Exercise 1.
Let \(P = \{ x \in \mathbb{R}^n \mid Ax = b, \ x \geq 0 \} \) be a polyhedron in standard form. Prove that for every point \(x \in P \) and any nonzero direction vector \(d \in \mathbb{R}^n \) there exists \(\alpha \in \mathbb{R} \) such that \(x + \alpha d \notin P \).

Exercise 2.
Give a description of a nonempty polyhedron \(P \) in which for every point \(x \in P \) there are at least two active constraints.

Exercise 3.
This is the adjusted exercise 3 with solution provided.
Choose \(n \) and two matrices \(A, A' \) and two vectors \(b, b' \) such that
\[
P := \{ x \in \mathbb{R}^n \mid Ax \geq b \} = \{ x \in \mathbb{R}^n \mid A'x \geq b' \}
\]
and provide a vector \(x \) that is a basic solution for \(\{ Ax \geq b \} \) but not a basic solution for \(\{ A'x \geq b' \} \).
This does not work if \(x \in P \). Explain why.

Solution:
For example, choose
\[
A = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
-2 & -1
\end{pmatrix}, \quad b = \begin{pmatrix}
0 \\
0 \\
-2
\end{pmatrix}
\]
and
\[
A' = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{pmatrix}, \quad b' = \begin{pmatrix}
0 \\
0 \\
-1
\end{pmatrix}
\]
The additional inequality \(-2x_1 - x_2 \geq -2\) is implied as follows: \(-x_1 - x_2 \geq -1\) and \(x_2 \geq 0\) imply \(-x_1 \geq -1\). Adding \(-x_1 - x_2 \geq -1\) and \(-x_1 \geq -1\) gives \(-2x_1 - x_2 \geq -2\). Therefore both sets \(\{ x \in \mathbb{R}^n \mid Ax \geq b \} \) and \(\{ x \in \mathbb{R}^n \mid A'x \geq b' \} \) describe the same polyhedron.
The point \((x_1, x_2) = (0, 2)\) is a basic solution to the first system (2 linearly independent active constraints), while the same point only has 1 active constrains in the second system.
"This does not work if \(x \in P \). Explain why."
If \(x \in P \) and \(x \) is a basic solution of \(\{ Ax \geq b \} \), then \(x \) is a basic feasible solution (by definition). We know from Theorem 2.3 that this is equivalent to \(x \) being an extreme point of \(P \). Again by Theorem 2.3 this is equivalent to \(x \) being a basic feasible solution of \(\{ A'x \geq b' \} \). In particular, \(x \) is a basic solution for \(\{ A'x \geq b' \} \).