Assessment of coastal density gradients near a macro-tidal estuary: Application to the Mersey and Liverpool Bay

M.J. Howarth*, C.A. Balfour, Rose J.J. Player, Jeff A. Polton

National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, UK

ABSTRACT

Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However, their measurement is difficult, especially where the gradients are largest, close to the coast, with significant uncertainties because of a variety of factors – time and spatial (horizontal and vertical) scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurement of salinity (the dominant control of spatial variability for density) can be less reliable in turbid coastal waters.

The nearshore density gradients in Liverpool Bay are investigated using an integrated multi-year data set from an in situ buoy, instrumented ferry and HF radar. The ferry is particularly useful for estimating coastal density gradients since measurements are made right from the mouth of Mersey, where gradients are on average $3 \times 10^{-4} \text{ kg m}^{-3}$. Using measurements at the single in situ site by the Mersey Bar, 17 km from land, density gradients can be estimated from the tidal excursion or by using ferry data; both giving average values of $5 \times 10^{-3} \text{ kg m}^{-3}$. Nine years of surface salinity measurements show no evidence of predominant periodicities, although there is a weak annual cycle, and no consistent relation with storms or floods, leading to the conclusion that the majority of the Mersey plume, for most of the time, lies closer to the English shore than the Mersey Bar. Liverpool Bay's circulation is the dominant factor, with wind forcing tending to reinforce it for wind speeds greater than $5-10 \text{ m s}^{-1}$. Near bed currents are consistently shoreward and near surface currents northward.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The physical processes controlling the fate fresh of water river discharges in coastal seas are well understood, if complex and inter-related (Garvine, 1995; Yankovsky and Chapman, 1997; Simpson, 1997). However measuring, quantifying and predicting the resulting freshwater fluxes in particular cases is not straightforward since the real world does not generally conform to idealised conditions. The general construct is that river water forms a plume in the coastal sea whose features include

(a) A thin near surface layer. Consequently salinity dominates horizontal and vertical density gradients. As a second order effect, density gradients are enhanced in summer when the river water is warmer than the receiving coastal water and in winter are weakened when the river water is colder than the coastal water (Hopkins and Polton, 2012, Polton et al., 2011).

(b) In the Northern Hemisphere the Earth’s rotation causes the plume to turn to the right, forming a coastal current.

(c) A bulge can form in the vicinity of the estuary mouth, several times wider than the coastal current depending on the physical properties of the river discharge and coastal water (Yankovsky and Chapman, 1997).

(d) If the coast is straight, upwelling favourable winds oppose the flow and can retard or block the plume causing it to spread offshore. Downwelling favourable winds can compress the plume against the coast (Howlett et al., submitted for publication).

The dynamics of the plume are controlled by the wind and the density structure (both horizontal and vertical) which in turn is affected by the relative importance of mixing, principally by tides via bottom friction, but also by winds and waves. If mixing is weak the water column remains stratified and the plume is surface advected; if strong, the water column is well mixed and impacted by the bottom boundary layer. Semi-diurnal tidal mixing dominates processes in the north-west European continental shelf seas and hence the latter case predominates. Mixing varies on semi-diurnal and spring-neap time scales so that the water column can be well-mixed, it can stratify on tidal time scales and it can remain stratified for periods of several days. Liverpool Bay, loosely defined as the region of the Irish Sea to the west of the United Kingdom
shown in Fig. 1a, is one extreme; it is a region with a large tidal range, up to 10 m at equinoctial spring tides, and with moderate fresh water input from several rivers. The maximum mean spring currents are twice those at neaps implying that on average tidal mixing varies by a factor of eight over the spring/neap cycle. The specific interest here is the interaction between a moderate freshwater discharge and a shallow receiving coastal sea where tidal mixing is large, in contrast to, for instance, the high discharge Columbia River into the straight and rapidly deepening Oregon/Washington shelf (Kilcher and Nash, 2010). The combined average discharge of the rivers Mersey, Ribble, Dee, Clwyd + Conwy is about 200 m³ s⁻¹, respectively approximately 40%, 30%, 20% and 10% of the total (map Fig. 1a). The coastline is ‘L’ shaped, on average east–west along the north Wales coast and north–south on the English coast. As a result Liverpool Bay encompasses the least saline water of the Irish Sea. Model studies have shown that Liverpool Bay is retentive, for instance with a flushing time exceeding 100 days (Phelps et al., 2013). In Europe, Liverpool Bay has some comparison with the German Bight (Bowden and Sharaf El Din, 1966b, Ramster and Hill, 1969), excessing 100 days (Phelps et al., 2013). In Europe, Liverpool Bay is retentive, for instance with a similar shape to the Mersey Bar site (dot), the ferry track and depth contours below mean sea level at 10 m intervals (black is above mean sea level). The dotted line indicates the average westbound ferry measurement track and the dashed line the eastbound. The plus sign marks the start of ferry measurements at the mouth of the Mersey. The maintained shipping channel out to 3.2° W is clearly visible. The position of the weather station on Hilbre Island is indicated by the white asterisk.

