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Introduction

@ Waves in plates are important for modelling non-destructive testing of
thin panels (e.g. aeroplane wings).
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Introduction

@ Waves in plates are important for modelling non-destructive testing of
thin panels (e.g. aeroplane wings).

e Consider any 2D diffraction/scattering problem in
acoustics/electromagnetism /fluid mechanics.

s feld probl Semi-infinite waveguide Staggered waveguide
ormerieid proviem (Heins 1948) (Abrahams & Wickham 1988 & 1990)

@ Rather than the x, y plane representing a cross section of a 3D
problem, it now represents a plate.
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Kirchhoff (classical) plate theory

@ Dates back to the 19th century.



Kirchhoff (classical) plate theory

@ Dates back to the 19th century.

@ Only transverse displacements (w(x, y)) are included:

W= wy + ws, (V2+k2)W1:0, (v2—k2)W2:0.
—_————

propagating modes  evanescent modes
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Kirchhoff (classical) plate theory

@ Dates back to the 19th century.

@ Only transverse displacements (w(x, y)) are included:

W= wy + wo, (V2+k2)W1:O, (V2—k2)W2:0.
—_————

propagating modes  evanescent modes

@ Here, motion is assumed to be time-harmonic, so

W(x,y;t) = Re[w(x,y)e_i‘*’t].
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Kirchhoff (classical) plate theory

@ Dates back to the 19th century.

@ Only transverse displacements (w(x, y)) are included:

W= wy + wo, (V2+k2)W1:O, (V2—k2)W2:0.
—_————

propagating modes  evanescent modes
@ Here, motion is assumed to be time-harmonic, so
W(x,y;t) = Re[w(x,y)e_i“’t].

@ The flexural wavenumber is given by k = (phw?/D)/*

p: density,  h: thickness, w: frequency, D: stiffness.
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Kirchhoff (classical) plate theory

@ Dates back to the 19th century.
@ Only transverse displacements (w(x, y)) are included:

W= wy + wo, (V2+k2)W1:O, (V2—k2)W2:0.
—_————

propagating modes  evanescent modes
@ Here, motion is assumed to be time-harmonic, so
W(x,y;t) = Re[w(x,y)e_i“’t].

The flexural wavenumber is given by k = (phw?/D)/*

p: density,  h: thickness, w: frequency, D: stiffness.
ow

Two bc's apply at an interface; e.g. at a fixed edge w = — = 0.

on

Diffraction in Mindlin plates 2 /16



Kirchhoff (classical) plate theory

@ Dates back to the 19th century.

@ Only transverse displacements (w(x, y)) are included:

W= wy + wo, (V2+k2)W1:O, (Vz—kz)W2:0.
—_————

propagating modes  evanescent modes
@ Here, motion is assumed to be time-harmonic, so
W(x,y;t) = Re[w(x,y)e_i“’t].

The flexural wavenumber is given by k = (phw?/D)/*

p: density,  h: thickness, w: frequency, D: stiffness.

: 0
Two bc's apply at an interface; e.g. at a fixed edge w = o 0.

on

In addition, strain energy density must be integrable in all regions of
the plate (Norris & Wang 1994).
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Mindlin Theory
@ Developed by Raymond D Mindlin in the 1950s.

@ Includes in-plane rotations (1), %) in addition to transverse
displacements (w).
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Mindlin Theory
@ Developed by Raymond D Mindlin in the 1950s.

@ Includes in-plane rotations (1), %) in addition to transverse
displacements (w).

@ Three Helmholtz equations to solve:
(V24 k3w =0, (V2+Kk)wo =0, (V2+k3)p=0,

where ki is real, ko and k3 are imaginary, with |k3| > |ko|.
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Mindlin Theory
@ Developed by Raymond D Mindlin in the 1950s.

@ Includes in-plane rotations (1), %) in addition to transverse
displacements (w).

@ Three Helmholtz equations to solve:
(V2 4+ k) =0, (V2+k)wo =0, (V>+k2)p=0,
where ki is real, ko and k3 are imaginary, with |k3| > |ko|.

@ Transverse displacement is still w = wy + wp,

Ux

where A; and A, are constants.

