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Review of intersection homology



Singular intersection homology

Perversities
A perversity on a topologically stratified space X is a function
p: {strata of X} — Z. If

1. p(S) = p(codim S) for some p: N — Z
2. p(k) =0for k <2
3. p(k+1) = p(k) or p(k) + 1.
then it is a Goresky—MacPherson (GM) perversity.



Singular intersection homology

Perversities
A perversity on a topologically stratified space X is a function
p: {strata of X} — Z. If

1. p(S) = p(codim S) for some p: N — Z
2. p(k) =0for k <2
3. p(k+1) = p(k) or p(k) + 1.
then it is a Goresky—MacPherson (GM) perversity.

Examples

» the zero perversity 0(k) =0

> the top perversity t(k) = max{k — 2,0}

> the lower middle perversity m(k) = max{|(k —2)/2],0}
» the upper middle perversity n(k) = max{[(k —2)/2],0}

GM perversities p and g are complementary if p + g = t.



Intersection homology and Poincaré duality

Intersection homology
A perversity picks out a subcomplex of intersection chains in 5, X:

A" 25 X p-allowable <= 0715 C (i — codim S + p(S)) -skeleton

c € 5;X p-allowable <= all simplices in ¢ are p-allowable

Let IPS, X = {c | c,0c are p-allowable} and IPH, X its homology.
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Intersection homology
A perversity picks out a subcomplex of intersection chains in 5, X:

A" 25 X p-allowable <= 0715 C (i — codim S + p(S)) -skeleton
c € 5;X p-allowable <= all simplices in ¢ are p-allowable

Let IPS, X = {c | c,0c are p-allowable} and IPH, X its homology.

Theorem (Goresky—MacPherson '80)
X pseudomfld, p GM perversity —> [P H, X topological invariant.

Theorem (Goresky—MacPherson '80)

X compact, oriented n-dim pseudomfld, p, q complementary GM
perversities = 3 intersection pairing

IPHX x 19H,_i X = Z

which is non-degenerate over Q.
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Filtered homology



Filtered spaces and depth functions

Filtered spaces
A filtered space X, is a topological space with a filtration

@:X_1CX0CX1CX2C~~CXOO:X.

A filtered map f: X, — Yp is a map with f(Xx) C Yix ¥V k € N.
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Filtered spaces
A filtered space X, is a topological space with a filtration

@:X_1CX0CX1CX2C~~CXOO:X.
A filtered map f: X, — Yp is a map with f(Xx) C Yix ¥V k € N.

Depth functions
The filtration on X, is encoded in the depth function a: X — N
where

a(x):k — x € X — Xi_1

so Xy =a10,...,k} and f: X, — Yp filtered <= a > 3of.
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Examples of filtered spaces

1. A filtered space of depth < 1 is a pair Xp C X1 = X; a filtered
map of such is a map of pairs.

2. Filtering a CW complex by its skeleta fully faithfully embeds
CW complexes and cellular maps into filtered spaces.

3. Let AJ be the standard simplex filtered by depth function
o(to, ..., tn) = #{i | ti =0}, e.g.

2 1 2

The face maps Agjrll — Ag are filtered.



Filtered homology

For filtered X, define S; X, = Z{Afs — X, }. Note
0: S;Xa — 5,'_1Xa_1

where (o — 1)(x) = max{a(x) — 1,0}.



Filtered homology

For filtered X, define S; X, = Z{Afs — X, }. Note
0: S;Xa — 5,'_1Xa_1

where (o — 1)(x) = max{a(x) — 1,0}.

Definition
The filtered i-chains on X, are

FS; X, = {C e S5 X, | Jdc € 5,'_1Xa}.

The filtered homology FH. X, is the homology of FS5,X,.
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Properties of filtered homology

Functoriality
Filtered f: X, — Yjp induces a chain map F5,X, — F5,Y3 and

f.: FHXo — FH.Yj.

Filtered homotopy invariance
If f and g are filtered homotopic then f, = g.: FH. X, — FH,Yj3.

