Diffraction in Mindlin plates

Ian Thompson
Department of Mathematical Sciences
University of Liverpool

Introduction

- Waves in plates are important for modelling non-destructive testing of thin panels (e.g. aeroplane wings).

Introduction

- Waves in plates are important for modelling non-destructive testing of thin panels (e.g. aeroplane wings).
- Consider any 2D diffraction/scattering problem in acoustics/electromagnetism/fluid mechanics.

Sommerfeld problem

Semi-infinite waveguide (Heins 1948)

(Abrahams \& Wickham 1988 \& 1990)

Introduction

- Waves in plates are important for modelling non-destructive testing of thin panels (e.g. aeroplane wings).
- Consider any 2D diffraction/scattering problem in acoustics/electromagnetism/fluid mechanics.

Sommerfeld problem

Semi-infinite waveguide

(Abrahams \& Wickham 1988 \& 1990)

- Rather than the x, y plane representing a cross section of a 3D problem, it now represents a plate.

Kirchhoff (classical) plate theory

- Dates back to the 19th century.

Kirchhoff (classical) plate theory

- Dates back to the 19th century.
- Only transverse displacements $(w(x, y))$ are included:

$$
w=w_{1}+w_{2}, \underbrace{\left(\nabla^{2}+k^{2}\right) w_{1}=0}_{\text {propagating modes }}, \quad \underbrace{\left(\nabla^{2}-k^{2}\right) w_{2}}_{\text {evanescent modes }}=0
$$

Kirchhoff (classical) plate theory

- Dates back to the 19th century.
- Only transverse displacements $(w(x, y))$ are included:

$$
w=w_{1}+w_{2}, \quad \underbrace{\left(\nabla^{2}+k^{2}\right) w_{1}=0}_{\text {propagating modes }}, \quad \underbrace{\left(\nabla^{2}-k^{2}\right) w_{2}}_{\text {evanescent modes }}=0 .
$$

- Here, motion is assumed to be time-harmonic, so

$$
W(x, y ; t)=\operatorname{Re}\left[w(x, y) \mathrm{e}^{-\mathrm{i} \omega t}\right] .
$$

Kirchhoff (classical) plate theory

- Dates back to the 19th century.
- Only transverse displacements $(w(x, y))$ are included:

$$
w=w_{1}+w_{2}, \quad \underbrace{\left(\nabla^{2}+k^{2}\right) w_{1}=0}_{\text {propagating modes }}, \quad \underbrace{\left(\nabla^{2}-k^{2}\right) w_{2}}_{\text {evanescent modes }}=0
$$

- Here, motion is assumed to be time-harmonic, so

$$
W(x, y ; t)=\operatorname{Re}\left[w(x, y) \mathrm{e}^{-\mathrm{i} \omega t}\right] .
$$

- The flexural wavenumber is given by $k=\left(\rho h \omega^{2} / D\right)^{1 / 4}$ ρ : density, h : thickness, ω : frequency, D : stiffness.

Kirchhoff (classical) plate theory

- Dates back to the 19th century.
- Only transverse displacements $(w(x, y))$ are included:

$$
w=w_{1}+w_{2}, \quad \underbrace{\left(\nabla^{2}+k^{2}\right) w_{1}=0}_{\text {propagating modes }}, \quad \underbrace{\left(\nabla^{2}-k^{2}\right) w_{2}}_{\text {evanescent modes }}=0 .
$$

- Here, motion is assumed to be time-harmonic, so

$$
W(x, y ; t)=\operatorname{Re}\left[w(x, y) \mathrm{e}^{-\mathrm{i} \omega t}\right] .
$$

- The flexural wavenumber is given by $k=\left(\rho h \omega^{2} / D\right)^{1 / 4}$ ρ : density, h : thickness, ω : frequency, D : stiffness.
- Two bc's apply at an interface; e.g. at a fixed edge $w=\frac{\partial w}{\partial n}=0$.

Kirchhoff (classical) plate theory

- Dates back to the 19th century.
- Only transverse displacements $(w(x, y))$ are included:

$$
w=w_{1}+w_{2}, \underbrace{\left(\nabla^{2}+k^{2}\right) w_{1}=0}_{\text {propagating modes }}, \quad \underbrace{\left(\nabla^{2}-k^{2}\right) w_{2}}_{\text {evanescent modes }}=0 .
$$

- Here, motion is assumed to be time-harmonic, so

$$
W(x, y ; t)=\operatorname{Re}\left[w(x, y) \mathrm{e}^{-\mathrm{i} \omega t}\right] .
$$

- The flexural wavenumber is given by $k=\left(\rho h \omega^{2} / D\right)^{1 / 4}$

$$
\rho \text { : density, } h \text { : thickness, } \omega \text { : frequency, } \quad D \text { : stiffness. }
$$

- Two bc's apply at an interface; e.g. at a fixed edge $w=\frac{\partial w}{\partial n}=0$.
- In addition, strain energy density must be integrable in all regions of the plate (Norris \& Wang 1994).

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.
- Includes in-plane rotations $\left(\psi_{x}, \psi_{y}\right)$ in addition to transverse displacements (w).

