Synlett

S. Gao et al.

Letter

Ru-MACHO-Catalyzed Highly Chemoselective Hydrogenation of α-Keto Esters to 1,2-Diols or α-Hydroxy Esters

Α

Shaochan Gao^a Weijun Tang^{*a} Minghui Zhang^a Chao Wang^a Jianliang Xiao^{*a,b}

^a Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. of China

tangwj@snnu.edu.cn

j.xiao@liv.ac.uk

^b Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK

Received: 30.01.2016 Accepted after revision: 14.03.2016 Published online: 05.04.2016 DOI: 10.1055/s-0035-1561971; Art ID: st-2016-w0067-I

Abstract A ruthenium pincer catalyst has been shown to be highly effective for the hydrogenation of a wide range of α -keto esters, affording either diols or hydroxy esters depending on the choice of reaction conditions. Strong base, high temperature, and pressure favor the formation of diols whilst the opposite is true for the hydroxy esters.

Key words hydrogenation, $\alpha\text{-ketoesters},$ $\alpha\text{-hydroxy}$ esters, diols, ruthenium catalyst

The transformation of ketones and esters into the corresponding alcohols is one of the most important chemical reactions in organic synthesis.¹ Traditionally, production of these chemicals is based on processes using stoichiometric amounts of reducing reagents, such as LiAlH₄, NaBH₄, and BH₃, which lead to risk in operation and tedious workup.² From the viewpoint of both atom economy and practical applications, the direct catalytic hydrogenation of ketones and esters with hydrogen gas affords a clean and efficient route for the preparation of alcohols.³ Indeed, over the past three decades, the hydrogenation of ketones for the preparation of alcohols has achieved a great deal of success.⁴ However, for esters, the hydrogenation is still a challenging task due to their poor reactivity and selectivity.⁵ In recent years, excellent catalytic systems have been developed, which are mainly based on pincer complexes containing iron, cobalt, ruthenium, iridium, and osmium, allowing for the hydrogenation of esters under much milder conditions.⁶⁻¹⁰ One of the successful examples is Takasago's Ru-MACHO catalyst, which has been applied to the industrial hydrogenation of (R)-lactate in a large scale to produce (R)-1,2-propanediol.^{8f}

Given the importance of 1,2-diols as building blocks in synthetic applications,¹¹ the pursuit of new methods for their synthesis remains an interesting topic. In the literature, 1,2-diols are synthesized generally by the following methods: osmium-catalyzed dihydroxylation of olefins,¹² diboration of olefins,¹³ hydrogenation of α-hydroxy esters^{8f} and/or α -hydroxy ketones¹⁴ and/or 1,2-diketones,¹⁵ ringopening reactions of epoxides,¹⁶ enzymatic reactions,¹⁷ and the reduction of α -keto esters with NaBH₄.¹⁸ Among these methods, hydrogenation with H₂ is perhaps the most straightforward, efficient, and atom-economic method. Herein, we report our results on the first hydrogenation of α -keto esters to produce 1,2-diols directly with the Ru-MACHO catalyst. It is noted that by simply changing the base, this catalytic system affords α -hydroxy esters without the formation of diol products.

Initially, we investigated the hydrogenation of α -keto esters with the Ru-MACHO catalyst under the reaction conditions reported by Kuriyama.^{8f} Unfortunately, an unsatisfactory chemoselectivity was observed, with the diol 2a and hydroxy ester 3a formed in a ratio of 20:80 (Table 1, entry 1). The ratio of **2a/3a** increased slightly in favor of **2a** in a prolonged reaction time (Table 1, entry 2). Considering the remarkable impact of base on the catalytic activity in the hydrogenation of ketones and esters,¹⁹ a series of inorganic bases was tested (Table 1, entries 3–7).²⁰ To our delight, excellent conversion and selectivity for 2a were achieved with the strong base sodium tert-butoxide (Table 1, entry 3). A lower H₂ pressure or temperature did not have much effect on the conversion, but decreased the ratio of 2a/3a (Table 1, entries 8–12). Further experiments demonstrated that decreasing the amount of base improves the ratio of 2a/3a and up to 99:1 was observed (Table 1, entries 13 and 14). However, under the reaction conditions em-

S. Gao et al.

ployed but with a lower catalyst loading of 0.2 mol% and 0.1 mol%, the ratio of **2a/3a** decreased to 90:10 (Table 1, entry 15) and 62:38 (Table 1, entry 16), respectively.