Fig. 1. Maps showing (a) Liverpool Bay and the positions of the major rivers; (b) the Mersey Bar site (dot), the ferry track and depth contours below mean sea level at 10 m intervals (black is above mean sea level). The dotted line indicates the average westbound ferry measurement track and the dashed the eastbound. The plus sign marks the start of ferry measurements at the mouth of the Mersey. The maintained shipping channel out to 3.2° W is clearly visible. The position of the weather station on Hilbre Island is indicated by the white asterisk.

and an anti-clockwise coastal circulation occurring when winds are stronger. The current’s vertical structure is discussed in Polton et al. (2013) as a result of a depth varying competition between horizontal density and sea surface slope induced pressure gradients. More generally, however, both bottom drifter (Halliwell, 1973) and ADCP measurements (Polton et al., 2011) show that the near bed mean currents are consistently shoreward, near surface current measurements are presented below.

The objective of this paper is to investigate the processes affecting the Mersey plume and the dependencies that determine the surface salinity. This analysis is based on a 9-year time series of measurements in Liverpool Bay, at a site in the transition zone between coastal and continental shelf waters. Understanding the salinity in the coastal near shore region is particularly important since density gradients are haline controlled and modulate the fate of the river discharges, which can introduce suspended particulate matter, nutrients and contaminants into the coastal waters.

A series of local propositions are investigated to provide structure as a means to gaining more general insight. The analysis is at a low level, seeking to establish whether simple relationships exist that can assist comprehension of a complex environment.

1. The Mersey discharge strongly influences the salinity at the Mersey Bar site, Fig. 1b. Hence a meaningful time lag can be estimated between the mouth of the Mersey and the site.
2. There is a spring/neap cycle in salinity at the site, as a consequence of variations in tidal mixing impacting either the dynamics of the plume or horizontal advection in Liverpool Bay.
3. There is a significant seasonal cycle in salinity at the site, reflecting the annual variation in rainfall and river discharge which on average peaks between November and March and is a minimum from June to August, although there is much daily and year-to-year variability.
4. Large variations in the salinity at the site are driven by weather events – floods and storms.
5a. The dominant factor controlling the salinity at the site is Liverpool Bay’s circulation. This is the converse of proposition 1, suggesting that the processes in the coastal region predominate.
5b. The average surface circulation in Liverpool Bay is clockwise and reversed if winds exceed 5–10 m s⁻¹, following Heaps and Jones (1977).
The measurement scheme is presented in Section 2, followed by sections describing the time series of surface salinity at the Mersey Bar, including investigating periodicities (Section 3), its relation to the freshwater river discharge (Section 4) and to the circulation in the Bay (Section 5) and the impact of storm and flood events (Section 6).

2. Measurement scheme

A measurement campaign from 2002 to 2011 in Liverpool Bay comprised four main components – in situ sites, an instrumented ferry, HF radar surface current measurements and a regularly serviced CTD grid (Howarth and Palmer, 2011). All data are banked with the British Oceanographic Data Centre. This study exploits the first three – time series of surface salinity and winds from the in situ sites and of surface currents from the HF radar measurements, and nearshore surface gradients measured daily by the ferry. All measurement strategies are a compromise between the scientific requirements, site availability, logistic and resource constraints. Here we were especially fortunate in being able to deploy a mooring in relative safety, since Liverpool is a major port, in an anchor exclusion zone near the mouth of the Mersey and to have access to a ferry with a daily schedule. Throughout the campaign no instruments were lost, a major achievement, although there were some data losses due to instrument malfunctions and fouling.

The focus of this paper is the time series of surface salinity (measured at 1 m depth) obtained at a site near the Mersey Bar Light Vessel by the Centre for Environment, Fisheries and Aquaculture Science, Fig. 1b, (Mills et al., 2005). The salinity response at periods longer than a day is investigated. Effects at shorter, semi-diurnal tidal, time scales such as tidal straining have been well studied, for instance Verspecht et al., 2009a, 2009b; Palmer, 2010; Howlett et al., 2011. The measurements every 30 min were reduced to daily means by averaging over 25 h, to minimise tidal effects.