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.
- Includes in-plane rotations $\left(\psi_{x}, \psi_{y}\right)$ in addition to transverse displacements (w).
- Three Helmholtz equations to solve:

$$
\left(\nabla^{2}+k_{1}^{2}\right) w_{1}=0, \quad\left(\nabla^{2}+k_{2}^{2}\right) w_{2}=0, \quad\left(\nabla^{2}+k_{3}^{2}\right) \phi=0,
$$

where k_{1} is real, k_{2} and k_{3} are imaginary, with $\left|k_{3}\right| \gg\left|k_{2}\right|$.

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.
- Includes in-plane rotations $\left(\psi_{x}, \psi_{y}\right)$ in addition to transverse displacements (w).
- Three Helmholtz equations to solve:

$$
\left(\nabla^{2}+k_{1}^{2}\right) w_{1}=0, \quad\left(\nabla^{2}+k_{2}^{2}\right) w_{2}=0, \quad\left(\nabla^{2}+k_{3}^{2}\right) \phi=0,
$$

where k_{1} is real, k_{2} and k_{3} are imaginary, with $\left|k_{3}\right| \gg\left|k_{2}\right|$.

- Transverse displacement is still $w=w_{1}+w_{2}$,
$\psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \quad$ and $\quad \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x}$, where A_{1} and A_{2} are constants.

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.
- Includes in-plane rotations $\left(\psi_{x}, \psi_{y}\right)$ in addition to transverse displacements (w).
- Three Helmholtz equations to solve:

$$
\left(\nabla^{2}+k_{1}^{2}\right) w_{1}=0, \quad\left(\nabla^{2}+k_{2}^{2}\right) w_{2}=0, \quad\left(\nabla^{2}+k_{3}^{2}\right) \phi=0,
$$

where k_{1} is real, k_{2} and k_{3} are imaginary, with $\left|k_{3}\right| \gg\left|k_{2}\right|$.

- Transverse displacement is still $w=w_{1}+w_{2}$,
$\psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \quad$ and $\quad \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x}$, where A_{1} and A_{2} are constants.
- Three boundary conditions at an interface, e.g. at a rigid edge,

$$
w=\psi_{x}=\psi_{y}=0
$$

Mindlin Theory

- Developed by Raymond D Mindlin in the 1950s.
- Includes in-plane rotations $\left(\psi_{x}, \psi_{y}\right)$ in addition to transverse displacements (w).
- Three Helmholtz equations to solve:

$$
\left(\nabla^{2}+k_{1}^{2}\right) w_{1}=0, \quad\left(\nabla^{2}+k_{2}^{2}\right) w_{2}=0, \quad\left(\nabla^{2}+k_{3}^{2}\right) \phi=0,
$$

where k_{1} is real, k_{2} and k_{3} are imaginary, with $\left|k_{3}\right| \gg\left|k_{2}\right|$.

- Transverse displacement is still $w=w_{1}+w_{2}$,
$\psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \quad$ and $\quad \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x}$, where A_{1} and A_{2} are constants.
- Three boundary conditions at an interface, e.g. at a rigid edge,

$$
w=\psi_{x}=\psi_{y}=0
$$

- Strain energy density is integrable if all displacements are bounded.

Relationship between Kirchhoff \& Mindlin

- As $\omega \rightarrow 0, k_{1} \rightarrow k$ and $k_{2} \rightarrow i k$, so at the leading order we have

$$
\left(\nabla^{2}+k_{1}^{2}\right) \rightarrow\left(\nabla^{2}+k^{2}\right) \quad \text { and } \quad\left(\nabla^{2}+k_{2}^{2}\right) \rightarrow\left(\nabla^{2}-k^{2}\right),
$$

recovering the governing PDEs for Kirchhoff theory.

Relationship between Kirchhoff \& Mindlin

- As $\omega \rightarrow 0, k_{1} \rightarrow k$ and $k_{2} \rightarrow i k$, so at the leading order we have

$$
\left(\nabla^{2}+k_{1}^{2}\right) \rightarrow\left(\nabla^{2}+k^{2}\right) \quad \text { and } \quad\left(\nabla^{2}+k_{2}^{2}\right) \rightarrow\left(\nabla^{2}-k^{2}\right)
$$

recovering the governing PDEs for Kirchhoff theory.

- Also, $A_{1} \rightarrow-1$ and $A_{2} \rightarrow-1$, so

$$
\begin{aligned}
& \psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \rightarrow-\frac{\partial w}{\partial x}+\frac{\partial \phi}{\partial y} \\
& \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x} \rightarrow-\frac{\partial w}{\partial y}-\frac{\partial \phi}{\partial x}
\end{aligned}
$$

Relationship between Kirchhoff \& Mindlin

- As $\omega \rightarrow 0, k_{1} \rightarrow k$ and $k_{2} \rightarrow i k$, so at the leading order we have

$$
\left(\nabla^{2}+k_{1}^{2}\right) \rightarrow\left(\nabla^{2}+k^{2}\right) \quad \text { and } \quad\left(\nabla^{2}+k_{2}^{2}\right) \rightarrow\left(\nabla^{2}-k^{2}\right)
$$

recovering the governing PDEs for Kirchhoff theory.