9¢

0 0 0
3 (A1W1+A2W2)+8f and @Z)y:—(AlwleAzwz)—a,

:7 dy
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Mindlin Theory
@ Developed by Raymond D Mindlin in the 1950s.

@ Includes in-plane rotations (1), %) in addition to transverse
displacements (w).

@ Three Helmholtz equations to solve:
(V2 4+ k) =0, (V2+k)wo =0, (V>+k2)p=0,
where ki is real, ko and k3 are imaginary, with |k3| > |ko|.

@ Transverse displacement is still w = wy + wp,

Ux

where A; and A, are constants.

9¢

0 0 0
3 (A1W1+A2W2)+af and @Z)y:—(AlwleAzwz)—a,

:7 dy

@ Three boundary conditions at an interface, e.g. at a rigid edge,

w =Py =1y, =0.
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Mindlin Theory
@ Developed by Raymond D Mindlin in the 1950s.

@ Includes in-plane rotations (1), %) in addition to transverse
displacements (w).

@ Three Helmholtz equations to solve:
(V2 4+ k) =0, (V2+k)wo =0, (V>+k2)p=0,
where ki is real, ko and k3 are imaginary, with |k3| > |ko|.

@ Transverse displacement is still w = wy + wp,

Ux

where A; and A, are constants.

0 0 0 0
3 (A1W1+A2W2)+8jf and @Z)y:—(A1W1+A2w2)—8—f,

:7 dy

@ Three boundary conditions at an interface, e.g. at a rigid edge,
w =1 =1, =0.
@ Strain energy density is integrable if all displacements are bounded.
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Relationship between Kirchhoff & Mindlin

@ Asw — 0, ki — k and ko — ik, so at the leading order we have
(V24 k) = (V2 + k) and (V24 KE) — (V2 — k),
recovering the governing PDEs for Kirchhoff theory.
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Relationship between Kirchhoff & Mindlin

@ Asw — 0, ki — k and ko — ik, so at the leading order we have
(V24 k) = (V2+ k%) and (V24 KE) — (V2= k),
recovering the governing PDEs for Kirchhoff theory.

@ Also, Ay -+ —1 and A, — —1, so

0 0 0 3]
¢x=*(A1W1+A2W2)+£—> v ¢

Ox dy _§+@

_9 _ 9 _ow 99
wy_@y(A1W1+A2W2) ox dy  Ox
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Relationship between Kirchhoff & Mindlin

@ Asw — 0, ki — k and ko — ik, so at the leading order we have
(V24 kE) = (V2 + k%) and (V24 KE) — (V2= k),
recovering the governing PDEs for Kirchhoff theory.

@ Also, Ay -+ —1 and A, — —1, so

0 0 0 3]
¢x:7(A1W1+A2W2)+7¢—> w99

ox dy C Ox + dy
9 96 ow 9
1/Jy = dy (A1W1 + A2W2) Ox — dy ox

o If y =0 is a fixed edge, then w(x,0) = wy(x,0) = 0.
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Relationship between Kirchhoff & Mindlin

@ Asw — 0, ki — k and ko — ik, so at the leading order we have
(V24 kE) = (V2 + k%) and (V24 KE) — (V2= k),
recovering the governing PDEs for Kirchhoff theory.
@ Also, Ay -+ —1 and A, — —1, so

I 06 ow  9é
Px = 8X(A1W1 + Aawz) + dy - 5t 3y
9 96 ow 9
1/Jy = dy (A1W1 + A2W2) Ox — dy ox

o If y =0 is a fixed edge, then w(x,0) = wy(x,0) = 0.
@ All three fixed edge bc's are satisfied (at leading order) if
w(x,0) = wy(x,0) =0 and ¢(x,y) = 0.
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Relationship between Kirchhoff & Mindlin

@ Asw — 0, ki — k and ko — ik, so at the leading order we have
(V24 kE) = (V2 + k%) and (V24 KE) — (V2= k),
recovering the governing PDEs for Kirchhoff theory.
@ Also, Ay -+ —1 and A, — —1, so

I 06 ow  9é
Uy = 8X(A1W1 + Aawz) + dy - 5t 3y
9 96 ow 9
1/Jy = dy (A1W1 + A2W2) Ox — dy ox

o If y =0 is a fixed edge, then w(x,0) = wy(x,0) = 0.