Table 1 Optimization of Reaction Conditions for Hydrogenation of $\alpha\text{-}$ Keto Ester $1a^a$

^a Reaction conditions: 1a (0.5 mmol), Ru-MACHO (5 umol), base (0.1

mmol), toluene (0.5 mL), 50 bar H_2 , 12 h.

^b The conversion and ratio of **2a/3a** were determined by ¹H NMR spectroscopy of the crude reaction mixture.

^c The reaction time was 24 h.

- ^d The pressure was 30 bar. ^e The pressure was 10 bar.
- ^f With 0.05 mmol base.
- ^g With 0.15 mmol base
- ^h S/C was 500.

ⁱ S/C was 1000

^j The pressure was 10 bar.

The chemoselectivity of this catalytic system is strongly affected by the strength of the base. Thus, using a weak base benefited the formation of α -hydroxy esters under the hydrogenation conditions (Table 1, entries 4 and 5).²¹ Further studies demonstrated that a weaker base was better, affording excellent chemoselectivity under much milder conditions (Table 1, entries 17–19). In particular, high activity and chemoselectivity were achieved with NaHCO₃ at

Letter

0.1% catalyst loading and 25 $^\circ C$ (Table 1, entry 20). These results are consistent with ketone reduction being much easier than that of esters.

Based on the optimal reaction conditions, the scope of substrates was explored subsequently and the results are listed in Table 2. In general, most of α -keto esters were fully hydrogenated with a high chemoselectivity, affording either diols under the conditions A or α -hydroxy esters under the conditions B with good to excellent isolated yields. Thus, for substrates 1a-k and hydrogenated diols 2a-k under the reaction conditions A, it was found that the reaction was only slightly sensitive to the substituent position (Table 2, compare entry 3 with entries 4 and 5 and entry 6 with entry 7). For the para-substituted esters, the reduction worked equally well for both electron-donating and electron-withdrawing groups (Table 2, entries 2, 3, 6, 8, 10, 11). For disubstituted aromatic substrates **1**1–**0**, the hydrogenation reaction proceeded smoothly, affording excellent isolated yields for both the 2,4-disubstituted substrates (Table 2, entries 12 and 13) and 3,5-disubstituted ones (Table 2, entries 14 and 15). Naphthyl-substituted substrate 1p and aliphatic substrates 1q-s were both hydrogenated to diol products with high isolated yields (Table 2, entries 16-19).

Table 2 Hydrogenation of α-Keto Esters to Diols and α-Hydroxy Esters^a

S. Gao et al.

Table 2 (continued)

^a The reaction was carried out with 0.5 mmol substrate (**1a–1s**), H₂, 0.05 mmol base, MeOH (0.5ml), reaction time 12 h.

Conditions A: 50 bar H₂, *t*-BuONa (0.05 mmol), 80 °C.

^c Conditions B: 10 bar H₂, NaHCO₃ (0.05 mmol), 25 °C.

۸

С

^d Isolated yields.

^e The ratio of **2/3**was determined by ¹H NMR spectroscopy of the crude reaction mixture.

^f The ratio of **1**/**3**was determined by ¹H NMR.

Under the conditions B where a weaker base, lower H_2 pressure, and lower temperature were employed, the substrates **1a**–**s** were all hydrogenated to the α -hydroxy esters **3a**–**s**. Excellent yields were obtained for almost all the substrates examined.

In summary, we have developed an efficient method for the preparation of diol and α -hydroxy esters via the chemoselective hydrogenation of α -keto esters catalyzed by a pincer Ru-MACHO catalyst. It was found that the chemoselectivity can be readily altered by simply varying the reaction conditions, including particularly the strength of the base. Exploration of related chiral pincer catalysts for asymmetric hydrogenation is ongoing in our group.

Acknowledgment

We are grateful for the financial support of the National Science Foundation of China (21302116) and the Fundamental Research Funds for the Central Universities (GK201503035).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561971.

References and Notes

- Carruthers, W.; Coldham, I. In Modern Methods of Organic Synthesis; Cambridge University Press: Cambridge, 2004, 4th ed. 405.
- (2) (a) Greeves, N. In Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, NY, **1991**, 1st ed.,

V

S. Gao et al.

D

Vol. 8 1. (b) Seyden-Penne, J. *Reductions by the Alumino- and Borohydrides in Organic Synthesis*; Wiley-VCH: New York, **1997**, 2nd ed..

