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The magnetic fields of Uranus and Neptune: 
Methods and models 

Richard Holme • and Jeremy Bloxham 
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 

Abstract. We presen• new models of •he magnetic fields of Uranus and Neptune, 
based on data provided by l;he Voyager II magnel;ic field experiment. We find the 
simplesl; models l;hal; sal;isfy l;he dal;a, and use l;he observed surface heal; flow as a 
cons•rain• on •he magnetic field s•ruc•ure. Our models are similar •o •he previously 
described Q3 and 08 models far from l;he planel;s, bul; resolve smaller-scale strucl;ure 
close to •he plane•s' surfaces. The field of Neptune is much be•ter constrained •han 
tha• of Uranus, and •he field in •he northern hemisphere of Neptune is much better 
consl;rained than thai; in the soul;hern hemisphere, of importance for studies of 
Nepl;unian norl;hern hemisphere radio sources. Using exl;remal models, we show 
•hat the large dipole til•s and nondipole dominance of the fields are robust features 
required by the da•a. Scaling analysis suggests that •he toroidal field that would be 
required for a magnetostrophic balance in the dynamo region would result in ohmic 
dissipal;ion greal;er l;han l;he observed surface heal; flow. Thus we suggest l;hat l;he 
dynamos of Uranus and Nepl;une are energy limited, and thai; l;he subsequent lack of 
magnetostrophic balance may account for the radically different field morphologies 
of Uranus and Nepl;une compared wil;h l;he Earl;h, Jupiter, and Saturn. 

Introduction 

Six planets in the solar system possess strong mag- 
netic fields of internal origin [Russell, 1993; Connerhey, 
1993] maintained by dynamo action. The fields of the 
Earth, Merc•ry, Jupiter, and Saturn are dominantly 
(tipolar, with strong symmetry about the rotation axis, 
features which prior to 1986 were the accepted paradigm 
for the morphology of planetary fields. However, the 
Voyager II encounter with Uranus revealed a very dif- 
ferent field geometry, with no obvious axial symmetry, 
and significant higher-degree structure. Initial explana- 
tions for the unusual field appealed to the anomalous tilt 
of Uranus, or suggested that the field might be revers- 
ing, but such ad hoc mechanisms became less attractive 
with the observation of similar field structure at, Nep- 
tune. Instead, we must now explain the existence of two 
very different classes of planetary magnetic fields. The 
p•rpose of this paper is to examine this second class 
of planetary magnetic fields by further analysis of the 
data taken by Voyager II at Uranus and Neptune, and 
to provide possible explanations for their nature. 
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The magnetic field in an electrical insulator can be 
written B = -V•, where • is a scalar potential satisfy- 
ing Laplace's equation V•'• = 0. In spherical geometry, 
the soh•tion for the internal planetary field is 

/:1 

where a is the radius of the planet and (r,O,O) is a 
planetocentric spherical coordinate system. P•(cos0) 
are Legendre polynomials, by convention Schmidt nor- 
lnalized, so that 

./•2,• .•,• (P•(cos0)cosine) 2 sinOdOdc) - 4z' :0 =0 21 + 1 (2) 

We use the lneasurements of the magnetic field to es- 
timate the coefficients g/• and h TM called the Gauss 1 • 

coefficients, which then uniquely define the planetary 
field external to the source (conducting) region in the 
planet. 

Because the data are restricted to the path of the 
spacecraft, they are sparse and unevenly distributed. 
Further, many of the measurements were taken far fi'om 
the planet, and so do not sample high-degree (1 > 1) 
harmonics well. Connerney [1981] has shown that it is 
possible to construct fields which are of significant mag- 
nitude at the surfaces of the planets, but which would 
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have been undetectable by the spacecraft: this illus- 
trates the nonuniqueness in any field model that we 
may obtain from the data, a serious problem in model- 
ing all fields, but which is particularly significant here 
because data are only available from a single flypast of 
each planet. 

Connerney et al. [1987, 1991] obtained values for the 
Gauss coefficients using a method based on singular 
value decomposition (SVD) [Lanczos, 1961; Connerney, 
1981]. They truncated the spherical harmonic expan- 
sion equation (1) and determined a solution using a 
generalized eigenvalue analysis. If an eigenvector has 
eigenvalue 0, then the linear combination of coefficients 
defined by that eigenvector has no effect on the data, 
and the vector is part of the null space. Connerney et al. 
[1987, 1991] chose their truncation level to be the min- 
iinure that allows an adequate fit to the data, leading 
to truncation at degree 3 for Uranus, and degree 8 for 
Neptune. They discarded eigenvectors with small, but 
nonzero eigenvalues, thereby extending the null space. 
Then coefficients above degree 2 for Uranus and de- 
gree 3 for Neptune were discarded as being inadequately 
resolved. This has the unfortunate consequences that 
available information concerning higher-degree compo- 
nents of the field is lost, and that the final models (Q3 
and Os) do not fit the data (although, of course, the Iull 
solutions including the poorly resolved higher-degree 
coefficients do fit the data). Our approach is instead 
to solve for fields to high degree, and to resolve the 
nonuniqueness by seeking fields with certain desirable 
properties, such as smoothness, or low field strength, 
electrical heating, or stored energy. This enables us to 
say something about higher-degree components of the 
field, and to test hypotheses about the nature of the 
field directly against the data. 

In this paper, we begin by describing the available 
data for modeling the fields of Uranus and Neptune, 
and techniques we have used to average and cull the 
raw data to obtain a data set for inversion. We then de- 

scribe the method that we use to estimate the field coef- 

ficients from this data set, including the use of a bound 
on the ohmic heating as a modeling constraint. This 
procedttre results in a number of models of the nlag- 
netic fields of Uranus and Neptune: we present these 
both as maps of the field and as power spectra. We 
then explore the range of permissible models that are 
consistent with the data, and use extremal modeling to 
examine the robustness of the large dipole tilts, the form 
of the spectra, and the general symmetry properties of 
the models. Finally, we present some simple analyses 
of the dynamics to explore possible mechanisms for the 
unusual field morphology. 

Data 

Voyager II was within the magnetosphere of Uranus 
for 16 hours, and that of Neptune for 38 hours, dur- 
ing which periods three orthogonal components of the 

magnetic field were recorded without significant inter- 
ruption. The trajectories followed by the spacecraft are 
shown in Figure 1. The instrumentation, described in 
detail by Behannon et al. [1977], included both low flux 
(LFM) and high flux (HFM) magnetometers, sensitive 
to different field strengths, which switched automati- 
cally between different ranges of sensitivity depending 
on the measured field strength. Only the LFM was used 
during the Uranus encounter, but the measurements 
near closest approach of Neptune also used the HFM. 
After correction for the intrinsic spacecraft field using 
a dual magnetometer technique [Ness et al., 1971], the 
data from both encounters were deposited at the Na- 
tional Space Science Data Center (NSSDC), Greenbelt, 
Maryland, by the Voyager magnetic field investigation 
team (N. F. Ness, principal investigator). With no new 
missions to either planet currently under consideration, 
it is unlikely that the available data will be augmented 
in the near fi•ture. 

(a) 
9O 

• 45 

(D 

• 0 

_1-45 

-90 
36O 2 0 180 90 0 

(b) 
20 

(!3 12 

E .... ' ......... '"'"":'<:: ............. • 8 

.__. 4 

360 270 180 90 0 

West longitude (degrees) 

Figure 1. Spacecraft trajectories. (a) Latitude versus 
longitude. (b) Distance versus longitude (Horizontal 
lines mark outer radial extent of data used for inver- 

sions). 
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Data Errors 

The measured field is the sum of contributions from 

both internal (planetary) and external (magnetospheric) 
sources. We may formally expand for external sources 
of magnetic field in a manner similar to the expansion 
for the internal field in equation (1). However, such 
external terms have a growing radial dependence, and 
inspection of the data shows that the fields of both 
planets decay rapidly with increasing r. There is no 
evidence for strong magnetospheric sources at Uranus 
or Neptune, such as the ring currents which complicate 
the determination of the internal field of Jupiter [Con- 
nerney et al., 1981]. We model the external field from 
magnetospheric sources as a small constant field, with 
scalar potential 

ß - a (Gø• cos0 +G• sin0cosq•+ H• sin0sinq•) (3) 
and assume variations in its strength are sufficiently 
rapid to be modeled as Gaussian noise, with magnitude 
0.5 nT for Uranus and 1.0 nT for Neptune, estimated 
from the value of the solar field just prior to encounter. 
This is the dominant source of error in the field mea- 

surements far from the planets. 
The instrument precision varies as the magnetome- 

ters switch automatically between their different sensi- 
tivity ranges. The limit of resolution is stated to be 
approximately 0.05 nT + 0.1% of full scale, where full 
scale varies from 8.8 nT, through 2100 nT (precision 
0.51 nT) at closest approach to Uranus, to 50000 nT 
(precision 26 nT) for the HFM at closest approach to 
Neptune. The data returned by each instrument are not 
smooth: a constant value is recorded until the thresh- 

old of the next quantized step is reached. However, field 
colnponents in the planetocentric fi'ame appear to vary 
smoothly as a consequence of the smooth rotation of 
the spacecraft with respect to the planetocentric frame. 
Further details of the instrument response are given by 
Ncss et al. [1986, 1989] and Connerney et al. [1987, 
1991]. 

