for the direct access to
synthetically important amines. Controlling the selectivity of
the reaction with efficient, widely applicable, and economic
catalysts remains challenging, however. This paper reports an
iron-catalyzed formal anti-Markovnikov hydroamination and
hydroamidation of allylic alcohols, which yields γ-amino and
γ-amido alcohols, respectively. Homoallylic alcohol is also
feasible. The catalytic system, consisting of a pincer Fe-PNP complex (1−4 mol %), a weak base, and a nonpolar solvent,
features exclusive anti-Markovnikov selectivity, broad substrate scope (>70 examples), and good functional group tolerance.
The reaction could be performed at gram scale and applied to the synthesis of drug molecules and heterocyclic compounds.
When chiral substrates are used, the stereochemistry and enantiomeric excess are retained. Further application of the chemistry
is seen in the functionalization of amino acids, natural products, and existing drugs. Mechanistic studies suggest that the reaction
proceeds via two cooperating catalytic cycles, with the iron complex catalyzing a dehydrogenation/hydrogenation process while
the amine substrate acts as an organocatalyst for the Michael addition step.

■ INTRODUCTION

Hydroamination of alkenes is a direct, atom-economic
approach to accessing amines, the most ubiquitous function-
alities found in fine chemicals, pharmaceuticals, and agro-
chemicals (Figure 1a).1 As such, it has been extensively studied
over the past two decades or so, expanding into a wide variety

of amines and alkenes.2 Rather surprisingly, however, examples
of hydroamination of allylic alcohols are rare. Allylic alcohol is
a readily available commodity chemical.3 Bearing a hydroxy
and olefinic functionality, allyl alcohol and the derivatives have
been used as an intermediate in various chemical syntheses.
Hydroamination of the CC double bonds of allylic alcohols
would generate highly valuable β-4 or γ-5 amino alcohols,
depending on the reaction being Markovnikov or anti-
Markovnikov selective. To the best of our knowledge, however,
there appears to be no example of Markovnikov hydroamination of
allylic alcohols in the literature, and only one report on anti-
Markovnikov hydroamination is known, which, catalyzed by a Ru
complex, proceeds via a hydrogen-borrowing process, accord-
ing to Oe and co-workers6 (Figure 1b). Herein, we disclose the
first examples of iron-catalyzed hydroamination of allylic
alcohols with exclusive anti-Markovnikov selectivity to produce
γ-amino alcohols. The hitherto unprecedented hydroamidation
of allylic alcohols is also demonstrated (Figure 1c).
Hydroamination of terminal alkenes normally affords

products with Markovnikov selectivity.2 While significant
advances have been made in anti-Markovnikov hydroamina-
tion in the past few years, controlling the selectivity remains
challenging, due to the intrinsic electronic and steric bias
embedded in the reacting alkene and amine substrates.7

Notable strategies in directing the amination in the anti-
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Figure 1. Hydroamination of alkenes and Fe-catalyzed formal anti-
Markovnikov hydroamination/hydroamidation of allyl alcohols.
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Markovnikov fashion include substrate and catalyst control,8

use of electrophilic amines in conjunction with a hydride
source,2w,9 and photocatalysis and related means to generate
amine radicals.10 In addition, some indirect, formal anti-
Markovnikov hydroamination strategies have been put
forward, such as hydroboration/amination,11 hydrozircona-
tion/amination,12 and Wacker oxidation/reductive amina-
tion.13 Despite the advances made, new catalysts are still
highly desirable, which should not only deliver exclusive anti-
Markovnikov selectivity but also exhibit a wider substrate
scope and functional-group tolerance in hydroamination, with
the additional advantage of being less expensive and less toxic.
During our studies on dehydrogenative reactions,14 we

found that an Fe-PNP pincer complex could catalyze the
reversible dehydrogenation of alcohols and hydrogenation of
aldehydes.14f The hydrogenation and dehydrogenation abilities
of iron complexes,15 including particularly iron pincer
complexes,16 have also been found by other groups. However,
the use of Fe-PNP complexes to activate alcohols for coupling
reactions are rare.14f,17 We envisioned that the ability of the Fe-
PNP complex might be harnessed to temporarily activate
alcohols for coupling18 with amines. In particular, an allylic
alcohol could be dehydrogenated by the Fe-PNP complex to
give an α,β-unsaturated carbonyl compound and an iron
hydride species, and in the presence of an amine, Michael
addition to the carbonyl followed by reduction of the resulting
amino-carbonyl adduct with the iron hydride would formally
lead to an anti-Markovnikov product, an γ-amino alcohol
(Figure 1c).18 We note that once produced, the α,β-
unsaturated carbonyl compound could also in situ condense
with a secondary amine to form an iminium cation, activating
the carbonyl compound toward nucleophilic addition, as is
often invoked in organocatalysis (Figure 1c).19