2.1. Mersey Bar mooring

The site, at 53°32′N 3°21.8′W, is situated 17 km from the nearest land (Formby Point) and 24 km from mouth of Mersey, Fig. 1b. The location is due west of the outflow from the Mersey which is partially constrained by training walls, ending 9 km to the east of the site. In the first half of the 20th century training walls were built to stabilise the position of the shipping channel, which is regularly dredged to a minimum depth of about 12 m below mean sea level. The tops of the training walls are 3 m below mean sea level but on both sides there are shallow banks whose minimum depth exceeds mean sea level (Blott et al., 2006). The mean water depth at the site is 23.5 m. Tidal currents are rectilinear, approximately east–west, with a maximum surface speed at mean springs of 0.75 m s\(^{-1}\), occurring at mid-tide. A surface buoyed mooring and a sea bed frame were deployed here. Near bed salinities were measured on the frame which also contained an ADCP, measuring currents at 1 m intervals from 2.7 m above the bed to 2 m below the surface. Starting later, sensors to measure salinity at 5 m (from December 2003) and 10 m below the surface (from March 2006) were mounted on the mooring.

2.2. HF radar array

Contextual information is needed to interpret these salinity measurements. Particularly relevant are residual surface currents in Liverpool Bay and salinity gradients between the mouth of the Mersey and the site. A phased array HF radar system recorded surface current data (an average over the top 1 m) every 20 min between August 2005 and November 2011 at 101 cells on a 4 km grid. The radar equipment was located at Llandulas, on the North Wales coast, and just south of Formby Point. Fig. 10 shows the positions of the radar sites and of the cells. Tidal currents were calculated using harmonic analysis and subtracted from the observations to give residuals which were then averaged into daily means. Short gaps are inherent in HF radar data – these do not pose a problem for harmonic analysis and taking daily means reduces the significance of gaps. In addition taking daily means reduces the impact of energy at tidal frequencies which inevitably is still present in the residuals and irrelevant for this study (see Brown et al. (2012)). The surface current data are complemented by wind measurements obtained from Hilbre Island, at the mouth of the Dee, starting in April 2004. These measurements are representative of winds in Liverpool Bay, although the site is slightly sheltered by the Welsh mountains for winds from the southwest and winds from the southeast are channelled along the Dee estuary (Wolf et al., 2011, where 2.5 years of wind data from Hilbre Island are compared with data from the proposed site of the offshore Gwynt y Môr wind farm in Liverpool Bay, at 53°28.83′N, 3°30.42′W). In addition the HF radar system estimates wind direction (but not wind speed) at each of the cells from the ratio of the heights of the two Bragg peaks, on the assumption that the Bragg resonant wind waves are locally generated (Fernandez et al., 1997; Wyatt et al., 2006). Fig. 2 shows a bivariate histogram of the differences between the wind directions measured at Hilbre Island and those estimated by the radar cell at the Mersey Bar site, plotted against Hilbre wind speeds. The two sites are separated by 17 km and the wind directions agree well for wind speeds above 5 m s\(^{-1}\).

2.3. Instrumented ferry

In addition to the net movement of the sea surface, information on the outflow of the Mersey is required. A time series of salinity at the mouth of the Mersey would have been desirable but was not recorded. Instead measurements, at 3 m depth, have been obtained from an instrumented ferry on the route between Birkenhead and Dublin, passing close by the buoy, Fig. 1b (Balfour et al., 2013). Instrumented ferry measurements provide
coverage of the shallow near-shore region where measurements are exceedingly scarce. The ferry route had two advantages—first the ferry measured differences between the buoy site and the mouth of the Mersey and secondly the ferry measurements could be checked independently against the buoy measurements. The ferry does the round trip every day except Sundays and Mondays; a total of 12 times per week. In port the ferry sensors are isolated by a valve, which reduces suspended particulate matter fouling. The valve was opened/closed at the mouth of the Mersey for west/east bound crossings and so there are measurements as the ferry steamed along the shipping channel and past the Mersey Bar site. Temperature and conductivity were recorded every 10 s (≈100 m at 20 knots), although later analysis showed that the system had a time constant of about 5 min because the water flowed through a large sea chest. The record lasts between November 2007 and January 2011. One drawback with the data is that the ferry sailed at approximately the same time each day (either 10:00 or 22:00, Birkenhead and Dublin) so that over a 14 day period the time of sailing cycled from high to low water and back to high water. Hence nearshore variations due to the spring/neap cycle were masked by variations due to the ebb or flood state of the tide at departing and arriving, 6.4 h later.

