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Part I

Stratified spaces



Stratifications

A stratification of a topological space X consists of

1. a decomposition X =
⊔

i Si into disjoint locally-closed
subspaces

2. geometric conditions on the strata Si

3. conditions on how the strata fit together

There are many variants of these conditions (topological, PL,
smooth, analytic, algebraic) depending on context. We will work
with a smooth version: Whitney stratifications.



Whitney stratifications

A locally-finite decomposition M =
⊔

i Si of a smooth manifold
M ⊂ RN is a Whitney stratification if

1. each Si is a smooth submanifold

2. the frontier condition holds: Si ∩ Sj 6= ∅ =⇒ Si ⊂ Sj

3. the Whitney B condition holds: for sequences (xk) in Si and
(yk) in Sj with xk , yk → x as k →∞ one has

lim
k→∞

xkyk ⊂ lim
k→∞

Tyk Sj

Remarks

I Whitney B independent of embedding M ⊂ RN

I Whitney B =⇒ Whitney A: TxSi ⊂ limk→∞ Tyk Sj



Whitney stratified spaces

A Whitney stratified space is a union of strata X ⊂ M in a
Whitney stratification of M.

Examples

I Manifold with marked submanifold

I Manifold with boundary (M, ∂M)

I RPm or CPm filtered by projective subspaces

I Whitney umbrella: {x2 = y 2z} ⊂ R3

Theorem (Whitney 1965)

A real or complex analytic variety admits a Whitney stratification
by analytic subvarieties.

In fact, definable subsets of any o-minimal expansion of R admit
Whitney stratifications, e.g. semi-algebraic or subanalytic subsets.



Local structure and stratified maps

A Whitney stratified space X admits the structure of a
Thom–Mather stratification. In particular,

I the stratification is locally topologically trivial

I each stratum S ⊂ X has a (topologically) well-defined link L
such that each x ∈ S has a neighbourhood stratum-preserving
homeomorphic to

RdimS × C (L)

where C (L) = L× [0, 1)/L× {0} is the cone on L.

A smooth map f : X → Y of Whitney stratified spaces is stratified
if the preimage of each stratum of Y is a union of strata of X .

Theorem (Whitney 1965)

For proper, analytic f : X → Y one can refine stratifications of X
and Y so that f is stratified.



Exit paths

Let ||∆n|| be the geometric n-simplex with ‘strata’

Si = {(t0, . . . , tn) | ti 6= 0, ti+1 = · · · = tn = 0} (0 ≤ i ≤ n)

For Whitney stratified X , consider continuous stratified maps

||∆n|| → X

The restriction to the ‘spine’ is an exit path; the restriction to the
edge [0n] is an elementary exit path.

Theorem (Nand-Lal–W. 2016, c.f. Millar 2013)

Let SSX be the simplicial set with SSXn = {||∆n|| → X}. Then
SSX is a quasi-category (spines can be completed to simplices).



Fundamental, or exit, category

The objects of τ1X are the points of X and the morphisms

τ1X (x , y) = {elementary exit paths from x to y}/homotopy

Composition is given by concatenation followed by deformation to
an elementary exit path. For example, if X has one stratum then
τ1X = Π1X is the fundamental groupoid.

Examples

I τ1||∆n|| ' 〈 0→ 1→ · · · → n 〉
I τ1 ({0} ⊂ C) ' 〈 0→ 1 	 Z 〉

The fundamental category is a functor — stratified f : X → Y
induces τ1f : τ1X → τ1Y .



Local systems and covers

Let X be a topological space. Consider sheaves of k-vector spaces.

Definition (Local system)

Locally-constant sheaf on X with finite-dimensional stalks.

Theorem
For X locally 1-connected there are equivalences of categories

I Cov(X ) ' Fun (Π1X ,Set)

I Loc(X ; k) ' Fun (Π1X , k-VS)

Sketch proof.

Covers have unique path lifting for all paths. Similarly, local
systems induce monodromy functors Π1X → k-vs.



