Topological aspects of perverse sheaves

Jon Woolf

June, 2017

Part I

Stratified spaces

Stratifications

A stratification of a topological space X consists of

- 1. a decomposition $X = \bigsqcup_i S_i$ into disjoint locally-closed subspaces
- 2. geometric conditions on the strata S_i
- 3. conditions on how the strata fit together

There are many variants of these conditions (topological, PL, smooth, analytic, algebraic) depending on context. We will work with a smooth version: Whitney stratifications.

Whitney stratifications

A locally-finite decomposition $M = \bigsqcup_i S_i$ of a smooth manifold $M \subset \mathbb{R}^N$ is a Whitney stratification if

- 1. each S_i is a smooth submanifold
- 2. the frontier condition holds: $S_i \cap \overline{S_j} \neq \emptyset \implies S_i \subset \overline{S_j}$
- 3. the Whitney B condition holds: for sequences (x_k) in S_i and (y_k) in S_j with $x_k, y_k \to x$ as $k \to \infty$ one has

$$\lim_{k\to\infty}\overline{x_ky_k}\subset\lim_{k\to\infty}T_{y_k}S_j$$

Remarks

- ▶ Whitney B independent of embedding $M \subset \mathbb{R}^N$
- ▶ Whitney B \implies Whitney A: $T_xS_i \subset \lim_{k \to \infty} T_{y_k}S_j$

Whitney stratified spaces

A Whitney stratified space is a union of strata $X \subset M$ in a Whitney stratification of M.

Examples

- Manifold with marked submanifold
- ▶ Manifold with boundary $(M, \partial M)$
- ▶ \mathbb{RP}^m or \mathbb{CP}^m filtered by projective subspaces
- ▶ Whitney umbrella: $\{x^2 = y^2z\} \subset \mathbb{R}^3$

Theorem (Whitney 1965)

A real or complex analytic variety admits a Whitney stratification by analytic subvarieties.

In fact, definable subsets of any o-minimal expansion of $\mathbb R$ admit Whitney stratifications, e.g. semi-algebraic or subanalytic subsets.

Local structure and stratified maps

A Whitney stratified space X admits the structure of a Thom–Mather stratification. In particular,

- the stratification is locally topologically trivial
- each stratum $S \subset X$ has a (topologically) well-defined link L such that each $x \in S$ has a neighbourhood stratum-preserving homeomorphic to

$$\mathbb{R}^{\dim S} \times C(L)$$

where $C(L) = L \times [0,1)/L \times \{0\}$ is the cone on L.

A smooth map $f: X \to Y$ of Whitney stratified spaces is stratified if the preimage of each stratum of Y is a union of strata of X.

Theorem (Whitney 1965)

For proper, analytic $f: X \to Y$ one can refine stratifications of X and Y so that f is stratified.

Exit paths

Let $||\Delta^n||$ be the geometric *n*-simplex with 'strata'

$$S_i = \{(t_0, \dots, t_n) \mid t_i \neq 0, t_{i+1} = \dots = t_n = 0\}$$
 $(0 \le i \le n)$

For Whitney stratified X, consider continuous stratified maps

$$||\Delta^n|| \to X$$

The restriction to the 'spine' is an exit path; the restriction to the edge [0n] is an elementary exit path.

Theorem (Nand-Lal-W. 2016, c.f. Millar 2013)

Let SSX be the simplicial set with $SSX_n = \{||\Delta^n|| \to X\}$. Then SSX is a quasi-category (spines can be completed to simplices).

Fundamental, or exit, category

The objects of $\tau_1 X$ are the points of X and the morphisms

$$\tau_1 X(x, y) = \{\text{elementary exit paths from } x \text{ to } y\}/\text{homotopy}$$

Composition is given by concatenation followed by deformation to an elementary exit path. For example, if X has one stratum then $\tau_1 X = \Pi_1 X$ is the fundamental groupoid.

Examples

- $\blacktriangleright \ \tau_1\left(\{0\}\subset\mathbb{C}\right)\simeq\langle\ 0\to 1\odot\mathbb{Z}\ \rangle$

The fundamental category is a functor — stratified $f: X \to Y$ induces $\tau_1 f: \tau_1 X \to \tau_1 Y$.

Local systems and covers

Let X be a topological space. Consider sheaves of k-vector spaces.

Definition (Local system)

Locally-constant sheaf on X with finite-dimensional stalks.

Theorem

For X locally 1-connected there are equivalences of categories

- $ightharpoonup \operatorname{Cov}(X) \simeq \operatorname{Fun}(\Pi_1 X, \operatorname{Set})$
- ► $Loc(X; k) \simeq Fun(\Pi_1 X, k-VS)$

Sketch proof.

