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Introduction

Waves in plates are important for modelling non-destructive testing of
thin panels (e.g. aeroplane wings).

Consider any 2D diffraction/scattering problem in
acoustics/electromagnetism/fluid mechanics.

Rather than the x , y plane representing a cross section of a 3D
problem, it now represents a plate.
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Kirchhoff (classical) plate theory

Dates back to the 19th century.

Only transverse displacements (w(x , y)) are included:

w = w1 + w2,
(
∇2 + k2

)
w1 = 0︸ ︷︷ ︸, (

∇2 − k2
)
w2︸ ︷︷ ︸ = 0.

propagating modes evanescent modes

Here, motion is assumed to be time-harmonic, so

W (x , y ; t) = Re[w(x , y)e−iωt ].

The flexural wavenumber is given by k = (ρhω2/D)1/4

ρ: density, h: thickness, ω: frequency, D: stiffness.

Two bc’s apply at an interface; e.g. at a fixed edge w =
∂w

∂n
= 0.

In addition, strain energy density must be integrable in all regions of
the plate (Norris & Wang 1994).
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Mindlin Theory

Developed by Raymond D Mindlin in the 1950s.

Includes in-plane rotations (ψx , ψy ) in addition to transverse
displacements (w).

Three Helmholtz equations to solve:

(∇2 + k2
1 )w1 = 0, (∇2 + k2

2 )w2 = 0, (∇2 + k2
3 )φ = 0,

where k1 is real, k2 and k3 are imaginary, with |k3| � |k2|.
Transverse displacement is still w = w1 + w2,

ψx =
∂

∂x
(A1w1 +A2w2) +

∂φ

∂y
and ψy =

∂

∂y
(A1w1 +A2w2)− ∂φ

∂x
,

where A1 and A2 are constants.

Three boundary conditions at an interface, e.g. at a rigid edge,

w = ψx = ψy = 0.

Strain energy density is integrable if all displacements are bounded.
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Relationship between Kirchhoff & Mindlin

As ω → 0, k1 → k and k2 → ik , so at the leading order we have

(∇2 + k2
1 )→ (∇2 + k2) and (∇2 + k2

2 )→ (∇2 − k2),

recovering the governing PDEs for Kirchhoff theory.

Also, A1 → −1 and A2 → −1, so

ψx =
∂

∂x
(A1w1 + A2w2) +

∂φ

∂y
→ − ∂w

∂x
+
∂φ

∂y

ψy =
∂

∂y
(A1w1 + A2w2)− ∂φ

∂x
→ − ∂w

∂y
− ∂φ

∂x
.

If y = 0 is a fixed edge, then w(x , 0) = wx(x , 0) = 0.

All three fixed edge bc’s are satisfied (at leading order) if
w(x , 0) = wy (x , 0) = 0 and φ(x , y) ≡ 0.

A similar (albeit more complicated) reduction occurs in the case of a
free edge.
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Fourier representations

Applying a Fourier transform (in x) to the Helmholtz equation(
∇2 + k2

)
u(x , y) =

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
u(x , y) = 0

leads to the ODE (
∂2

∂y2
− α2 + k2

)
û(α; y).

Hence, û(α; y) = B(α)e−γ(α)y + C (α)eγ(α)y , with

γ(α) =
(
α2 − k2

)1/2
.

By convention, γ(0) = −ik and γ(α)→ |α| as α→∞ ∈ R.

There may be different forms for B and C in different regions.

In a Sommerfeld-type geometry, C ≡ 0 for y > 0 and B ≡ 0 for
y < 0, to satisfy the radiation condition.
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A typical Fourier representation for a
solution to the Helmholtz equation:

u =
1

2π

∫
Γ
B(α)e−γ(α)|y |e−iαx dα.

Branch points at α = ±k.

k

−k

Γ
Re[α]

Im[α]

For a Kirchhoff plate

w =
1

2π

∫
Γ

[
B(α)e−γ(α)|y |+C (α)e−λ(α)|y |

]
e−iαx dα, λ = (α2+k2)1/2

(with λ(0) = k). Additional branch points at α = ±ik .

λ in exponent ⇒ evanescent modes; growing solutions are forbidden.

For a Mindlin plate, we write γj(α) = (α2 − k2
j )1/2

wj =
1

2π

∫
Γ
Bj(α)e−γj (α)|y |−iαx dα, φ =

1

2π

∫
Γ
R(α)e−γ3(α)|y |−iαx dα.

Three pairs of branch points: ±k1 (real), ±k2, ±k3 (imaginary).
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Flexural wave diffraction

Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

Since there are two boundary
conditions, this geometry leads to
two Wiener–Hopf equations.

Rigid strip or crack

Θ

However, N & W split the incident wave w i = eik(x cos Θ+y sin Θ):

w i
sym = eikx cos Θ cos(ky sin Θ), w i

asym = eikx cos Θ i sin(ky sin Θ).

Then w i = w i
sym + w i

asym and ∂wsym/∂y = wasym = 0 on y = 0.

The result is four Sommerfeld-type problems (two for the strip and
two for the crack) that can be solved in y ≥ 0 only.