To implement this hydrogen-borrowing strategy17c,20 for
anti-Markovnikov hydroamination of allylic alcohols, the
catalyst ought to be chemoselective, avoiding catalyzing allylic
isomerization, allylic substitution,21 and reduction of CC or
CN bonds, in addition to being resilient to possible
poisoning by the amine substrate and product (Figure 1c).
While the strategy has been successfully demonstrated by Oe
and co-workers with a Ru catalyst in hydroamination, primarily
with secondary amines (only one example of a primary amine,
with considerably reduced product yield),6 it has not been
tested with any earth-abundant base metal catalysts. For a
reaction as important as hydroamination with enormous
potential to be used in various chemical synthesis, an iron-
based catalyst would be particularly appealing due to the low
cost and low toxicity of iron. We show here that the Fe-PNP
complex is an excellent catalyst for the formal anti-Markovnikov
hydroamination as well as hydroamidation of allylic alcohols,
displaying broad substrate scope, good functional group tolerance,
and scalability (76 examples; gram scale).22 The protocol
provides a practical alternative route to the synthesis of γ-
amino and γ-amido alcohols, which are useful for making many
bioactive molecules.5

■ RESULTS AND DISCUSSION
Identification of an Iron Catalytic System. Iron

complexes bearing pincer PNP ligands are known to be
efficient catalysts for hydrogenation and dehydrogenation
reactions.16 In particular, we and other groups have shown
that the pincer complexes 1−3 are effective for borrowing-
hydrogen reactions that involve alcohol dehydrogenation. We

therefor set out to examine the hydroamination of the allyl
alcohol 5a with N-methyl-p-toluidine 4a with these iron
complexes as a precatalyst, using MeONa as a base, and a
catalytic amount of a boron hydride as an activating agent in
toluene (Table 1). Previous studies have indicated the

necessity of converting the bromo complexes into active iron
hydrides before dehydrogenation takes place.14f,16 The γ-amino
alcohol 6a was indeed observed, with the more electron-rich 2
and 3 affording a better yield (Table 1, entries 1−3). We also
evaluated a range of other metal complexes, none of which
were more active than 3 under the conditions employed (see
Table S1 in Supporting Information for details). Our
subsequent study was therefore focused on optimization of
the conditions for 3. Screening of various parameters revealed
that the base and solvent play a particularly important role in
the hydroamination (Table 1, entries 4−15). Most notably, the
reaction benefits from a weaker base and a noncoordinating
solvent, with the combination of K3PO4 with cyclohexane
affording the best yield of 6a. Thus, the hydroamination of 5a
(1.5 mmol) with 4a (0.5 mmol) furnished 6a in 99% yield in
the presence of 3 (1 mol %), NaHBEt3 (2 mol %), and K3PO4
(40 mol %) in cyclohexane (2.0 mL) at 80 °C for 12 h (entry

Table 1. Optimization of Conditions for Hydroaminationa

aReaction conditions: Catalyst (1 mol %), NaHBEt3 (2 mol %), N-
methyl-p-toluidine (0.5 mmol), allyl alcohol (0.75 mmol), base (20
mol %), solvent (2 mL), 80 °C, 12 h. Yields were determined by 1H
NMR with 1,3,5-trimethoxybenzene as internal standard. bWith 40
mol % K3PO4.

cWith 40 mol % K3PO4 and 1.5 mmol of allyl alcohol.
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16). It is noted that under the optimized conditions, 2 and 3
showed negligible difference in activity (Scheme S2,
Supporting Information).
Hydroamination with Aryl Amines. With the optimized

catalytic system in hand, we went on to examine the substrate
scope of the reaction, first by reacting allyl alcohol with various
aryl amines (Figure 2). As can be seen, the hydroamination

works, affording a range of γ-amino alcohols with good to
excellent yields. The electronic properties of the amine
substrates affect considerably the rate of the reaction. This is
clearly seen in N-methylaryl amines, with those bearing
electron-donating substituents on the phenyl moiety affording
higher product yields in a shorter reaction time than those
having electron-withdrawing substituents (6a, 6d vs 6e−6h).
Similarly, the steric effect is also pronounced. Thus, a longer
reaction time was required for the N-methylphenyl amine with
a meta-methyl substituent (6c) and little reaction took place
for the ortho-methyl substituted analogue. Replacing the
methyl group of N-methylphenyl amines with bulkier groups
also rendered the reaction slower (6i−6k). Pleasingly, good
yields were observed for heterocyclic aryl amines, such as the
1,2,3,4-tetrahydroquinoline derivatives, indoline, and 1,2,3,4-
tetrahydroquinoxaline (6l−6o). For the latter, the bis-alkylated
product was obtained (6o).
Primary aryl amines could also be used for the