- (3) Bullock, R. M. In *The Handbook of Homogeneous Hydrogenation*; de Vries, J. G.; Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, **2008**.
- (4) (a) Bullock, R. M. Chem. Eur. J. 2004, 10, 2366. (b) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40.
- (5) (a) Rieke, R. D.; Thakur, D. S.; Roberts, B. D.; White, G. T. J. Am. Chem. Soc. **1997**, 74, 333. (b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today **2000**, 63, 87. (c) Adkins, H. Org. React. **1954**, 8, 1.
- (6) For recent examples on Fe-catalytic hydrogenation of esters, see: (a) Dupau, P.; Do, M. L. T.; Gaillard, S.; Renaud, J. L. Angew. Chem. Int. Ed. 2014, 53, 13004. (b) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H. J.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 8722. (c) Zell, T.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2014, 53, 4685. (d) Chakraborty, S.; Dai, H. G.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. R. J. Am. Chem. Soc. 2014, 136, 7869. (e) Lu, L. Q.; Li, Y. H.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 8382. (f) Junge, K.; Wendt, B.; Zhou, S. L.; Beller, M. Eur. J. Org. Chem. 2013, 2061.
- (7) For Co-catalytic hydrogenation of esters, see: Srimani, D.; Mukherjee, A.; Goldberg, A. F. G.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12357.
- (8) For recent examples on Ru-catalytic hydrogenation of esters, see: (a) Filonenko, G. A.; Aguila, M. J. B.; Schulpen, E. N.; van Putten, R.; Wiecko, J.; Muller, C.; Lefort, L.; Hensen, E. J. M.; Pidko, E. A. J. Am. Chem. Soc. 2015, 137, 7620. (b) Tan, X. F.; Wang, Y.; Liu, Y. H.; Wang, F. Y.; Shi, L. Y.; Lee, K. H.; Lin, Z. Y.; Lv, H.; Zhang, X. M. Org. Lett. 2015, 17, 454. (c) Tan, X. F.; Wang, Q. L.; Liu, Y. H.; Wang, F. Y.; Lv, H.; Zhang, X. M. Chem. Commun. 2015, 51, 12193. (d) Chen, T.; Li, H. F.; Qu, S. L.; Zheng, B.; He, L. P.; Lai, Z. P.; Wang, Z. X.; Huang, K. W. Organometallics 2014, 33, 4152. (e) Westerhaus, F. A.; Wendt, B.; Dumrath, A.; Wienhofer, G.; Junge, K.; Beller, M. ChemSusChem 2013, 6, 1001. (f) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166. (g) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2006, 45, 1113. (h) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem. Int. Ed. 2007. 46, 7473.
- (9) For Ir-catalytic hydrogenation of esters, see: Junge, K.; Wendt, B.; Jiao, H. J.; Beller, M. ChemCatChem 2014, 6, 2810.
- (10) For Os-catalytic hydrogenation of esters, see: (a) Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.
 (b) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem. Int. Ed. 2012, 51, 2772. (c) Spasyuk, D.; Gusev, D. G. Organometallics 2012, 31, 5239. (d) Acosta-Ramirez, A.; Bertoli, M.; Gusev, D. G.; Schlaf, M. Green Chem. 2012, 14, 1178.
- (11) Typical examples, see: (a) Smith, A. B. III.; Chen, S. S.-Y.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am. Chem. Soc. 1995, 117, 12013. (b) Pye, P. J.; Rossen, K.; Weissman, S. A.; Maliakal, A.; Reamer, R. A.; Ball, R.; Tsou, N. N.; Volante, R. P.; Reider, P. J. Chem. Eur. J. 2002, 8, 1372. (c) Kang, S. H.; Jeong, J. W.; Hwang, Y. S.; Lee, S. B. Angew. Chem. Int. Ed. 2002, 41, 1392. (d) Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 849. (e) Edagwa, B. J.; Taylor, C. M. J. Org. Chem. 2009, 74, 4132.
- (12) Schröder, M. Chem. Rev. 1980, 80, 187.
- (13) For reviews, see: (a) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (b) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717. For typical examples, see: (c) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210. (d) Burks, H.

Letter

E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134.
(e) Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem. Int. Ed. 2012, 51, 521. (f) Ferris, G. E.; Hong, K.; Roundtree, I. A.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 2501.
(g) Toribatake, K.; Nishiyama, H. Angew. Chem. Int. Ed. 2013, 52, 11011.