Covers have unique path lifting for all paths. Similarly, local systems induce monodromy functors $\Pi_1 X \to k$ -vs.

Constructible sheaves and stratified étale covers

Let X be a Whitney stratified space.

Definition (Constructible sheaf)

Sheaf on X whose restriction to each stratum is a local system.

Definition (Stratified étale cover)

Étale map $p \colon Y \to X$ which restricts to a cover of each stratum.

Theorem (MacPherson 1990s, c.f. W. 2008)

For X Whitney stratified there are equivalences of categories

- ▶ $\operatorname{EtCov}(X) \simeq \operatorname{Fun}(\tau_1 X, \operatorname{Set})$
- $\qquad \qquad \text{Constr}(X;k) \simeq \text{Fun}(\tau_1 X, k\text{-}\textit{vs})$

Sketch proof.

Étale covers have unique path lifting for exit paths. Similarly, constructible sheaves induce monodromy functors $\tau_1 X \to k$ -vs.

Remarks and examples

Remarks

- ▶ There is a dual version 'entry category' $\tau_1 X^{op}$ classifies 'stratified branched covers' and 'constructible cosheaves'
- ▶ Functoriality of $\tau_1 X$ for stratified maps $f: X \to Y$ induces

$$\begin{array}{ll} \operatorname{EtCov}(Y) \to \operatorname{EtCov}(X) \colon & Z \mapsto Y \times_X Z \\ \operatorname{Constr}(Y) \to \operatorname{Constr}(X) \colon & \mathcal{E} \mapsto f^* \mathcal{E} \end{array}$$

Examples

- ▶ $Constr({0} \subset \mathbb{C})$ are representations of $0 \to 1 \odot$
- $\,\blacktriangleright\, \operatorname{Constr} \bigl(\{0\} \subset \mathbb{CP}^1\bigr)$ are representations of $0 \to 1$

Part II

Perverse sheaves

Constructible derived category

- ▶ $\mathcal{E}^{\bullet} \in D_c(X) \iff \mathcal{H}^d(\mathcal{E}^{\bullet}) \in \operatorname{Constr}(X)$ for all $d \in \mathbb{Z}$
- ▶ Poincaré–Verdier duality $D_X: D_c(X)^{op} \xrightarrow{\sim} D_c(X)$
- ▶ $\mathcal{E}^{\bullet} \in D_c(X)$ has finite-dimensional cohomology:

$$\mathbb{H}^d(X; \mathcal{E}^{ullet}) = H^d(Rp_*\mathcal{E}^{ullet}) \cong \operatorname{\mathsf{Hom}}(k_X, \mathcal{E}^{ullet}[d])$$

▶ for open $j: U \hookrightarrow X$ and closed $i: Z = X - U \hookrightarrow X$ have

$$D_{c}\left(Z\right) \xrightarrow{R_{l_{1}}=R_{l_{*}}} D_{c}\left(X\right) \xrightarrow{I^{!}=\jmath^{-1}} D_{c}\left(U\right)$$

giving rise to (dual) natural exact triangles:

$$Ri_!i^!\mathcal{E}^{\bullet} \to \mathcal{E}^{\bullet} \to Rj_*j^{-1}\mathcal{E}^{\bullet} \to Ri_!i^!\mathcal{E}^{\bullet}[1]$$

$$Rj_!j^!\mathcal{E}^{\bullet} \to \mathcal{E}^{\bullet} \to Ri_*i^{-1}\mathcal{E}^{\bullet} \to Rj_!j^!\mathcal{E}^{\bullet}[1]$$

Cohomology of local systems

Let M be an oriented (real) manifold and $\mathcal{L} \in Loc(M)$. Then

- ▶ $\mathbb{H}^d(M; \mathcal{L}) = 0$ for d < 0 and $d > \dim M$
- $\chi(M; \mathcal{L}) = \dim(\mathcal{L})\chi(M)$

Remarks

The vanishing result follows from the isomorphism

$$D_M \mathcal{L} \cong \mathcal{L}^{\vee}[\dim M]$$

which implies $\mathbb{H}_{c}^{d}\left(M;\mathcal{L}\right)\cong\mathbb{H}^{\dim M-d}\left(M;\mathcal{L}^{\vee}\right)^{\vee}$

The second fact generalises the formula

$$\chi(E) = \chi(B)\chi(F)$$

for a fibration $F \rightarrow E \rightarrow B$.