hydroamination. However, a higher catalyst loading, temper-
ature, and longer reaction time were required to obtain
acceptable yields (6p−6s). The different activity observed for
the secondary and primary amines may stem from the former
being able to activate the α,β-unsaturated aldehyde inter-
mediate toward the aza-Michael addition (vide inf ra).
Hydroamination with Aliphatic Amines. Compared

with aryl amines, aliphatic amines may be expected to be more
difficult to react, due to their stronger coordination with and
hence more prone to poisoning of metal complexes. Figure 3
shows, delightfully, that a range of diverse aliphatic amines can

be readily employed for hydroamination of allyl alcohol under
the catalysis of 3. In general, secondary aliphatic amines
showed good activity and clean reactions (8a−8d), although
the low boiling point of some products affected their isolated
yield (8a, 8b). A pyridine heterocycle is tolerated (8g).
Notably, chiral γ-amino alcohols were formed when chiral
amines were used, with no erosion of the enantiomeric excess
observed, although the isolated yields were only moderate
possibly due to steric hindrance of the amine substrates (8e,
8f).
Different from primary aryl amines, primary aliphatic amines

led to bis-alkylated products, reflecting their enhanced
nucleophilicity and decreased steric hindrance (8h−8l).
These results are also different from those obtained with
Oe’s system, which afforded monoalkylated product in low
yield in one example.6 Of further notice is that good to
excellent yields were obtained for heterocyclic secondary
aliphatic amines (8m−8w). Some of these products, which
have not been reported via other hydroamination methods,
may serve as valuable intermediates for the synthesis of drug
molecules (vide inf ra).

Hydroamidation of Allyl Alcohol. The hydroamidation
of alkenes is generally more difficult than hydroamination,
possibly due to the low nucleophilicity of amides. Indeed,
examples of anti-Markovnikov hydroamidation are rar-
e,8x,10c,f,j,23 and in the case of allylic alcohols, neither
Markovnikov nor anti-Markovnikov hydroamidation has been
reported to date.2t,y,z,ab As shown in Figure 4, under the
catalysis of 3, a range of amides underwent addition to allylic
alcohol, furnishing γ-hydroxy amides in good yields, which can
be used for the synthesis of heterocycles.24 In comparison with
the hydroamination above, harsher reaction conditions were
required for the hydroamidation, however. Thus, a stronger
base (MeONa), higher temperature (120 °C), and higher
catalyst loading were employed for the primary amides (10a−
10g). As with the hydroamination, the electron-rich aryl amide

Figure 2. Hydroamination of allyl alcohol with arylamines. Reaction
conditions: 3 (1 mol %), NaHBEt3 (2 mol %), amine (0.5 mmol),
allylic alcohol (1.5 mmol), K3PO4 (40 mol %), cyclohexane (2 mL),
80 °C, 12 h, isolated yield. a The reaction time was 24 h. bWith 2 mol
% 3, 4 mol % NaHBEt3, 2.0 mmol of allyl alcohol, 24 h. cWith 5 mol
% 3, 10 mol % NaHBEt3, 2.0 mmol of allyl alcohol, 120 °C, 24 h.

Figure 3. Hydroamination of allyl alcohol with aliphatic amines.
Reaction conditions: 3 (1 mol %), NaHBEt3 (2 mol %), amine (0.5
mmol), allylic alcohol (1.5 mmol), K3PO4 (40 mol %), cyclohexane
(2 mL), 80 °C, 12 h, isolated yield. a With 2 mol % 3, 4 mol %
NaHBEt3, 2.0 mmol of allyl alcohol, 24 h.
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(10e) afforded a better yield. Aliphatic primary amides are also
viable, as exemplified by the reaction of 9g affording 10g.
A problem was encountered with secondary amides, the

product of which underwent alcoholysis. For example, the
hydroamidation with 9h led to not only 10h but also a side
product 6s. Consequently, lower yields were obtained for these
substrates, even with careful control of reaction conditions
(10h−10l). This shortcoming offers an opportunity for
accessing γ-amino alcohols from the amides, however. Thus,
hydroamidation of allyl alcohol with N-phenylacetamide
followed by hydrolysis with a NaOH solution afforded 6s in
74% yield (see section 3.9 in the Supporting Information for
details).
Scope of Allylic Alcohols. Using morpholine as the amine

