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Introduction

Bloch waves propagate through periodic structures without loss.

Media that support Bloch waves include
I Photonic & phononic crystals
I Elastic plates with a lattice of pins or holes
I Periodic columns cylindrical columns

standing in water
I Composite elastic materials with periodic

inner structures

Fields in this talk are time-harmonic, so

U(r; t) = Re
[
u(r)e−iωt

]
.

Solve (∇2 + k2)u(r) = 0, subject to
∂u/∂n = 0 on scatterer surface (SH
problem).

k = ω/c , c =
√
µ/ρ, µ: shear modulus, ρ: density. c = O(103ms−1)

for metal & rock.

Bloch wave excitation 1 / 11



Introduction

Bloch waves propagate through periodic structures without loss.

Media that support Bloch waves include
I Photonic & phononic crystals
I Elastic plates with a lattice of pins or holes
I Periodic columns cylindrical columns

standing in water
I Composite elastic materials with periodic

inner structures

Fields in this talk are time-harmonic, so

U(r; t) = Re
[
u(r)e−iωt

]
.

Solve (∇2 + k2)u(r) = 0, subject to
∂u/∂n = 0 on scatterer surface (SH
problem).

k = ω/c , c =
√
µ/ρ, µ: shear modulus, ρ: density. c = O(103ms−1)

for metal & rock.

Bloch wave excitation 1 / 11



Introduction

Bloch waves propagate through periodic structures without loss.

Media that support Bloch waves include
I Photonic & phononic crystals
I Elastic plates with a lattice of pins or holes
I Periodic columns cylindrical columns

standing in water
I Composite elastic materials with periodic

inner structures

Fields in this talk are time-harmonic, so

U(r; t) = Re
[
u(r)e−iωt

]
.

Solve (∇2 + k2)u(r) = 0, subject to
∂u/∂n = 0 on scatterer surface (SH
problem).

k = ω/c , c =
√
µ/ρ, µ: shear modulus, ρ: density. c = O(103ms−1)

for metal & rock.

Bloch wave excitation 1 / 11



Introduction

Bloch waves propagate through periodic structures without loss.

Media that support Bloch waves include
I Photonic & phononic crystals
I Elastic plates with a lattice of pins or holes
I Periodic columns cylindrical columns

standing in water
I Composite elastic materials with periodic

inner structures

Fields in this talk are time-harmonic, so

U(r; t) = Re
[
u(r)e−iωt

]
.

Solve (∇2 + k2)u(r) = 0, subject to
∂u/∂n = 0 on scatterer surface (SH
problem).

k = ω/c , c =
√
µ/ρ, µ: shear modulus, ρ: density. c = O(103ms−1)

for metal & rock.

Bloch wave excitation 1 / 11



Introduction

Bloch waves propagate through periodic structures without loss.

Media that support Bloch waves include
I Photonic & phononic crystals
I Elastic plates with a lattice of pins or holes
I Periodic columns cylindrical columns

standing in water
I Composite elastic materials with periodic

inner structures

Fields in this talk are time-harmonic, so

U(r; t) = Re
[
u(r)e−iωt

]
.

Solve (∇2 + k2)u(r) = 0, subject to
∂u/∂n = 0 on scatterer surface (SH
problem).

k = ω/c , c =
√
µ/ρ, µ: shear modulus, ρ: density. c = O(103ms−1)

for metal & rock.

Bloch wave excitation 1 / 11



Bloch vectors

If u represents a Bloch wave, then

u(r + js1 + ps2) = ei(js1+ps2)·βu(r),

for j , p ∈ Z.

The Bloch vector is not unique; e.g. if

s∗ · s1 = 2q1π and s∗ · s2 = 2q2π,

for q1, q2 ∈ Z then β and β + s∗ are
equivalent. Bloch waves do not have
phase velocity!

The irreducible Brillouin zone (IBZ)
contains the shortest possible
representation for each Bloch vector (X ,
Γ, M coords for s1 = [1, 0] s2 = [0, 1]).

s1

s2

Bloch wave excitation 2 / 11



Bloch vectors

If u represents a Bloch wave, then

u(r + js1 + ps2) = ei(js1+ps2)·βu(r),

for j , p ∈ Z.

The Bloch vector is not unique; e.g. if

s∗ · s1 = 2q1π and s∗ · s2 = 2q2π,

for q1, q2 ∈ Z then β and β + s∗ are
equivalent. Bloch waves do not have
phase velocity!

The irreducible Brillouin zone (IBZ)
contains the shortest possible
representation for each Bloch vector (X ,
Γ, M coords for s1 = [1, 0] s2 = [0, 1]).

s1

s2

Bloch wave excitation 2 / 11



Bloch vectors

If u represents a Bloch wave, then

u(r + js1 + ps2) = ei(js1+ps2)·βu(r),

for j , p ∈ Z.

The Bloch vector is not unique; e.g. if

s∗ · s1 = 2q1π and s∗ · s2 = 2q2π,

for q1, q2 ∈ Z then β and β + s∗ are
equivalent. Bloch waves do not have
phase velocity!

The irreducible Brillouin zone (IBZ)
contains the shortest possible
representation for each Bloch vector (X ,
Γ, M coords for s1 = [1, 0] s2 = [0, 1]).

s1

s2

M = [π, π]

X = [0, π]Γ = [0, 0]

B Bi
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Band diagrams

Bloch waves only exist within
certain frequency ranges (bands).

In most cases, the band edges are
found when the Bloch vector
appears on the boundary of the IBZ.

Plotting the solutions here leads to
a band diagram. Reading across
shows how many modes exist at
each frequency.