F•rther uncertainty in the measurements arises froin 
errors in the determination of the position and atti- 
t,•de of the spacecraft. Whilst examination of the data 
suggests that errors in position are small, attitude er- 
rors are more significant. Connerney e! al. [1987, 1991] 
report that the attitude was in general determined to 
within 0.05 ø during the Uranus encounter, and to 0.1 ø 
during the Neptune encounter, making this source of 
error potentially comparable to that from instrument 
sensitivity. In addition, there were short periods during 
spacecraft maneuvers when the uncertainty was much 
greater, and only measurements of total intensity can 
be used. A more complete treatment of attitude errors 
is given by IIolme and Bloxham [1995], and is described 
briefly below. 

Data Smoothing 

Voyager II returned values of the magnetic field at an 
interval between 0.06 and 0.6 s. On this short timescale, 

the data are highly redundant, and their errors are 
highly correlated. In previous studies, these data were 
either time averaged [Connerhey et al., 1987] using an 
iterative data adaptive sorting scheme (J. E. Conner- 
hey, personal communication, 1993), or culled without 
averaging [Connerhey et al., 1991]. Neither of these 
approaches is entirely satisfactory. Averaging over ex- 
tended times introduces spatial bias to the measure- 
ments, and, as noted by Davis and Smith [1990], will 
tend to overvalue the uncertainty, whilst culling dis- 
cards most of the data, with potential loss of informa- 
tion. Instead, we determine a continuous running aver- 
age for each field component, by fitting a smooth curve 
through each component using penalized least squares 
splines [Constable and Parker, 1988, 1991]. 

We seek the smoothest function f(x) which provides 
a specified fit to the data {Yi}, standard deviation 
by minimizing the functional 

F - 9. + '• (x) 9'dx (4) 
i--1 O'i 

The solution to this problem is well known to be a set of 
piecewise cubic polynomials, called smoothing splines, 
joined at the locations of the data points {xi}, called 
the knots. For a large number of data, the calculation 
of these functions becomes intractable. Constable and 

Parker [1988] suggested an alternative method, called 
penalized least squares splines, based on the construc- 
tion of a more widely spaced knot sequence x•, upon 
which the smooth function is constructed on a basis of 

c•fi•ic B-splines. The ith cubic B-spline is such that 
Bi(x) > 0 if x• ( x ( x•+4 and zero otherwise, and the 
s•un of the B-splines at any point is unity. B-splines 
are described in more detail by de Boor [1978]. In Fig- 
m'e 2, we illustrate the B-spline basis for a simple case 
with uniformly spaced knots (as used in our calcula- 
tions). We solve for the set of B-spline coe•cients that 
minimize the functional F, subject to a desired fit to 
the data, obtained by varying the damping parameter 
•. This problem can be posed in matrix form, and be- 
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Figure 2. A B-spline basis for evenly spaced knots. 



2180 HOLME AND BLOXHAM: MAGNETIC FIELDS OF URANUS AND NEPTUNE 

cause the B-splines are only locally nonzero, the matri- 
ces are banded, allowing efficient solution. To achieve 
a good approximation to the smoothing splines solu- 
tion, we must choose sufficient knots that the smooth 
function is controlled by the damping, and not by the 
number of knots. For further details, see Constable and 
Parker [1988]. 

Our procedure for smoothing the data consists of sev- 
eral steps. First, we detrend the data. We fit the Uranus 
data using simple least squares with a truncated spheri- 
cal harmonic expansion of degree and order 3, and then 
subtract this field from each component time series. 

Second, we find the penalized spline fit to the de- 
trended data. To do this, we treat the standard devia- 
tions {ai} of the data as unknown, but constant within 
each magnetometer sensitivity range. Then we solve 
for the B-spline coefficients for a range of A, iteratively 
seeking a self-consistent solution for which the variance 
in each range is equal to the data mean square misfit, 
and construct a trade-off curve by plotting the "rough- 
ness" (f f"(x)2dx) against the normalized misfit. We 
look for a "knee" (a sharp change in slope) in this curve, 
and adopt the corresponding value of A as our opti- 
mal solution. Ideally, increasing the damping parame- 
ter above this value would produce little improvement 
in smoothness at the cost of significantly worsening the 
fit to the data, while decreasing the dmnping parameter 

0.5 ø angular separation and assigned each point an error 
of 0.5 nT, since after smoothing, the errors from the 
external fields dominate instrument uncertainty. Data 
at further than 8Ru from the planet (see Figure 1) were 
discarded because of contamination from external fields. 

The errors in the Neptune data are dominated by 
limits to instrument precision, and thus our smooth av- 
eraging technique should have been extremely useful. 
Unfortunately, the data from the Neptune encounter 
were only available in highly decimated form, provid- 
ing insufficient temporal resolution to apply the spline 
technique, so we use the data set described by Con- 
nerney et al. [1991]. We use data within a radius of 
12RN, again to reduce effects of external fields. We fol- 
low Connerney et al. [1991] in adopting the instrument 
quantization precision a as relative weights to allow for 
all sources of error in the data (the error from the quan- 
tization error alone is uniformly distributed with vari- 
ance a2/12). The postulated error varies from 1.0 nT 
(approximating external fields) at 12R•v, to 26 nT near 
closest approach. 

Method 

Our aim is to determine the magnetic fields of Uranus 
and Neptune from the available data. From equa- 
tion (1) the problem might appear to be simply one of 

would give a much rougher solution for little reduction parmneter estimation, in other words one of simply de- 
in misfit. 

Last, we reconstruct the data by adding this smooth 
function to the trend removed by the simple degree 3 fit, 
to produce continuous smooth functions for the three 
magnetic field components. 

To construct our magnetic field data set, we then 
sample these smooth functions. One approach would 
be simply to sample uniformly in time, but this would 
give data with highly uneven spatial separation, and, 
in particular, comparatively poor coverage near closest 
approach, where we expect the most informative data 

termining the Gauss coefficients which uniquely define 
the planetary field external to the source (conducting) 
region in the planet. However, the field is described 
by an infinite number of Gauss coefficients, and since 
we have an unavoidably finite number of data, we must 
exercise some care in how we seek to estimate a finite 

subset of the coefficients. Our approach is to seek to 
estimate the field subject to an additional smoothing 
constraint. 

Following Whaler and Gubbins [1981] and Gubbins 
[1983], if the errors in the data are assumed Gaussian 

to be located. Note, however, that selecting too many with zero mean, then to optimize the fit to the data, we 
points near closest approach unduly biases the inversion should minimize 
against fitting the data elsewhere. The information con- 
tent of a particular datum is described by the Green's 
function for the problem [Gubbins and Roberts, 1983]. 
We examine the correlation between the Green's func- 

tions of successive data points, and find that a simple 
strategy of adopting data with constant angular sepa- 
ration does not bias the inversion. Finally, we note that 
when the spacecraft attitude is not known, we should 
not use the values predicted by our smooth function, 
but must instead use total intensity data only. 

Summary of the Data Sets Used for Modeling 

We received the Uranus data in the form of 1.96 s 

averages of each component. We averaged these data 
using the technique described above, with 6000 splines 
being sufficient to fit 32,000 data. We then sampled at 

eTCe-le, (5) 
where Ce is the data covariance matrix for the errors 

(Ce)ij = cov(•i,•j) (6) 

and the error vector e is given by 

e =7 - Am (7) 

where A is an operator calculated from equation (1) re- 
lating the data vector q, to the model vector m. We as- 
sume that all the data are linearly related to the model 
(for example, the three orthogonal magnetic field com- 
ponents rather than total field intensity): the extension 
of the method to deal with nonlinear data is given by 
Gubbins and Bloxham [1985]. 
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In addition, following $hure et al. [1982], we seek 
fields which are smooth over a volume or surface. For 

example, we might choose to minimize 

oo a 2/+4 1 
{B.B}•- Z(l+ 1)(;) • ((gO)9' + (h•) 9') (S) 

/=1 m=0 

the mean field strength averaged over a spherical sur- 
face, radius r [Lowes, 1966]. We may express this quan- 
tity and others like it as a quadratic norm 

mTAm (9) 

where A is a positive definite matrix, in this case with 
diagonal elements 

/(Z,•) -- (Z -[- 1) (10) 

and zeros elsewhere. 

We minimize the functional 

(7- Am)TC•-•(7 - Am) + AmTAm (11) 

where A is a Lagrange multiplier. The maximum likeli- 
hood solution is 

xi• = (ATC•-•A + •A)-•ATC•-•7 (12) 

The matrix (ATC•-•A + AA) is real symmetric and 
positive definite, and so the solution to equation (12) 
can be obtained efficiently by, for example, Cholesky 
decomposition. In practice, we vary the Lagrange mul- 
tiplier until we obtain the required fit to the data. Be- 
cause the true value of the constraint and fit to the data 

are unknown, we plot a trade-off curve of the value of 
the norm against the misfit to the data, and adopt the 
value of A at the "knee" of the curve. 