- (14) For typical examples, see: (a) Hodgkinson, R.; Jurčík, V.; Zanotti-Gerosa, A.; Nedden, H. G.; Blackaby, A.; Clarkson, G. J.; Wills, M. Organometallics 2014, 33, 5517. (b) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960. (c) Kadyrov, R.; Koenigs, R. M.; Brinkmann, C.; Voigtlaender, D.; Rueping, M. Angew. Chem. Int. Ed. 2009, 48, 7556. (d) Ohkuma, T.; Utsumi, N.; Watanabe, M.; Tsutsumi, K.; Arai, N.; Murata, N. Org. Lett. 2007, 9, 2565. (e) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264.
- (15) (a) Monnereau, L.; Cartigny, D.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal, V. *Chem. Eur. J.* 2015, *21*, 11799.
 (b) Zhang, H.; Feng, D. D.; Sheng, H. B.; Ma, X. B.; Wan, J. W.; Tang, Q. *RSC Adv.* 2014, *4*, 6417. (c) Xu, H.; Meng, Q. H.; Zhang, Z. G. *Chin. J. Chem.* 2008, *26*, 1656. (d) Clarke, M. L.; France, M. B.; Knight, F. R.; Frew, J. J. R.; Roff, G. J. *Synlett* 2007, 1739.
- (16) (a) Yudin, K. A. In Aziridines and Epoxides in Organic Synthesis;
 Wiley-VCH: Weinheim, 2006. (b) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936. (c) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.
- (17) For a review, see: Bala, N.; Chimni, S. S. *Tetrahedron: Asymmetry* **2010**, *21*, 2879.
- (18) (a) Shi, L.; Liu, Y. Y.; Liu, Q. F.; Wei, B.; Zhang, G. S. Green Chem. **2012**, *14*, 1372. (b) Kim, J.; De Castro, K. A.; Lim, M.; Rhee, H. Tetrahedron **2010**, *66*, 3995. (c) Wang, G. Y.; Hu, J. B.; Zhao, G. Tetrahedron: Asymmetry **2004**, *15*, 807. (d) Collot, V.; Schmitt, M.; Marwah, P.; Bourguignon, J. Heterocycles **1999**, *51*, 2823. (e) Meijer, L. H. P.; Pandit, U. K. Tetrahedron **1985**, *41*, 467.
- (19) (a) Hayes, J. M.; Deydier, E.; Ujaque, G.; Lledos, A.; Malacea-Kabbara, R.; Manoury, E.; Vincendeau, S.; Poli, R. ACS Catal. 2015, 5, 4368. (b) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490. (c) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
- (20) Typical Procedures for Hydrogenation of $\alpha\text{-Keto}$ Esters with Ru-MACHO

A glass liner containing a stir bar was charged with substrate (0.5 mmol), base (0.05 mmol), Ru-MACHO (5 µmol) and MeOH (0.5 mL) in a glove box. The glass liner was then placed into an autoclave followed by degassing with H₂ three times. The hydrogenation was carried out at 10–50 bar H₂ with stirring at 80 °C for 12–24 h. After the reaction finished, the autoclave was allowed to cool down to r.t. The hydrogen gas was then carefully released in a fume hood, and the solution transferred to a flask with H₂O (2 mL), extracted with CH₂Cl₂ (3 × 5 mL), dried with Na₂SO₄, and concentrated in vacuo to afford the pure product **2a–s** or **3a–s** (see Supporting Information).

Compound **2a**: 91% yield, white solid; mp 56–58 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.28–7.38 (m, 5 H), 4.83 (dd, *J* = 3.6, 8.1 Hz, 1 H), 3.76–3.79 (m, 1 H), 3.65–3.70 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 140.6, 128.7, 128.2, 126.2, 74.8, 68.2 ppm. MS (EI): *m/z* calcd for C₈H₁₀O₂ [M + Na]*: 161.0578; found: 161.0561.

Compound 3a: 98% yield, colorless liquid. ¹H NMR (400 MHz,

Syn lett	S. Gao et al.	Letter

- CDCl₃): δ = 7.33–7.43 (m, 1 H), 5.19 (s, 1 H), 3.75 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 174.3, 138.3, 128.7, 128.7, 126.7, 73.0, 53.2 ppm. ESI-HRMS: *m/z* calcd for C₉H₁₀O₃ [M + Na]⁺: 189.0528; found: 189.0510.
- (21) (a) Yang, W.; Pan, X. J.; Yang, D. Q. Chin. J. Org. Chem. 2015, 35, 1216. (b) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 7329. (c) Wang, C. J.; Sun, X. F.; Zhang, X. M. Synlett 2006, 1169.