Example: local systems on \mathbb{C}^*

Consider an *n*-dimensional $\mathcal{L} \in \mathsf{Loc}(\mathbb{C}^*)$ as a representation

$$\pi_1\mathbb{C}^* \to \mathrm{GL}_n(k)$$

and let $\mu_{\mathcal{L}}$ denote the image of the generator. Then

$$\mathbb{H}^d\left(\mathbb{C}^*;\mathcal{L}
ight) = egin{cases} \ker(\mu_{\mathcal{L}}-1) & d=0 \ \operatorname{coker}\left(\mu_{\mathcal{L}}-1
ight) & d=1 \ 0 & d
eq 0,1 \end{cases}$$

Identifying \mathbb{C}^* with $\{xy=1\}\subset \mathbb{C}^2$ exhibits the vanishing for d>1 as an example of

Theorem (Artin vanishing for local systems)

If M is a smooth affine complex variety then

$$\mathbb{H}^{d}(X; \mathcal{L}) = 0 \quad \text{for } d > \dim_{\mathbb{C}} M$$

$$\mathbb{H}^{d}_{c}(X; \mathcal{L}) = 0 \quad \text{for } d < \dim_{\mathbb{C}} M$$

From local systems to perverse sheaves

Constructible sheaves are a special case of perverse sheaves:

- $ightharpoonup \operatorname{Constr}(X)$ is 'glued' from local systems on the strata
- Perverse sheaves are 'glued' from shifted local systems

Lemma

 $\operatorname{Constr}(X) \hookrightarrow D_c(X)$ is a full abelian subcategory with $D_c(X)$ as its triangulated closure.

Example
$$(X = \mathbb{CP}^1)$$

 $\operatorname{Constr}(X) \simeq k$ -vs so $\operatorname{\mathsf{Hom}}_{D_b\operatorname{Constr}(X)}(k_X,k_X[d]) = 0$ for $d \neq 0$ but

$$\operatorname{\mathsf{Hom}}_{D_c(X)}(k_X,k_X[2])\cong H^2(X;k)\cong k$$

This shows $D_c(X) \not\simeq D^b \operatorname{Constr}(X)$ in general.

Truncation structures

A *t*-structure $D_c^{\leq 0}(X) \subset D_c(X)$ is an ext-closed subcategory with

- ▶ $D_c^{\leq 0}(X)[1] \subset D_c^{\leq 0}(X)$
- every $\mathcal{E}^{\bullet} \in D_c(X)$ sits in a triangle

$$\mathcal{D}^{\bullet} \to \mathcal{E}^{\bullet} \to \mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}[1]$$

with
$$\mathcal{D}^{ullet}\in D_c^{\leq 0}(X)$$
 and $\mathcal{F}^{ullet}\in D_c^{\geq 1}(X)=D_c^{\leq 0}(X)^{\perp}$

The *t*-structure is bounded if

$$D_c(X) = \bigcup_{n \in \mathbb{N}} D_c^{\geq -n}(X) \cap D_c^{\leq n}(X)$$

where $D_c^{\leq n}(X) = D_c^{\leq 0}(X)[-n]$ etc.

Example (Standard t-structure)

$$D_c^{\leq 0}(X) = \{ \mathcal{E}^{\bullet} \mid \mathcal{H}^i \mathcal{E} = 0 \text{ for } i > 0 \}$$

Hearts and cohomology

Theorem (Beilinson, Bernstein, Deligne 1982)

- ▶ $D_c^{\leq 0}(X) \hookrightarrow D_c(X)$ has a right adjoint $\tau^{\leq 0}$
- $igspace D_c^{\geq 0}(X) \hookrightarrow D_c(X)$ has a left adjoint $au^{\geq 0}$
- heart $D_c^0(X) = D_c^{\leq 0}(X) \cap D_c^{\geq 0}(X)$ is an abelian subcategory
- $\mathcal{H}^{0}= au^{\leq 0} au^{\geq 0}\colon D_{c}\left(X
 ight) o D_{c}^{0}(X)$ is cohomological

Example

The heart of the standard *t*-structure is $\operatorname{Constr}(X)$, and \mathcal{H}^0 and $\tau^{\leq 0}$ are the previously defined functors.

Remark (heart determines a bounded t-structure)

$$D_c^{\leq 0}(X) = \langle D_c^0(X), D_c^0(X) [1], \ldots \rangle$$

Glueing *t*-structures

The most important way of constructing t-structures (for us) is via the following glueing construction. Suppose $j: U \hookrightarrow X$ is an open union of strata and $i: Z \hookrightarrow X$ the complementary closed inclusion.