A common alternative to smoothing is to truncate 
the spherical harmonic series. This can be considered 
as a particularly severe form of damping, in which A is 
diagonal, with elements 0 for the nontruncated terms, 
and infinity for the truncated terms. In practice, we too 
must truncate the expansion, but we do so at a suffi- 

ciently high-degree so as not to affect the solution. Con- 
vergence and high-degree coefficients are determined by 
the properties of the norm, rather than choice of trun- 
cation level. 

Data Error Covariance Matrix 

The data error covariance matrix expresses our de- 
gree of confidence in the observations. The uncertainty 
arises from a combination of external field noise and 

instrument error, both assumed isotropic, with com- 
bined variance (y9., and attitude uncertainty, with angu- 
lar variance •p9.. As a result of the attitude uncertainty, 
the errors in the orthogonal field components are non- 
isotropic and correlated. The covariance matrix for each 
triplet of field components is given by 

C. - I((• •' + B•'• •') - BBTqb •' (13) 
[Holme and Bloxham, 1995], which has inverse 

i(•2 + BB T 
Ce -• = a•.(a•. + B:•b•. ) (14) 

In common with Connerhey et al. [1987, 1991], we as- 
sume a = 0.5 nT at closest approach to Uranus, where 
the field magnitude B = 411 nT, and 26 nT at closest 
approach to Neptune, where B = 9940 nT. The ori- 
entation is supposed known to 0.05 ø for Uranus, and 
0.1 ø for Neptune, so B•b = 0.36 nT for Uranus, and 
B•l, = 17 nT for Neptune. These estimates are compa- 
rable to the estimated instrument error, so in principle 
we must consider the possible effects of a nondiagonal 
covariance matrix when inverting the data. However, 
due to poor data coverage, the effects of the error corre- 
lation were much less than the effect of small variations 

in the damping parameter A. 

Smoothing Norms 

We have used a variety of smoothing norms in this 
study, listed in Table 1, all of which yield diagonal 

Table 1. Smoothing Norms for Magnetic Field Inversions 

Integral to Minimize Norm Function f(l, ro) 

Note the additional factor of (21 + 1) in (a)-(c) from Shure et al. [1982], to allow for Schmidt 
normalization. 
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damping matrices. Norm (a) is the minimum field 
strength expression described in equation (8) above, 
while norms (b) and (c) follow $hure et al. [1982], min- 
imizing the mean square radial field and its horizontal 
derivative respectively. Norm (d) minimizes the energy 
of the magnetostatic field external to the planet [e.g., 
Benton and Alldredge, 1987; RSdler and Ness, 1990]. 

Norm (e) is derived from a constraint on the ohmic 
dissipation of the magnetic field. Gubbins [1975] showed 
that for a uniform conductivity core and a known po- 
tential field, there is a unique internal current distri- 
bution (and hence field) that generates the minimum 
ohmic heat. In Appendix A we extend this result to al- 
low for radial variations in conductivity. This places a 
lower bound on the ohmic heating associated with the 
observed field and, if used as a smoothing constraint, 
yields fields with the smallest possible value of this lower 
bound. In order to apply this norm, we need to con- 
sider the internal structure and conductivity profiles of 
Uranus and Neptune. 

( a 2'+• (1 + 1)(2/+ 1)(2/+ 3)(2/+ 4) wr _> l,m 

-c) X (b21+(•_ C2/+4)((g• + (h•) (16) 
from which we construct our smoothing norm. 

Constraining the Field Structure by Ohmic Heat- 
ing 

In addition to regularizing the inverse problem, we 
may hope to gain additional insight by comparing the 
ohmic heating bound calculated from a model with the 
observed surface heat flow. By considering the dy- 
namo as a heat engine, Hewitt et al. [1975] and Backus 
[1975] showed that the ohmic dissipation from a dynamo 
driven by thermal convection is bounded by 

Qo 
Radial Conductivity Profiles 

The detailed internal structures of Uranus and Nep- 
tune are not known. Models are customarily proposed 
with three compositionally distinct polytropic layers: 
"gas" (predominantly hydrogen and helium), "ice" (pre- 
dominantly water and ammonia), and "rock" (iron and 
silicates), although sharp compositional boundaries are 
not required and are in fact unlikely. As the pres- 
sure in the gas regions is too low to form metallic hy- 
drogen [Hubbard and MacFarlane, 1980], the magnetic 
fields are assumed to originate in the ionically conduct- 
ing icy mantles. Shock wave experiments [Nellis et al., 
1988] suggest that the ionic conductivity of "synthetic 
Uranus" (a mixture of C,H,O,N in proportions derived 
from cosmochemical arguments) increases with pressure 
until it saturates at a value of 2 x 10 s S m -1 at 40GPa 
(compare this with 3 x 105 S m -x, a commonly used 
value for the conductivity of the Earth's core [Stacey, 
1992, section 7.2.3]). Simple modeling combining the 
experimental pressure-conductivity relation with inte- 
rior models of the two planets [Podolak et al., 1990, 
1995; Hubbard et al., 1991] suggests an approximate con- 
ductivity profile 

O' = 0'0 T <C 

- c < r < b •r cro b- c 
•r = 0 r >b 

where or0 is the saturation conductivity, c is the satura- 
tion depth (taken to be about 0.7Ru and 0.75R•v), and 
b is the depth at which conductivity is negligible (ap- 
proximately c + R/10). Our results are insensitive to 
the precise details of the conductivity profile, the linear 
form being adopted for reasons of convenience. Using 
equation (A15), we obtain a lower bound on the heat 
generated 

Here Tm is the maximum temperature within the dy- 
namo, To is the temperature at the outer boundary, 
and Q o is the heat flow from the dynamo region. Hub- 
bard et al. [1991] give temperature values for Neptune 
of 3000 K at the top of the icy region and 7000 K for the 
center of the planet. The dynamo region is somewhat 
below the surface of the icy region: we adopt a tempera- 
ture of 3500 K as representative of this depth. The heat 
flow out of the dynamo region is probably close to, and 
certainly bounded by, the observed surface heat flow. 
With these numbers, equation (17) gives WB •_ Q$, 
i.e., the ohmic heating is bounded by the surface heat 
flow, a result which is also consistent with the tempera- 
ture profiles of the recent models of Podolak et al. [1995]. 
This simple relation would be invalidated by significant 
compositional convection [Gubbins, 1977], thought to 
be important in driving the Earth's dynamo [Gubbins 
et al., 1979]. 

In Uranus and Neptune, Lindemann's law [Hubbard, 
1981] suggests that the dynamo region is fully liquid, 
whilst a Fe/Mg silicate core is fully solid (although 
a multiple component system may have a lower melt- 
ing point). With no obvious process to drive composi- 
tional convection, we assume the dynamos are thermally 
driven, so that equation (17) is valid. We are also as- 
suming a thermodynamic steady state. Heat generated 
deep within the planet by electrical currents will take 
time to reach the surface through processes of conduc- 
tion and convection, so the surface heat flow observed 
today is characteristic of past fields. We must assume 
variations in heat production average out over time. 

We divide the internal magnetic field into toroidal 
and poloidal parts [e.g., Gubbins and Roberts, 1987]: 

B = V ATr + V A V APr (18) 
where T and P are the toroidal and poloidal scalars. 
From the orthogonality of toroidal and poloidal fields 
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over a sphere [Bullard and Gellman, 1954], the magnetic 
heating also splits into two parts 

cients are best explored through synthetic experiments, 
described below. 

WB -- WT + W•, (19) Results 

where WT is the ohmic heating due to poloidal currents 
associated with the toroidal field B•, and We is the 
ohmic heating due to toroidal currents associated with 
poloidal field Be. Because the toroidal field must be 
zero outside the conducting region, the magnetic field 
observations, and hence the ohmic heating norm, only 
provide a direct constraint on We. However, it is com- 
monly assumed that in the dynamo region B• >> Be 
and so W• >> We. We return to this issue below. Fur- 
ther, the ohmic heating norm is only a lower bound 
on the poloidal heat generation, based on the observed 
field, which in turn does not include small-scale (high- 
degree) structure which is highly attenuated by distance 
from the planet, but may still contribute significantly 
to ohmic heating. Thus we do not expect the ohmic 
heating bound to provide a strong constraint on the 
structure of the field, although it will prove useful in 
extremal modeling. 

Resolution Analysis 

The extent to which the field model is determined by 
the data is described by the resolution matrix 

R- (ATCe-•A + AA)-•ATCe-•A (20) 

If A is very small, then all parameters are determined 
solely by the data, and R = I. If a diagonal element of 
R is close to 1, and nondiagonal elements are sinall, we 
say that the corresponding coefficient is "well-resolved", 
meaning that its value is specified solely by the data, 
independently of other coefficients. If non-diagonal el- 
ements are large, then the estimates of the different 
coefficients are not independent. At high degree, the 
coefficients are determined solely by the norm, and the 
elements of the resolution matrix are zero. 