- Also, $A_{1} \rightarrow-1$ and $A_{2} \rightarrow-1$, so

$$
\begin{aligned}
& \psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \rightarrow-\frac{\partial w}{\partial x}+\frac{\partial \phi}{\partial y} \\
& \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x} \rightarrow-\frac{\partial w}{\partial y}-\frac{\partial \phi}{\partial x}
\end{aligned}
$$

- If $y=0$ is a fixed edge, then $w(x, 0)=w_{x}(x, 0)=0$.

Relationship between Kirchhoff \& Mindlin

- As $\omega \rightarrow 0, k_{1} \rightarrow k$ and $k_{2} \rightarrow i k$, so at the leading order we have

$$
\left(\nabla^{2}+k_{1}^{2}\right) \rightarrow\left(\nabla^{2}+k^{2}\right) \quad \text { and } \quad\left(\nabla^{2}+k_{2}^{2}\right) \rightarrow\left(\nabla^{2}-k^{2}\right)
$$

recovering the governing PDEs for Kirchhoff theory.

- Also, $A_{1} \rightarrow-1$ and $A_{2} \rightarrow-1$, so

$$
\begin{aligned}
& \psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \rightarrow-\frac{\partial w}{\partial x}+\frac{\partial \phi}{\partial y} \\
& \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x} \rightarrow-\frac{\partial w}{\partial y}-\frac{\partial \phi}{\partial x}
\end{aligned}
$$

- If $y=0$ is a fixed edge, then $w(x, 0)=w_{x}(x, 0)=0$.
- All three fixed edge bc's are satisfied (at leading order) if $w(x, 0)=w_{y}(x, 0)=0$ and $\phi(x, y) \equiv 0$.

Relationship between Kirchhoff \& Mindlin

- As $\omega \rightarrow 0, k_{1} \rightarrow k$ and $k_{2} \rightarrow i k$, so at the leading order we have

$$
\left(\nabla^{2}+k_{1}^{2}\right) \rightarrow\left(\nabla^{2}+k^{2}\right) \quad \text { and } \quad\left(\nabla^{2}+k_{2}^{2}\right) \rightarrow\left(\nabla^{2}-k^{2}\right),
$$

recovering the governing PDEs for Kirchhoff theory.

- Also, $A_{1} \rightarrow-1$ and $A_{2} \rightarrow-1$, so

$$
\begin{aligned}
& \psi_{x}=\frac{\partial}{\partial x}\left(A_{1} w_{1}+A_{2} w_{2}\right)+\frac{\partial \phi}{\partial y} \rightarrow-\frac{\partial w}{\partial x}+\frac{\partial \phi}{\partial y} \\
& \psi_{y}=\frac{\partial}{\partial y}\left(A_{1} w_{1}+A_{2} w_{2}\right)-\frac{\partial \phi}{\partial x} \rightarrow-\frac{\partial w}{\partial y}-\frac{\partial \phi}{\partial x}
\end{aligned}
$$

- If $y=0$ is a fixed edge, then $w(x, 0)=w_{x}(x, 0)=0$.
- All three fixed edge bc's are satisfied (at leading order) if $w(x, 0)=w_{y}(x, 0)=0$ and $\phi(x, y) \equiv 0$.
- A similar (albeit more complicated) reduction occurs in the case of a free edge.

Fourier representations

Fourier representations

- Applying a Fourier transform (in x) to the Helmholtz equation

$$
\left(\nabla^{2}+k^{2}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2}\right) u(x, y)=0
$$

leads to the ODE

$$
\left(\frac{\partial^{2}}{\partial y^{2}}-\alpha^{2}+k^{2}\right) \hat{u}(\alpha ; y) .
$$

Fourier representations

- Applying a Fourier transform (in x) to the Helmholtz equation

$$
\left(\nabla^{2}+k^{2}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2}\right) u(x, y)=0
$$

leads to the ODE

$$
\left(\frac{\partial^{2}}{\partial y^{2}}-\alpha^{2}+k^{2}\right) \hat{u}(\alpha ; y) .
$$

- Hence, $\hat{u}(\alpha ; y)=B(\alpha) \mathrm{e}^{-\gamma(\alpha) y}+C(\alpha) \mathrm{e}^{\gamma(\alpha) y}$, with

$$
\gamma(\alpha)=\left(\alpha^{2}-k^{2}\right)^{1 / 2}
$$

Fourier representations

- Applying a Fourier transform (in x) to the Helmholtz equation

$$
\left(\nabla^{2}+k^{2}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2}\right) u(x, y)=0
$$

leads to the ODE

$$
\left(\frac{\partial^{2}}{\partial y^{2}}-\alpha^{2}+k^{2}\right) \hat{u}(\alpha ; y) .
$$

- Hence, $\hat{u}(\alpha ; y)=B(\alpha) \mathrm{e}^{-\gamma(\alpha) y}+C(\alpha) \mathrm{e}^{\gamma(\alpha) y}$, with

$$
\gamma(\alpha)=\left(\alpha^{2}-k^{2}\right)^{1 / 2}
$$

- By convention, $\gamma(0)=-\mathrm{ik}$ and $\gamma(\alpha) \rightarrow|\alpha|$ as $\alpha \rightarrow \infty \in \mathbb{R}$.