Theorem (Beilinson, Bernstein, Deligne 1982)

Given t-structures $D_c^{\leq 0}(U)$ and $D_c^{\leq 0}(Z)$ there is a unique 'glued' t-structure $D_c^{\leq 0}(X)$ such that

$$\mathcal{E}^{\bullet} \in D_c^{\leq 0}(X) \iff \jmath^{-1}\mathcal{E}^{\bullet} \in D_c^{\leq 0}(U) \ \ \text{and} \ \imath^{-1}\mathcal{E}^{\bullet} \in D_c^{\leq 0}(Z)$$

dually
$$\mathcal{E}^{\bullet} \in D_c^{\geq 0}(X) \iff \jmath^{-1}\mathcal{E}^{\bullet} \in D_c^{\geq 0}(U) \text{ and } \imath^!\mathcal{E}^{\bullet} \in D_c^{\geq 0}(Z).$$

Example (Standard *t*-structure)

The *t*-structure with heart $\operatorname{Constr}(X)$ is glued from those with hearts $\operatorname{Constr}(U)$ and $\operatorname{Constr}(Z)$, hence inductively from those on $D_c(S)$ with heart $\operatorname{Loc}(S)$ for each stratum $S \subset X$.

Perverse sheaves

Let X be Whitney stratified. Fix a perversity, i.e. $p \colon \mathbb{N} \to \mathbb{Z}$ with p(0) = 0 and

$$m \le n \implies 0 \le p(m) - p(n) \le n - m$$

Inductively glueing the *t*-structures in $D_c(S)$ with hearts

$$Loc(S)[-p(\dim S)]$$
 for strata $S \subset X$

gives *t*-structure with heart the *p*-perverse sheaves p Perv(X). Let $i_S: S \hookrightarrow X$. Perverse sheaves are characterised by

$$\mathcal{E}^{\bullet} \in {}^{p}\operatorname{Perv}(X) \iff \begin{cases} \mathcal{H}^{i}\left(\imath_{S}^{-1}\mathcal{E}^{\bullet}\right) = 0 & \text{for } i > p(\dim S) \\ \mathcal{H}^{i}\left(\imath_{S}^{!}\mathcal{E}^{\bullet}\right) = 0 & \text{for } i < p(\dim S) \end{cases}$$

Example

X smooth with one stratum $\implies {}^{p}\operatorname{Perv}(X) = \operatorname{Loc}(X)[-p(\dim X)]$

Intermediate extensions

Let $i: Z \hookrightarrow X$ be the inclusion of a closed union of strata. Then

$$\mathcal{E}^{ullet} \in {}^{p}\mathsf{Perv}(Z) \implies R\imath_{*}\mathcal{E}^{ullet} \cong R\imath_{!}\mathcal{E}^{ullet} \in {}^{p}\mathsf{Perv}(X)$$

For the complementary open inclusion $j: X - Z \hookrightarrow X$ we only have

$$\mathcal{E}^{\bullet} \in {}^{p}\mathsf{Perv}(X-Z) \implies R\jmath_{*}\mathcal{E}^{\bullet} \in {}^{p}D_{c}^{\geq 0}(X) \text{ and } R\jmath_{!}\mathcal{E}^{\bullet} \in {}^{p}D_{c}^{\leq 0}(X)$$

The intermediate extension is the perverse sheaf defined by

$${}^{p}_{\jmath_{!*}}\mathcal{E}^{ullet} = \operatorname{im}{}^{p}\mathcal{H}^{0}(R_{\jmath_{!}}\mathcal{E}^{ullet} o R_{\jmath_{*}}\mathcal{E}^{ullet})$$

Proposition

For strata $S \subset Z$ the intermediate extension ${}^p{}_{\mathcal{I}!*}\mathcal{E}^{\bullet}$ satisfies

$$\begin{cases} \mathcal{H}^{i}\left(\imath_{S}^{-1} p_{\jmath!*} \mathcal{E}^{\bullet}\right) = 0 & \text{for } i \geq p(\dim S) \\ \mathcal{H}^{i}\left(\imath_{S}^{!} p_{\jmath!*} \mathcal{E}^{\bullet}\right) = 0 & \text{for } i \leq p(\dim S) \end{cases}$$

and has no subobjects or quotients supported on Z.

Properties of perverse sheaves

Proposition

Let $\mathcal{E}^{\bullet} \in {}^{p}Perv(X)$ be a perverse sheaf. Then

- $\blacktriangleright \ \mathbb{H}^d(X; \mathcal{E}^{\bullet}) \neq 0 \implies p(\dim X) \leq d \leq \dim X + p(\dim X)$
- \mathcal{E}^{\bullet} is simple $\iff \mathcal{E}^{\bullet} \cong {}^{p}_{\mathcal{J}_{!*}}\mathcal{L}[-\dim S]$ for irreducible $\mathcal{L} \in Loc(S)$ where $j: S \hookrightarrow \overline{S}$ is the inclusion

Proposition

The category ${}^{p}Perv(X)$ has many nice properties:

- ▶ it is a stack
- it is Artinian and Noetherian
- ▶ it is Krull-Remak-Schmidt
- duality induces an equivalence

$$D_X: {}^p Perv(X)^{op} \stackrel{\sim}{\longrightarrow} {}^{p^*} Perv(X)$$

Example: perverse sheaves on $X = (\{0\} \subset \mathbb{C})$

Fix $k=\mathbb{C}$. Let $\mathcal{L}_{\mu}\in \mathrm{Loc}(\mathbb{C}^*)$ have rank 1 and monodromy $\mu\in\mathbb{C}^*$. The simple perverse sheaves in ${}^m\mathrm{Perv}(X)$ are

$$S^{\mu}=\jmath_{!*}\mathcal{L}_{\mu}[1]$$
 and $S^{0}=R\imath_{*}k_{0}$

The only non-zero Ext-groups are, for $\mu \neq 0$,

$$\operatorname{Ext}^1(S^\mu,S^\mu)\cong\operatorname{Ext}^1(S^1,S^0)\cong\operatorname{Ext}^1(S^0,S^1)\cong k$$

Hence ${}^m\mathsf{Perv}(X) = \langle S^0, S^1 \rangle \oplus \bigoplus_{\mu \neq 0,1} \langle S^\mu \rangle$ with indecomps in

- $\langle S^{\mu} \rangle$ corresponding to Jordan blocks J_n^{μ}
- ▶ $\langle S^0, S^1 \rangle$ corresponding to one of four extensions of J_n^1 , e.g.

Example: maps between smooth curves

Suppose $f: X \to Y$ is a map between smooth curves. Then

$$Rf_*k_X[1] \cong j_{!*}\mathcal{L}[1]$$

where $j: U \to Y$ is the smooth locus and $\mathcal{L} = j^{-1}Rf_*k_X$.

Remark (Instance of Decomposition Theorem)

When $k = \mathbb{C}$ the perverse sheaf $\jmath_{!*}\mathcal{L}[1]$ is semi-simple.

Example

Let $f: X \to \mathbb{CP}^1$ be a smooth hyper-elliptic curve of genus g ramified at 2(g+1) points. The monodromy of $\mathcal L$ at each is

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and $Rf_*k_X[1] \cong \mathbb{C}_{\mathbb{CP}^1} \oplus R_{\mathcal{I}!}\mathcal{M}[1]$ where \mathcal{M} is rank 1 local system with monodromy -1 at each ramification point.

Example: stratifications with finite fundamental groups

Theorem (Cipriani-W. 2017)

Suppose π_1S finite for all strata $S \subset X$. Then ${}^p Perv(X)$

- has finitely many simple objects
- has enough projectives and enough injectives
- ▶ $^pPerv(X) \simeq \operatorname{Rep}(\operatorname{End} \mathcal{P}^{ullet})$ for projective generator \mathcal{P}^{ullet}

Example

Middle perversity perverse sheaves on $\mathbb{CP}^0\subset\mathbb{CP}^1\subset\cdots\subset\mathbb{CP}^n$ are representations of

$$0 \stackrel{p_1}{\leqslant} 1 \stackrel{\cdots}{\leqslant} \cdots \stackrel{p_n}{\leqslant} n$$

with $1 - q_1 p_1$ invertible and all other length two paths zero.

Intersection cohomology

The intersection cohomology complex associated to $\mathcal{L} \in Loc(S)$ is

$${}^p\mathcal{IC}^{ullet}(\mathcal{L})={}^p\jmath_{!*}\mathcal{L}[-p(\dim S)]\in {}^p\mathsf{Perv}(X)$$

where $j \colon S \to \overline{S}$. The associated intersection cohomology is

$${}^{p}IH^{*}(X;\mathcal{L})=\mathbb{H}^{*+p(\dim S)}(X;{}^{p}\mathcal{I}\mathcal{C}^{\bullet}(\mathcal{L})).$$

Theorem (Poincaré duality)

There is an isomorphism

$$D_X{}^p\mathcal{I}\mathcal{C}^{\bullet}(\mathcal{L})\cong {}^{p^*}\mathcal{I}\mathcal{C}^{\bullet}(\mathcal{L}^{\vee})$$

It follows that ${}^{p}IH_{c}^{d}(X;\mathcal{L})\cong {}^{p^{*}}IH^{\dim S-d}(X;\mathcal{L}^{\vee})$