Constructible sheaves and stratified étale covers

Let X be a Whitney stratified space.

Definition (Constructible sheaf)

Sheaf on X whose restriction to each stratum is a local system.

Definition (Stratified étale cover)

Étale map p : Y → X which restricts to a cover of each stratum.

Theorem (MacPherson 1990s, c.f. W. 2008)

For X Whitney stratified there are equivalences of categories

I EtCov(X ) ' Fun (τ1X ,Set)

I Constr(X ; k) ' Fun (τ1X , k-vs)

Sketch proof.

Étale covers have unique path lifting for exit paths. Similarly,
constructible sheaves induce monodromy functors τ1X → k-vs.



Remarks and examples

Remarks

I There is a dual version — ‘entry category’ τ1X op classifies
‘stratified branched covers’ and ‘constructible cosheaves’

I Functoriality of τ1X for stratified maps f : X → Y induces

EtCov(Y )→ EtCov(X ) : Z 7→ Y ×X Z

Constr(Y )→ Constr(X ) : E 7→ f ∗E

Examples

I Constr({0} ⊂ C) are representations of 0→ 1 	

I Constr
(
{0} ⊂ CP1

)
are representations of 0→ 1



Part II

Perverse sheaves



Constructible derived category

I E• ∈ Dc (X ) ⇐⇒ Hd (E•) ∈ Constr(X ) for all d ∈ Z
I Poincaré–Verdier duality DX : Dc (X )op ∼−→ Dc (X )

I E• ∈ Dc (X ) has finite-dimensional cohomology:

Hd(X ; E•) = Hd(Rp∗E•) ∼= Hom(kX , E•[d ])

I for open  : U ↪→ X and closed ı : Z = X − U ↪→ X have

Dc (Z ) Dc (X ) Dc (U)
Rı!=Rı∗ !=−1

ı−1

ı!

R!

R∗

giving rise to (dual) natural exact triangles:

Rı!ı
!E• → E• → R∗

−1E• → Rı!ı
!E•[1]

R!
!E• → E• → Rı∗ı

−1E• → R!
!E•[1]



Cohomology of local systems

Let M be an oriented (real) manifold and L ∈ Loc(M). Then

I Hd (M;L) = 0 for d < 0 and d > dim M

I χ(M;L) = dim(L)χ(M)

Remarks

I The vanishing result follows from the isomorphism

DML ∼= L∨[dim M]

which implies Hd
c (M;L) ∼= HdimM−d (M;L∨)∨

I The second fact generalises the formula

χ(E ) = χ(B)χ(F )

for a fibration F → E → B.



Example: local systems on C∗
Consider an n-dimensional L ∈ Loc(C∗) as a representation

π1C∗ → GLn(k)

and let µL denote the image of the generator. Then

Hd (C∗;L) =


ker(µL − 1) d = 0

coker (µL − 1) d = 1

0 d 6= 0, 1

Identifying C∗ with {xy = 1} ⊂ C2 exhibits the vanishing for
d > 1 as an example of

Theorem (Artin vanishing for local systems)

If M is a smooth affine complex variety then

Hd (X ;L) = 0 for d > dimC M

Hd
c (X ;L) = 0 for d < dimC M



From local systems to perverse sheaves

Constructible sheaves are a special case of perverse sheaves:

I Constr(X ) is ‘glued’ from local systems on the strata

I Perverse sheaves are ‘glued’ from shifted local systems

Lemma
Constr(X ) ↪→ Dc (X ) is a full abelian subcategory with Dc (X ) as
its triangulated closure.

Example (X = CP1)

Constr(X ) ' k-vs so HomDbConstr(X )(kX , kX [d ]) = 0 for d 6= 0 but

HomDc (X )(kX , kX [2]) ∼= H2(X ; k) ∼= k

This shows Dc (X ) 6' DbConstr(X ) in general.