Fourier representations

- Applying a Fourier transform (in x) to the Helmholtz equation

$$
\left(\nabla^{2}+k^{2}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2}\right) u(x, y)=0
$$

leads to the ODE

$$
\left(\frac{\partial^{2}}{\partial y^{2}}-\alpha^{2}+k^{2}\right) \hat{u}(\alpha ; y) .
$$

- Hence, $\hat{u}(\alpha ; y)=B(\alpha) \mathrm{e}^{-\gamma(\alpha) y}+C(\alpha) \mathrm{e}^{\gamma(\alpha) y}$, with

$$
\gamma(\alpha)=\left(\alpha^{2}-k^{2}\right)^{1 / 2}
$$

- By convention, $\gamma(0)=-\mathrm{ik}$ and $\gamma(\alpha) \rightarrow|\alpha|$ as $\alpha \rightarrow \infty \in \mathbb{R}$.
- There may be different forms for B and C in different regions.

Fourier representations

- Applying a Fourier transform (in x) to the Helmholtz equation

$$
\left(\nabla^{2}+k^{2}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2}\right) u(x, y)=0
$$

leads to the ODE

$$
\left(\frac{\partial^{2}}{\partial y^{2}}-\alpha^{2}+k^{2}\right) \hat{u}(\alpha ; y) .
$$

- Hence, $\hat{u}(\alpha ; y)=B(\alpha) \mathrm{e}^{-\gamma(\alpha) y}+C(\alpha) \mathrm{e}^{\gamma(\alpha) y}$, with $\gamma(\alpha)=\left(\alpha^{2}-k^{2}\right)^{1 / 2}$.
- By convention, $\gamma(0)=-\mathrm{ik}$ and $\gamma(\alpha) \rightarrow|\alpha|$ as $\alpha \rightarrow \infty \in \mathbb{R}$.
- There may be different forms for B and C in different regions.
- In a Sommerfeld-type geometry, $C \equiv 0$ for $y>0$ and $B \equiv 0$ for $y<0$, to satisfy the radiation condition.
- A typical Fourier representation for a solution to the Helmholtz equation:

$$
u=\frac{1}{2 \pi} \int_{\Gamma} B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|} \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha
$$

$$
\text { Branch points at } \alpha= \pm k .
$$

- A typical Fourier representation for a solution to the Helmholtz equation:

$$
u=\frac{1}{2 \pi} \int_{\Gamma} B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|} \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha
$$

Branch points at $\alpha= \pm k$.

- For a Kirchhoff plate

$w=\frac{1}{2 \pi} \int_{\Gamma}\left[B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|}+C(\alpha) \mathrm{e}^{-\lambda(\alpha)|y|}\right] \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha, \quad \lambda=\left(\alpha^{2}+k^{2}\right)^{1 / 2}$ (with $\lambda(0)=k$). Additional branch points at $\alpha= \pm i k$.
- A typical Fourier representation for a solution to the Helmholtz equation:

$$
u=\frac{1}{2 \pi} \int_{\Gamma} B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|} \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha
$$

Branch points at $\alpha= \pm k$.

- For a Kirchhoff plate

$w=\frac{1}{2 \pi} \int_{\Gamma}\left[B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|}+C(\alpha) \mathrm{e}^{-\lambda(\alpha)|y|}\right] \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha, \quad \lambda=\left(\alpha^{2}+k^{2}\right)^{1 / 2}$ (with $\lambda(0)=k$). Additional branch points at $\alpha= \pm i k$.
- λ in exponent \Rightarrow evanescent modes; growing solutions are forbidden.
- A typical Fourier representation for a solution to the Helmholtz equation:

$$
u=\frac{1}{2 \pi} \int_{\Gamma} B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|} \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha
$$

Branch points at $\alpha= \pm k$.

- For a Kirchhoff plate

$w=\frac{1}{2 \pi} \int_{\Gamma}\left[B(\alpha) \mathrm{e}^{-\gamma(\alpha)|y|}+C(\alpha) \mathrm{e}^{-\lambda(\alpha)|y|}\right] \mathrm{e}^{-\mathrm{i} \alpha x} \mathrm{~d} \alpha, \quad \lambda=\left(\alpha^{2}+k^{2}\right)^{1 / 2}$ (with $\lambda(0)=k$). Additional branch points at $\alpha= \pm i k$.
- λ in exponent \Rightarrow evanescent modes; growing solutions are forbidden.
- For a Mindlin plate, we write $\gamma_{j}(\alpha)=\left(\alpha^{2}-k_{j}^{2}\right)^{1 / 2}$

$$
w_{j}=\frac{1}{2 \pi} \int_{\Gamma} B_{j}(\alpha) \mathrm{e}^{-\gamma_{j}(\alpha)|y|-\mathrm{i} \alpha x} \mathrm{~d} \alpha, \quad \phi=\frac{1}{2 \pi} \int_{\Gamma} R(\alpha) \mathrm{e}^{-\gamma_{3}(\alpha)|y|-\mathrm{i} \alpha x} \mathrm{~d} \alpha .
$$

Three pairs of branch points: $\pm k_{1}$ (real), $\pm k_{2}, \pm k_{3}$ (imaginary).

