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Introduction

@ Bloch waves propagate through periodic structures without loss.
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@ Bloch waves propagate through periodic structures without loss.
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@ Fields in this talk are time-harmonic, so

U(r;t) = Re[u(r)e_i“’t].
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@ Bloch waves propagate through periodic structures without loss.
@ Media that support Bloch waves include
» Photonic & phononic crystals Q O O

» Elastic plates with a lattice of pins or holes
» Periodic columns cylindrical columns

standing in water O
» Composite elastic materials with periodic

inner structures

@ Fields in this talk are time-harmonic, so

U(r;t) = Re[u(r)e_i“’t]

@

e Solve (V? + k?)u(r) = 0, subject to
du/dn = 0 on scatterer surface (SH
problem).
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Introduction

@ Bloch waves propagate through periodic structures without loss.
@ Media that support Bloch waves include
» Photonic & phononic crystals Q Q O

» Elastic plates with a lattice of pins or holes

» Periodic columns cylindrical columns
standing in water

» Composite elastic materials with periodic

@
inner structures O /0 O
@

@ Fields in this talk are time-harmonic, so
U(r;t) = Re[u(r)e_i“’t] @) @)

e Solve (V? + k?)u(r) = 0, subject to
Odu/dn = 0 on scatterer surface (SH ©\0\0
problem).

e k=w/c, c =+/iu/p, p: shear modulus, p: density. c = O(103ms™1)
for metal & rock.
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S1
forj,peZ. Q



Bloch vectors

@ If u represents a Bloch wave, then Q Q
u(r + js1 + psp) = U1 TP By(r),

S1
for j,p € Z. Q

@ The Bloch vector is not unique; e.g. if

s8] = 2gim  and s* sy = 2qo, O Q Q

for g1, q> € Z then B and B + s* are
equivalent. Bloch waves do not have
phase velocity!
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Bloch vectors

@ If u represents a Bloch wave, then Q Q
u(r +js1 + psz) = 0BT BY(r),

forj,peZ. Q >

@ The Bloch vector is not unique; e.g. if

s*. = 2q17'[' and s*- So> = 2q277’ Q Q

for g1, 9> € Z then B8 and (3 + s* are
equivalent. Bloch waves do not have
phase velocity!

@ The irreducible Brillouin zone (IBZ) I =1[0,0] ' X = [0,7]
contains the shortest possible 1 1
representation for each Bloch vector (X, ‘ 3
[, M coords for s = [1,0] sp = [0,1]). T ‘
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Band diagrams

@ Bloch waves only exist within
certain frequency ranges (bands).
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found when the Bloch vector
appears on the boundary of the IBZ.

@ Plotting the solutions here leads to
a band diagram. Reading across
shows how many modes exist at
each frequency.
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Band diagrams

@ Bloch waves only exist within 15
certain frequency ranges (bands).

@ In most cases, the band edges are
found when the Bloch vector
appears on the boundary of the IBZ.

@ Plotting the solutions here leads to
a band diagram. Reading across
shows how many modes exist at
each frequency.

@ Square lattice, SH waves,
s1 = [1,0], sp = [0, 1], scatterer
radius a = 0.42.

0
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Band diagrams

@ Bloch waves only exist within 15
certain frequency ranges (bands).

@ In most cases, the band edges are
found when the Bloch vector
appears on the boundary of the IBZ.

@ Plotting the solutions here leads to
a band diagram. Reading across
shows how many modes exist at
each frequency.

@ Square lattice, SH waves,
s1 = [1,0], sp = [0, 1], scatterer
radius a = 0.42.

@ This medium could be used to block
signals for which 3 S w/c < 4,

. 0
where there is a gap. M r X M
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The excitation problem

@ To gain more information about
pass bands we consider a wave
in free space striking the edge of
a periodic medium.

Wl = eik(@cos oty sin o)
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The excitation problem

@ To gain more information about
pass bands we consider a wave
in free space striking the edge of
a periodic medium.