It is important to realize that just because a coeffi- 
cient is well resolved, it is not necessarily well deter- 
mined. An estimate of the uncertainties in the model 
can be obtained from the covariance matrix 

where 

C - 82(ATC•-•A + AA) -• 

(22) (5 '2 -- e Tce-le/[N -- tr(a)] 

and N is the number of data. However, when properly 
interpreted within the Damework of Bayesian inference 
[Backus, 1988; Bloxhara et al., 1989], the covariance es- 
timate is revealed to be good only if we believe that 
the value of the smoothing norm of the true field is 
bounded by that of our calculated model. We make 
no such claim: our fields are the smoothest possible in 
some sense, but we do not claim such smoothness is 

required. In practice, the uncertainties in the coeffi- 

We have obtained a variety of models for the fields 
of Uranus and Neptune, all of which provide a good 
fit to the data and possess additional desirable proper- 
ties. As representative choices, we present models calcu- 
lated with the ohmic heating norm, which we designate 
Umoh and Nmoh. In Figure 3 we show trade-off curves 
for both data sets, normalizing the data misfit to the 
nominal uncertainty, and the value of the norm to the 
observed surface heat flow Q$ (0.344-0.38 x 10 xs W for 
Uranus and 3.3 4- 0.35.x 10 xs W for Neptune [Pearl and 
Conrath, 1991]). In both cases the knee in the trade-off 
curve is clearly visible and also robust to rescaling of 
the axes. The position of the knee is somewhat bet- 
ter defined for Neptune than for Uranus because the 
data have been decimated rather than averaged, and 
so our ability to fit the data is strongly limited by the 
size of the instrument error. With access to a data set 

with greater sampling frequency for Neptune, so that 
we could apply our spline techniques, we would expect 
to be able to say more about higher-degree structure. 
For our chosen models, the Uranus model Umoh fits 
the data to 0.6• (0.3 nT), with W• _> 3.3 x 10 TM W, 
while the Neptune model Nmoh fits the data to 0.8•r, 
with Wp _• 3.9 x 10 TM W. All of our models have ohmic 
heating norms well below Q$ and so, as expected, the 
observed surface heat flow does not strongly constrain 
optilnally smooth models. 

We present values for the spherical harmonic coeffi- 
cients in Table 2. The three external source coefficients 

(corresponding to a constant field) are listed at the end 
of the table. Each coefficient set forms one possible field 
1nodel (of many) which is well-behaved at the surface of 

10 s 

10 • 

o o Uranus 

x o• ., ........... o Neptune 
• 01 03 1 

J::: 10 0 

• 0 '1 .N 1 
• . 

03 o '• 

o 1 

10 '4 
1 o's %--• ............. 

............. • ...................................... • ........................ 

10 '• • ' • ' • ' o.= 
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Pigure 3. Trade-og curves between data misfit and 
ohmic heating norm. Heat flow bounds are normalized 
to the observed surface heat flows; misfit in nominal 
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Table 2. Magnetic Field Coefficients for Models Umoh (Uranus) and Nmoh (Neptune) 

Uranus Neptune Uranus 

I rn gl n hi n •I n hi n I m •I n h• n 
1 0 11854.69 10335.72 12 0 0.00 
1 1 11507.23 -15811.90 3558.89 -9772.35 12 1 0.00 0.00 
2 0 -5877.08 8565.94 12 2 0.00 0.00 
2 1 -13084.90 5850.66 -405.99 11138.62 12 3 0.00 0.00 
2 2 -604.66 4184.69 4643.56 -743.14 12 4 0.00 0.00 
3 0 4182.82 -5749.29 12 5 0.00 0.00 
3 1 -1335.73 -5816.66 11631.96 -3904.67 12 6 0.00 0.00 
3 2 -6776.28 -357.27 -1888.70 902.89 12 7 0.00 0.00 
3 3 -4021.38 -2265.15 -2920.49 -245.31 12 8 0.00 0.00 
4 0 398.37 1851.87 12 9 0.00 0.00 
4 1 -431.86 -1013.87 1331.63 -2139.60 12 10 0.00 0.00 
4 2 2168.91 414.66 5410.37 3233.01 12 11 0.00 0.00 
4 3 465.44 -637.84 2219.70 -50.79 12 12 0.00 0.00 
4 4 -1758.43 65.55 -2912.02 -1811.49 13 0 0.00 
5 0 292.22 -2346.74 13 1 0.00 0.00 
5 1 -51.66 520.22 -2065.29 1323.32 13 2 0.00 0.00 
5 2 14.56 -383.17 1925.34 -1762.77 13 3 0.00 0.00 
5 3 36.97 353.48 -777.38 1477.53 13 4 0.00 0.00 
5 4 241.05 22.32 1661.95 -2025.08 13 5 0.00 0.00 
5 5 -263.43 -331.66 -1909.03 -2940.09 13 6 0.00 0.00 
6 0 -100.69 -2269.28 13 7 0.00 0.00 
6 1 61.04 12.06 -740.16 1624.96 13 8 0.00 0.00 
6 2 -94.53 63.35 62.25 518.82 13 9 0.00 0.00 
6 3 59.67 -44.29 790.50 1200.43 13 10 0.00 0.00 
6 4 -60.99 37.32 -330.89 988.61 13 11 0.00 0.00 
6 5 27.69 26.18 -1353.39 -800.07 13 12 0.00 0.00 
6 6 31.42 -58.62 424.12 -694.41 13 13 0.00 0.00 
7 0 2.76 -168.26 14 0 0.00 
7 1 -12.32 -21.49 21.35 -300.27 14 1 0.00 0.00 
7 2 8.86 5.46 1018.20 701.47 14 2 0.00 0.00 
7 3 -17.05 -6.88 1135.41 637.15 14 3 0.00 0.00 
7 4 13.01 3.04 -688.69 254.00 14 4 0.00 0.00 
7 5 -11.65 -4.86 -50.97 427.65 14 5 0.00 0.00 
7 6 0.83 5.50 -692.10 -904.05 14 6 0.00 0.00 
7 7 8.75 1.57 920.70 382.70 14 7 0.00 0.00 
8 0 2.51 212.95 14 8 0.00 0.00 
8 1 0.48 1.82 -89.99 -489.09 14 9 0.00 0.00 
8 2 1.50 -2.79 908.86 352.13 14 10 0.00 0.00 
8 3 0.57 1.66 108.49 235.00 14 11 0.00 0.00 
8 4 -0.66 -2.41 -176.23 -57.24 14 12 0.00 0.00 
8 5 0.95 1.75 -564.44 -15.10 14 13 0.00 0.00 
8 6 -0.43 -1.81 239.92 -321.08 14 14 0.00 0.00 
8 7 -0.52 0.62 -37.80 -73.72 15 0 0.00 
8 8 0.10 1.12 317.41 204.16 15 1 0.00 0.00 
9 0 -0.31 -248.95 15 2 0.00 0.00 
9 1 0.19 0.32 -75.71 189.91 15 3 0.00 0.00 
9 2 -0.24 0.25 51.87 86.28 15 4 0.00 0.00 
9 3 0.34 -0.03 -96.24 330.79 15 5 0.00 0.00 
9 4 -0.10 0.23 -369.89 -69.58 15 6 0.00 0.00 
9 5 0.16 -0.23 -266.32 -217.50 15 7 0.00 0.00 
9 6 -0.08 0.24 93.35 108.99 15 8 0.00 0.00 
9 7 0.16 -0.18 120.18 -279.72 15 9 0.00 0.00 
9 8 -0.11 -0.02 -14.49 299.00 15 10 0.00 0.00 
9 9 -0.13 0.05 31.81 -105.64 15 11 0.00 0.00 

10 0 -0.02 -265.87 15 12 0.00 0.00 
10 1 -0.03 -0.06 -1.50 253.64 15 13 0.00 0.00 
10 2 -0.02 0.02 -123.98 -13.24 15 14 0.00 0.00 
10 3 -0.05 -0.01 0.56 206.48 15 15 0.00 0.00 
10 4 0.02 0.02 -292.27 -41.34 16 0 0.00 
10 5 -0.03 0.01 40.23 -204.70 16 1 0.00 0.00 
10 6 0.03 0.00 -13.76 141.95 16 2 0.00 0.00 
10 7 -0.03 0.01 205.04 -111.46 16 3 0.00 0.00 
10 8 0.03 0.00 -114.74 75.81 16 4 0.00 0.00 
10 9 0.00 -0.01 45.55 57.69 16 5 0.00 0.00 
10 10 -0.01 -0.01 -28.00 -82.26 16 6 0.00 0.00 
11 0 0.01 -43.30 16 7 0.00 0.00 
11 1 0.00 0.00 5.65 -4.64 16 8 0.00 0.00 
11 2 0.00 -0.01 67.61 -18.37 16 9 0.00 0.00 
11 3 0.00 0.00 -9.96 -12.32 16 10 0.00 0.00 
11 4 0.00 -0.01 -51.47 -15.99 16 11 0.00 0.00 
11 5 0.00 0.00 61.20 -161.89 16 12 0.00 0.00 
11 6 0.00 0.00 42.62 67.48 16 13 0.00 0.00 
11 7 0.00 0.00 90.44 19.19 16 14 0.00 0.00 
11 8 0.00 0.00 -34.15 -57.06 16 15 0.00 0.00 
11 9 0.00 0.00 -35.93 95.12 16 16 0.00 0.00 
11 10 0.00 0.00 36.04 -69.43 1 0 -1.64 
11 11 0.00 0.00 -25.12 7.02 1 1 -0.99 -0.19 

