Bloch wave excitation at the edge of a lattice

The last word (?)

Rachel Brougham and Ian Thompson

Department of Mathematical Sciences University of Liverpool

• Bloch waves propagate through periodic structures without loss.

- Bloch waves propagate through periodic structures without loss.
- Media that support Bloch waves include
 - Photonic & phononic crystals
 - Elastic plates with a lattice of pins or holes
 - Periodic columns cylindrical columns standing in water
 - Composite elastic materials with periodic inner structures

- Bloch waves propagate through periodic structures without loss.
- Media that support Bloch waves include
 - Photonic & phononic crystals
 - Elastic plates with a lattice of pins or holes
 - Periodic columns cylindrical columns standing in water
 - Composite elastic materials with periodic inner structures
- Fields in this talk are time-harmonic, so

 $U(\mathbf{r};t) = \operatorname{Re}[u(\mathbf{r})e^{-\mathrm{i}\omega t}].$

- Bloch waves propagate through periodic structures without loss.
- Media that support Bloch waves include
 - Photonic & phononic crystals
 - Elastic plates with a lattice of pins or holes
 - Periodic columns cylindrical columns standing in water
 - Composite elastic materials with periodic inner structures
- Fields in this talk are time-harmonic, so

 $U(\mathbf{r};t) = \operatorname{Re}[u(\mathbf{r})e^{-\mathrm{i}\omega t}].$

• Solve $(\nabla^2 + k^2)u(\mathbf{r}) = 0$, subject to $\partial u/\partial n = 0$ on scatterer surface (SH problem).

- Bloch waves propagate through periodic structures without loss.
- Media that support Bloch waves include
 - Photonic & phononic crystals
 - Elastic plates with a lattice of pins or holes
 - Periodic columns cylindrical columns standing in water
 - Composite elastic materials with periodic inner structures
- Fields in this talk are time-harmonic, so

 $U(\mathbf{r};t) = \operatorname{Re}[u(\mathbf{r})e^{-\mathrm{i}\omega t}].$

• Solve $(\nabla^2 + k^2)u(\mathbf{r}) = 0$, subject to $\partial u/\partial n = 0$ on scatterer surface (SH problem).

• $k = \omega/c$, $c = \sqrt{\mu/\rho}$, μ : shear modulus, ρ : density. $c = O(10^3 \text{ms}^{-1})$ for metal & rock.

Bloch vectors

• If *u* represents a Bloch wave, then $u(\mathbf{r} + j\mathbf{s}_1 + p\mathbf{s}_2) = e^{i(j\mathbf{s}_1 + p\mathbf{s}_2)\cdot\beta}u(\mathbf{r}),$ for $j, p \in \mathbb{Z}$.

Bloch vectors

- If *u* represents a Bloch wave, then $u(\mathbf{r} + j\mathbf{s}_1 + p\mathbf{s}_2) = e^{i(j\mathbf{s}_1 + p\mathbf{s}_2)\cdot\beta}u(\mathbf{r}),$ for $j, p \in \mathbb{Z}.$
- The Bloch vector is not unique; e.g. if

$$\mathbf{s}^* \cdot \mathbf{s}_1 = 2q_1\pi$$
 and $\mathbf{s}^* \cdot \mathbf{s}_2 = 2q_2\pi$,

for $q_1, q_2 \in \mathbb{Z}$ then β and $\beta + s^*$ are equivalent. Bloch waves do not have phase velocity!

Bloch vectors

- If *u* represents a Bloch wave, then $u(\mathbf{r} + j\mathbf{s}_1 + p\mathbf{s}_2) = e^{i(j\mathbf{s}_1 + p\mathbf{s}_2)\cdot\beta}u(\mathbf{r}),$ for $j, p \in \mathbb{Z}.$
- The Bloch vector is not unique; e.g. if

$$\mathbf{s}^* \cdot \mathbf{s}_1 = 2q_1\pi$$
 and $\mathbf{s}^* \cdot \mathbf{s}_2 = 2q_2\pi$

for $q_1, q_2 \in \mathbb{Z}$ then β and $\beta + s^*$ are equivalent. Bloch waves do not have phase velocity!

The irreducible Brillouin zone (IBZ) contains the shortest possible representation for each Bloch vector (X, Γ, M coords for s₁ = [1,0] s₂ = [0,1]).

• Bloch waves only exist within certain frequency ranges (bands).

- Bloch waves only exist within certain frequency ranges (bands).
- In most cases, the band edges are found when the Bloch vector appears on the boundary of the IBZ.

