
MATH549 Exercise Sheet 6

Deadline for submission: Monday 9th November
Please don’t continue working on this sheet into week 7. You should

focus on your Maple–Latex project.

Introduction

There are no new topics covered in this sheet, just some exercises which are designed
to help you to develop your Maple programming skills.

Exercises 1 and 2 are less difficult than the others: you’re given an explicit al-
gorithm to implement as a Maple procedure. Exercises 3 to 5 are more extended
investigations of a variety of topics, and are intended to mimic the sort of program-
ming that you might end up doing for your project: if you can do all the steps of any
one of these exercises, you’re doing quite well.

You should certainly start by trying exercises 1 and 2. Don’t feel you have to
attempt all of the other exercises (though the more you do, the more practice
you’ll get). It’s better if you can do one of these harder exercises completely, rather
than doing bits of all three.

You should put the programs that you write in separate files. Thus any programs
you write for exercise 1 should be in a file yourname1.txt, any for exercise 2 should be
in yourname2.txt, and so on. In addition you should submit a single Maple worksheet
yourname6 which reads in each of the files in turn, and then has a number of commands
testing and experimenting with the programs. It’s a good idea to restart before each
new exercise in this worksheet.

Make sure that your programs are well commented, and include appropriate error
handling. Make sure that your Maple worksheet includes adequate commentary on
what you’re doing (in text mode).

Submit all necessary files to jonwoolf@liv.ac.uk by 5pm on Monday, 9th Novem-
ber. As usual, you can find some hints on the module webpage.

1



Exercise 1: Russian multiplication

The Russian Multiplication Algorithm, described below, is a method for multiply-
ing two positive integers M and N . Write a program which carries it out: thus
RussianMultiplication(M,N) should return the number M × N . (What it does
isn’t very exciting, then . . . ) If you can, include a line or two of text in your work-
sheet explaining why the algorithm works (this is a mathematical question).

The algorithm

Suppose we want to multiply two positive integers M and N . We assume that M ≤ N

(if not, swap them round). We use one other variable R (the “running total”).

a) Let

R =

{
0 if M is even
N if M is odd.

b) As long as M > 1, repeat the following steps in order:

i) Halve M (ignoring any remainder).

ii) Double N .

iii) If M is odd then add N to R.

c) Then the answer is R.

For example, if we want to multiply 19 and 13, then the triple (M,N,R) starts as
(13, 19, 19) (we have R = 19 since M is odd), and then in successive steps becomes:
(6, 38, 19); (3, 76, 95); and (1, 152, 247). So 19× 13 = 247.

Exercise 2: Cornacchia’s algorithm

Let p be a prime number and d be an integer between 1 and p − 1. Cornacchia’s

algorithm solves the Diophantine equation x2 + dy2 = p: that is, it either gives
integers x and y which satisfy the equation, or asserts that no solution (in integers)
exists.

Write a program which carries out Cornacchia’s algorithm: that is, Cornacchia(p,d)
should return the x and y values of a solution, if one exists, and otherwise should re-
turn FAIL.

Find all of the solutions given by the algorithm for which p is between 2 and 97,
checking that each one really is a solution. (There are 203 such solutions in total.)

The algorithm

a) Find an integer x0 with (p− 1)/2 < x0 < p such that x2
0 + d is divisible by p. If

there is no such x0, then the Diophantine equation has no solution.

b) Let a = p, b = x0, and l = b√pc (the greatest integer less than or equal to
√

p).

2



c) As long as b > l, repeat the following: set r = a mod b, set a = b, and set b = r.

d) If (p − b2)/d is not a perfect square, then the Diophantine equation has no
solution. Otherwise, a solution is:

x = b, y =

√
p− b2

d
.

Exercise 3: The Hailstone iteration again

Recall the Hailstone iteration from Exercise sheet 5.

a) Write a program HailstoneSequence(n) which returns the Hailstone sequence
of an integer n ≥ 1 (as a list). Thus HailstoneSequence(11) should return the
list [11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1].

b) Write another program HailstoneMax(n) which returns the maximum entry of
the Hailstone sequence of n. (It’ll almost certainly be easiest if you use your
program HailstoneSequence within HailstoneMax.) Make a list of the values
of HailstoneMax(n) as n goes from 1 to 1000. Which is the most common
value in the list?

c) Write a program HailstonePlot(maxn, minshow, maxshow) which does the
following: for each n between 1 and maxn, it computes the Hailstone sequence
of n. Then for each entry h in the Hailstone sequence which is between minshow

and maxshow, it plots a point with coordinates (n, h). You should use the Maple
command pointplot (in the plots package) to produce the plot.
Figure 1 shows an example of what you should aim for. (Try some other exam-
ples too.)
(The point of minshow is that low values are very common in Hailstone se-
quences: if you want to run HailstonePlot with larger values of maxn, then it
will be substantially faster if you set, say, minshow=50, thus omitting all these
low values from the plot.)

d) Can you explain the “ghostly” diagonal lines in the plot? (This is a mathematical
question, though if you can deduce the equations of some of these lines you might
like to verify your reasoning using Maple.)

Exercise 4: The Burau representation

This exercise is about representations of certain groups, but if you know nothing about
group theory or representation theory you can still do it. There’s a brief explanation
of what it’s all about at the end.

Let n ≥ 3 be an integer. To each non-zero integer i with −(n− 1) ≤ i ≤ (n− 1),

associate an n by n matrix M i
n(t) as follows.