2.4. River gauges

Daily river flow values for the Mersey (and Conwy, Clwyd, Dee and Ribble) were obtained from the National River Flow Archive, based at the Centre for Ecology and Hydrology. Although the rivers have different catchment characteristics their flows are well correlated, correlation coefficients between 0.74 and 0.89 for the 9 year period. All correlations mentioned in this paper are statistically different from zero; of more relevance is the coefficient of determination (the correlation coefficient squared) giving the proportion of the variance of one variable that is predictable from the other variable.
2.5. Numerical models

Numerical models complement measurements and are particularly valuable estimating spatial variability. However uncertainties will be largest near the shore because of the imprecise knowledge of fresh water, estuarine and ground water inputs; how best to introduce these into the model and also because of the lack of measurements to test the models. A model estimate of the annual mean salinity based on daily river flow values is shown in Fig. 7.

Fig. 7. Surface salinity measured by the ferry at the mouth of Mersey and the Mersey Bar between November 2007 and January 2011. (a) Daily river flow – Mersey (black); Mersey, Dee, Clwyd and Conwy combined (grey); (b) time series of salinity at the Bar (blue); mouth (red) and difference (black); (c) scatter plot of salinity at the Bar and the mouth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Scatter plot of salinity measured at the Bar site against River Mersey discharge.

Fig. 9. The salinity gradient as measured by the ferry averaged in 1 km cells. The black line is the median value and the dashed line the 95 percentile.
Fig. 3, to provide background information for the paper. Note that the simulated salinity is too low at the measurement site (between 30.5 and 31 psu) whereas the measured mean salinity is in excess of 32 psu (see Section 3). The model indicates that at springs the plume is bottom attached, whilst at neaps it is surface advected (Polton et al., 2011; Fig. 11).

3. Salinity at the Mersey Bar

Fig. 4 shows 9 years of surface salinity measured at the Mersey Bar site, based on FSI high quality conductivity and temperature sensors. The site is in the transition zone between coastal and continental shelf waters, with daily values varying between 28.64 and 33.96 psu, the latter being typical of waters further offshore in Liverpool Bay (Practical Salinity is used throughout the paper). The overall mean salinity is 32.19 psu, which compares with the 1935–1961 mean of 31.94 psu based on measurements three times a week (Hughes, 1966). The record is dominated by low frequencies as can be seen by the monthly averages, the black line in the figure. The spectrum of salinity variability is red (Fig. 5), with no detectable peak at 0.068 cpd corresponding to the spring/neap cycle. In corroboration, the mean salinities at springs and neaps are virtually identical, respectively 32.17 and 32.16 psu, indicating no impact of variations in tidal mixing over the spring/neap cycle. The annual sinusoid explains only 6% of the variance (its amplitude is 0.21 psu) in marked contrast to temperature where typically more than 90% of the variance is explained by an annual sinusoid. The monthly median salinities are shown in Fig. 6, together with the annual sinusoid calculated above. Monthly salinities are higher than average in August and November to January and lower in February to April. Hence proposition 2 (spring/neap cycle in salinity) is not supported and there is only a weak annual cycle in salinity (proposition 3).

The distribution deviates from normal since the skewness is –0.56 and the excess kurtosis of 1.4. Skewness, the third central moment of a distribution, is a measure of the distribution’s asymmetry. Kurtosis, the fourth central moment, is a measure of the distribution’s ‘peakedness’. Both would be zero for a normal distribution. The negative skewness indicates there are more extreme low salinities, which can occur throughout the year, with a slight tendency for more in summer, and fewer extreme high salinities, all occurring in winter (emphasised by the outliers in Fig. 6). Events are discussed in more detail in Section 6. Hence this initial analysis indicates that to first order the best predictor for salinity is its overall mean value and this is slightly bettered by considering monthly means. This can only be improved if investigations described in the next two sections establish links between the salinity at the Mersey Bar and either freshwater discharges or the circulation in Liverpool Bay.