@ We aim to determine the
proportions of wave energy ¢
transmitted into and reflected
back from the lattice.
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@
@

Bloch wave excitation 4 /11



The excitation problem

@ To gain more information about
pass bands we consider a wave
in free space striking the edge of
a periodic medium.

o
@ We aim to determine the
proportions of wave energy ¢ Q
transmitted into and reflected
back from the lattice. Q

e Tymis & Thompson (2014)

solved this problem using the
matrix Wiener—Hopf technique.
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The excitation problem

@ To gain more information about
pass bands we consider a wave
in free space striking the edge of
a periodic medium.

o
@ We aim to determine the
proportions of wave energy ¢ Q
transmitted into and reflected
back from the lattice. Q

e Tymis & Thompson (2014)

solved this problem using the
matrix Wiener—Hopf technique.

A remark from a presentation in 2014

There is more to do: the method used here is not easy to implement at
high frequencies.
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Multipoles

@ The scattered field can be represented as a sum of singular
wavefunctions, centred at each scatterer:

S(r ZZZAJPH r—Jsl—pSQ)
n=—00 p=0 j=—o00

where H,(r) = Hgl)(kr)ei”e, r = r[cos#,sin ] and Hs,l)(-) is a Hankel
function of the first kind.
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@ The scattered field can be represented as a sum of singular
wavefunctions, centred at each scatterer:

)= ) ) D APHA(r— js1 — ps2)
n=—o00 p=0 j=—c0

where H,(r) = Hgl)(kr)ei”e, r = r[cosé,sin 0] and Hf,l)(-) is a Hankel
function of the first kind.
@ This automatically satisfies the Helmholtz equation.
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@ The scattered field can be represented as a sum of singular
wavefunctions, centred at each scatterer:

W)= D> APHL(r— js1 — ps2)

n=—00 p=0 j=—o00
where H,(r) = Hgl)(kr)ei”e, r = r[cosé,sin 0] and Hg,l)(-) is a Hankel
function of the first kind.

@ This automatically satisfies the Helmholtz equation.

o Due to quasiperiodicity in x, AjP = elkisicosvo AP,

@ Meaning of the sums:

» >, Different modes radiating from each scatterer. Exponentially
convergent.
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> Zj Position in x. Can be evaluated exactly.
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Multipoles

@ The scattered field can be represented as a sum of singular
wavefunctions, centred at each scatterer:

W)= D> APHL(r— js1 — ps2)

n=—00 p=0 j=—o0

where H,(r) = Hgl)(kr)ei"e, r = r[cosé,sin 0] and HE,l)(-) is a Hankel
function of the first kind.

@ This automatically satisfies the Helmholtz equation.

o Due to quasiperiodicity in x, AjP = elkisicosvo AP,

@ Meaning of the sums:

» >, Different modes radiating from each scatterer. Exponentially
convergent.

» >, Position in x. Can be evaluated exactly.
> Zp Position in y. Very slowly convergent if Bloch waves are excited.
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@ Applying the boundary condition leads to a linear system of equations
for the coefficients Af:

AL+ Z, Y Y ARSITTE =TI, neZ q=0,1,...

m=—o00 p=0

where the RHS is given by — Z,,i"el9ks2 [cos Yossin o] g—intio
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@ Applying the boundary condition leads to a linear system of equations
for the coefficients Af:

[ee] [ee]
Al+Zy > Y ASTE=TI neZ q=0,1,...
m=—o00 p=0
where the RHS is given by — Z,,i"el9ks2 [cos Yossin o] g—intio

e Z, =1 (ka)/ Y’ (ka) is a scattering coefficient which describes the
properties of the individual scatterers (a = radius).
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@ Applying the boundary condition leads to a linear system of equations
for the coefficients Af:

Al + 7, Z ZAPS‘“’:T" neZ, g=0,1,...
m=—o00 p=0
where the RHS is given by —Z,i"el9ksz[cos vosinvol g =invo

e Z, =1 (ka)/ Y’ (ka) is a scattering coefficient which describes the
properties of the individual scatterers (a = radius).

e S is obtained by summing contributions along one row:

o0

! ..
S = Z kst cosonn(qsz —js1) (' means omit j =0 if g = 0).

p—

Sums of this type were evaluated by Twersky in the 1960s.
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The radiation condition

@ We now have two problems:

@ The linear system for AP cannot be solved by truncation if Bloch waves
are excited, because AP 4 0 as p — oo.
@ No radiation condition has been applied for y — oo
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@ No radiation condition has been applied for y — oo

@ To deal with these, start by finding all possible Bloch modes.
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The radiation condition

@ We now have two problems:

© The linear system for AP cannot be solved by truncation if Bloch waves
are excited, because AP /4 0 as p — oo.
@ No radiation condition has been applied for y — oo

@ To deal with these, start by finding all possible Bloch modes.