Truncation structures

A t-structure D≤0
c (X ) ⊂ Dc (X ) is an ext-closed subcategory with

I D≤0
c (X ) [1] ⊂ D≤0

c (X )

I every E• ∈ Dc (X ) sits in a triangle

D• → E• → F• → D•[1]

with D• ∈ D≤0
c (X ) and F• ∈ D≥1

c (X ) = D≤0
c (X )⊥

The t-structure is bounded if

Dc (X ) =
⋃
n∈N

D≥−nc (X ) ∩ D≤nc (X )

where D≤nc (X ) = D≤0
c (X ) [−n] etc.

Example (Standard t-structure)

D≤0
c (X ) = {E• | HiE = 0 for i > 0}



Hearts and cohomology

Theorem (Beilinson, Bernstein, Deligne 1982)

I D≤0
c (X ) ↪→ Dc (X ) has a right adjoint τ≤0

I D≥0
c (X ) ↪→ Dc (X ) has a left adjoint τ≥0

I heart D0
c (X ) = D≤0

c (X ) ∩ D≥0
c (X ) is an abelian subcategory

I H0 = τ≤0τ≥0 : Dc (X )→ D0
c (X ) is cohomological

Example

The heart of the standard t-structure is Constr(X ), and H0 and
τ≤0 are the previously defined functors.

Remark (heart determines a bounded t-structure)

D≤0
c (X ) = 〈D0

c (X ) ,D0
c (X ) [1], . . .〉



Glueing t-structures

The most important way of constructing t-structures (for us) is via
the following glueing construction. Suppose  : U ↪→ X is an open
union of strata and ı : Z ↪→ X the complementary closed inclusion.

Theorem (Beilinson, Bernstein, Deligne 1982)

Given t-structures D≤0
c (U) and D≤0

c (Z ) there is a unique ‘glued’
t-structure D≤0

c (X ) such that

E• ∈ D≤0
c (X ) ⇐⇒ −1E• ∈ D≤0

c (U) and ı−1E• ∈ D≤0
c (Z )

dually E• ∈ D≥0
c (X ) ⇐⇒ −1E• ∈ D≥0

c (U) and ı!E• ∈ D≥0
c (Z ).

Example (Standard t-structure)

The t-structure with heart Constr(X ) is glued from those with
hearts Constr(U) and Constr(Z ), hence inductively from those on
Dc (S) with heart Loc(S) for each stratum S ⊂ X .



Perverse sheaves

Let X be Whitney stratified. Fix a perversity, i.e. p : N→ Z with
p(0) = 0 and

m ≤ n =⇒ 0 ≤ p(m)− p(n) ≤ n −m

Inductively glueing the t-structures in Dc (S) with hearts

Loc(S)[−p(dim S)] for strata S ⊂ X

gives t-structure with heart the p-perverse sheaves pPerv(X ). Let
ıS : S ↪→ X . Perverse sheaves are characterised by

E• ∈ pPerv(X ) ⇐⇒

{
Hi
(
ı−1
S E

•) = 0 for i > p(dim S)

Hi
(
ı!SE•

)
= 0 for i < p(dim S)

Example

X smooth with one stratum =⇒ pPerv(X ) = Loc(X )[−p(dim X )]



Intermediate extensions
Let ı : Z ↪→ X be the inclusion of a closed union of strata. Then

E• ∈ pPerv(Z ) =⇒ Rı∗E• ∼= Rı!E• ∈ pPerv(X )

For the complementary open inclusion  : X −Z ↪→ X we only have

E• ∈ pPerv(X −Z ) =⇒ R∗E• ∈ pD≥0
c (X ) and R!E• ∈ pD≤0

c (X )

The intermediate extension is the perverse sheaf defined by

p!∗E• = im pH0(R!E• → R∗E•)

Proposition

For strata S ⊂ Z the intermediate extension p!∗E• satisfies{
Hi
(
ı−1
S

p!∗E•
)

= 0 for i ≥ p(dim S)

Hi
(
ı!S

p!∗E•
)

= 0 for i ≤ p(dim S)

and has no subobjects or quotients supported on Z .