4. Fresh water discharged by the Mersey

Daily mean values of the fresh water discharge down the Mersey, Dee, Clwyd and Conwy are shown in Fig. 7a for the 3 year period of the ferry measurements. There appears to be no coherent relation between this discharge and the salinities measured at the Mersey Bar (Fig. 8). Indeed low salinities at the site are only observed for average river discharges and the highest discharge corresponds to a high salinity. Lagging the river discharge by time does not strengthen the relationship. Hence evidence in support of proposition 1 (Mersey discharge strongly influences Mersey Bar salinity) is absent.

The ferry provides an alternative approach which explains why the connection between the Mersey Bar and the Mersey discharge is so weak. Henceforth the two positions will be referred to as the mouth and the Bar and are indicated in Fig. 1b by the plus sign and dot, respectively. Fig. 7b and c shows the comparison between the
salinities measured by the ferry at the mouth, mean value 28.1 psu, and as it passed the Bar site, a distance of 24 km, taking on average 53 min. Studying differences from measurements taken a short time apart significantly reduces the impact of variations arising from whether the tide is ebbing or flooding. The water at the Bar site is always saltier than at the mouth; the median value of the salinity difference is 3.77 and its maximum 16.46 psu. The best fit line is

\[\text{Bar salinity} = 29.2 + 0.11 \times \text{mouth salinity}. \]

The coefficient of determination between the two data sets is 0.18, so that 18% of the variance of the salinity record at the Bar can be explained by variations at the mouth of the Mersey.

However, there is a wide variation in salinity values at the Bar site when the water at the mouth is relatively fresh. Similarly there is no relation between the salinity differences and the salinity at the Bar. This implies that the core width of any plume is usually less than 17 km and is confined to water less than 20 m deep. This is supported by estimates of the salinity gradient from the ferry, obtained by averaging each crossing’s measurements into 1 km cells (Fig. 9). The Mersey Bar site (3.36°W) is clearly outside the region of strong salinity gradient. Thus the ferry measurements show that the freshwater core from the Mersey is generally closer to the English shore than the Mersey Bar site and hence the Mersey discharge rate is not a strong control on salinity at the Mersey Bar site.

5. Circulation in Liverpool Bay

Since the core of the Mersey plume is shoreward of the Mersey Bar site what are the main controllers of salinity at the Mersey Bar? The mean currents at the site are consistently shoreward near the bed and northward near the surface (Polton et al., 2011). The surface circulation is particularly relevant for the extent of the bed and northward near the surface (Polton et al., 2011). The mean currents measured in Liverpool Bay, which are primarily the consequence of the fresh-Mersey plume and is principally driven by density gradients in surface circulation is particularly relevant for the extent of the core width of any plume is usually less than 17 km and is confined to water less than 20 m deep. This is supported by estimates of the salinity gradient from the ferry, obtained by averaging each crossing’s measurements into 1 km cells (Fig. 9). The Mersey Bar site (3.36°W) is clearly outside the region of strong salinity gradient. Thus the ferry measurements show that the freshwater core from the Mersey is generally closer to the English shore than the Mersey Bar site and hence the Mersey discharge rate is not a strong control on salinity at the Mersey Bar site.

6. Events, storms and floods

Table 1 lists the 16 occasions when the daily averaged Mersey discharge exceeded 400 m3 s$^{-1}$ and there were concurrent salinity measurements at the Mersey Bar. Note this covers only 11 separate events. The link between the river discharge and the salinity is tenuous and there is no consistent pattern to the delay between

![Fig. 12. Daily mean salinity at the Mersey Bar plotted against surface current direction.](image)

