Assignment 6
discussed during the tutorials in the week Nov 4 – Nov 8, 2019

Exercise 1.
Write down a linear program and a non-optimal basic feasible solution at which the reduced costs of a least one non-basic variable are zero.

Solution to Exercise 1.

\[
\begin{align*}
\text{min} & \quad - x_2 \\
\text{s.t.} & \quad x_1 + x_3 = 1 \\
& \quad x_2 + x_4 = 1 \\
& \quad x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]

Choose the basis \((3, 4)\) with basic feasible solution \((0, 0, 1, 1)\). The objective function value is 0. As desired, this is not optimal, because \(x = (1, 1, 0, 0)\) satisfies all constraints and has objective function value \(-1\).

Reduced costs:
\[
\begin{align*}
\overline{c}_1 &= c_1 - c_B^T B^{-1} A_1 = c_1 = 0 \\
\overline{c}_2 &= c_2 - c_B^T B^{-1} A_2 = c_2 = -1
\end{align*}
\]

Exercise 2.
Consider the following LP:

\[
\begin{align*}
\text{min} & \quad - x_1 - 2x_2 - 3x_3 \\
\text{s.t.} & \quad x_1 + x_4 = 2 \\
& \quad x_2 + x_5 = 2 \\
& \quad x_3 + x_6 = 2 \\
& \quad x_1 + x_2 + x_3 + x_7 = 3 \\
& \quad \text{all } x_i \geq 0
\end{align*}
\]

Construct the perturbation of this LP, parametrized by \(\varepsilon\).

Solution to Exercise 2.

\[
A = \begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\varepsilon = (1, 0, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7)^T
\]
\[A\varepsilon = \begin{pmatrix} \varepsilon + \varepsilon^4 \\ \varepsilon^2 + \varepsilon^5 \\ \varepsilon^3 + \varepsilon^6 \\ \varepsilon + \varepsilon^2 + \varepsilon^3 + \varepsilon^7 \end{pmatrix} \]

\[b = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \end{pmatrix} \]

\[\tilde{b} = b + A\varepsilon = \begin{pmatrix} 2 + \varepsilon + \varepsilon^4 \\ 2 + \varepsilon^2 + \varepsilon^5 \\ 2 + \varepsilon^3 + \varepsilon^6 \\ 3 + \varepsilon + \varepsilon^2 + \varepsilon^3 + \varepsilon^7 \end{pmatrix} \]

The perturbation is \(\min c^T x \text{ s.t. } Ax = \tilde{b} \)

Exercise 3.

Run the simplex algorithm on the perturbation from exercise 2 with \(\varepsilon = 0.01 \). Start at \(x_1 = x_2 = x_3 = 0 \). You are allowed to use computer support for the single steps.

Solution to Exercise 3.

Even though not basis is degenerate, different pivoting strategies are possible, so this solution is not unique.

\[A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \]

\[c^T = (-1, -2, -3, 0, 0, 0) \]

\[b^T = (2 + \varepsilon + \varepsilon^4, 2 + \varepsilon^2 + \varepsilon^5, 2 + \varepsilon^3 + \varepsilon^6, 3 + \varepsilon + \varepsilon^2 + \varepsilon^3 + \varepsilon^7) \]

\[= (2.01, 2.001000010000001, 2.0001000001000001, 2.000001000000100000001) \]

The algorithm now works in the same way as Exercise 2 on sheet 2.