Flexural wave diffraction

- Norris \& Wang (1994) considered diffraction by semi-infinite rigid strips and cracks in Kirchhoff plates.

Flexural wave diffraction

- Norris \& Wang (1994) considered diffraction by semi-infinite rigid strips and cracks in Kirchhoff plates.
- Since there are two boundary conditions, this geometry leads to two Wiener-Hopf equations.

Flexural wave diffraction

- Norris \& Wang (1994) considered diffraction by semi-infinite rigid strips and cracks in Kirchhoff plates.
- Since there are two boundary conditions, this geometry leads to two Wiener-Hopf equations.

- However, N \& W split the incident wave $w^{i}=e^{i k(x \cos \theta+y \sin \Theta)}$:

$$
w_{\text {sym }}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \cos (k y \sin \Theta), \quad w_{\text {asym }}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \mathrm{i} \sin (k y \sin \Theta)
$$

Then $w^{i}=w_{\text {sym }}^{i}+w_{\text {asym }}^{i}$ and $\partial w_{\text {sym }} / \partial y=w_{\text {asym }}=0$ on $y=0$.

Flexural wave diffraction

- Norris \& Wang (1994) considered diffraction by semi-infinite rigid strips and cracks in Kirchhoff plates.
- Since there are two boundary conditions, this geometry leads to two Wiener-Hopf equations.

- However, N \& W split the incident wave $w^{i}=e^{i k(x \cos \theta+y \sin \theta)}$:

$$
w_{\mathrm{sym}}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \cos (k y \sin \Theta), \quad w_{\mathrm{asym}}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \mathrm{i} \sin (k y \sin \Theta)
$$

Then $w^{i}=w_{\text {sym }}^{i}+w_{\text {asym }}^{i}$ and $\partial w_{\text {sym }} / \partial y=w_{\text {asym }}=0$ on $y=0$.

- The result is four Sommerfeld-type problems (two for the strip and two for the crack) that can be solved in $y \geq 0$ only.

Flexural wave diffraction

- Norris \& Wang (1994) considered diffraction by semi-infinite rigid strips and cracks in Kirchhoff plates.
- Since there are two boundary conditions, this geometry leads to two Wiener-Hopf equations.

- However, N \& W split the incident wave $w^{i}=e^{i k(x \cos \theta+y \sin \Theta)}$:

$$
w_{\text {sym }}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \cos (k y \sin \Theta), \quad w_{\mathrm{asym}}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k x \cos \Theta} \mathrm{i} \sin (k y \sin \Theta)
$$

Then $w^{i}=w_{\text {sym }}^{i}+w_{\text {asym }}^{i}$ and $\partial w_{\text {sym }} / \partial y=w_{\text {asym }}=0$ on $y=0$.

- The result is four Sommerfeld-type problems (two for the strip and two for the crack) that can be solved in $y \geq 0$ only.
- The equivalent Mindlin problems partially decouple. Each requires three bc's, so the result is two scalar problems and two 2×2 matrix problems.

Some functions that need to be factorised

Kirchhoff

- Rigid strip symmetric: $K_{S}(\alpha)=\lambda(\alpha)-\gamma(\alpha)$.
- Rigid strip antisymmetric: $K_{A}(\alpha)=\lambda(\alpha)+\gamma(\alpha)=2 k^{2} / K_{S}(\alpha)$.

Some functions that need to be factorised

Kirchhoff

- Rigid strip symmetric: $K_{S}(\alpha)=\lambda(\alpha)-\gamma(\alpha)$.
- Rigid strip antisymmetric: $K_{A}(\alpha)=\lambda(\alpha)+\gamma(\alpha)=2 k^{2} / K_{S}(\alpha)$.

Mindlin

- Rigid strip scalar:

$$
K(\alpha)=A_{1} \gamma_{1}(\alpha) \gamma_{3}(\alpha)-A_{2} \gamma_{2}(\alpha) \gamma_{3}(\alpha)+\alpha^{2}\left(A_{2}-A_{1}\right)
$$

- Rigid strip matrix:

$$
\mathrm{T}(\alpha)=\left[\begin{array}{cc}
\frac{1}{\gamma_{1}(\alpha)} & \frac{1}{\gamma_{2}(\alpha)} \\
\mathrm{i} A_{1}\left(\frac{\gamma_{3}(\alpha)}{\alpha}-\frac{\alpha}{\gamma_{1}(\alpha)}\right) & \mathrm{i} A_{2}\left(\frac{\gamma_{3}(\alpha)}{\alpha}-\frac{\alpha}{\gamma_{2}(\alpha)}\right)
\end{array}\right] .
$$

- It turns out that $\operatorname{det} \mathrm{T}(\alpha)=-\frac{\mathrm{i}}{\alpha \gamma_{1}(\alpha) \gamma_{2}(\alpha)} K(\alpha)$.