3



Figure 1: HailstonePlot(350,1,1000)

• Suppose i > 0. Then make M i
n(t) by starting with the n by n identity matrix,

and changing the following entries: the one in position (i, i) to 1 − t; the one
in position (i + 1, i + 1) to 0; the one in position (i, i + 1) to t; and the one in

position (i + 1, i) to 1. Thus, for example, M2
5 (t) is the matrix


1 0 0 0 0
0 1− t t 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

(A good way to look at it is: start with the n by n identity matrix, and then

change a 2 by 2 block, with top left corner in position (i, i), to
1− t t

1 0
.)

• Suppose i < 0. Then similarly start with the n by n identity matrix, and change

a 2 by 2 block with top left corner in position (−i,−i) to
0 1
1
t 1− 1

t

. Thus, for

example, M−4
5 (t) is the matrix


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1

t 1− 1
t

 .

a) Write a program BurauGenerator(n,i) which returns the matrix M i
n(t). Check

that BurauGenerator(5,2) and BurauGenerator(5,-4) give the examples shown
above.

b) Now write a program BurauMatrix(n,L), where L is a list of non-zero integers

between −(n− 1) and (n− 1), which returns the product of the matrices M i
n(t)

4



for each i in the list. For example, BurauMatrix(3,[1,1,-2,-1]) should return

M1
3 (t) M1

3 (t),M−2
3 (t) M−1

3 (t) =

 0 1− t + t2 t− t2

0 1− t t
1
t2

1
t −

1
t2

1− 1
t

 .

As a check, make sure that BurauMatrix(4,[2,3,2,-3,-2,-3]) returns the
4 by 4 identity matrix.

c) Write a program BurauMatrixEval(n,L,s), where s is a complex number,
which returns BurauMatrix(n,L) evaluated at t = s. For example,
BurauMatrixEval(4,[1,2,-3],-1+I) should give

2− i −1 + 3i 0 −2i
1 0 0 0
0 1 0 0
0 0 −(1 + i)/2 (3 + i)/2

 ,

which is what you get when you put t = −1 + i in BurauMatrix(4,[1,2,-3]).

d) Write a program BurauMatrixMaxAbsEigenvalue(n,L,s) which returns the ab-
solute value of the eigenvalue of BurauMatrixEval(n,L,s) which has largest
absolute value. (That is: the eigenvalues of this matrix are complex numbers.
Take the absolute values of each of those numbers, and return the biggest.)
Note that you should calculate the eigenvalues numerically (i.e. using evalf),
since it isn’t possible to compute them symbolically when n is large. Check that
BurauMatrixMaxAbsEigenvalue(4,[1,2,-3],-1+I) gives 2.2754, which is the
size of the eigenvalue 2.1428 + 0.7655i of the matrix in c).

e) Write a program BurauPlot(n,L) which plots a graph of

BurauMatrixMaxAbsEigenvalue(n,L,e2πix) as x goes from 0 to 1. For example,
BurauPlot(4,[1,2,-3]) should produce the graph of Figure 2.

f) Write a program RandomBurau(n, length) which calls BurauPlot(n,L), where
L is a random list with length elements (each between −(n− 1) and (n− 1)).
Try RandomBurau(10,30);.

Background

(For anyone interested with some knowledge of group and representation theory.)
For n ≥ 3, the n-braid group Bn is generated by the n− 1 elements σ1, . . . , σn−1,

with relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2, and σiσj = σjσi when-

ever i and j are more than 1 apart (its elements can be thought of as braids with
n strings). The Burau representation R is a representation of Bn in the space of
invertible n by n matrices whose entries are polynomials in t and 1/t. In the above,

BurauMatrix(4,[1,2,-3]) is R(σ1σ2σ
−1
3 ). This exercise is motivated by an ongoing

research project: the maximum values attained by the plots are lower bounds for the
topological entropy of the braids concerned.

5



Figure 2: BurauPlot(4,[1,2,-3])

Exercise 5: The Logistic map

In this exercise, I’ve deliberately not given any guidance about the Maple methods
to be used, but just set a problem to be answered using Maple. Any approach which
gives the right answers is acceptable, but you’ll probably find it easier if you write
some procedures rather than just typing commands into your worksheet.

For each r between 0 and 4, the logistic map fr : [0, 1] → [0, 1] is defined by

fr(x) = rx(1− x). The second iterate f2
r is defined by

f2
r (x) = fr(fr(x)) = rfr(x)(1− fr(x)) = r(rx(1− x))(1− rx(1− x))

= −r3x4 + 2r3x3 − (r3 + r2)x2 + r2x.

Similarly f3
r (x) = fr(fr(fr(x))), f4

r (x) = fr(fr(fr(fr(x)))), and so on.

a) x∗ is a period 3 point of fr if f3
r (x∗) = x∗, but fr(x∗) 6= x∗. Find the period 3

points of f3.5 and of f3.9 (floating point, not exact).
Given (this isn’t obvious) that there is some value r0 such that fr has no period
3 points for any r < r0, but has period 3 points for all r > r0, find r0 to 6
decimal places.

b) A period 3 point x∗ of fr is stable if

−1 <
df3

r

dx
(x∗) < 1.

Given (this isn’t obvious) that there is a value r1 such that fr has stable period
3 points for all r0 < r < r1, but not for any r > r1, find r1 to 6 decimal places.

6


	Introduction
	1. Russian multiplication
	2. Cornacchia's algorithm
	3. The Hailstone iteration
	4. The Burau representation
	5. The Logistic map