partner, we further investigated the substrate scope of allylic
alcohols. As can be seen from Figure 5, regardless of the
pattern of substitution on the allylic alcohol, the amine added
to the γ-position of the allylic alcohols with good to excellent
yields in all cases (11a−11i). Remarkably, a remote CC
double bond was tolerated and remained intact during the
reaction (11c), and the homoallylic alcohol 5c could be
brought into the hydroamination, affording, in high yield, the
same product 11a as that from allylic alcohol 5b. The reaction
of 5c suggests that the Fe-catalytic system is capable of
isomerization a CC double bond.25 Furthermore, for α-alkyl
substituted allylic alcohols, amino ketones instead of amino
alcohols were formed as the products, albeit with lower yields
(11e−11g). The reaction of the α-phenyl substituted allylic
alcohol 5j to give 11h was carried out at a lower temperature
of 60 °C, due to its instability under the reaction conditions. 2-
Cyclohexenol is also a viable substrate, affording the cyclic
amino alcohol 11i in a moderate yield with exclusive trans
selectivity (see SI for details).
Functionalization of Amino Esters, Natural Products,

and Drug Molecules. The versatility of the iron catalytic
system was further demonstrated by functionalization of more
complex molecules. Thus, as shown in Figure 6, various amino
esters could be employed for the hydroamination of allylic
alcohol, affording γ-hydroxy functionalized amino esters in

moderate yields (12a−12h). Notably, the enantiomeric excess
of the starting ester was retained, as demonstrated by 12h.
Of further interest is that natural products and drug molecules

can be readily modif ied by the reaction in a late-stage fashion.
Thus, cytisine, a naturally occurring alkaloid, reacted with allyl
alcohol under the iron catalysis to afford a hydroxyalkylated
product 12i in high yield. The drug molecules Troxipide, used
in treating gastroesophageal reflux symptoms, and Amoxapine,
Fluoxetine, Rolipram, and Duloxetine, all with antidepressant

Figure 4. Hydroamidation of allyl alcohol with amides. Reaction
conditions for 10a−10g: 3 (2 mol %), NaHBEt3 (4 mol %), amide
(0.5 mmol), allyl alcohol (2.0 mmol), NaOMe (0.5 mmol), dioxane
(2 mL), 120 °C, 12 h. aWith 1.0 mmol of allyl alcohol, CsOH·H2O
(20 mol %), 4 Å MS (7 mg), toluene (2 mL), 70 °C, 24 h. bWith 3 (4
mol %), NaHBEt3 (8 mol %), 1.0 mmol of allyl alcohol, CsOH·H2O
(20 mol %), 4 Å MS (7 mg), toluene (2 mL), 70 °C, 48 h. cWith 3 (4
mol %), NaHBEt3 (8 mol %), toluene (2 mL), 130 °C, 48 h.

Figure 5. Hydroamination of different allylic alcohols and homoallylic
alcohol with morpholine. Reaction conditions: 3 (2 mol %), NaHBEt3
(4 mol %), morpholine (0.5 mmol), allylic alcohol (1.5 mmol),
K3PO4 (40 mol %), cyclohexane (2 mL), 80 °C, 24 h. aWith 2.0
mmol of allylic alcohol, 60 °C, 48 h.

Figure 6. Functionalization of amino esters, natural products, and
drugs. See SI for detailed reaction conditions.
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activity, could be hydroxyalkylated with allyl alcohol in good to
excellent yields (12j−12n). Not only could the hydroxyalkyl
unit be expected to alter the property of these bioactive
molecules, it also allows these molecules to be easily
derivatized, raising the possibility of new applications in
biological and medicinal studies.
Gram-Scale Reaction and Further Synthetic Applica-

tions. The utility of the iron catalysis is still further seen in a
gram-scale reaction and its synthetic application. The reaction
of 7r with 5a at 10 mmol scale afforded 1.78 g of the
hydroamination product 8r (75% yield, Figure 7a). 8r could

serve as an intermediate, via 13, for the synthesis of Urapidil,26

a sympatholytic antihypertensive drug (Figure 7a). The
hydroamidation products shown in Figure 4 could be
transformed into heterocycles of potentially interesting
bioactivities, as showcased by the dehydrative cyclization of
10e to afford a dihydro-1,3-oxazine product 14 in 73% isolated
yield (Figure 7b).24b,27