Scalar kernel factorisation

- Consider a Kirchhoff problem (easier algebra!):

$$
K(\alpha) Q^{+}(\alpha)=w^{+}(\alpha)+w^{-}(\alpha)
$$

where

$$
K(\alpha)=\underbrace{\left(\alpha^{2}+k^{2}\right)^{1 / 2}}_{\lambda(\alpha)}-\underbrace{\left(\alpha^{2}-k^{2}\right)^{1 / 2}}_{\gamma(\alpha)} \quad \text { and } \quad w^{+}(\alpha)=\frac{-\mathrm{i}}{\alpha-\alpha_{0}}
$$

with $\alpha_{0}=-k \cos \Theta$. The functions Q^{+}and w^{-}are unknown.

Scalar kernel factorisation

- Consider a Kirchhoff problem (easier algebra!):

$$
K(\alpha) Q^{+}(\alpha)=w^{+}(\alpha)+w^{-}(\alpha)
$$

where

$$
K(\alpha)=\underbrace{\left(\alpha^{2}+k^{2}\right)^{1 / 2}}_{\lambda(\alpha)}-\underbrace{\left(\alpha^{2}-k^{2}\right)^{1 / 2}}_{\gamma(\alpha)} \quad \text { and } \quad w^{+}(\alpha)=\frac{-\mathrm{i}}{\alpha-\alpha_{0}}
$$

with $\alpha_{0}=-k \cos \Theta$. The functions Q^{+}and w^{-}are unknown.

Observations

(1) $K(\alpha) \rightarrow k^{2} /|\alpha|$ as $\alpha \rightarrow \infty \in \mathbb{R}$.
(2) $K(\alpha)$ changes sign if α winds once around k and $i k$ (or $-k$ and $-i k$).

Scalar kernel factorisation

- Consider a Kirchhoff problem (easier algebra!):

$$
K(\alpha) Q^{+}(\alpha)=w^{+}(\alpha)+w^{-}(\alpha)
$$

where

$$
K(\alpha)=\underbrace{\left(\alpha^{2}+k^{2}\right)^{1 / 2}}_{\lambda(\alpha)}-\underbrace{\left(\alpha^{2}-k^{2}\right)^{1 / 2}}_{\gamma(\alpha)} \quad \text { and } \quad w^{+}(\alpha)=\frac{-\mathrm{i}}{\alpha-\alpha_{0}}
$$

with $\alpha_{0}=-k \cos \Theta$. The functions Q^{+}and w^{-}are unknown.

Observations

(1) $K(\alpha) \rightarrow k^{2} /|\alpha|$ as $\alpha \rightarrow \infty \in \mathbb{R}$.
(2) $K(\alpha)$ changes sign if α winds once around k and $i k$ (or $-k$ and $-i k$).

- If we write $\tilde{K}(\alpha)=k^{-2} \gamma(\alpha) K(\alpha)$ then $\tilde{K}(\alpha) \rightarrow 1$ as $\alpha \rightarrow \infty \in \mathbb{R}$ and has no branch point at infinity. $\gamma(\alpha)$ is easy to factorise.

Scalar kernel factorisation (ctd)

- The standard factorisation formula is $f^{ \pm}(\alpha)=\exp \left[J^{ \pm}(\alpha)\right]$, where

$$
J^{ \pm}(\alpha)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma \mp} \frac{\log [f(z)]}{z-\alpha} \mathrm{d} z .
$$

Scalar kernel factorisation (ctd)

- The standard factorisation formula is $f^{ \pm}(\alpha)=\exp \left[J^{ \pm}(\alpha)\right]$, where

$$
J^{ \pm}(\alpha)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma \mp} \frac{\log [f(z)]}{z-\alpha} \mathrm{d} z
$$

- By the residue theorem,

$$
J^{+}(\alpha)+J^{-}(\alpha)=\log [f(\alpha)]
$$

Scalar kernel factorisation (ctd)

- The standard factorisation formula is $f^{ \pm}(\alpha)=\exp \left[J^{ \pm}(\alpha)\right]$, where

$$
J^{ \pm}(\alpha)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma \mp} \frac{\log [f(z)]}{z-\alpha} \mathrm{d} z .
$$

- By the residue theorem,

$$
J^{+}(\alpha)+J^{-}(\alpha)=\log [f(\alpha)]
$$

- Convergence relies on the fact that $f(z) \rightarrow 1$ as $z \rightarrow \infty \in \Gamma^{ \pm}-$slow!

Scalar kernel factorisation (ctd)

- The standard factorisation formula is $f^{ \pm}(\alpha)=\exp \left[J^{ \pm}(\alpha)\right]$, where

$$
J^{ \pm}(\alpha)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma \mp} \frac{\log [f(z)]}{z-\alpha} \mathrm{d} z
$$

- By the residue theorem,

$$
J^{+}(\alpha)+J^{-}(\alpha)=\log [f(\alpha)]
$$

- Convergence relies on the fact that $f(z) \rightarrow 1$ as $z \rightarrow \infty \in \Gamma^{ \pm}-$slow!