Square lattice, SH waves,
s1 = [1, 0], s2 = [0, 1], scatterer
radius a = 0.42.

This medium could be used to block
signals for which 3 . ω/c . 4,
where there is a gap.
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The excitation problem

To gain more information about
pass bands we consider a wave
in free space striking the edge of
a periodic medium.

We aim to determine the
proportions of wave energy
transmitted into and reflected
back from the lattice.

Tymis & Thompson (2014)
solved this problem using the
matrix Wiener–Hopf technique.

x

y

ψ0

ui = eik(x cosψ0+y sinψ0)

A remark from a presentation in 2014

There is more to do: the method used here is not easy to implement at
high frequencies.
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Multipoles

The scattered field can be represented as a sum of singular
wavefunctions, centred at each scatterer:

us(r) =
∞∑

n=−∞

∞∑
p=0

∞∑
j=−∞

Aj ,p
n Hn(r − js1 − ps2)

where Hn(r) = H
(1)
n (kr)einθ, r = r [cos θ, sin θ] and H

(1)
n (·) is a Hankel

function of the first kind.

This automatically satisfies the Helmholtz equation.

Due to quasiperiodicity in x , Aj ,p
n = eikjs1 cosψ0Ap

n.

Meaning of the sums:
I
∑

n Different modes radiating from each scatterer. Exponentially
convergent.

I
∑

j Position in x . Can be evaluated exactly.
I
∑

p Position in y . Very slowly convergent if Bloch waves are excited.
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Applying the boundary condition leads to a linear system of equations
for the coefficients Ap

n:

Aq
n + Zn

∞∑
m=−∞

∞∑
p=0

Ap
mS

q−p
m−n = T q

n , n ∈ Z, q = 0, 1, . . .

where the RHS is given by −Zni
neiqks2·[cosψ0,sinψ0]e−inψ0 .

Zn = J′n(ka)/Y′n(ka) is a scattering coefficient which describes the
properties of the individual scatterers (a = radius).

Sq
n is obtained by summing contributions along one row:

Sq
n =

∞∑′

j=−∞
eijks1 cosψ0Hn(qs2 − js1) (′ means omit j = 0 if q = 0).

Sums of this type were evaluated by Twersky in the 1960s.
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The radiation condition

We now have two problems:
1 The linear system for Ap

n cannot be solved by truncation if Bloch waves
are excited, because Ap

n 6→ 0 as p →∞.
2 No radiation condition has been applied for y →∞

To deal with these, start by finding all possible Bloch modes.

Then calculate the mean energy flux
across s1 for each mode, using

〈E 〉 = − µω

2
Im

∫
S
u(r)

∂

∂n
u∗(r) ds.

Modes with 〈E 〉 < 0 cannot be excited
by scattering at y = 0 (y component of
group velocity is < 0).

This is the radiation condition for Bloch wave excitation (Sommerfeld
does not apply here, because Bloch waves have no phase velocity).
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Filtering

Consider the case where one Bloch wave is excited. Then

Ap
n = beips2·βBn + Âp

n.

Here, β and Bn describe the Bloch wave. These are known, but the
amplitude coefficient b is unknown.

Âp
n is also unknown, but tends to zero as p →∞.

Now write

Cp
n =

{
Ap
n if p = 0

Ap
n − eis2·βAp−1

n otherwise.
(∗)

For p > 0, we have Cp
n = Âp

n − eis2·βÂp−1
n .

The Bloch wave contributes to C0 only. Also, Cp → 0 as p →∞.

We can solve (∗) to obtain

Ap
n =

p∑
j=0

C j
ne

i(p−j)s2·β.
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n is also unknown, but tends to zero as p →∞.

Now write

Cp
n =

{
Ap
n if p = 0

Ap
n − eis2·βAp−1

n otherwise.
(∗)

For p > 0, we have Cp
n = Âp

n − eis2·βÂp−1
n .

The Bloch wave contributes to C0 only. Also, Cp → 0 as p →∞.

We can solve (∗) to obtain

Ap
n =

p∑
j=0

C j
ne

i(p−j)s2·β.
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Substitute into the system for Ap
n . . .

q∑
j=0

C j
ne

i(p−j)s2·β + Zn

∞∑
m=−∞

∞∑
p=0

( p∑
j=0

C j
me

i(p−j)s2·β
)
Sq−p
m−n = T q

n ,

Looks worse than before, but swap the sums over j and p. . .

Recall that Sq
m is a sum of phase shifted wavefunctions along one row.

The new sum,
∞∑
p=j

eips2·βSq−p
m−m, represents a stack of rows.

McPhedran et al. (2000) evaluated these exactly.

We can filter any number of Bloch waves by repeatedly applying the
same transformation (proof: Thompson & Brougham, 2017).
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Concluding remarks

Solving the excitation problem reveals information that is not
captured by a standard band diagram.

This is important for applications such as band gap filters.

At low frequencies (ka� 1) the Wiener–Hopf technique and the
filtering method are relatively easy to implement.

I Tymis & Thompson (2011): acoustic point scatterers, WH method.
I Albani & Capolino (2011): nanospheres, EM waves, WH method.
I Haslinger et al. (2016): pins in thin plates, WH method.
I Thompson & Brougham (2017): acoustic point scatterers, filtering.

For larger bodies (ka = O(1)–O(10)), filtering is much simpler.
I Tymis & Thompson (2014): acoustic scatterers, WH method.
I Brougham & Thompson (in progress): acoustic scatterers, filtering.

Filtering will work in the same way for more complicated systems:
I In-plane elastic wave problem, 3D lattices composed using spheres, . . .
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