Relative long exact sequence

For filtered f: X, — Yj where the underlying map is an inclusion
we define FH;(Y3, X)) = Hi (FS* YB/FS*XQ). There is a LES

oo = FH Xy — FH. Y3 — FH(Y3,Xo) = FH\ 1 X — - -

Excision o
For Z, C Y, C X, with Z C Y?° there are isomorphisms

FHy (Xo — Za, Yo — Za) = FHo(Xa, Ya).



Simple examples of filtered homology

Cones
For [x, t] € CX, the cone on X, and d > 1 have

i>d-—1.

t>0 FHX, i<d-1
B[X7 t] = {Z(X) f—0 = FH,'CXﬁ = { <

When d < 1 obtain homology of a point.
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elsewhere. Then



Simple examples of filtered homology

Cones
For [x, t] € CX, the cone on X, and d > 1 have

i>d-—1.

t>0 FHX, i<d-1
B[X7 t] = {Z(X) f—0 = FH,'CXﬁ = { <

When d < 1 obtain homology of a point.

Suspended torus

Let X, = X T2 where a(x) = 3 at suspension points and 0
elsewhere. Then
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Perversities and filtrations

Given stratified X and perversity p define a depth function
p(x) = codim S — p(S)

for x € S. The identity X5 — Xj is filtered <= p < gq.

Setting Xk = Ucodim s<k S gives

» Xyg=(XcXx'c---cxkc--cX)

» X=X c Xt cX)

» Xp=(X0cXtcX2cXtc--CX)

» Xp=(X'cXlcXxX3cXx?c-- cX)

> pis a Goresky—Macpherson perversity <= Xj is filtration by
those X* with p(k) = p(k + 1)

» Complementary perversities p and g give ‘complementary’
filtrations: X% with k > 2 appears in either Xp or Xg.
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Intersection homology is filtered homology

An elementary calculation gives

A %5 X filtered <= 0715 C (i — codim S 4 p(S))-skeleton
<= o p-allowable

Corollary
FS: X = IPS, X and FH, X5 = IPH, X.

Remarks

» Functoriality of FH, = known functoriality of /H,
> Intersection homology is a filtered homotopy invariant

» Filtered homology LES gives relative LES for /H,, and
obstruction sequence for change of perversities.
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The spectral sequence
The singular complex S, X of filtered X, has natural filtration

00— S5.X, = 5X,-1—=---—=5X

yielding a spectral sequence with E°°-page

GroH()X GI’()H1X GroH2X
0 Gri Ho X GriH X
0 0 Gr2HOX

converging to GreH, X where

{ld] € HiX | € € SiXami}

GriH:X = .
fitl {[C] S HJ'X ‘ cc San,,',l}




Examples of the spectral sequence

Xo CW-complex with skeletal filtration

E?-page is cellular chain complex:

FHoxa (0\ 0
0 0 FHy(Xa—1, Xa)
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X. CW-complex with skeletal filtration

E3 = E>-page is cellular homology:

Hge' X 0
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Examples of the spectral sequence

X, = X T? with a(suspension points) = 3

E3 = E>-page:

Z2
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Cap products and Poincaré Duality?



Alternative filtration for simplices

Let AJ, denote the n-simplex with filtration
8 (to, .-, ty) =min{i | t,_; # 0}

and FS, X, the associated complex of filtered chains.

Proposition

There is a homotopy equivalence FS, X, ~ FS.X, provided by
composition with id: Aj — Af, and barycentric subdivision. So
filtered homology can be computed using either complex.



Cap products

Filtered homology as a module

The inclusions of the ‘back’ faces of Aj, are filtered. The usual
cap product formula restricts to S'X ® SiXa = Sj_; X4 inducing

H'X @ FH;Xo — FH;j—iXa,

so that FH, X, is an H*X-module.
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Cap products

Filtered homology as a module
The inclusions of the ‘back’ faces of Aj, are filtered. The usual
cap product formula restricts to S'X ® SiXa = Sj_; X4 inducing

H'X @ FH;Xo — FH;j—iXa,
so that FH, X, is an H*X-module.

Generalised Poincaré duality?
A more refined approach should yield a cap product

FHIXﬁ & FHJX() — FHJ'_,'Xa,:L
where p 4+ g = t. If we can improve this to
FH' X5 ® FH; X5 — FH;_i X

then generalised Poincaré duality would follow.
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