- Bloch waves only exist within certain frequency ranges (bands).
- In most cases, the band edges are found when the Bloch vector appears on the boundary of the IBZ.
- Plotting the solutions here leads to a band diagram. Reading across shows how many modes exist at each frequency.

- Bloch waves only exist within certain frequency ranges (bands).
- In most cases, the band edges are found when the Bloch vector appears on the boundary of the IBZ.
- Plotting the solutions here leads to a band diagram. Reading across shows how many modes exist at each frequency.
- Square lattice, SH waves, $\mathbf{s}_1 = [1, 0]$, $\mathbf{s}_2 = [0, 1]$, scatterer radius a = 0.42.

- Bloch waves only exist within certain frequency ranges (bands).
- In most cases, the band edges are found when the Bloch vector appears on the boundary of the IBZ.
- Plotting the solutions here leads to a band diagram. Reading across shows how many modes exist at each frequency.
- Square lattice, SH waves, $\mathbf{s}_1 = [1, 0], \ \mathbf{s}_2 = [0, 1]$, scatterer radius a = 0.42.
- This medium could be used to block signals for which $3 \leq \omega/c \leq 4$, where there is a gap.

• To gain more information about pass bands we consider a wave in free space striking the edge of a periodic medium.

- To gain more information about pass bands we consider a wave in free space striking the edge of a periodic medium.
- We aim to determine the proportions of wave energy transmitted into and reflected back from the lattice.

- To gain more information about pass bands we consider a wave in free space striking the edge of a periodic medium.
- We aim to determine the proportions of wave energy transmitted into and reflected back from the lattice.
- Tymis & Thompson (2014) solved this problem using the matrix Wiener–Hopf technique.

- To gain more information about pass bands we consider a wave in free space striking the edge of a periodic medium.
- We aim to determine the proportions of wave energy transmitted into and reflected back from the lattice.
- Tymis & Thompson (2014) solved this problem using the matrix Wiener-Hopf technique.

A remark from a presentation in 2014

There is more to do: the method used here is not easy to implement at high frequencies.

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{\mathrm{s}}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r} - j\mathbf{s}_{1} - p\mathbf{s}_{2})$$

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{\mathrm{s}}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r}-j\mathbf{s}_{1}-p\mathbf{s}_{2})$$

where $\mathcal{H}_n(\mathbf{r}) = H_n^{(1)}(kr)e^{in\theta}$, $\mathbf{r} = r[\cos\theta, \sin\theta]$ and $H_n^{(1)}(\cdot)$ is a Hankel function of the first kind.

• This automatically satisfies the Helmholtz equation.

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{s}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r} - j\mathbf{s}_{1} - p\mathbf{s}_{2})$$

- This automatically satisfies the Helmholtz equation.
- Due to quasiperiodicity in x, $A_n^{j,p} = e^{ikjs_1 \cos \psi_0} A_n^p$.

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{s}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r} - j\mathbf{s}_{1} - p\mathbf{s}_{2})$$

- This automatically satisfies the Helmholtz equation.
- Due to quasiperiodicity in x, $A_n^{j,p} = e^{ikjs_1 \cos \psi_0} A_n^p$.
- Meaning of the sums:

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{s}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r} - j\mathbf{s}_{1} - p\mathbf{s}_{2})$$

- This automatically satisfies the Helmholtz equation.
- Due to quasiperiodicity in x, $A_n^{j,p} = e^{ikjs_1 \cos \psi_0} A_n^p$.
- Meaning of the sums:
 - ► ∑_n Different modes radiating from each scatterer. Exponentially convergent.

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{s}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r} - j\mathbf{s}_{1} - p\mathbf{s}_{2})$$

- This automatically satisfies the Helmholtz equation.
- Due to quasiperiodicity in x, $A_n^{j,p} = e^{ikjs_1 \cos \psi_0} A_n^p$.
- Meaning of the sums:
 - ► ∑_n Different modes radiating from each scatterer. Exponentially convergent.
 - \sum_{i} Position in x. Can be evaluated exactly.

• The scattered field can be represented as a sum of singular wavefunctions, centred at each scatterer:

$$u^{\mathrm{s}}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{j=-\infty}^{\infty} A_{n}^{j,p} \mathcal{H}_{n}(\mathbf{r}-j\mathbf{s}_{1}-p\mathbf{s}_{2})$$

- This automatically satisfies the Helmholtz equation.
- Due to quasiperiodicity in x, $A_n^{j,p} = e^{ikjs_1 \cos \psi_0} A_n^p$.
- Meaning of the sums:
 - ► ∑_n Different modes radiating from each scatterer. Exponentially convergent.
 - \sum_{i} Position in x. Can be evaluated exactly.
 - \sum_{p} Position in y. Very slowly convergent if Bloch waves are excited.