@ All three fixed edge bc's are satisfied (at leading order) if
w(x,0) = wy(x,0) =0 and ¢(x,y) = 0.

@ A similar (albeit more complicated) reduction occurs in the case of a
free edge.
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Fourier representations

e Applying a Fourier transform (in x) to the Helmholtz equation

2 2
(V2+k2)u(x,y):(§ aaz—i-kz) u(x,y)=0

leads to the ODE

82
<8_y2 — Oé + k2) ﬁ(a,y)
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Fourier representations

e Applying a Fourier transform (in x) to the Helmholtz equation

2 2
(V2+k2)u(x,y):(88 aaz—i-kz) u(x,y)=0

leads to the ODE
82
<8_y2 — Oé + kz) ﬁ(a,y)

o Hence, i(a; y) = B(a)e (@)Y 4+ C(a)e?(@) | with
Y(a) = (a? - k2)1/2.
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Fourier representations

e Applying a Fourier transform (in x) to the Helmholtz equation
2, 42 & 0 2
(V2 + k*)u(x,y) = <8x2 + 9y2 +k )U(X7Y) =0

leads to the ODE
0 2, 42
<8y2 —a”+ k )ﬁ(OGY)-
e Hence, i(a;y) = B(a)e (@)Y 4+ C(a)e?(®)y, with

Y(a) = (a? - k2)1/2.
@ By convention, 7(0) = —ik and y(a) — |a| as o — oo € R.
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Fourier representations

e Applying a Fourier transform (in x) to the Helmholtz equation
0? 0?
(V2 + k) u(x,y) = <a 2t g2 T k2>u(x,y) =0
leads to the ODE
0 2, 12\n
<8y2_a + k >u(a;y).
o Hence, i(a;y) = B(a)e (@Y 4 C(a)e?(@), with
I(e) = (= )7
@ By convention, 7(0) = —ik and y(a) — |a| as o — oo € R.
@ There may be different forms for B and C in different regions.
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Fourier representations

e Applying a Fourier transform (in x) to the Helmholtz equation

22 — iz 872 k2 —
(v + )U(Xay)_ 8X2+8y2+ U(Xay)_o

leads to the ODE

82
<ay2 — 042 —+ k2> l:l\(a,_y)

e Hence, i(a;y) = B(a)e (@)Y 4+ C(a)e?(®)y, with

Y(a) = (a? - k2)1/2.
@ By convention, 7(0) = —ik and y(a) — || as o — o0 € R.
@ There may be different forms for B and C in different regions.

@ In a Sommerfeld-type geometry, C =0 for y > 0 and B = 0 for
y < 0, to satisfy the radiation condition.
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@ A typical Fourier representation for a
solution to the Helmholtz equation:

1 .
e L O L S ——

u

Branch points at a = +k.
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twfa]
@ A typical Fourier representation for a :
solution to the Helmholtz equation: :
1 . :
u=— [ Bla)e V@llgTiaxqq, e T Rela
27 ' |
Branch points at a = +k. , .
e For a Kirchhoff plate :
1 .
W= [B(a)e vl ca)e MW em X da, X = (a®+k2)L/2

(with A\(0) = k). Additional branch points at o = +ik.
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twfa]
@ A typical Fourier representation for a :
solution to the Helmholtz equation: :
u= L B(a)e M(@lgioax qq — Ek Rela
2T r ,k: \
Branch points at a = +k. , .
e For a Kirchhoff plate :
1 .
W= {B(a)e Wy C(a)e MW emiox qo, A = (a4 K2)H2

(with A\(0) = k). Additional branch points at o = +ik.