Mechanistic Considerations. The hydroamination and
hydroamidation reactions described may proceed via the
pathway shown in Figure 1c. To gain evidence for the
proposal, a series of experiments were performed. First,
hydrogen gas was detected when allyl alcohol 5a alone was
subjected to the standard hydroamination conditions (see
section 4.1 in the Supporting Information for details), and in
the presence of D2 under the same conditions, H/D exchange
was observed at the α position of allyl alcohol (Figure 8a; see
section 4.2 in the Supporting Information for details). These
observations indicate that the iron catalyst is capable of
reversible dehydrogenation/hydrogenation of the allylic
alcohol. Second, on replacing 5a with allyl acetate, no
hydroamination was observed (Figure 8b; see section 4.3 in
the SI for details), which supports an α,β-unsaturated aldehyde
as the intermediate. Third, HRMS experiments showed that
acrolein, the product of 5a dehydrogenation, could react with
amine 7v to afford a Michael addition product 15 as well as an
iminium intermediate 16 under the standard conditions
(Figure 8c). However, when the reaction was carried out in
the presence of H2 gas, 8v was observed instead, suggesting
that 15 was fully reduced to 8v by the H2. Interestingly, the
cation 16 remained, indicating that 3 is more effective in
catalyzing the reduction of a carbonyl group (Figure 8d).
Finally, HRMS analysis of the crude reaction mixture of 7v

with 5a revealed the presence of 16 and the hydroamination
product 8v, but no 15 (Figure 8e; see section 4.4 in Supporting
Information for details). These results suggest that acrolein is
an intermediate of the hydroamination/hydroamidation
reaction, which is converted into an iminium cation upon
reaction with a secondary amine and is thereby activated
toward the subsequent aza-Michael addition.
Based on these experiments and the literature,6,18 a more

detailed mechanism is proposed and shown in Figure 9. In the

presence of NaBHEt3, the Fe complex 3 is activated to give the
active catalyst 17,14f which reversely dehydrogenates the allyl
alcohol 5a to give acrolein 19 and an iron-dihydride
intermediate 18 in the presence of the base K3PO4 (see
section 4.5 in the Supporting Information for the role of base).
Acrolein then condenses with the amine 20 to form an
activated Michael acceptor intermediate 21, which undergoes
aza-Michael addition with another amine 20 to give an
intermediate 22. Hydrolysis of the imine 22 affords an
intermediate 23, which is then reduced by 18, affording the

Figure 7. Gram scale reaction and an example of further synthetic
application. See SI for detailed reaction conditions.

Figure 8. Reactions aimed to probe the mechanism.

Figure 9. Proposed mechanism for the hydroamination/hydro-
amidation.
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hydroamination product 24 while regenerating the catalytic
species 17. The formation of hydrogen gas indicates that the
dihydride species 18 can undergo reversible dehydrogenation.
Under catalytic turnover, the iminium intermediate 21 is
observed, indicating the step of aza-Michael addition to be
turnover limiting. The low activity of primary amines is in line
with this assertion, as their condensation product with 5a, a
neutral imine, will be much less electrophilic than 21.

■ CONCLUSIONS
An iron-catalyzed hydroamination, as well as hydroamidation,
of allylic alcohols has been developed. The catalytic system
features exclusive anti-Markovnikov selectivity, mild reaction
conditions, broad substrate scope, and good functional group
tolerance. The protocol allows for the retention of stereo-
chemistry of chiral substrates and functionalization of amino
acids, natural products, and drug molecules. Homoallylic
alcohol is also shown to be viable. Mechanistic studies suggest
that the reaction proceeds via two cooperating catalytic cycles,
with the Fe-PNP complex catalyzing a dehydrogenation/
hydrogenation process, while the amine substrate acts as an
organocatalyst facilitating the Michael addition.
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F.; Gorgas, N.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.;
Gonsalvi, L. Efficient and Mild Carbon Dioxide Hydrogenation to
Formate Catalyzed by Fe(II) Hydrido Carbonyl Complexes Bearing
2,6-(Diaminopyridyl)diphosphine Pincer Ligands. ACS Catal. 2016,
6, 2889−2893. (n) Rezayee, N. M.; Samblanet, D. C.; Sanford, M. S.
Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines.
ACS Catal. 2016, 6, 6377−6383. (o) Xu, R.; Chakraborty, S.; Bellows,
S. M.; Yuan, H.; Cundari, T. R.; Jones, W. D. Iron-Catalyzed
Homogeneous Hydrogenation of Alkenes under Mild Conditions by a
Stepwise, Bifunctional Mechanism. ACS Catal. 2016, 6, 2127−2135.
(p) Zirakzadeh, A.; Kirchner, K.; Roller, A.; Stöger, B.; Widhalm, M.;
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