The equivalent Mindlin problems partially decouple. Each requires
three bc’s, so the result is two scalar problems and two 2× 2 matrix
problems.
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Some functions that need to be factorised

Kirchhoff

Rigid strip symmetric: KS(α) = λ(α)− γ(α).

Rigid strip antisymmetric: KA(α) = λ(α) + γ(α) = 2k2/KS(α).

Mindlin

Rigid strip scalar:

K (α) = A1γ1(α)γ3(α)− A2γ2(α)γ3(α) + α2(A2 − A1).

Rigid strip matrix:

T(α) =


1

γ1(α)

1

γ2(α)

iA1

(
γ3(α)

α
− α

γ1(α)

)
iA2

(
γ3(α)

α
− α

γ2(α)

)
 .

It turns out that det T(α) = − i

αγ1(α)γ2(α)
K (α).
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Scalar kernel factorisation

Consider a Kirchhoff problem (easier algebra!):

K (α)Q+(α) = w+(α) + w−(α),

where

K (α) = (α2 + k2)1/2︸ ︷︷ ︸
λ(α)

− (α2 − k2)1/2︸ ︷︷ ︸
γ(α)

and w+(α) =
−i

α− α0

with α0 = −k cos Θ. The functions Q+ and w− are unknown.

Observations

1 K (α)→ k2/|α| as α→∞ ∈ R.

2 K (α) changes sign if α winds once around k and ik (or −k and −ik).

If we write K̃ (α) = k−2γ(α)K (α) then K̃ (α)→ 1 as α→∞ ∈ R
and has no branch point at infinity. γ(α) is easy to factorise.
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Scalar kernel factorisation (ctd)

The standard factorisation formula is
f ±(α) = exp[J±(α)], where

J±(α) = − 1

2πi

∫
Γ∓

log[f (z)]

z − α
dz .

By the residue theorem,

J+(α) + J−(α) = log[f (α)].

Convergence relies on the fact that
f (z)→ 1 as z →∞ ∈ Γ± — slow!

k

−k

ik

−ik

α

Γ+

Γ−

Re[z]

Im[z]

Norris & Wang took advantage of the fact that K̃ (z) has no branch
point at infinity.
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Computing K̃−(α)

Since K̃−(α) = K̃ (α)/K̃+(α), we
need only compute K̃−(α) directly
in the half plane Re[α] < − Im[α].

Rotate the cut emanating from
α = k so that it connects to α = ik .

The cut above α = ik disappears.

Deform Γ+ upwards so that it wraps
around the remaining cut.

k

ik

α

Γ+

Re[z]

Im[z]

We obtain an integral over a finite path:

J−(α) = − 1

2πi

∫ ik

k

log[K̃R(z)]− log[K̃L(z)]

z − α
dz ,

where ‘R’ (‘L’) means evaluate on the right (left) face.
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Implicit quadrature method
Consider a Wiener–Hopf equation:

A(α)f +(α) + B(α)g−(α) = C (α).

A, B and C are known. f + and g− are
analytic except for finite branch cuts.

Cauchy’s integral formula:

g−(α) =
1

2πi

∫
Ω+

b

g−(z)

z − α
dz .

If g−(α)→ 0 as α→∞, then

g−(α) =
1

2πi

∫
Ω+

b

g−(z)

z − α
dz .

Similarly if f +(α)→ 0 as α→∞, then

f +(α) =
1

2πi

∫
Ω−

b

f +(z)

z − α
dz ,

where Ω−b encircles the finite cut of f + in the lower half plane.
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Suppose the Cauchy integrals are
evaluated by quadrature. That is,

g−(α) ≈ 1

2πi

n∑
j=1

w+
j

Gj ,L − Gj ,R

z+
j − α

,

f +(α) ≈ 1

2πi

n∑
j=1

w−j
Fj ,L − Fj ,R

z−j − α
,

Re[z]

Im[z]

α

Ω+
b

Here, wj are quadrature weights, ‘L’ and ‘R’ mean ‘left’ and ‘right’,

Fj = f +(z−j ) and Gj = g−(z+
j ).

Return to the W–H equation: A(α)f +(α) + B(α)g−(α) = C (α) and
evaluate at z+

p :

AS(z+
p )f +(z+

p ) + BS(z+
p )Gp,S = CS(z+

p ).

‘S ’ can be either ‘L’ or ‘R’ (two equations).
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No approximations yet! Insert quadrature form for f + . . .

AS(z+
p )

2πi

n∑
j=1

w−j
Fj ,L − Fj ,R

z−j − z+
p

+ BS(z+
p )Gp,S = CS(z+

p ).

Repeat for z−j . . . a system of 4n linear, algebraic equations for the
4n unknowns.

Comparison of methods

The standard method requires one quadrature per α value (to split
the kernel).

Implicit quadrature requires one linear system solve per set of physical
parameters (k etc.) and one quadrature per α value.

The implicit quadrature method works for matrix W–H equations,
provided the unknowns have finite branch cuts.
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Concluding remarks

The rigid strip problem is almost solved — it remains to complete the
numerical code and analyse the diffraction pattern.

The crack problem is next.

Questions: do all diffraction problems of this type lead to kernels with
finite cuts? Why (or why not)?

Some discrete problems involving arrays of pins have also been
considered.

Many other ‘classical’ W–H geometries are untouched.

Thanks for your attention.
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