@ ) in exponent = evanescent modes; growing solutions are forbidden.
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Im[a]

@ A typical Fourier representation for a
solution to the Helmholtz equation:

1 .
u=— [ B(a)e M @WleTioxqq,
r

27
Branch points at a = +k.

e For a Kirchhoff plate :
1

W= {B(a)er(a)M+C(a)e*’\(°‘)‘5’| X da, A= (a?+k?)Y?
™ Jr

(with A\(0) = k). Additional branch points at o = +ik.
@ ) in exponent = evanescent modes; growing solutions are forbidden.
e For a Mindlin plate, we write v;(a) = (o — kj2)1/2
1 e 1 ~ -,
W= rBj(a)e vlelyl-lex g g = 27r/rR(a)e v3(a)lyl—iax g,
Three pairs of branch points: +k; (real), +ko, +k3 (imaginary).
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Flexural wave diffraction

e Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

Rigid strip or crack
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Flexural wave diffraction
e Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

@ Since there are two boundary
conditions, this geometry leads to
two Wiener—Hopf equations.
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Flexural wave diffraction

e Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

@ Since there are two boundary
conditions, this geometry leads to
two Wiener—Hopf equations.

e However, N & W split the incident wave w' = elk(xcos©+ysin©).
Wsiym _ eikxcos@ cos(ky sin @), W;sym _ eikx cos © isin(ky sin e)

Then w' = Wi, + Wig,m and OWeym/dy = Wasym = 0 on y = 0.
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Flexural wave diffraction

e Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

@ Since there are two boundary
conditions, this geometry leads to
two Wiener—Hopf equations.

ik(x cos©+ysin©).

@ However, N & W split the incident wave wi=e

Wsiym _ eikxcos@ cos(ky sin @), W;sym _ eikx cos © isin(ky sin e)

Then w! = w/

ym T W;Sym and OWsym /0y = Wasym = 0 on y = 0.

@ The result is four Sommerfeld-type problems (two for the strip and
two for the crack) that can be solved in y > 0 only.
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Flexural wave diffraction

e Norris & Wang (1994) considered
diffraction by semi-infinite rigid strips
and cracks in Kirchhoff plates.

@ Since there are two boundary
conditions, this geometry leads to
two Wiener—Hopf equations.

ik(x cos©+ysin©).

@ However, N & W split the incident wave wi=e

Wsiym _ eikxcos@ cos(ky sin 9)7 W;sym _ eikx cos © isin(ky sin e)

Then w! = w/

ym T W;Sym and OWsym /0y = Wasym = 0 on y = 0.

@ The result is four Sommerfeld-type problems (two for the strip and
two for the crack) that can be solved in y > 0 only.

@ The equivalent Mindlin problems partially decouple. Each requires
three bc's, so the result is two scalar problems and two 2 x 2 matrix
problems.
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Some functions that need to be factorised
Kirchhoff
@ Rigid strip symmetric: Ks(a) = M) — v(«).
e Rigid strip antisymmetric: Ka(a) = A(a) +v(a) = 2k?/Ks(a).
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Some functions that need to be factorised

Kirchhoff

@ Rigid strip symmetric: Ks(a) = A(a) — ().

)
e Rigid strip antisymmetric: Ka(a) = A(a) + v(a) = 2k?/Ks(a).

Mindlin

@ Rigid strip scalar:
K(a) = Aivi(a)ys(@) — Axya(a)ys(a) + a?(Ar — Ar).

o Rigid strip matrix:

1 1
T(a) = 7(a) Y2(c)
a ()« N e 1 CO N
m(22-05) (5 - m)
@ It turns out that det T(«o) = — M K(«).

v
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Scalar kernel factorisation

o Consider a Kirchhoff problem (easier algebra!):

K(@)Q" (o) = w'(a) + w™ (),

where
K(a) = (a® + /(2)1/2 —(a? - k2)1/2 and w'(a)= -
Aer) v(e)
with ag = —k cos©. The functions Q" and w~ are unknown.
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Scalar kernel factorisation

o Consider a Kirchhoff problem (easier algebra!):

K(@)Q" (o) = w'(a) + w™ (),

where
K(a) = (a® + k2)1/2 —(a? - k2)1/2 and w'(a)= -
a —
Aer) ¥(a)
with ag = —k cos ©. The functions Q" and w™ are unknown.

Observations
Q@ K(a) — k?/|a] as a — oo € R.
@ K(«) changes sign if @ winds once around k and ik (or —k and —ik).
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Scalar kernel factorisation

o Consider a Kirchhoff problem (easier algebra!):

K(@)Q" (o) = w'(a) + w™ (),

where
K(a) = (a® + k2)1/2 —(a? - k2)1/2 and w'(a)= -
a —
Aer) ¥(a)
with ag = —k cos ©. The functions Q" and w™ are unknown.