Properties of perverse sheaves

Proposition

Let E• ∈ pPerv(X ) be a perverse sheaf. Then

I Hd (X ; E•) 6= 0 =⇒ p(dim X ) ≤ d ≤ dim X + p(dim X )

I E• is simple ⇐⇒ E• ∼= p!∗L[− dim S ] for irreducible
L ∈ Loc(S) where  : S ↪→ S is the inclusion

Proposition

The category pPerv(X ) has many nice properties:

I it is a stack

I it is Artinian and Noetherian

I it is Krull–Remak–Schmidt

I duality induces an equivalence

DX : pPerv(X )op
∼−→ p∗Perv(X )



Example: perverse sheaves on X = ({0} ⊂ C)
Fix k = C. Let Lµ ∈ Loc(C∗) have rank 1 and monodromy
µ ∈ C∗. The simple perverse sheaves in mPerv(X ) are

Sµ = !∗Lµ[1] and S0 = Rı∗k0

The only non-zero Ext-groups are, for µ 6= 0,

Ext1(Sµ,Sµ) ∼= Ext1(S1, S0) ∼= Ext1(S0,S1) ∼= k

Hence mPerv(X ) = 〈S0,S1〉 ⊕
⊕

µ 6=0,1〈Sµ〉 with indecomps in

I 〈Sµ〉 corresponding to Jordan blocks Jµn

I 〈S0,S1〉 corresponding to one of four extensions of J1
n , e.g.

S0 S1 S0

R!kC∗ [1] R∗kC∗ [1]

M



Example: maps between smooth curves

Suppose f : X → Y is a map between smooth curves. Then

Rf∗kX [1] ∼= !∗L[1]

where  : U → Y is the smooth locus and L = −1Rf∗kX .

Remark (Instance of Decomposition Theorem)

When k = C the perverse sheaf !∗L[1] is semi-simple.

Example

Let f : X → CP1 be a smooth hyper-elliptic curve of genus g
ramified at 2(g + 1) points. The monodromy of L at each is(

0 1
1 0

)
and Rf∗kX [1] ∼= CCP1 ⊕ R!M[1] where M is rank 1 local system
with monodromy −1 at each ramification point.



Example: stratifications with finite fundamental groups

Theorem (Cipriani–W. 2017)

Suppose π1S finite for all strata S ⊂ X . Then pPerv(X )

I has finitely many simple objects

I has enough projectives and enough injectives

I pPerv(X ) ' Rep(EndP•) for projective generator P•

Example

Middle perversity perverse sheaves on CP0 ⊂ CP1 ⊂ · · · ⊂ CPn are
representations of

0 1 · · · n
p1

q1

pn

qn

with 1− q1p1 invertible and all other length two paths zero.



Intersection cohomology

The intersection cohomology complex associated to L ∈ Loc(S) is

pIC•(L) = p!∗L[−p(dim S)] ∈ pPerv(X )

where  : S → S . The associated intersection cohomology is

pIH∗(X ;L) = H∗+p(dimS) (X ; pIC•(L)) .

Theorem (Poincaré duality)

There is an isomorphism

DX
pIC•(L) ∼= p∗IC•(L∨)

It follows that pIHd
c (X ;L) ∼= p∗IHdimS−d(X ;L∨)



Comparing perversities with classical perversities
Suppose x ∈ S ′ ⊂ S − S and L is the link of S ′ in S and
L ∈ Loc(S). Then the stalk cohomology Hd

x (pIC•(L)) is

pIHd−p(dimS)(C (L);L) ∼=

{
pIHd−p(dim S)(L;L) d < p(dim S ′)

0 d ≥ p(dim S ′)

Since dim S ′ < dim S and p is a decreasing function:

pIC•(L) ∼= · · · τ<p(dimS ′)RS ′∗ · · · τ≤p(dimS)L[−p(dim S)].

