Let \(x \in \mathbb{R}^n \)

Let \(B(1), \ldots, B(m) \) s.t. \(A_{B(1)}, \ldots, A_{B(m)} \) are lin indep.

\[x_i = 0 \text{ if } i \notin \{B(1), \ldots, B(m)\} \]

The active constants \(x_i = 0, i \notin \{B(1), \ldots, B(m)\} \) and \(A \cdot x = b \) imply

\[b = A \cdot x = \sum_{i=1}^{m} A_{B(i)} \cdot x_i = \sum_{i=1}^{m} A_{B(i)} \cdot 0 = 0 \]

Thus, \(x_{B(i)} \) are uniquely determined.

By Theorem 2.2 there are \(n \) lin indep. constants.

By def. \(x \) is a basic solution.

Converse direction:

Let \(x \) be a basic solution.

Let \(x_{B(1)}, \ldots, x_{B(k)} \) the components where \(x \) is nonzero.

Since \(x \) is a basic sol., the system

\[\sum_{i=1}^{m} A_{c(i)} x_i = b \text{ and } x_i = 0, i \notin \{B(1), \ldots, B(k)\} \]

has a unique solution (Thm 2.2).

Equivalently, the eq. \(\sum_{i=1}^{k} A_{B(i)} x_{B(i)} = b \) has a unique sol.

\[\Rightarrow \text{columns } A_{B(i)} \text{ are linearly independent} \quad \text{mxk system with lin. indep. columns} \]

Therefore \(k \leq m \)

Since \(A \) has \(m \) lin. indep. rows \(\Rightarrow \) \(A \) has \(m \) lin. indep. cols.

\[\Rightarrow \text{we can find } \text{m additional columns } B(k+1), \ldots, B(m) \text{ s.t. } A_{B(1)}, \ldots, A_{B(m)} \text{ lin. indep.} \]