Observations
Q@ K(a) — k%/|a] as a — oo € R.
@ K(«) changes sign if @ winds once around k and ik (or —k and —ik).

o If we write K(a) = k= 2y(a)K(c) then K(a) = 1as a — 0o € R
and has no branch point at infinity. v(«) is easy to factorise.
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Scalar kernel factorisation (ctd)

Imlz]

@ The standard factorisation formula is
f*(a) = exp[J* ()], where

o L[ Rl
JEa) = /r ) dz.

27 Z—«

T+
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Scalar kernel factorisation (ctd)

Imlz]

@ The standard factorisation formula is
f*(a) = exp[J* ()], where

ol L[ leglf(a)
I (a) = /r:F dz.

27 Z—«

=

@ By the residue theorem, T 0\ .
S (@) + J7(a) = log[f(a)].
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Scalar kernel factorisation (ctd)

Imlz]

@ The standard factorisation formula is
f*(a) = exp[J* ()], where

ol L[ leglf(a)
S5 (a) = /r¥ dz.

27 Z—«

=

@ By the residue theorem, AN \—._
JT (@) + I (a) = log[f(a)].

@ Convergence relies on the fact that
f(z) — 1 as z— oo € [T — slow!
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Scalar kernel factorisation (ctd)

@ The standard factorisation formula is
f*(a) = exp[J* ()], where

ol L[ leglf(a)
S5 (a) = /r¥ dz.

27 zZ—« -
@ By the residue theorem, AR S— -
JH(a) + I~ (a) = log[f()]. E -
1
@ Convergence relies on the fact that X
1
1

f(z) — 1 as z— oo € [T — slow!

o Norris & Wang took advantage of the fact that K(z) has no branch
point at infinity.
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Computing K~ (a)

e Since K—(a) = R(a)/kﬂa), we
need only compute K~ («) directly
in the half plane Re[a] < — Im[a]. "

r+

J
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Computing K~ («)

e Since K~ (a) = R(a)/RJr(a), we
need only compute K~ («) directly
in the half plane Re[a] < — Im[a].

@ Rotate the cut emanating from . ——
a = k so that it connects to o = ik. -
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Computing K~ («)

e Since K~ (a) = R(a)/RJr(a), we
need only compute K~ («) directly
in the half plane Re[a] < — Im[a]. o

r+ N

@ Rotate the cut emanating from IS . R el
o = k so that it connects to o = ik. =

@ The cut above oo = ik disappears.
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Computing K~ («)

Since K~ () = K(a)/K*(a), we

(]
need only compute K~ («) directly
in the half plane Re[a]| < — Im[a]. O
o Rotate the cut emanating from \‘\\ : s

(

« = k so that it connects to o = ik.
@ The cut above oo = ik disappears.

e Deform '™ upwards so that it wraps
around the remaining cut.
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Computing K~ («)

e Since K~ (a) = R(a)/k+(a), we
need only compute K~ («) directly
in the half plane Re[a] < — Im[a]. Q

@ Rotate the cut emanating from \‘\\ ‘ e
o = k so that it connects to o = ik.

(

@ The cut above oo = ik disappears.

e Deform '™ upwards so that it wraps
around the remaining cut.

@ We obtain an integral over a finite path:

1 [*log[Kr(2)] — log[Ki(2)]
/k dz,

J (a) = —

27 Z—

where ‘R’ (‘L") means evaluate on the right (left) face.
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Implicit quadrature method
o Consider a Wiener—Hopf equation:

A()fT(a) + B(a)g (o) = C(a).

A, B and C are known. f and g~ are
analytic except for finite branch cuts.
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Implicit quadrature method
o Consider a Wiener—Hopf equation:

A()fT(a) + B(a)g (o) = C(a).
A, B and C are known. f and g~ are
analytic except for finite branch cuts.

@ Cauchy’s integral formula:

1 _
g ()= — g (2) dz.
2mi of Z—«
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Implicit quadrature method
@ Consider a Wiener—Hopf equation:

A(@)f(a) + B(a)g (a) = C(a).

A, B and C are known. f and g~ are :
analytic except for finite branch cuts.

. C\\SZD
@ Cauchy’s integral formula._ \s\\\v -
1 g (2)

g (a)= dz.