Table 1

<table>
<thead>
<tr>
<th>Mersey discharge (m3 s$^{-1}$)</th>
<th>Day of minimum salinity</th>
<th>Time delay (days)</th>
<th>Minimum salinity (psu)</th>
<th>Date of river discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>911</td>
<td>2212</td>
<td>2213</td>
<td>1</td>
<td>32.16</td>
</tr>
<tr>
<td>608</td>
<td>765</td>
<td>770</td>
<td>5</td>
<td>28.64</td>
</tr>
<tr>
<td>586</td>
<td>2441</td>
<td>2442</td>
<td>1</td>
<td>30.88</td>
</tr>
<tr>
<td>561</td>
<td>1052</td>
<td>1064</td>
<td>12</td>
<td>30.34</td>
</tr>
<tr>
<td>546</td>
<td>761</td>
<td>770</td>
<td>9</td>
<td>28.64</td>
</tr>
<tr>
<td>525</td>
<td>363</td>
<td>374</td>
<td>11</td>
<td>31.34</td>
</tr>
<tr>
<td>508</td>
<td>2470</td>
<td>2482</td>
<td>12</td>
<td>31.30</td>
</tr>
<tr>
<td>497</td>
<td>953</td>
<td>954</td>
<td>1</td>
<td>31.70</td>
</tr>
<tr>
<td>495</td>
<td>2011</td>
<td>2020</td>
<td>9</td>
<td>30.78</td>
</tr>
<tr>
<td>478</td>
<td>2211</td>
<td>2213</td>
<td>2</td>
<td>32.16</td>
</tr>
<tr>
<td>466</td>
<td>2210</td>
<td>2213</td>
<td>3</td>
<td>32.16</td>
</tr>
<tr>
<td>461</td>
<td>1844</td>
<td>1853</td>
<td>9</td>
<td>31.74</td>
</tr>
<tr>
<td>458</td>
<td>968</td>
<td>981</td>
<td>13</td>
<td>30.29</td>
</tr>
<tr>
<td>427</td>
<td>2167</td>
<td>2171</td>
<td>4</td>
<td>30.45</td>
</tr>
<tr>
<td>424</td>
<td>2206</td>
<td>2213</td>
<td>7</td>
<td>32.16</td>
</tr>
<tr>
<td>413</td>
<td>2440</td>
<td>2442</td>
<td>2</td>
<td>30.88</td>
</tr>
</tbody>
</table>
maximum discharge and minimum salinity at the Mersey Bar site during the succeeding fortnight, varying between 1 and 12 days. Previous studies have found a lag between river discharge in the preceding week and salinity at the mouth of the Mersey (Bowden and Sharaf El Din (1966a)). Clearly this does not extend further into the Bay and so proposition 4 (salinity variability at the Mersey Bar is driven by significant weather events) is not supported. The lowest salinity does correspond to significant discharge, at the end of January and beginning of February 2004, but the largest discharge which covers 4 days in a period of a week in January 2008 does not.

For three of these events (December 2007, January 2008 and September 2008) there were also ferry measurements (Fig. 13) as well as wind data from Hilbre and HF radar surface currents (Fig. 14). Two were in winter as part of sustained river discharges and one in summer, an isolated event. The daily river flows for these events are listed in Table 2. The salinity ferry measurements in Fig. 13 show differences between the three events. (Although

![Fig. 13. Salinity measured by the ferry: (a) 30 November–13 December 2007; (b) 9–21 January 2008; (c) 3–12 September 2008.](image1)

![Fig. 14. Progressive vector diagrams based on daily means for 30 November–13 December 2007 (15 days; blue); 9–28 January 2008 (20 days; red); 3–12 September 2008 (10 days; black). Asterisks mark midnight. (a) HF radar residual surface currents at the Mersey Bar site; (b) winds measured at Hilbre Island. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image2)
the ferry provides crucial information on nearshore gradients, interpretation of the measurements depends on the state of the tide (ebb or flood) for each sailing. The typical time between the end of one crossing and the start of the next is 6 h, half a tidal cycle, hence the scatter in each of the panels in the figure.) In particular the January 2008 event (Fig. 13b) not only had the highest daily discharge during the 9 years but also was a period of sustained discharge over 20 days. High saline water (in this context above 33 psu) extended as far eastward as the Mersey Bar site (3.36 W) and consequently significant gradients were confined to east of 3.3 W. The reason can be seen in Fig. 14 where for this period there were strong winds from the southwest and strong surface currents toward the northeast. In successive stages of reduced ‘on-shore’ wind (Fig. 14) and reduced river discharge the December 2007 period (Fig. 13a) also shows a high Mersey Bar salinity, though the reduced discharge rate means there is less freshwater to compress a sharp coastal salinity gradient. In September 2008 when the currents are directed off shore (Fig. 14), the salinity at the Mersey Bar is reduced and the salinity gradient is again weak (Fig. 13c).

7. Discussion

The paper has concentrated on exploiting salinity measurements from a fixed site 24 km from the mouth of the Mersey to study the plume’s extent and influences. Whilst salinity is useful as a tracer for freshwater it is also important dynamically because of its impact on density. Horizontal density gradients are primarily controlled by salinity both because a change of 1 psu in salinity to the first order has the same effect on density as a change of 5 °C in temperature and also because horizontal temperature gradients are relatively small. Even for vertical density gradients in coastal sites, where temperature gradients are larger, salinity still plays a principal role. However, estimation of gradients in coastal regions is challenging, since they vary rapidly in space and time. Ideally two or more separate sites are required, for instance this data set would have been enhanced by concurrent time series of salinity measurements at the mouth of the Mersey. As an alternative, data from the instrumented ferry have been used to fill the gap.