Neptune 

35.19 
-16.82 
114.25 
-62.07 
33.69 

0.81 
52.25 
-5.57 

10.36 
-59.35 
40.20 

-12.44 
-2.86 

-10.21 
-25.43 
29.25 

-71.14 
1.95 

-16.44 
14.55 

-22.86 
5.70 

-33.56 
15.88 

7.30 
-11.57 

5.02 
-46.55 
-17.53 
-30.63 
-43.14 
-25.36 

3.48 
-13.00 

-1.27 
-8.00 
-1.88 
-3.59 

16.40 
-12.13 

3.00 
1.18 

-35.13 
-6.96 

-24.85 
-14.45 
-16.04 
21.04 

-15.76 
15.62 

-12.45 
12.73 
-9.72 

14.04 
-7.39 
-0.48 
2.43 

-0.77 
-4.02 
-2.63 
8.27 

-4.80 
8.29 

17.65 
-4.71 

13.05 
-7.32 
9.98 

-6.45 
6.30 

-1.81 
-2.99 
2.74 

-0.61 
-0.22 
-0.25 
0.17 

-81.58 
-17.20 
-48.73 
-28.68 
-57.61 
-14.81 
89.58 

-96.77 
72.68 

-29.67 
-13.10 
14.80 

-9.78 
-18.86 
17.09 

-43.12 
33.55 

-54.10 
104.53 
-83.49 
40.83 
-1.62 

-18.12 
11.64 

0.83 

27.65 
-6.29 

35.38 
-25.36 
44.31 

-39.87 
69.01 

-45.04 
9.54 

14.30 
-16.81 

6.45 
2.58 

-1.94 

-8.82 
17.40 
-9.90 

13.07 
0.18 

-2.32 
17.85 
-8.41 

-12.22 
19.80 

-13.42 
2.65 
2.74 

-1.46 
-0.37 

-60.83 
37.45 

-61.25 
45.31 

-43.13 
27.52 

-17.20 
12.49 

-20.23 
17.96 
-9.17 
0.40 
2.20 

-0.70 
-0.57 
0.23 

0.23 

The last 3 coefficients in each set define the constant external field. 
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1.0 ....... high-degree coefficients are not well determined, even 
though they may appear well resolved. 

• c o Uranus 

• 0.8 ,T = = Neptune There is considerable covariance between coefficients, .• particularly in the case of Neptune. For a pictorial rep- 

• • 1 resentation of a full, nondiagonal resolution matrix, and •_ 0.6 a discussion of some of the issues involved, see Conner- 

•o •[ I ney et al. [1991]. • 0.4 

(•i 2 0 (a) 
ß 

' o ...... ,-x ' '• "'"' '" ' ..... ' 
Parameter number 'q•, ": 

Figure 4. Resolution matrix trace elements for the 
models Umoh and Nmoh listed in Table 2. Pa- 

rameters are ordered in increasing 1 and m, as 
0 1 1 0 1 1 2 ra m c, c, h c •, h c, c, h Values fox gl,gl, •,--.,gz, 

Uranus above 49 are indistinguishable from the axis. 

the planet, and fits the data. However, the nmnerical 
values of higher-degree coefficients are not individually 
significant, and should not be •med in isolation. In par- 
t,ic•fiar, the larger values for the Nept•ne high-degree 
coefficients can be explained by differences in the space- 
craft trajectory at the two planets, rather than any dif- 
ference in field properties. We include the high-degree 
coefficients for Uranus to emphasize that although we 
performed the inversion to degree 16, these coefficients 
are not resolved by the data, and we have no evidence 
that they are nonzero. 

In Fig•re 4 we plot the diagonal elements of the 
resolution matrices for both inversions. The curves are 

very different for the two data sets. The analysis s•g- 
gests significant resolution for many of the Neptune co- 
efficients out, t,o degree 16, with degree 16 coefficients 
bet,ter resolved than degrees 11-15. This is an artefact, 
of tn•ncation, cm•sed by the aliasing of higher-degree 
t,erlns into the degree 16 terms, and was also noted by 
Connerney et al. [1991] in their degree 8 analysis. The 
aliasing does not occur with the Uranus data at any 
truncation level, but is observed in inversions of syn- 
thetic data sets constructed from the Neptune space- 
craft trajectory with Gaussian errors (this procedure is 
described in more detail below), and is probably caused 
by the large number of data near closest approach with 
similar values for radius and latit•de (see Figure 1). 
The best resolved coefficients are the h• terms, which 
contribute strongly to the field near closest approach. 
If the analysis is extended to degree and order 25, the 
resolution matrix elements tail off smoothly, but, at, the 
cost of a significant increase in computational complex- 
ity (the 1natrices are of dimension 1(1 + 2)), without al- 
tering the values of the lower degree components (which 
are of interest). As mentioned above, the values of the 

(b) 

Figure 5, Maps of Neptune surface B,. for various 
minimized norms (see Table 1). The values for the 
ohlnic heating norm, normalized to the observed 
surface heat flow, are (a) 3.12 x 10 -5, (b) 3.26 x 10 -5 
(c) 1.41 x 10 -5 , (d) 7.94 x 10 -5 , and (e) 1.19 x 10 -5 . 
Map (e) is of the model listed in Table 2. All maps are 
produced using the GMT software [Wessel and Smith, 
1991] using a Hammer equal-area projection. Lines of 
latitude and longitude are separated by 15 ø and 30 ø 
respectively. We adopt the west longitude coordinate 
systems of Connerney et al. [1987, 1991], with zero 
longitude at the edge of the maps, and 180 ø in the 
center. Contour intervals are 10 -5 nT (0.1 Gauss), and 
contours with negative values are dashed. 
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(d) 

(e) 

heating norm. All the models have norms within an 
order of magnitude of each other. For our subsequent 
field maps, we focus on norm (c), minimizing the hor- 
izontal derivative of the radial field, recommended by 
Shure et al. [1982] for finding a very smooth model. 

Of greater significance than the particular choice of 
norm is the choice of damping parameter •. In Figure 6 
we present three field maps constructed for Neptune 
with the extreme range of • which appears reasonable 
from the trade-off curve, showing that large-scale struc- 
tures in the field are robust to variations in damping. 
However, it can also be seen that the correct choice of 
damping parameter is more significant than the choice 

Figure 15. (continued) 

Mapping the Surface Magnetic Field 

To explore a range of possible 1nodels for the mag- 
netic fields of Uranus and Neptune, we present maps of 
the radial field B•. calculated at the planets' surfaces. 
We adopt values for the surface ellipticities of 1/43.6 
for Uranus [Lindal et al., 1987] and 1/58.5 for Neptune 
[Tyler et al., 1989], calculated for the i-bar pressure sur- 
face, by convention taken as the surface of the planet. 
Maps derived at 1-/•bar surface (the top of the atmo- 
sphere, chosen by Connerney et al. [1987, 1991]) are 
substantially similar. 

In Figure 5, we show field maps of Neptune for the 
five norms (a)- (e). For purposes of comparison, the 
misfit to the data was chosen to be 0.800rr in each case. 

The field maps produced are broadly similar, showing 
that the major features are not artefacts of a particular 
norm but are required by the data. In their geomagnetic 
field modeling, $hure et al. [1982] sought fields which 
were smooth at the core-mantle boundary, but as we 
have discussed, the location of the equivalent region in 
Uranus and Neptune is not well determined. Thus for 
11ornls (a) -(d) we took r= a, hence seeking models 
which are optimally smooth at the planetary surfaces. 
Map (e) is calculated from the field model listed in Ta- 
ble 2. As can be seen from Figure 5, the main features in 
the field are robust to the choice of norm, essentially be- 
cause convergence is dominated by the factor of (a/r) 2• 
which all the norms have in common, rather than the 
different polynomials in l. For more quantitative cons- 
parison, as one measure of model complexity, we list in 
the figure caption the value in each case of the ohmic 

(b) 

(c) 

Figure 6. Neptune field models calculated using norm 
(c) with a range of damping parameters. (a) "Under- 
dmnped" (misfit 0.773, normalized ohmic heating norm 
5.13 x 10-5), (b) "correctly damped" (misfit 0.800, nor- 
realized ohmic heating norm 1.41 x 10-5), (c) "over- 
damped" (misfit 0.984, normalized ohmic heating norm 
9.40 x 10-6). 
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(c) 

(b) 

(f) 

Figure ?. Averaging functions for the inversions. Neptune centered on (a) (30øN, 270øW), (b) 
(70øN, 180øW), (c) (70øN, 0øW), (d) (0øN, 180øW), (e) (70øS, 180øW). Uranus centered on (f) 
(15ø8, 300øW), (g) (0øN, 180øW), (h) (30øN, 60øW). 
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(a) 

(b) 

Figure 8. Peak height of averaging function for (a) 
Uranus and (b) Neptune. 

of norm, so that detailed quantitative comparison be- 
tween the different norms is of limited value. 