2mi of Z—«

o If g7 (a) - 0 as @ — oo, then

g (o) = 1/9 g2,

27 FZ-

Similarly if f*(a) — 0 as @ — oo, then

o [ )y,
F+(a) /Q dz.

27 I«

where Q, encircles the finite cut of 7 in the lower half plane.
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@ Suppose the Cauchy integrals are
evaluated by quadrature. That is,

n

1 GjL— Gjr
g ()~ =) wh——= R
2mi j=1 ZJ o \‘\\‘ Rel:)

@ Here, w; are quadrature weights, ‘L’ and ‘R’ mean ‘left’ and ‘right’,

Fi = f+(zj_) and Gj = g_(zj*').
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@ Suppose the Cauchy integrals are

Imlz]
evaluated by quadrature. That is,
n
YR + GL—Gjr to
gla)mos 2 W —
j=1 J « \ Rel:)
~
1 < Fi,—Fir
f+ o) ~ — W* Js J5

@ Here, w; are quadrature weights, ‘L’ and ‘R’ mean ‘left’ and ‘right’,
Fi = f+(zj_) and Gj = g_(zj’).

@ Return to the W-H equation: A(a)f*(a)+ B(a)g () = C(«) and
evaluate at z,:

As(z3) T (z5) + Bs(zy ) Gp.s = Cs(z7).

@ 'S’ can be either ‘'L’ or 'R’ (two equations).
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@ No approximations yet! Insert quadrature form for ...
As(z))

27

j P

Zf L= Fir = %+ Bs(z))Gp.s = Cs(z)):
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@ No approximations yet! Insert quadrature form for ...

A5(zJr z
Z w; L= Fir %+ Bs(z))Gp.s = Cs(z)):
j _ZP
@ Repeat for Z; ... asystem of 4n linear, algebraic equations for the

4n unknowns.
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e No approximations yet! Insert quadrature form for ...

27T1 i Zf — zp St ps = =514
@ Repeat for Z; ... asystem of 4n linear, algebraic equations for the

4n unknowns.

Comparison of methods
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@ No approximations yet! Insert quadrature form for f* ...

As Z+ n L
Z j 177‘1‘85( )Gp,S:CS(Z:)'
zZ. — Z
i P
@ Repeat for Z; ... asystem of 4n linear, algebraic equations for the

4n unknowns.

Comparison of methods

@ The standard method requires one quadrature per « value (to split
the kernel).
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@ No approximations yet! Insert quadrature form for f* ...

As Z+ n o L
E j 17‘1'85( )Gp,S: CS(Z;_)'
zZ. — Z
i P
@ Repeat for Z; ... asystem of 4n linear, algebraic equations for the

4n unknowns.

Comparison of methods

@ The standard method requires one quadrature per « value (to split
the kernel).

@ Implicit quadrature requires one linear system solve per set of physical
parameters (k etc.) and one quadrature per « value.

Diffraction in Mindlin plates 14 / 16



@ No approximations yet! Insert quadrature form for f* ...

As Z+ n o L
E j 174'85( )Gp,S: CS(Z;_)'
zZ. — Z
i P
@ Repeat for Z; ... asystem of 4n linear, algebraic equations for the

4n unknowns.

Comparison of methods

@ The standard method requires one quadrature per « value (to split
the kernel).

@ Implicit quadrature requires one linear system solve per set of physical
parameters (k etc.) and one quadrature per « value.

@ The implicit quadrature method works for matrix W—H equations,
provided the unknowns have finite branch cuts.
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Concluding remarks

@ The rigid strip problem is almost solved — it remains to complete the
numerical code and analyse the diffraction pattern.
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@ Some discrete problems involving arrays of pins have also been
considered.
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Concluding remarks

@ The rigid strip problem is almost solved — it remains to complete the
numerical code and analyse the diffraction pattern.

@ The crack problem is next.

@ Questions: do all diffraction problems of this type lead to kernels with
finite cuts? Why (or why not)?

@ Some discrete problems involving arrays of pins have also been
considered.

@ Many other ‘classical’ W—H geometries are untouched.

| == || =

Parallel strips/cracks Staggered parallel strips/cracks Offset strips/cracks

Thanks for your attention.J
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