Numerical models are also particularly useful at providing spatial context (O’Neill et al., 2012), although uncertainties can be large if (for example) the freshwater boundary forcing is not well known.

One approach to circumvent these difficulties is to estimate gradients from simultaneous single point measurements of current and density, by applying the continuity equation

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = 0$$

(1)

where the x component is towards the east and the y component towards the north. In Liverpool Bay tidal currents are approximately rectilinear east–west so that both the north–south current component (v) is an order of magnitude less than u and the north–south density gradient is less than the east–west (Fig. 3). Hence the north–south term can be neglected. The vertical term has also been neglected which is valid for homogeneous conditions but may be inappropriate during some stratified periods. The equation then reduces to

$$\frac{\partial \rho}{\partial x} = -a/u \frac{\partial \rho}{\partial t},$$

(2)

where a is 1 if the system is purely zonal and can otherwise be fitted to the data. Whilst the validity of this equation is difficult to verify from observations it is an easy diagnostic for a numerical model. Calculations applying 1 year’s model data for the Mersey Bar site indicate that the correlation is particularly robust for all but the largest gradients, i.e. valid for when $1/u \frac{\partial \rho}{\partial t} < 3.5 \times 10^{-4} \text{ kg m}^{-4}$. Fig. 15. Above this value stratification may be significant. The slope of the fit is $a = 0.78$. Using the observed hourly values of currents measured with an ADCP and the density time derivative, the median east–west surface density gradient is calculated, applying Eq. (2), to be $-4.7 \times 10^{-5} \text{ kg m}^{-4}$. The median gradient was also estimated from the ferry as it passed the buoy to be $-5.6 \times 10^{-5} \text{ kg m}^{-4}$, in reasonable agreement.

The study has concentrated on a particular set of observations targeted at determining coastal density gradients and in the end has derived conclusions with wider relevance chiefly regarding measurement strategy. The principal data sets were several years of surface salinity at a fixed point and from an instrumented ferry.

Table 2

<table>
<thead>
<tr>
<th>Day</th>
<th>Mersey discharge (m3 s$^{-1}$)</th>
<th>Day</th>
<th>Mersey discharge (m3 s$^{-1}$)</th>
<th>Day</th>
<th>Mersey discharge (m3 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 November</td>
<td></td>
<td>7-25 January</td>
<td></td>
<td>3-9 September</td>
<td></td>
</tr>
<tr>
<td>2160 117</td>
<td>2198 146</td>
<td>2438 105</td>
<td>2161 165</td>
<td>2199 135</td>
<td>2439 100</td>
</tr>
<tr>
<td>2162 264</td>
<td>2200 205</td>
<td>2440 413</td>
<td>2163 205</td>
<td>2201 380</td>
<td>2441 586</td>
</tr>
<tr>
<td>2164 143</td>
<td>2202 183</td>
<td>2442 254</td>
<td>2165 138</td>
<td>2203 155</td>
<td>2443 154</td>
</tr>
<tr>
<td>2166 300</td>
<td>2204 146</td>
<td>2444 119</td>
<td>2167 427</td>
<td>2205 156</td>
<td></td>
</tr>
<tr>
<td>2168 365</td>
<td>2206 424</td>
<td></td>
<td>2169 247</td>
<td>2207 378</td>
<td></td>
</tr>
<tr>
<td>2170 151</td>
<td>2208 294</td>
<td></td>
<td>2171 110</td>
<td>2209 357</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2210 466</td>
<td>2211 478</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2212 911</td>
<td>2213 269</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2214 204</td>
<td>2215 176</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2216 120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.J. Howarth et al. / Continental Shelf Research 87 (2014) 73–83
The latter in particular were unique and invaluable, providing estimates of gradients from the river mouth. Methodologies for measuring spatial gradients are much scarcer than those for obtaining time series. The combination with the mooring data was effective. In the future gliders may in part be able to replicate this capability; a trial deployment away from the shipping lanes, off the Ribble coming into depths of 15 m was successful (M. Palmer, personal communication). Coastal salinity variations are larger than in the open ocean, so that an accuracy of 0.01 psu would be acceptable, but even achieving this for time series employing high quality sensors is not always possible because of fouling and turbid water. It is found that a wide variety of background measurements, including HF radar for surface currents, river flows and winds, are also essential for interpretation of the salinity measurements. The HF radar current measurements proved more valuable than ADCP measurements since they included the near surface wind drift, relevant to the plume's movement. Whilst the measurement campaign provided much pertinent information, no strategy is perfect. With hindsight three developments worth considering are (i) the duration, (ii) the nearshore gradients and (iii) the offshore winds. Firstly 9 years has proved to be too short for studying the low frequency temporal salinity variability. Secondly, the results have shown the largest gradients generally occurred shoreward of the Mersey Bar site. Hence, although gradients were estimated from the ferry measurements and via the tidal advection method, one or more additional inshore in situ sites would have greatly enhanced the study, although creating logistical problems – particularly finding safe, robust sites. Thirdly, surface currents respond to local wind forcing and shore-based wind measurements will always be affected by the local topography. Hence, offshore wind measurements would reduce uncertainty. Finally, an external consideration concerns the imprecision regarding data on freshwater flows. Firstly rivers are gauged somewhere up river and contributions below the gauging site can only be estimated. Secondly knowledge of the extent and importance of distributed groundwater is deficient.