As noted above, formal error bounds on the value 
of the downward continued field are either difficult to 

justify or excessively pessimistic [Backus, 1988]. An al- 
ternative approach to judging the relative confidence 
we can place in our maps is to calculate the averaging 
timorion, which describes the localization of a field es- 
timate at a point. Following Backus and Gilbert [1967, 
1968, 1970] and Whaler and Gubbins [1981], the ex- 
pected value of the field estimate/•,. is 

t•,.(0o, C•o) = / A(O, &; 0o, &o)B,-(0, &)d•2 (23) 

a weighted average of the true field B,. at the planetary 
surface. In the absence of errors in the data, the model 
field is related to the true field by 

rh = Rm (24) 

where R is the resolution matrix. Using this, we may 
write [Bloxham et al., 1989] 

A(O, &; 00, &o) - c T (00, &o)Rb(0, &) (25) 

where b has elements of the form 

(1/4•r)(r/a)l+2((21 + 1)/(l + 1))P/•(cosa)cosmos (26) 
and c has elements of the form 

+ ao) (27) 

If the resolution is perfect, then R is an infinite di- 
mensional i•dentity matrix, A(t), •b; t)0, •b0 ) is a delta func- 
tion, and Br(t), •b) = Br(t), •b). (To obtain a true delta 
function, we must add (1/4•) to A corresponding to 
the 1 = 0 (monopole) term, which is known to be 0 
fi'om XY.B = 0, and so perfectly resolved.) With less 
than perfect resolution, the averaging function has finite 
width. In Figure 7 we present averaging functions cal- 
culated for five locations on the surface of Neptune and 
three locations on the surface of Uranus. We may define 
a variety of different measures of "delta-hess" [Backus 
and Gilbert, 1968] to quantify how close the averaging 
function is to a delta function, the simplest of which is 
the height of the function at the sampling point, shown 
in Figure 8. The comparatively even data coverage for 
Uranus leads to a more uniform degree of localization 
of the surface field estimate than for Neptune, but it 
is also much less sharp for many locations because the 
data are less sensitive to higher-degree harmonics. We 

(a) 

(b) 

(c) 

Figure 9. Synthetic experiment on the Earth's field at 
the CMB. (a) Original field model. (b) Minimum norm 
solution, using norm (c). (c) Truncated solution. Gauss 
coefficients for (a) and (b) are listed in Table 3. 
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Table 3. Magnetic Field Coefficients for 1980 Core-Mantle Boundary Model and Synthetic 
Solution 

Model Synthetic Model Synthetic 

1 0 -183259 -177982 12 0 -3075 -509 
1 1 -11954 34236 -12856 33354 12 1 -44 315 -654 967 
2 0 -22322 -30090 12 2 -1614 2069 -841 841 
2 1 33814 -23782 11248 -25486 12 3 261 5384 -358 1072 
2 2 18565 -2226 25757 2970 12 4 1634 -2968 340 -509 
3 0 26190 31063 12 5 322 68 667 251 
3 1 -44517 -6833 1005 -2264 12 6 -1038 399 -325 231 
3 2 25546 5537 33233 1666 12 7 13 470 108 -168 
3 3 17017 -5158 -5057 -17126 12 8 852 48 178 -522 
4 0 34989 18138 12 9 -1278 -86 -167 443 
4 1 29200 7907 15617 7034 12 10 -557 -2459 58 -45 
4 2 14813 -9597 21463 -2966 12 11 1490 1222 21 -120 
4 3 -15654 1983 -1499 5545 12 12 430 2235 -25 36 
4 4 7400 -11093 16909 -2789 13 0 -346 -478 
5 0 -14850 5645 13 1 -498 -100 -283 935 
5 1 24373 3167 10989 -951 13 2 648 296 -543 360 
5 2 17815 10239 5957 1174 13 3 -529 2142 217 676 
5 3 -5097 -10274 -3583 3169 13 4 -173 -359 333 -677 
5 4 -11066 -5305 3935 -2357 13 5 1818 -244 560 191 
5 5 -3285 6279 1754 3104 13 6 -249 148 -237 -84 
6 0 5934 6743 13 7 456 1213 3 -46 
6 1 8203 -1903 4669 -8094 13 8 -977 114 184 -391 
6 2 5231 11599 4455 1266 13 9 -14 1038 -159 282 
6 3 -23923 8792 -6057 1549 13 10 -137 455 11 57 
6 4 407 -5405 777 -5759 13 11 326 -276 54 -143 
6 5 1721 -318 760 4183 13 12 134 176 -35 37 
6 6 -13434 2154 -2325 -2047 13 13 697 -235 0 14 
7 0 16449 7803 14 0 9 -303 
7 1 -13596 -18681 1214 -9924 14 1 278 45 -54 537 
7 2 410 -6175 4803 419 14 2 9 -304 -251 85 
7 3 4671 -1089 -5708 1119 14 3 -17 -186 440 242 
7 4 -2782 3707 1267 -6248 14 4 -168 285 266 -644 
7 5 201 4118 300 3546 14 5 387 0 360 90 
7 6 2442 -5286 -758 -931 14 6 -157 402 -198 -128 
7 7 -381 -2382 -533 -892 14 7 187 163 -82 -31 
8 0 7668 5947 14 8 -192 380 152 -202 
8 1 2894 2795 -594 -8175 14 9 48 -97 -126 145 
8 2 -185 -7581 3244 807 14 10 224 159 -28 111 
8 3 -4357 1785 -4795 709 14 11 155 -150 70 -134 
8 4 -2826 -9246 1368 -3854 14 12 -119 216 -32 22 
8 5 1933 3784 201 1676 14 13 242 -80 -8 26 
8 6 1187 6644 -257 1178 14 14 409 180 7 -6 
8 7 2460 -5304 -163 -1767 15 0 29 -140 
8 8 -771 -6010 124 765 15 1 53 25 48 145 
9 0 4010 3204 15 2 -125 3 -65 -15 
9 1 7623 -15940 -1399 -4992 15 3 43 -41 432 -64 
9 2 1309 11959 1130 1580 15 4 6 54 159 -477 
9 3 -9333 6507 -3784 660 15 5 -2 -32 149 23 
9 4 6956 -3729 904 -1426 15 6 -55 2 -172 -48 
9 5 -2598 -4738 245 403 15 7 -117 11 -128 -42 
9 6 -880 7015 -412 2094 15 8 52 -46 121 -44 
9 7 5071 7291 129 -1742 15 9 18 -89 -86 55 
9 8 1040 -4562 -47 503 15 10 -56 -100 -43 118 
9 9 -4299 1607 100 260 15 11 88 -3 73 -107 

10 0 -4665 1062 15 12 46 -41 -20 2 
10 1 -5378 1979 -1461 -1921 15 13 14 -38 -16 33 
10 2 3278 711 -324 1798 15 14 18 -69 11 -7 
10 3 -7403 2994 -2562 972 15 15 14 58 0 -3 
10 4 -2724 7730 495 -316 16 0 -2 -35 
10 5 5509 -6131 428 89 16 1 27 -8 69 -85 
10 6 4222 -511 -527 1725 16 2 -17 -11 21 -17 
10 7 1175 -2147 224 -1127 16 3 15 2 317 -200 
10 8 2708 4635 -23 -66 16 4 -2 -5 61 -275 
10 9 3758 -1036 -23 501 16 5 -59 -12 -16 3 
10 10 95 -8603 53 -182 16 6 -2 -4 -131 49 
11 0 5664 -111 16 7 -9 -36 -135 -52 
11 1 -2138 1241 -1108 130 16 8 15 5 108 51 
11 2 -3707 3589 -890 1424 16 9 4 2 -49 3 
11 3 4566 -2674 -1326 1199 16 10 -1 -30 -42 95 
11 4 546 -6239 344 -244 16 11 8 6 65 -75 
11 5 -2282 1864 615 187 16 12 -9 6 -7 -13 
11 6 -703 -662 -456 895 16 13 -22 -36 -22 34 
11 7 3331 -4967 196 -515 16 14 -26 -16 12 -6 
11 8 3631 -986 98 -449 16 15 28 5 2 -5 
11 9 -129 -3209 -128 552 16 16 34 3 -2 1 
11 10 3961 -2595 82 -153 1 0 0.00 1.44 
11 11 6533 1864 -12 -65 1 1 0.00 0.00 0.30 -0.04 

The last 3 coefficients in each set define the constant external field. 
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Figure 10. A comparison of (a) minimum norin and 
(b) truncated SVD solutions for the surface radial field 
of Uranus. Field strength in Gauss (10 -4 T). 

are unable to compare different areas of our maps of 
the surface field of Neptune, or features on Uranus and 
Neptune, as differences are far more sensitive to data 
coverage than field morphology. 