- Norris \& Wang took advantage of the fact that $\tilde{K}(z)$ has no branch point at infinity.

Computing $\tilde{K}^{-}(\alpha)$

- Since $\tilde{K}^{-}(\alpha)=\tilde{K}(\alpha) / \tilde{K}^{+}(\alpha)$, we need only compute $\tilde{K}^{-}(\alpha)$ directly in the half plane $\operatorname{Re}[\alpha]<-\operatorname{Im}[\alpha]$.

Computing $\tilde{K}^{-}(\alpha)$

- Since $\tilde{K}^{-}(\alpha)=\tilde{K}(\alpha) / \tilde{K}^{+}(\alpha)$, we need only compute $\tilde{K}^{-}(\alpha)$ directly in the half plane $\operatorname{Re}[\alpha]<-\operatorname{Im}[\alpha]$.
- Rotate the cut emanating from $\alpha=k$ so that it connects to $\alpha=i k$.

Computing $\tilde{K}^{-}(\alpha)$

- Since $\tilde{K}^{-}(\alpha)=\tilde{K}(\alpha) / \tilde{K}^{+}(\alpha)$, we need only compute $\tilde{K}^{-}(\alpha)$ directly in the half plane $\operatorname{Re}[\alpha]<-\operatorname{Im}[\alpha]$.
- Rotate the cut emanating from $\alpha=k$ so that it connects to $\alpha=i k$.
- The cut above $\alpha=i k$ disappears.

Computing $\tilde{K}^{-}(\alpha)$

- Since $\tilde{K}^{-}(\alpha)=\tilde{K}(\alpha) / \tilde{K}^{+}(\alpha)$, we need only compute $\tilde{K}^{-}(\alpha)$ directly in the half plane $\operatorname{Re}[\alpha]<-\operatorname{Im}[\alpha]$.
- Rotate the cut emanating from $\alpha=k$ so that it connects to $\alpha=i k$.
- The cut above $\alpha=i k$ disappears.
- Deform Γ^{+}upwards so that it wraps around the remaining cut.

Computing $\tilde{K}^{-}(\alpha)$

- Since $\tilde{K}^{-}(\alpha)=\tilde{K}(\alpha) / \tilde{K}^{+}(\alpha)$, we need only compute $\tilde{K}^{-}(\alpha)$ directly in the half plane $\operatorname{Re}[\alpha]<-\operatorname{Im}[\alpha]$.
- Rotate the cut emanating from $\alpha=k$ so that it connects to $\alpha=i k$.
- The cut above $\alpha=i k$ disappears.
- Deform Γ^{+}upwards so that it wraps around the remaining cut.

- We obtain an integral over a finite path:

$$
J^{-}(\alpha)=-\frac{1}{2 \pi \mathrm{i}} \int_{k}^{\mathrm{i} k} \frac{\log \left[\tilde{K}_{R}(z)\right]-\log \left[\tilde{K}_{L}(z)\right]}{z-\alpha} \mathrm{d} z
$$

where ' R ' (' L ') means evaluate on the right (left) face.

Implicit quadrature method

- Consider a Wiener-Hopf equation:

$$
A(\alpha) f^{+}(\alpha)+B(\alpha) g^{-}(\alpha)=C(\alpha) .
$$

A, B and C are known. f^{+}and g^{-}are analytic except for finite branch cuts.

Implicit quadrature method

- Consider a Wiener-Hopf equation:

$$
A(\alpha) f^{+}(\alpha)+B(\alpha) g^{-}(\alpha)=C(\alpha)
$$

A, B and C are known. f^{+}and g^{-}are analytic except for finite branch cuts.

- Cauchy's integral formula:

$$
g^{-}(\alpha)=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega_{b}^{+}} \frac{g^{-}(z)}{z-\alpha} \mathrm{d} z
$$

Implicit quadrature method

- Consider a Wiener-Hopf equation:

$$
A(\alpha) f^{+}(\alpha)+B(\alpha) g^{-}(\alpha)=C(\alpha)
$$

A, B and C are known. f^{+}and g^{-}are analytic except for finite branch cuts.

- Cauchy's integral formula:

$$
g^{-}(\alpha)=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega_{b}^{+}} \frac{g^{-}(z)}{z-\alpha} \mathrm{d} z
$$

- If $g^{-}(\alpha) \rightarrow 0$ as $\alpha \rightarrow \infty$, then

$$
g^{-}(\alpha)=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega_{b}^{+}} \frac{g^{-}(z)}{z-\alpha} \mathrm{d} z
$$

Similarly if $f^{+}(\alpha) \rightarrow 0$ as $\alpha \rightarrow \infty$, then

$$
f^{+}(\alpha)=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega_{b}^{-}} \frac{f^{+}(z)}{z-\alpha} \mathrm{d} z
$$

where Ω_{b}^{-}encircles the finite cut of f^{+}in the lower half plane.