• Applying the boundary condition leads to a linear system of equations for the coefficients A_n^p :

$$A_n^q + Z_n \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} A_m^p S_{m-n}^{q-p} = T_n^q, \quad n \in \mathbb{Z}, \ q = 0, 1, \dots$$

where the RHS is given by $-Z_n i^n e^{iqks_2 \cdot [\cos \psi_0, \sin \psi_0]} e^{-in\psi_0}$.

 Applying the boundary condition leads to a linear system of equations for the coefficients A^p_n:

$$A_n^q + Z_n \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} A_m^p S_{m-n}^{q-p} = T_n^q, \quad n \in \mathbb{Z}, \ q = 0, 1, \dots$$

where the RHS is given by $-Z_n i^n e^{iqks_2 \cdot [\cos \psi_0, \sin \psi_0]} e^{-in\psi_0}$.

• $Z_n = J'_n(ka)/Y'_n(ka)$ is a scattering coefficient which describes the properties of the individual scatterers (a = radius).

 Applying the boundary condition leads to a linear system of equations for the coefficients A^p_n:

$$A_n^q + Z_n \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} A_m^p S_{m-n}^{q-p} = T_n^q, \quad n \in \mathbb{Z}, \ q = 0, 1, \dots$$

where the RHS is given by $-Z_n i^n e^{iqks_2 \cdot [\cos \psi_0, \sin \psi_0]} e^{-in\psi_0}$.

- $Z_n = J'_n(ka)/Y'_n(ka)$ is a scattering coefficient which describes the properties of the individual scatterers (a = radius).
- S_n^q is obtained by summing contributions along one row:

$$S_n^q = \sum_{j=-\infty}^{\infty}' \mathrm{e}^{\mathrm{i} j k s_1 \cos \psi_0} \mathcal{H}_n(q \mathbf{s}_2 - j \mathbf{s}_1) \quad (' ext{ means omit } j = 0 ext{ if } q = 0).$$

Sums of this type were evaluated by Twersky in the 1960s.

- We now have two problems:
 - The linear system for A_n^p cannot be solved by truncation if Bloch waves are excited, because $A_n^p \neq 0$ as $p \rightarrow \infty$.
 - **2** No radiation condition has been applied for $y \to \infty$

- We now have two problems:
 - The linear system for A_n^p cannot be solved by truncation if Bloch waves are excited, because $A_n^p \not\to 0$ as $p \to \infty$.
 - **2** No radiation condition has been applied for $y \to \infty$
- To deal with these, start by finding all possible Bloch modes.

- We now have two problems:
 - The linear system for A_n^p cannot be solved by truncation if Bloch waves are excited, because $A_n^p \not\to 0$ as $p \to \infty$.
 - **2** No radiation condition has been applied for $y \to \infty$
- To deal with these, start by finding all possible Bloch modes.
- Then calculate the mean energy flux across s₁ for each mode, using

$$\langle E \rangle = - \frac{\mu \omega}{2} \operatorname{Im} \int_{\mathcal{S}} u(\mathbf{r}) \frac{\partial}{\partial n} u^{*}(\mathbf{r}) \, \mathrm{d}\mathbf{s}.$$

- We now have two problems:
 - The linear system for A_n^p cannot be solved by truncation if Bloch waves are excited, because $A_n^p \not\to 0$ as $p \to \infty$.
 - **2** No radiation condition has been applied for $y \to \infty$
- To deal with these, start by finding all possible Bloch modes.
- Then calculate the mean energy flux across s₁ for each mode, using

$$\langle E \rangle = -\frac{\mu\omega}{2} \operatorname{Im} \int_{\mathcal{S}} u(\mathbf{r}) \frac{\partial}{\partial n} u^{*}(\mathbf{r}) \, \mathrm{d}\mathbf{s}.$$

 Modes with (E) < 0 cannot be excited by scattering at y = 0 (y component of group velocity is < 0).

- We now have two problems:
 - The linear system for A_n^p cannot be solved by truncation if Bloch waves are excited, because $A_n^p \not\to 0$ as $p \to \infty$.
 - **2** No radiation condition has been applied for $y \to \infty$
- To deal with these, start by finding all possible Bloch modes.
- Then calculate the mean energy flux o o n n n

$$\langle E \rangle = -\frac{\mu\omega}{2} \operatorname{Im} \int_{\mathcal{S}} u(\mathbf{r}) \frac{\partial}{\partial n} u^{*}(\mathbf{r}) \, \mathrm{d}\mathbf{s}.$$

- Modes with (E) < 0 cannot be excited by scattering at y = 0 (y component of group velocity is < 0).
- This is the radiation condition for Bloch wave excitation (Sommerfeld does not apply here, because Bloch waves have no phase velocity).