To further explore these issues, we perform an exper- 
iment to examine how well we can recover a known field 

model with data of similar quality to those obtained at 
Neptune. We form a synthetic by using a known mag- 
netic field model to calculate the components of mag- 
netic field at a set of points in space corresponding to 
the coordinates of the Neptune data. We do this us- 
ing the 1980 geomagnetic main field model of Gubbin, 
and Bloxham [1985]. However, because the surface geo- 
magnetic field is dominated by the axial dipole term g•0, 
in order to better mimic the complex morphology ob- 
served at Uranus and Neptune, we map the core-mantle 
boundary field to the surface of the planet. We then add 
Gaussian errors to the synthetic data in proportion to 
the postulated errors at Neptune, and seek a smooth 
field model that fits the data to 1.0or. The effect of this 

is to produce a data set that approximates that which 
would have been collected by Voyager with a Neptune- 
like fly-by of Earth's core. 

In Figure 9, we show maps of the 1980 model geo- 
magnetic field at the core-mantle boundary, a minimum 
norm solution for the field, obtained from the synthe- 
sized data with the Neptune trajectory, and a truncated 
solution, equivalent to a truncated SVD solution. The 
minimum norm solution clearly does a much better job 
of modeling the field in the northern hemisphere. As we 

would expect from our analysis of the averaging func- 
tion, the map has the most structure where there is 
maximum data resolution, and does not alias in field 
structure where the data provide no information. The 
1980 field model has a similar amount of structure in the 

northern and southern hemispheres, but this is clearly 
not true for the minimum norm solution, which con- 
firms that we must take great care in interpreting field 
structure of any model we produce. Both the original 
geomagnetic model and the minimum norm solution fit 
the data to about let (0.989cr for the initial model, and 
0.999cr for the minimum norm solution), but the value 
of the norm (the roughness) for the original geomagnetic 
model is 4 times larger than that for the minimum norm 
solution. 

In Table 3, we present the Gauss coefficients for 
the 1980 field model and the minimum norm solution, 
scaled to be valid at the core-mantle boundary. Com- 
parison of the two sets of coefficients provides some idea 
of how much credence to place in individual coefficients 
of our model Nmoh. The external field coefficients, 
listed at the end of the table, are of comparable mag- 
nitude to those obtained from the Uranus and Neptune 

(a) 

(b) 
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Figure 11. A comparison of (a) minimum norm and 
(b) truncated SVD solutions for the surface magnetic 
field intensity of Uranus. Field strength in Gauss 
(10 -4 T). 
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Figure 12. A comparison of (a) minilnmn norm and 
(b) truncated SVD solutions for the surface radial field 
of Neptune. Field strength in Gauss (10 -4 T). 

data, despite there being no external field components 
in the 1980 field model. If we change the lnagnitude 
of the error added to our synthesized data, the exter- 
nal field estimates change in proportion. so we cannot 
assign any meaning to the derived external coefficients. 

In Figures 10-13, we present candidate field models 
for the surface radial field and total intensity of Uranus 
and Neptune. To compare our results with previous 
work, we also show maps derived fi'om the Qa model 
for Uranus [Connerney et al., 1987] and the O8 model 
for Neptune [Connerney et al., 1991]. Encouragingly, 
the previous 1nodels are almost indistinguishable fi'om 
our models if the latter are truncated to the same degree 
(degree 2 for Uranus and degree 3 for Neptune). The 
mininmln norm solution and truncated SVD solution 

m'e sinfilar for Uranus, but not for Neptune, reflecting 
the difference in sampling resolution and data cover- 
age. For Neptune, the SVD solution masks features in 
the field that are reproducibly present for the various 
norms, and for a range of damping parameters. 

Clearly, it would be unwise to claim that our maps 
provide a good representation of the surface fields of 
Uranus and Neptune. In particular, the field of Neptune 
is likely to be considerably more detailed in the southern 
hemisphere than our maps imply. However, our maps 
have several advantages over the previous maps deter- 
mined using SVD. First, they do not suppress structure 
required by the data in one region simply because reso- 
lution of another region is less good. Second, the maps 
are the smoothest possible for a given fit to the data, 

the form of smoothness being defined by the particular 
norm used, which provides a lower bound on the field 
complexity lacking from the maps of truncated mod- 
els. Third, unlike the truncated models Qa and 08, 
our models can provide meaningful field estimates away 
from the spacecraft trajectory and still fit the data. 

In the framework of the caveats described above, 
what can be concluded from the field maps? Clearly, 
the surface field of Neptune is highly complex. The 
strongest feature at the surface is the dominant south- 
ern hemisphere field maximum near 30øS, 270øW, pre- 
viously identified as the southern magnetic pole. This is 
also resolved by the truncated models (albeit at a lower 
intensity), as it is a strong, long wavelength, feature. 
There seems to be no comparably strong feature in the 
northern hemisphere. This is not an artefact of poor 
data coverage, as the best resolution is obtained in high 
northern latitudes, as can be seen from Figure 8. Other 
smaller robust features include a local maximum in Br 
at 10øS, 70øW, and large but less sharp minima in Br 
located near and over the north and south geographical 
poles. 

The fact that the field is well determined in high lat- 
itudes could have important ilnplications for the study 

(a) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Figure 13. A comparison of (a) minimum norlTl and 
(b) truncated SVD solutions for the surface magnetic 
field intensity of Neptune. Field strength in Gauss 
(10 -4 T). 
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of radio sources. For example, Ladreiter et al. [1991], 
using an offset tilted dipole model of the magnetic field 
[Ness et al., 1989], modeled the smooth kilometric ra- 
diation from Neptune as being from two sources. One 
of these was well localized near the southern magnetic 
pole, but the other location was poorly determined be- 
cause of poor resolution of the field model within 3Rs, 
and could have occupied a band of up to 120 ø longi- 
tude. We are able to provide a considerably improved 
estimate of the field structure in this region, which could 
result in better understanding of the origin of the radio 
emissions, although we emphasize that this must come 
from direct modeling using the data, not from using our 
field maps or models. 

Spectral Analysis 

The power spectrum provides an alternative means 
for examining a field model. The most common choice 
of power spectrum is the mean square field intensity, 
first used by Mauersberger [1956] and Lowes [1974] and 
given by 

1 

m--0 

Other choices include the stored magnetostatic energy 
(norm (d) from Table 1) [Benton and Alldredge, 1987]. 

For the geomagnetic field, if r is chosen to be the 
radius of the core, the power up to degree l = 14 is ap- 
proximately white (higher l being assumed dominated 
by lithospheric field sources) [e.g., Langel and Estes, 
1982]. It has been speculated that if the same procedure 
is applied to non-Earth fields, and a depth can be found 
at which the spectrum is close to white, this depth could 
be related to the source region for the field. Applica- 
tion to the fields of Jupiter and Saturn is encouraging, 
giving depths (0.8Rj and 0.4Rs) consistent with the- 
oretical [Stevenson, 1982] and experimental [Mao and 
Hemley, 1989] estimates of the pressure at which hy- 
drogen changes phase from a lnolecular to a highly con- 
ducting metallic form. However, with model resolution 
only to degree 3, this conclusion must be regarded with 
some caution, especially given that for the Earth the 
dipole and quadrupole terms fit the calculated spectrum 
poorly. The fit of low-degree terms to the geomagnetic 
spectrum is improved if axial coefficients are excluded 
[Schulz and Paulikas, 1990], but this procedure is not 
applicable to the field of Saturn, for which the best field 
models are axially symmetric [Connerney et al., 1982; 
Davis and Smith, 1990]. 

In Figure 14 we plot the spectra for our preferred 
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Figure 14. Magnetic spectra for the surface fields of 
Uranus and Neptune. Power in each degree normalized 
to dipole power. 

for Uranus and Neptune. Schulz and Paulikas [1990] 
have suggested normalizing each value by 1/(2l + 1), 
the number of modes in each degree, in which case the 
altered spectrum does fall off with degree at r = a, but 
neither theoretical considerations nor the geomagnetic 
spectrum supports such an approach. 

Discussion 

Extremal Modeling: Dipole Fit 

Whilst we are unable to choose between many similar 
models for the planetary magnetic fields on the basis of 
the heat flow constraint, we may reject more extreme 
models by direct hypothesis testing against the data. As 
an example, we consider the hypothesis that the unusual 
dipole tilts are not real but instead are an artefact of 
poor data coverage, which we may test by seeking fields 
with a particular dipole tilt 00. If we write the axial 
dipole coefficient in terms of the equatorial dipole terms 
and the dipole tilt 

_ cot 00 + (29) 

the number of free parameters is reduced by 1. How- 
ever, the field now depends nonlinearly on g} and h}, 
requiring adoption of an iterative scheme to search for 
a field model [Gubbins and Bloxham, 1985]. Instead, we 
write condition (29) 

(g})2 + (h})2 _ tan •. 00(g•0)2 _ 0 (30) 
field models (Table 2). Above degree 3, the spectra are 
dominated by the smoothing that we have imposed on which is in the form of a quadratic norm, and can be 
our inversions, so we limit our attention to the first three incorporated with ease into the linear inversion. The 

function to minimize (analogous to equation (11)) be- degrees only. Then, we obtain depths for white spectra 
of 1.05 for Neptune and 0.84 for Uranus. This suggests coines 

that it is not possible to use the power spectrum as a (7 - Am)TCe -• (ff - Am) + )•mTAm +/•m•rm 
tool for determining the extent of the dynamo region (31) 
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Figure 15. Ohmic heating bounds for forced dipole so- 
lutions for Uranus and Neptune. In each case the point 
furthest to the right allows free determination of the 
dipole terms. Misfits are given in terms of original nom- 
inal ntisfits (our preferred models Umoh and Nmoh have 
misfits of 0.6a and 0.Sa, respectively.) Ohmic heating 
normalized to observed surface heat flow. 

where the matrix F has elements - tan 2 (00), i and i in 
its first three leading diagonal positions and zeros else- 
where. We proceed by varying the damping parameters 
X and l• so as simultaneously to satisfy equation (30) 
and obtain an adequate fit to the data. 