Comparing perversities with classical perversities

Suppose $x \in S' \subset \overline{S} - S$ and L is the link of S' in \overline{S} and $\mathcal{L} \in \mathsf{Loc}(S)$. Then the stalk cohomology $\mathcal{H}^d_x \left({}^p \mathcal{I} \mathcal{C}^{\bullet}(\mathcal{L}) \right)$ is

$${}^{p}IH^{d-p(\dim S)}(C(L);\mathcal{L})\cong egin{cases} {}^{p}IH^{d-p(\dim S)}(L;\mathcal{L}) & d< p(\dim S') \ 0 & d\geq p(\dim S') \end{cases}$$

Since dim $S' < \dim S$ and p is a decreasing function:

$${}^p\mathcal{IC}^{ullet}(\mathcal{L})\cong \cdots au_{< p(\dim S')}R au_{S'*}\cdots au_{\leq p(\dim S)}\mathcal{L}[-p(\dim S)].$$

Comparing with Deligne's formula for the classical perversity \overline{p}

$$\overline{p}\mathcal{IC}^{\bullet}(k_U) \cong \cdots \tau_{\leq \overline{p}(\operatorname{codim} S') - n} R \jmath_{S'*} \cdots \tau_{\leq -n} k_U[n]$$

(where $U \subset X$ open and dim X = 2n) we deduce that

$$\overline{p}(2n-d) = \begin{cases} p(d) - p(2n) - 1 & d < 2n \\ 0 & d = 2n \end{cases}$$

Families of stratifications

Let $\mathbb S$ be a family of Whitney stratifications of X, such that any two admit a common refinement. For example $\mathbb S$ might consist of all semialgebraic stratifications, or all stratifications by analytic or algebraic varieties. The $\mathbb S$ -constructible derived category is

$$D_{\mathbb{S}-c}\left(X\right)=\operatorname{colim}_{\mathcal{S}\in\mathbb{S}}D_{c}\left(X_{\mathcal{S}}\right)$$

and similarly ${}^p\mathsf{Perv}_{\mathbb{S}-c}(X) = \operatorname{colim}_{\mathcal{S} \in \mathbb{S}} {}^p\mathsf{Perv}(X_{\mathcal{S}}).$

Theorem (Beilinson 1987)

$$D_{alg-c}(X) \simeq D^{b\ m} Perv_{alg-c}(X)$$
 where $m(d) = -d/2$

Theorem (Kashiwara-Schapira 1990)

$$D_{\mathbb{R}-an-c}(X) \simeq D^b \mathrm{Constr}_{\mathbb{R}-an-c}(X)$$

Part III

Morse theory

Classical Morse theory

Let M be a compact, oriented manifold. Say $f: M \to \mathbb{R}$ is Morse if it has only non-degenerate critical points, equivalently if

$$\Gamma_{df} \cap T_M^* M \subset T^* M$$

where $T_S^*M = \{(x, \alpha) \in T^*M \mid \alpha|_{T_xS} = 0\}$ for smooth $S \subset M$.

Lemma (Cohomological Morse Lemma)

If there is one critical point $x \in f^{-1}[a,b)$ then there is a LES

$$\cdots \to k[-\mathrm{ind}_{x}f] \to H^{*}(X_{\leq b};k) \to H^{*}(X_{\leq a};k) \to \cdots$$

Corollary (Index or Poincaré-Hopf Theorem)

Relating indices to orientations of intersections we obtain

$$\chi(M) = \Gamma_{df} \cdot T_M^* M = T_M^* M \cdot T_M^* M$$

Stratified Morse functions

Let $X \subset M$ be Whitney stratified. Then the conormal space

$$T_X^*M = \bigcup_{S \subset X} T_S^*M$$

is closed in T^*M . A covector in T^*M is degenerate if it lies in

$$\bigcup_{S\subset X}\left(\overline{T_S^*M}-T_S^*M\right)$$

i.e. if it vanishes on a generalised tangent space.

Definition (Stratified Morse function)

Smooth $f: X \to \mathbb{R}$ whose restriction $f|_S$ to each stratum $S \subset X$ is Morse with df non-degenerate at each critical point; equivalently if

$$\Gamma_{df} \pitchfork T_S^*M$$
 and $\Gamma_{df} \cap \left(\overline{T_S^*M} - T_S^*M\right) = \emptyset$

for each stratum $S \subset X$.