Comparing with Deligne’s formula for the classical perversity p

pIC•(kU) ∼= · · · τ≤p(codim S ′)−nRS ′∗ · · · τ≤−nkU [n]

(where U ⊂ X open and dim X = 2n) we deduce that

p(2n − d) =

{
p(d)− p(2n)− 1 d < 2n

0 d = 2n



Families of stratifications

Let S be a family of Whitney stratifications of X , such that any
two admit a common refinement. For example S might consist of
all semialgebraic stratifications, or all stratifications by analytic or
algebraic varieties. The S-constructible derived category is

DS−c (X ) = colim S∈S Dc (XS)

and similarly pPervS−c(X ) = colim S∈S
pPerv(XS).

Theorem (Beilinson 1987)

Dalg−c (X ) ' Db mPervalg−c(X ) where m(d) = −d/2

Theorem (Kashiwara–Schapira 1990)

DR−an−c (X ) ' DbConstrR−an−c(X )



Part III

Morse theory



Classical Morse theory

Let M be a compact, oriented manifold. Say f : M → R is Morse if
it has only non-degenerate critical points, equivalently if

Γdf t T ∗MM ⊂ T ∗M

where T ∗SM = {(x , α) ∈ T ∗M | α|TxS = 0} for smooth S ⊂ M.

Lemma (Cohomological Morse Lemma)

If there is one critical point x ∈ f −1[a, b) then there is a LES

· · · → k[−indx f ]→ H∗(X<b; k)→ H∗(X<a; k)→ · · ·

Corollary (Index or Poincaré–Hopf Theorem)

Relating indices to orientations of intersections we obtain

χ(M) = Γdf · T ∗MM = T ∗MM · T ∗MM



Stratified Morse functions

Let X ⊂ M be Whitney stratified. Then the conormal space

T ∗XM =
⋃
S⊂X

T ∗SM

is closed in T ∗M. A covector in T ∗M is degenerate if it lies in⋃
S⊂X

(
T ∗SM − T ∗SM

)
i.e. if it vanishes on a generalised tangent space.

Definition (Stratified Morse function)

Smooth f : X → R whose restriction f |S to each stratum S ⊂ X is
Morse with df non-degenerate at each critical point; equivalently if

Γdf t T ∗SM and Γdf ∩
(
T ∗SM − T ∗SM

)
= ∅

for each stratum S ⊂ X .



Morse data

Let x ∈ S ⊂ X and N be a normal slice to S at x in M. Let

ı : X≥c ↪→ X and ıN : N ∩ X≥c ↪→ N ∩ X

The local Morse data and normal Morse data of E• ∈ Dc (X ) are

LMD(E•, f , x) =
(
ı!E•

)
x

and NMD(E•, f , x) =
(
ı!NE•

)
x

Proposition

If dx(f |S) 6= 0 then LMD(E•, f , x) ∼= 0 ∼= NMD(E•, f , x). If
dx(f |S) = 0 then

LMD(E•, f , x) ∼= NMD(E•, f , x)[−indx f |S ]

and NMD(E•, f , x) depends only on the component of dx f in the
non-degenerate covectors T ∗SM −

⋃
S ′>S T ∗S ′M



Examples of Morse data

Example (Local system L ∈ Loc(X ) and x ∈ S)

I codimS = 0 =⇒ NMD(L, f , x) = Lx
I codimS > 0 and X smooth =⇒ NMD(L, f , x) = 0

Example (X a complex curve, Σ singular set)

For any stratified Morse function f : X → R

NMD(kX , f , x) =

{
kmx−1[−1] x ∈ Σ

k x 6∈ Σ

NMD(mIC•(kX−Σ), f , x) =

{
kmx−bx x ∈ Σ

k[1] x 6∈ Σ

where mx is the multiplicity and bx the number of branches.