Along with lessons for measurement strategies and the wide variety of observations needed to interpret a specific set of measurements, the study has demonstrated the unpredictable fate of river discharges into a particular, partially enclosed, coastal sea where tidal mixing is large. This is relevant more widely, for instance to much of the north-west European coast line, and further afield, where tides dominate the dynamics and the topography is often intricate. The failure to obtain predictability of near shore gradients from measurements alone, for which there are few techniques, indicates that a combination of long term measurements and models will be key.

8. Conclusions

The coastal near shore region is particularly important both because salinity and density gradients are large and because here river discharges, including suspended particulate matter, nutrients and contaminants, are introduced into coastal waters. However, measuring salinity and its gradient is challenging and uncertainties in model estimates can be large. Nine years' measurements of coastal salinity have formed the focus of an investigation into the lateral extent of the Mersey plume and influences on it. Tidal mixing in Liverpool Bay is large and as a consequence the plume can switch between bottom attached during spring tides and surface advected during neaps.

The propositions listed in the introduction are summarised and their level of applicability reviewed below:

1. The Mersey discharge strongly influences the salinity at the Mersey Bar site and hence a meaningful time lag can be estimated from the Mersey to the site.
2. There is a spring/neap cycle in salinity at the site.
3. There is a significant seasonal cycle in salinity at the site.
4. Large variations in the salinity at the site are driven by events – floods, storms.
5a. The dominant factor controlling the salinity at the site is Liverpool Bay's circulation.
5b. The average surface circulation in Liverpool Bay is clockwise and reversed if winds $> 5–10$ m s$^{-1}$.

The evidence presented here is not sufficient to support the first four – there are no predominant periodicities, although there is a weak annual cycle, and no consistent relations with storms or floods – leading to the conclusion that the majority of the plume for most of the time is confined to be closer to the English shore than the Mersey Bar, 17 km from the land. The salinity (and density) gradient decreases by an order of magnitude between the mouth of the Mersey and the Mersey Bar. The fifth proposition, that the Bay’s circulation is the dominant factor, is supported and its second part is partially supported to the extent that wind forcing tends to reinforce the surface circulation at wind speeds greater than $5–10$ m s$^{-1}$. However, near bed currents are consistently shoreward and near surface currents northward, so that there is no evidence of a clockwise circulation which is reversed at higher wind speeds. Hence this extensive measurement based analysis contradicts and enhances the modelling study of Heaps and Jones (1977). The wind’s direction has an important impact on the westward extent of the plume as mentioned in the introduction concerning upwelling favourable winds. Although the strongest winds are predominantly from between southwest and northwest, reinforcing the mean flow, winds from the north can lead to lower salinities at the Mersey Bar site. These conclusions are generally negative but emphasise the importance of processes in the shallow coastal region to the plume behaviour.

Acknowledgements

The authors express their thanks to the EU (Field.AC) and the UK Natural Environment Research Council (NERC) for the provision of funding to research this activity. The data were obtained by the National Oceanography Centre and the Centre for Environment, Fisheries and Aquaculture Science (CEFAS, Naomi Greenwood) as part of the Liverpool Bay Coastal Observatory. The authors also wish to thank the reviewers for their perceptive and helpful comments.

References