Morse data

Let $x \in S \subset X$ and N be a normal slice to S at x in M. Let

$$i: X_{\geq c} \hookrightarrow X$$
 and $i_N: N \cap X_{\geq c} \hookrightarrow N \cap X$

The local Morse data and normal Morse data of $\mathcal{E}^{\bullet} \in D_{c}(X)$ are

$$\mathrm{LMD}(\mathcal{E}^{\bullet}, f, x) = \left(i^{!}\mathcal{E}^{\bullet}\right)_{x} \quad \text{and} \quad \mathrm{NMD}(\mathcal{E}^{\bullet}, f, x) = \left(i^{!}_{N}\mathcal{E}^{\bullet}\right)_{x}$$

Proposition

If $d_x(f|_S) \neq 0$ then $LMD(\mathcal{E}^{\bullet}, f, x) \cong 0 \cong NMD(\mathcal{E}^{\bullet}, f, x)$. If $d_x(f|_S) = 0$ then

$$\mathrm{LMD}(\mathcal{E}^{\bullet}, f, x) \cong \mathrm{NMD}(\mathcal{E}^{\bullet}, f, x)[-\mathrm{ind}_{x}f|_{S}]$$

and $\mathrm{NMD}(\mathcal{E}^{\bullet},f,x)$ depends only on the component of $d_x f$ in the non-degenerate covectors $T_S^*M - \bigcup_{S'>S} \overline{T_{S'}^*M}$

Examples of Morse data

Example (Local system $\mathcal{L} \in Loc(X)$ and $x \in S$)

- $ightharpoonup \operatorname{codim} S = 0 \implies \operatorname{NMD}(\mathcal{L}, f, x) = \mathcal{L}_x$
- ▶ $\operatorname{codim} S > 0$ and X smooth $\Longrightarrow \operatorname{NMD}(\mathcal{L}, f, x) = 0$

Example (X a complex curve, Σ singular set)

For any stratified Morse function $f: X \to \mathbb{R}$

$$\operatorname{NMD}(k_X, f, x) = \begin{cases} k^{m_x - 1}[-1] & x \in \Sigma \\ k & x \notin \Sigma \end{cases}$$
$$\operatorname{NMD}(^m \mathcal{IC}^{\bullet}(k_{X - \Sigma}), f, x) = \begin{cases} k^{m_x - b_x} & x \in \Sigma \\ k[1] & x \notin \Sigma \end{cases}$$

where m_x is the multiplicity and b_x the number of branches.

Morse theory for constructible complexes

Lemma (Cohomological Morse Lemma II)

If there is one critical point $x \in f^{-1}[a,b)$ then there is a LES

$$\cdots \to \mathrm{NMD}(\mathcal{E}^\bullet, f, x)[-\mathrm{ind}_x f|_{\mathcal{S}}] \to \mathbb{H}^*\left(X_{< b}; \mathcal{E}^\bullet\right) \to \mathbb{H}^*\left(X_{< a}; \mathcal{E}^\bullet\right) \to \cdots$$

Example (Pinched torus / nodal cubic)

Let $X = \{(x, y, z) \in \mathbb{CP}^2 \mid x^3 + y^3 = xyz\}$ be the nodal cubic.

Then

$$H^{i}(X; k) \cong \begin{cases} k & i = 0, 1, 2 \\ 0 & \text{otherwise} \end{cases}$$

and

$${}^m\!IH^i(X;k)\cong egin{cases} k & i=0,2 \ 0 & \text{otherwise} \end{cases}$$

Complex stratified Morse theory

Suppose $X \subset M$ is a complex analytic Whitney stratified space. Then for critical $x \in S$

$$\mathrm{NMD}(\mathcal{E}^{\bullet}, f, x) = \mathrm{NMD}(\mathcal{E}^{\bullet}, S)$$

depends only on S.

Corollary (Brylinski-Dubson-Kashiwara Index Theorem 1981)

Carefully choosing orientations to compute the intersection we obtain

$$\chi(X; \mathcal{E}^{\bullet}) = \Gamma_{df} \cdot CC(\mathcal{E}^{\bullet}) = T_{M}^{*}M \cdot CC(\mathcal{E}^{\bullet})$$

where

$$CC(\mathcal{E}^{\bullet}) = \sum_{S} (-1)^{\dim_{\mathbb{C}} S} \chi \left(\text{NMD}(\mathcal{E}^{\bullet}, S) \right) T_{S}^{*} M$$

is the characteristic cycle of \mathcal{E}^{\bullet} .

Properties of characteristic cycles

- $\mathsf{CC}\left(\mathcal{E}^{\bullet}[1]\right) = -\mathsf{CC}\left(\mathcal{E}^{\bullet}\right)$
- ▶ For a triangle $\mathcal{E}^{\bullet} \to \mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet} \to \mathcal{E}^{\bullet}[1]$ one has

$$\mathsf{CC}(\mathcal{F}^{\bullet}) = \mathsf{CC}(\mathcal{E}^{\bullet}) + \mathsf{CC}(\mathcal{G}^{\bullet})$$

- $\mathsf{CC}(D\mathcal{E}^{\bullet}) = \mathsf{CC}(\mathcal{E}^{\bullet})$
- ▶ $\mathcal{E}^{\bullet} \in {}^{m}\mathsf{Perv}(X) \implies \mathsf{CC}\left(\mathcal{E}^{\bullet}\right)$ effective (see later)