Morse theory for constructible complexes

Lemma (Cohomological Morse Lemma II)

If there is one critical point x ∈ f −1[a, b) then there is a LES

· · · → NMD(E•, f , x)[−indx f |S ]→ H∗ (X<b; E•)→ H∗ (X<a; E•)→ · · ·

Example (Pinched torus / nodal cubic)

Let X = {(x , y , z) ∈ CP2 | x3 + y 3 = xyz} be the nodal cubic.
Then

H i (X ; k) ∼=

{
k i = 0, 1, 2

0 otherwise

and

mIH i (X ; k) ∼=

{
k i = 0, 2

0 otherwise



Complex stratified Morse theory

Suppose X ⊂ M is a complex analytic Whitney stratified space.
Then for critical x ∈ S

NMD(E•, f , x) = NMD(E•,S)

depends only on S .

Corollary (Brylinski–Dubson–Kashiwara Index Theorem 1981)

Carefully choosing orientations to compute the intersection we
obtain

χ(X ; E•) = Γdf · CC (E•) = T ∗MM · CC (E•)

where

CC (E•) =
∑
S

(−1)dimC Sχ (NMD(E•, S)) T ∗SM

is the characteristic cycle of E•.



Properties of characteristic cycles

I CC (E•[1]) = −CC (E•)
I For a triangle E• → F• → G• → E•[1] one has

CC (F•) = CC (E•) + CC (G•)

I CC (DE•) = CC (E•)
I E• ∈ mPerv(X ) =⇒ CC (E•) effective (see later)

Examples

I For a local system L on a closed stratum S

CC (L) = (−1)dimC S rank (L) T ∗SM

so that χ(S ;L) = rank (L)χ(S)

I Characteristic cycles for mPerv({0} ⊂ CP1)



Characteristic cycles for curves

If X ⊂ M is a complex curve with singular set Σ then

CC (kX ) = −T ∗X−ΣM −
∑
x∈Σ

(mx − 1)T ∗x M

CC (IC•(kX−Σ)) = T ∗X−ΣM +
∑
x∈Σ

(mx − bx)T ∗x M

Hence

CC (kX ) + CC (IC•(kX−Σ)) =
∑
x∈Σ

(1− bx)T ∗x M

and so by the index theorem

χ(X )− Iχ(X ) =
∑
x∈Σ

(1− bx)



Part IV

Special results for the middle perversity



Purity and perversity

Let X be a complex variety.

Definition (Purity)

E• is pure if NMD(E•,S) is concentrated in degree − dimC S .

Lemma
If E• is pure and x ∈ S is only critical point in f −1[a, b) then

Hd (X<b,X<a; E•) ∼= 0 for d 6= indx f |S − dimC S

In particular Hd (X ; E•) = 0 for |d | > dimC X

Theorem (Kashiwara–Schapira 1990)

Let m(d) = −d/2 be the middle perversity. Then

E• ∈ mPerv(X ) ⇐⇒ E is pure



Artin vanishing and consequences

Theorem (Perverse Artin vanishing)

If X is affine and E• ∈ mPerv(X ) then

Hd (X ; E•) = 0 for d > 0 and Hd
c (X ; E•) = 0 for d < 0

Corollary

If f : X → Y is affine and E• ∈ mPerv(X ) then

Rf∗E• ∈ D≤0
c (Y ) and Rf!E• ∈ D≥0

c (Y )

Corollary (Affine inclusions preserve perverse sheaves)

If  : X ↪→ Y is an open affine inclusion then

R∗,R! : mPerv(X )→ mPerv(Y )



Lefschetz Hyperplane Theorem

Theorem
Let X ⊂ CPn be a complex projective variety, and H a generic
hyperplane. Then the restriction

mIHd(X )→ mIHd(X ∩ H)

is isomorphism for d < dimC X − 1, injective for d = dimC X − 1.

Example (X = {yz = 0} ⊂ CP2 and H = {x + y + z = 0})
Since |X ∩ H| = 2 the LHT =⇒ dim mIH0(X ) ≤ 2. From the
index theorem Imχ(X ) = 4. Using Poincaré duality we see that

mIHd(X ) ∼=

{
k2 d = 0, 2

0 d = 1
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