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

• \hat{A}_n^p is also unknown, but tends to zero as $p \to \infty$.

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

- \hat{A}_n^p is also unknown, but tends to zero as $p \to \infty$.
- Now write

$$C_n^p = \begin{cases} A_n^p & \text{if } p = 0\\ A_n^p - e^{i\mathbf{s}_2 \cdot \boldsymbol{\beta}} A_n^{p-1} & \text{otherwise.} \end{cases}$$

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

- \hat{A}_n^p is also unknown, but tends to zero as $p \to \infty$.
- Now write

$$C_n^p = \begin{cases} A_n^p & \text{if } p = 0\\ A_n^p - e^{i\mathbf{s}_2 \cdot \boldsymbol{\beta}} A_n^{p-1} & \text{otherwise.} \end{cases}$$

• For p > 0, we have $C_n^p = \hat{A}_n^p - e^{is_2 \cdot \beta} \hat{A}_n^{p-1}$.

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

- \hat{A}_n^p is also unknown, but tends to zero as $p \to \infty$.
- Now write

$$C_n^p = \begin{cases} A_n^p & \text{if } p = 0\\ A_n^p - e^{i\mathbf{s}_2 \cdot \boldsymbol{\beta}} A_n^{p-1} & \text{otherwise.} \end{cases}$$

- For p > 0, we have $C_n^p = \hat{A}_n^p e^{is_2 \cdot \beta} \hat{A}_n^{p-1}$.
- The Bloch wave contributes to C_0 only. Also, $C_p \rightarrow 0$ as $p \rightarrow \infty$.

• Consider the case where one Bloch wave is excited. Then

$$A_n^p = b \mathrm{e}^{\mathrm{i} p \mathbf{s}_2 \cdot \boldsymbol{\beta}} B_n + \hat{A}_n^p.$$

Here, β and B_n describe the Bloch wave. These are known, but the amplitude coefficient *b* is unknown.

- \hat{A}_n^p is also unknown, but tends to zero as $p \to \infty$.
- Now write

$$C_n^p = \begin{cases} A_n^p & \text{if } p = 0\\ A_n^p - e^{i\mathbf{s}_2 \cdot \boldsymbol{\beta}} A_n^{p-1} & \text{otherwise.} \end{cases}$$

- For p > 0, we have $C_n^p = \hat{A}_n^p e^{i\mathbf{s}_2 \cdot \boldsymbol{\beta}} \hat{A}_n^{p-1}$.
- The Bloch wave contributes to C_0 only. Also, $C_p \rightarrow 0$ as $p \rightarrow \infty$.
- We can solve (*) to obtain

$$A_n^p = \sum_{j=0}^p C_n^j \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_2 \cdot \boldsymbol{\beta}}.$$

• Substitute into the system for A_n^p

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

• Substitute into the system for A_n^p

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

• Substitute into the system for A_n^p

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{j=0}^{\infty} C_{m}^{j} \mathrm{e}^{-\mathrm{i}j\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \sum_{p=j}^{\infty} \mathrm{e}^{\mathrm{i}p\mathbf{s}_{2}\cdot\boldsymbol{\beta}} S_{m-n}^{q-p} = T_{n}^{q},$$

• Substitute into the system for A_n^p ...

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

• Substitute into the system for A_n^p ...

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

• Recall that S_m^q is a sum of phase shifted wavefunctions along one row.

• Substitute into the system for A_n^p ...

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{j=0}^{\infty} C_{m}^{j} \mathrm{e}^{-\mathrm{i}j\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \underbrace{\sum_{p=j}^{\infty} \mathrm{e}^{\mathrm{i}p\mathbf{s}_{2}\cdot\boldsymbol{\beta}} S_{m-n}^{q-p}}_{\mathrm{no unknowns!}} = T_{n}^{q},$$

• Recall that S_m^q is a sum of phase shifted wavefunctions along one row. • The new sum, $\sum_{p=j}^{\infty} e^{ips_2 \cdot \beta} S_{m-m}^{q-p}$, represents a stack of rows.

• Substitute into the system for A_n^p ...