- Suppose the Cauchy integrals are evaluated by quadrature. That is,

$$
\begin{aligned}
g^{-}(\alpha) & \approx \frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{+} \frac{G_{j, L}-G_{j, R}}{z_{j}^{+}-\alpha}, \\
f^{+}(\alpha) & \approx \frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-\alpha},
\end{aligned}
$$

- Here, w_{j} are quadrature weights, ' L ' and ' R ' mean 'left' and 'right',

$$
F_{j}=f^{+}\left(z_{j}^{-}\right) \quad \text { and } \quad G_{j}=g^{-}\left(z_{j}^{+}\right)
$$

- Suppose the Cauchy integrals are evaluated by quadrature. That is,

$$
\begin{aligned}
g^{-}(\alpha) & \approx \frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{+} \frac{G_{j, L}-G_{j, R}}{z_{j}^{+}-\alpha}, \\
f^{+}(\alpha) & \approx \frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-\alpha}
\end{aligned}
$$

- Here, w_{j} are quadrature weights, ' L ' and ' R ' mean 'left' and 'right',

$$
F_{j}=f^{+}\left(z_{j}^{-}\right) \quad \text { and } \quad G_{j}=g^{-}\left(z_{j}^{+}\right)
$$

- Return to the W-H equation: $A(\alpha) f^{+}(\alpha)+B(\alpha) g^{-}(\alpha)=C(\alpha)$ and evaluate at z_{p}^{+}:

$$
A_{S}\left(z_{p}^{+}\right) f^{+}\left(z_{p}^{+}\right)+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- 'S' can be either ' L ' or ' R ' (two equations).
- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- Repeat for $z_{j}^{-} \ldots$ a system of $4 n$ linear, algebraic equations for the $4 n$ unknowns.
- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- Repeat for $z_{j}^{-} \ldots$ a system of $4 n$ linear, algebraic equations for the $4 n$ unknowns.

Comparison of methods

- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- Repeat for $z_{j}^{-} \ldots$ a system of $4 n$ linear, algebraic equations for the $4 n$ unknowns.

Comparison of methods

- The standard method requires one quadrature per α value (to split the kernel).
- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- Repeat for $z_{j}^{-} \ldots$ a system of $4 n$ linear, algebraic equations for the $4 n$ unknowns.

Comparison of methods

- The standard method requires one quadrature per α value (to split the kernel).
- Implicit quadrature requires one linear system solve per set of physical parameters (k etc.) and one quadrature per α value.
- No approximations yet! Insert quadrature form for f^{+}...

$$
\frac{A_{S}\left(z_{p}^{+}\right)}{2 \pi \mathrm{i}} \sum_{j=1}^{n} w_{j}^{-} \frac{F_{j, L}-F_{j, R}}{z_{j}^{-}-z_{p}^{+}}+B_{S}\left(z_{p}^{+}\right) G_{p, S}=C_{S}\left(z_{p}^{+}\right)
$$

- Repeat for $z_{j}^{-} \ldots$ a system of $4 n$ linear, algebraic equations for the $4 n$ unknowns.

Comparison of methods

- The standard method requires one quadrature per α value (to split the kernel).
- Implicit quadrature requires one linear system solve per set of physical parameters (k etc.) and one quadrature per α value.
- The implicit quadrature method works for matrix W-H equations, provided the unknowns have finite branch cuts.

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.
- The crack problem is next.

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.
- The crack problem is next.
- Questions: do all diffraction problems of this type lead to kernels with finite cuts? Why (or why not)?

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.
- The crack problem is next.
- Questions: do all diffraction problems of this type lead to kernels with finite cuts? Why (or why not)?
- Some discrete problems involving arrays of pins have also been considered.

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.
- The crack problem is next.
- Questions: do all diffraction problems of this type lead to kernels with finite cuts? Why (or why not)?
- Some discrete problems involving arrays of pins have also been considered.
- Many other 'classical' W-H geometries are untouched.

Parallel strips/cracks

Staggered parallel strips/cracks

Offset strips/cracks

Concluding remarks

- The rigid strip problem is almost solved - it remains to complete the numerical code and analyse the diffraction pattern.
- The crack problem is next.
- Questions: do all diffraction problems of this type lead to kernels with finite cuts? Why (or why not)?
- Some discrete problems involving arrays of pins have also been considered.
- Many other 'classical' W-H geometries are untouched.

Parallel strips/cracks

Staggered parallel strips/cracks

Offset strips/cracks

Thanks for your attention.

References

- Kirchhoff theory
- S. P. Timoshenko and S. Woinowsky-Krieger 'Theory of plates and shells' (1959)
- K. F. Graff 'Wave motion in elastic solids' (1991)
- Mindlin theory
- R. D. Mindlin 'Influence of rotary inertia and shear on flexural motion of isotropic, elastic plates' (1951)
- Graff chapter 8.
- Diffraction in plates
- A. N. Norris \& Z. Wang 'Bending-wave diffraction from strips and cracks on thin plates' (1994)
- I. Thompson \& I. D. Abrahams 'Diffraction of flexural waves by cracks in orthotropic thin elastic plates. I Formal solution' (2007)
- D. V. Evans \& R. Porter 'Penetration of flexural waves through a periodically constrained thin elastic plate floating in vacuo and floating on water' (2007)
- S. G. Haslinger et al. 'Dynamic interfacial trapping of flexural waves in structured plates' (2016)