@ Then calculate the mean energy flux Q Q Q Q
i

across s; for each mode, using
S

<E>:—/gulmfsu(r)88,7u*(r)ds. e ®© @ ©
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The radiation condition

@ We now have two problems:

© The linear system for AP cannot be solved by truncation if Bloch waves
are excited, because AP /4 0 as p — oo.
@ No radiation condition has been applied for y — oo

@ To deal with these, start by finding all possible Bloch modes.

@ Then calculate the mean energy flux Q Q Q Q
i

across s; for each mode, using

o s
(E) = —2|m/5u(r)8nU M. @ ©® @ O
@ Modes with (E) < 0 cannot be excited

by scattering at y = 0 (y component of @ Q Q Q

group velocity is < 0).
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The radiation condition

@ We now have two problems:

© The linear system for AP cannot be solved by truncation if Bloch waves
are excited, because AP /4 0 as p — oo.
@ No radiation condition has been applied for y — oo

@ To deal with these, start by finding all possible Bloch modes.

@ Then calculate the mean energy flux Q Q Q Q
i

across s; for each mode, using

o w 9 . °
(E) = —2|m/5u(r)8nu M. @ ©® @ O
Modes with (E) < 0 cannot be excited

by scattering at y = 0 (y component of Q Q Q Q

group velocity is < 0).

This is the radiation condition for Bloch wave excitation (Sommerfeld
does not apply here, because Bloch waves have no phase velocity).
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Filtering
@ Consider the case where one Bloch wave is excited. Then
AP — pelP2 PR, 1 AP
Here, 3 and B, describe the Bloch wave. These are known, but the
amplitude coefficient b is unknown.
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e A? is also unknown, but tends to zero as p — oc.
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Filtering
@ Consider the case where one Bloch wave is excited. Then
AP — pelP2 PR, 1 AP
Here, 3 and B, describe the Bloch wave. These are known, but the
amplitude coefficient b is unknown.

e A? is also unknown, but tends to zero as p — oc.

o [ if p=0 0
- . *
! AP — es2BAP=1 Gtherwise.

@ Now write

e For p > 0, we have CP = AP — ¢i28 AP—1,
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Filtering
@ Consider the case where one Bloch wave is excited. Then
AP — pelP2 PR, 1 AP
Here, 3 and B, describe the Bloch wave. These are known, but the
amplitude coefficient b is unknown.

AP is also unknown, but tends to zero as p — oc.

@ Now write

P =

n

AP if p=0
AP — es2BAP=1 Gtherwise.

e For p > 0, we have CP = AP — ¢i28 AP—1,

The Bloch wave contributes to Cy only. Also, C, — 0 as p — oo.
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Filtering
@ Consider the case where one Bloch wave is excited. Then
AP — pelP2 PR, 1 AP
Here, 3 and B, describe the Bloch wave. These are known, but the
amplitude coefficient b is unknown.

AP is also unknown, but tends to zero as p — oc.

@ Now write

P =

n

AP if p=0
AP — es2BAP=1 Gtherwise.

e For p > 0, we have CP = AP — ¢i28 AP—1,

The Bloch wave contributes to Cy only. Also, C, — 0 as p — oo.

We can solve (x) to obtain
P
AE[ = Z C;’,el(p_./)SZﬁ
j=0
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@ Substitute into the system for Ah . ..
q

Jj=0 m=—oc0 p=0 \j=0



@ Substitute into the system for Ah . ..
q 0 oo 4P
S G dns 4 7, 3 Z(Z i ei(p—j)sm) Si-P _ T4,

j=0 m=—o0 p=0 j=0

@ Looks worse than before, but swap the sums over j and p. ..
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@ Substitute into the system for Al ...

S Cleloims 4 7, 3 Z(zo 1(P1525>5,1:i:T:,

Jj=0 m=—00 p=0
@ Looks worse than before, but swap the sums over j and p. ..

Eq: ClellP=i)=B 4 7, Z Z Cle P Zewﬂs,‘,’,:f; =T7,
j=0

m=—00 j=0

no unknowns!

@ Recall that S7, is a sum of phase shifted wavefunctions along one row.
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@ Substitute into the system for Al ...