Examples

lacktriangle For a local system ${\cal L}$ on a closed stratum S

$$\mathsf{CC}\left(\mathcal{L}\right) = (-1)^{\mathsf{dim}_{\mathbb{C}}\,S}\mathsf{rank}\left(\mathcal{L}\right)\,T_S^*M$$

so that
$$\chi(S; \mathcal{L}) = \operatorname{rank}(\mathcal{L}) \chi(S)$$

▶ Characteristic cycles for ${}^m\mathsf{Perv}(\{0\}\subset \mathbb{CP}^1)$

Characteristic cycles for curves

If $X \subset M$ is a complex curve with singular set Σ then

$$\mathsf{CC}\left(k_X
ight) = -\overline{T_{X-\Sigma}^*M} - \sum_{x \in \Sigma} (m_x - 1)T_x^*M$$
 $\mathsf{CC}\left(\mathcal{IC}^{ullet}(k_{X-\Sigma})\right) = \overline{T_{X-\Sigma}^*M} + \sum_{x \in \Sigma} (m_x - b_x)T_x^*M$

Hence

$$\mathsf{CC}(k_X) + \mathsf{CC}(\mathcal{IC}^{\bullet}(k_{X-\Sigma})) = \sum_{x \in \Sigma} (1 - b_x) T_x^* M$$

and so by the index theorem

$$\chi(X) - I\chi(X) = \sum_{x \in \Sigma} (1 - b_x)$$

Part IV

Special results for the middle perversity

Purity and perversity

Let X be a complex variety.

Definition (Purity)

 \mathcal{E}^{\bullet} is pure if $\mathrm{NMD}(\mathcal{E}^{\bullet}, S)$ is concentrated in degree $-\dim_{\mathbb{C}} S$.

Lemma

If \mathcal{E}^{ullet} is pure and $x \in S$ is only critical point in $f^{-1}[a,b)$ then

$$\mathbb{H}^d\left(X_{\leq b}, X_{\leq a}; \mathcal{E}^{ullet}\right) \cong 0 \text{ for } d \neq \operatorname{ind}_x f|_{S} - \dim_{\mathbb{C}} S$$

In particular
$$\mathbb{H}^d\left(X;\mathcal{E}^ullet
ight)=0$$
 for $|d|>\dim_{\mathbb{C}}X$

Theorem (Kashiwara-Schapira 1990)

Let m(d) = -d/2 be the middle perversity. Then

$$\mathcal{E}^{ullet} \in {}^{m}\mathit{Perv}(X) \iff \mathcal{E}$$
 is pure

Artin vanishing and consequences

Theorem (Perverse Artin vanishing)

If X is affine and $\mathcal{E}^{\bullet} \in {}^{m}Perv(X)$ then

$$\mathbb{H}^d\left(X;\mathcal{E}^{ullet}
ight)=0 \ \ ext{for} \ \ d>0 \quad \ \ \, ext{and} \quad \mathbb{H}^d_c\left(X;\mathcal{E}^{ullet}
ight)=0 \ \ ext{for} \ \ d<0$$

Corollary

If $f:X \to Y$ is affine and $\mathcal{E}^{ullet} \in {}^m\mathsf{Perv}(X)$ then

$$Rf_*\mathcal{E}^{ullet}\in D_c^{\leq 0}(Y)$$
 and $Rf_!\mathcal{E}^{ullet}\in D_c^{\geq 0}(Y)$

Corollary (Affine inclusions preserve perverse sheaves)

If $j: X \hookrightarrow Y$ is an open affine inclusion then

$$R_{j_*}, R_{j_!}: {}^m Perv(X) \rightarrow {}^m Perv(Y)$$

Lefschetz Hyperplane Theorem

Theorem

Let $X \subset \mathbb{CP}^n$ be a complex projective variety, and H a generic hyperplane. Then the restriction

$${}^m\!IH^d(X) o {}^m\!IH^d(X\cap H)$$

is isomorphism for $d < \dim_{\mathbb{C}} X - 1$, injective for $d = \dim_{\mathbb{C}} X - 1$.

Example $(X = \{yz = 0\} \subset \mathbb{CP}^2 \text{ and } H = \{x + y + z = 0\})$ Since $|X \cap H| = 2$ the LHT \implies dim ${}^m IH^0(X) \leq 2$. From the index theorem $I^m \chi(X) = 4$. Using Poincaré duality we see that

$$^{m}IH^{d}(X) \cong egin{cases} k^{2} & d=0,2\\ 0 & d=1 \end{cases}$$