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{j=0}^{\infty} C_{m}^{j} \mathrm{e}^{-\mathrm{i}j\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \underbrace{\sum_{p=j}^{\infty} \mathrm{e}^{\mathrm{i}p\mathbf{s}_{2}\cdot\boldsymbol{\beta}} S_{m-n}^{q-p}}_{\mathrm{no unknowns!}} = T_{n}^{q},$$

- Recall that S^q_m is a sum of phase shifted wavefunctions along one row.
 The new sum, Σ[∞]_{p=i} e^{ips₂·β}S^{q-p}_{m-m}, represents a stack of rows.
- McPhedran et al. (2000) evaluated these exactly.

• Substitute into the system for A_n^p ...

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{p=0}^{\infty} \left(\sum_{j=0}^{p} C_{m}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \right) S_{m-n}^{q-p} = T_{n}^{q},$$

$$\sum_{j=0}^{q} C_{n}^{j} \mathrm{e}^{\mathrm{i}(p-j)\mathbf{s}_{2}\cdot\boldsymbol{\beta}} + Z_{n} \sum_{m=-\infty}^{\infty} \sum_{j=0}^{\infty} C_{m}^{j} \mathrm{e}^{-\mathrm{i}j\mathbf{s}_{2}\cdot\boldsymbol{\beta}} \underbrace{\sum_{p=j}^{\infty} \mathrm{e}^{\mathrm{i}p\mathbf{s}_{2}\cdot\boldsymbol{\beta}} S_{m-n}^{q-p}}_{\mathrm{no unknowns!}} = T_{n}^{q},$$

- Recall that S^q_m is a sum of phase shifted wavefunctions along one row.
- The new sum, $\sum_{p=j}^{\infty} e^{ips_2 \cdot \beta} S_{m-m}^{q-p}$, represents a stack of rows.
- McPhedran et al. (2000) evaluated these exactly.
- We can filter any number of Bloch waves by repeatedly applying the same transformation (proof: Thompson & Brougham, 2017).

Proportion of reflected energy with $\mathbf{s}_1 = [1, 0]$, $\mathbf{s}_2 = [0, 1]$, a = 0.42

Proportion of reflected energy with $\mathbf{s}_1 = [1, 0]$, $\mathbf{s}_2 = [0, 1]$, a = 0.42

• Solving the excitation problem reveals information that is not captured by a standard band diagram.

- Solving the excitation problem reveals information that is not captured by a standard band diagram.
- This is important for applications such as band gap filters.

- Solving the excitation problem reveals information that is not captured by a standard band diagram.
- This is important for applications such as band gap filters.
- At low frequencies $(ka \ll 1)$ the Wiener–Hopf technique and the filtering method are relatively easy to implement.
 - ► Tymis & Thompson (2011): acoustic point scatterers, WH method.
 - Albani & Capolino (2011): nanospheres, EM waves, WH method.
 - ▶ Haslinger et al. (2016): pins in thin plates, WH method.
 - ▶ Thompson & Brougham (2017): acoustic point scatterers, filtering.

- Solving the excitation problem reveals information that is not captured by a standard band diagram.
- This is important for applications such as band gap filters.
- At low frequencies ($ka \ll 1$) the Wiener–Hopf technique and the filtering method are relatively easy to implement.
 - ▶ Tymis & Thompson (2011): acoustic point scatterers, WH method.
 - Albani & Capolino (2011): nanospheres, EM waves, WH method.
 - ▶ Haslinger et al. (2016): pins in thin plates, WH method.
 - ▶ Thompson & Brougham (2017): acoustic point scatterers, filtering.
- For larger bodies (ka = O(1) O(10)), filtering is much simpler.
 - ► Tymis & Thompson (2014): acoustic scatterers, WH method.
 - Brougham & Thompson (in progress): acoustic scatterers, filtering.

- Solving the excitation problem reveals information that is not captured by a standard band diagram.
- This is important for applications such as band gap filters.
- At low frequencies ($ka \ll 1$) the Wiener–Hopf technique and the filtering method are relatively easy to implement.
 - ▶ Tymis & Thompson (2011): acoustic point scatterers, WH method.
 - Albani & Capolino (2011): nanospheres, EM waves, WH method.
 - ▶ Haslinger et al. (2016): pins in thin plates, WH method.
 - ▶ Thompson & Brougham (2017): acoustic point scatterers, filtering.
- For larger bodies (ka = O(1) O(10)), filtering is much simpler.
 - ► Tymis & Thompson (2014): acoustic scatterers, WH method.
 - Brougham & Thompson (in progress): acoustic scatterers, filtering.
- Filtering will work in the same way for more complicated systems:
 - ▶ In-plane elastic wave problem, 3D lattices composed using spheres, ...