ST 2y 3 33 Che I sg = 7

m=—o0 p=0
@ Looks worse than before, but swap the sums over j and p. ..

Eq: ClellP=i)=B 4 7, Z Z Cle U2 Zew”'ﬁs,‘,’,:f,’, =T7,
j=0

m=—00 j=0

no unknowns!

@ Recall that S7, is a sum of phase shifted wavefunctions along one row.

m—m?

o
@ The new sum, g elP2BG97P represents a stack of rows.
p=j
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@ Substitute into the system for Al ...
ZCJ (=i 1 7, Z Z(Z Clelti Szﬁ>5,1:ﬁ =Tg,

m=—o0 p=0

@ Looks worse than before, but swap the sums over j and p. ..

Eq: ClellP=i)=B 4 7, Z Z Cle U2 Zewﬂs,‘,’,:f,’, =T7,
j=0

m=—00 j=0

no unknowns!
@ Recall that S7, is a sum of phase shifted wavefunctions along one row.

o
@ The new sum, g eiP52BS97P " represents a stack of rows.
p=j

@ McPhedran et al. (2000) evaluated these exactly.
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@ Substitute into the system for A} .

ZCJepJ)SZﬁ—i—Z Z Z(ZCJ i(p 152[3>5;?T11—_€7:Tr<17’

m=—o0 p=0

@ Looks worse than before, but swap the sums over j and p. ..

Eq: ClellP=i)=B 4 7, Z Z Cle U2 Zelps2'ﬁ5,‘,’,:f,’, =T7,
j=0

m=—00 j=0

no unknowns!

@ Recall that S7, is a sum of phase shifted wavefunctions along one row.

m—m?

o

@ The new sum, Ze"’sz BSI7P  represents a stack of rows.
p=j

@ McPhedran et al. (2000) evaluated these exactly.

@ We can filter any number of Bloch waves by repeatedly applying the
same transformation (proof: Thompson & Brougham, 2017).
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Proportion of reflected energy with s; = [1,0], s, = [0, 1],
a=0.42
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Concluding remarks

@ Solving the excitation problem reveals information that is not
captured by a standard band diagram.
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Concluding remarks

@ Solving the excitation problem reveals information that is not
captured by a standard band diagram.

@ This is important for applications such as band gap filters.

o At low frequencies (ka < 1) the Wiener—Hopf technique and the
filtering method are relatively easy to implement.

Tymis & Thompson (2011): acoustic point scatterers, WH method.

Albani & Capolino (2011): nanospheres, EM waves, WH method.

Haslinger et al. (2016): pins in thin plates, WH method.

Thompson & Brougham (2017): acoustic point scatterers, filtering.
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Concluding remarks

@ Solving the excitation problem reveals information that is not
captured by a standard band diagram.

@ This is important for applications such as band gap filters.

o At low frequencies (ka < 1) the Wiener—Hopf technique and the
filtering method are relatively easy to implement.
» Tymis & Thompson (2011): acoustic point scatterers, WH method.
» Albani & Capolino (2011): nanospheres, EM waves, WH method.
» Haslinger et al. (2016): pins in thin plates, WH method.
» Thompson & Brougham (2017): acoustic point scatterers, filtering.

e For larger bodies (ka = O(1)-0(10)), filtering is much simpler.
» Tymis & Thompson (2014): acoustic scatterers, WH method.
» Brougham & Thompson (in progress): acoustic scatterers, filtering.
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Concluding remarks

@ Solving the excitation problem reveals information that is not
captured by a standard band diagram.

@ This is important for applications such as band gap filters.

o At low frequencies (ka < 1) the Wiener—Hopf technique and the
filtering method are relatively easy to implement.

» Tymis & Thompson (2011): acoustic point scatterers, WH method.
» Albani & Capolino (2011): nanospheres, EM waves, WH method.
» Haslinger et al. (2016): pins in thin plates, WH method.

» Thompson & Brougham (2017): acoustic point scatterers, filtering.

e For larger bodies (ka = O(1)-0(10)), filtering is much simpler.
» Tymis & Thompson (2014): acoustic scatterers, WH method.
» Brougham & Thompson (in progress): acoustic scatterers, filtering.

o Filtering will work in the same way for more complicated systems:
> In-plane elastic wave problem, 3D lattices composed using spheres, ...
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