In Figure 15, we plot the heat flow (normalized to 
the surface heat flow) against imposed dipole tilt for 
minimum ohmic heating norm solutions. For Uranus we 
seek solutions with misfits to the data of 0.6ey or 
and for Neptune of 1.0ey. If we believe that the polotrial 
field ohmic heating should be at most no greater than 
the surface heat flow (a relatively weak assumption), 
then we must conclude that the dipole tilt of Uranus can 
be no less than about 46 ø if we require to fit the data to 
0.6ey (0.3 nT), and no less than 42 ø if we allow a misfit 
of 1.0ey (0.5 nT). As the curve in Figure 15 is steep, this 
result is robust to significant changes in conductivity 
structure. Reducing the dipole tilt by only 5 ø from 
the unconstrained value increases the magnitude of the 
ohmic heating by 2 orders of magnitude. We could avoid 
this by allowing a much worse fit to the data, but this 
would seem unjusttried, given the existence of simple 
smoothed models which do fit the data well. In fact, our • 0.1 
conclusion could be strengthened, as for the purposes 
of internal field modeling, we have ignored data from 

o 

more than 8.0Ru as being excessively contaminated by Z 
external fields. While these data have a low signal-to- 0.01 

noise ratio, they still place a strong constraint on the 
possible dipole orientation. 

For several reasons, we are unable to arrive at such a 
firm conclusion for Neptune. First, the observed surface 

lowing the dipole coefficients to be reduced by including 
combinations of poorly constrained eigenvectors from 
the null space. Third, the dipole terms are weaker rela- 
tive to higher-degree terms, and so contribute compar- 
atively less to the ohmic heating bound. 

Extremal Modeling: Power Spectra 

We may also use extremal modeling to strengthen the 
basis of our spectral arguments. We explore whether it 
is possible to obtain a Neptune field model with a white 
power spectrum at the planer's surface by seeking a field 
s•mh that the quadrupole power equals the dipole power. 
In other words, we require 

1 2 

+ (W) - 3 + (W) (32) 
ra--O 

Once again, this constraint can easily be incorporated 
into equation (11)) as a quadratic norm, so again the 
inversion remains linear. In Figure 16 we show the re- 
sults for a model with a 1.0• misfit to the data, and 
a normalized heat flow bound of 1.05 x 10 -•, 10 times 
larger than an unconstrained model. As a consequence 
of the damping, the power in the octupole and higher- 
degree terms is increased above that of the dipole. If 
these degrees in turn are more heavily damped, then 
power is forced to higher harmonics still, and the ohmic 
heating bound rapidly approaches the value of the sur- 
face heat flow. Thus we may conclude that it is not 
possible to find a field model for Neptune which fits the 
data and has a white spectrum at or below the surface 
of the planet. 

Symmetry 

Rgidler and Ness [1990] have explored the symmetry 
properties of planetary magnetic fields using calculated 
field models, quantifying the departure from axisymlne- 
try by calculating the fraction of the power in nonaxial 

l e ........ • Free inversion c o Constrained inversion 
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Degree 

heat flow from Neptune is 10 times greater than that Figure 16. Magnetic spectrum for Neptune with equal 
from Uranus. Second, the dipole terms are less well dipolar and quadrupolar power. Misfit to data 
resolved by the Neptune data than the Uranus data, al- ohmic heating bound 10 times optimal value. 
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Table 4. Table of Symmetry Parameters 

Planet Parameter Oa •ba Value 

Ul'anus 

Neptune 

]1 58.8 306.1 0.00 
]•. 38.8 330.6 0.03 
]a 58.0 7.3 0.28 

](r/a = 10) 58.5 306.2 0.04 
](r/a = 1) 43.0 312.4 0.29 

](r/a = 0.8) 38.2 300.3 0.40 
f(r/a = 0.5) 53.5 3.7 0.57 

]• 45.6 288.8 0.00 
]2 64.8 269.1 0.25 
]a 20.3 155.0 0.01 

](r/a = 10) 46.1 288.4 0.01 
](r/a = 1) 56.5 276.0 0.48 

](r/a = 0.8) 24.0 136.9 0.61 
f(r/a=0.5) 19.7 249.8 0.62 

components. They use equation (8) to define the power 
at degree l and order m as 

e?- (l + 1)(,•)•.•+4 ((g?)= + (h•') 2) (33) 
They further define the power in a particular degree 
e•- •ra era axial power e ø • , -- • e• ø, and total power 
e - •,ra e ra and construct a symmetry parameter I , 

½ _ ½0 
f = (34) 

e 

which is zero for a field axisymmetric about the rota- 
tion axis, and 1 if all axial components are zero. The 
symmetry parameter f is clearly a function of radius. 
The only physically sensible value of r to consider is the 
radius of the conducting region within the planet, as at 
lesser radii, representation of the field as the gradient 
of a scalar is invalid, whilst at greater radii, low-degree 
terms will dominate. However, except for the Earth, 
the boundaries of the conducting regions in the planets 
are not well defined, so a range of possible r must be 
investigated. To consider the symmetry of a particular 
degree, independent of radius, we consider 

ft _ et- e• ø (35) 
el 

Rddler and Ness [1990] examine the fields of Earth, 
Jupiter, and Saturn and find a high degree of axisymme- 
try about the rotation axis, particularly for Saturn, as 
well as a high degree of antisymmetry about the equa- 
torial plane. They observe that the field of Uranus is far 
from axially symmetric but does exhibit strong symme- 
try about an alternative axis. The coefficients of Con- 
nerney et al. [1987] are restricted to l = 2, so their con- 
clusion is limited, and follows because the quadrupole 
term displays significant symmetry about an axis close 
to the dipole axis. However, if this conclusion could be 
demonstrated more generally, for higher-degree terms 
in the spherical harmonic expansion, it would have pro- 
found implications for the study of dynamo theory. No 
data for Neptune were available at the time of their 
study. 

Clearly, the fields of Uranus and Neptune are not 
strongly axisymmetric about the rotation axes, as can 
be seen from the large (and robust) values of their dipole 
tilts. However, following RSdler and Ness [1990], we 
wish to consider other possible axes of symmetry, for 
which an appropriate symmetry parameter is 

e - •0 
] _ (36) 

e 

where •0 is calculated from a rotated set of the coef- 

ficients c)• ø. For a particular axis (Oa, dpa), these coeffi- 
cients are written 

l 

O• ø -- y• Pjn(cosOa)(g• n cosm•ba + h} n sinm•ba) (37) 
ra----0 

This differs from equation (11) of Rddler and Ness 
[1990] by a factor of Vr• due to our use of convention- 
ally Schmidt-normalized spherical harmonics, as per 
equation (2)[Langel, 1987]. 

We examine the symmetry properties of the coeffi- 
cient sets listed in Table 2. Our results are summa- 

rized in Table 4, and agree with the analysis of Rddler 
and Ness [1990] for Uranus. However, when we include 
higher-degree coefficients, we do not observe strong 
symmetry in the total field (measured by f) for any 
reasonable r. The Neptune field model does not demon- 
strate any strong symmetry. In particular, we show in 
Appendix B that the value of f2 - 0.25 is the maximum 
possible value, and thus the quadrupole field is of the 
form which is least well suited to representation by an 
axial field. 

Extremal Modeling: Symmetry 

The discussion of symmetry properties is limited by 
poorly determined high-degree Gauss coefficients. How- 
ever, we can make more general statements using ex- 
tremal modeling. We adapt the formalism used for ex- 
amining the dipole orientation, choose a particular axis 
(Oa, qSa), and look for fields with a defined value of ]. 
Note that in this case the damping matrix is not diago- 
nal. More generally, we could attempt to find the most 
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Table 5. Results for Optimal Symmetry, ] = 0.05, Misfit = 1.0rr 

Uranus 1.0 43.0 312.4 3.0 x 10 -4 3.2 
Neptune 1.0 56.5 276.0 1.7 x 10 -3 17.4 
Uranus 0.75 37.0 296.2 4.0 x 10 -4 4.2 
Neptune 0.8 53.5 278.0 1.7 x 10 -4 1.8 

symmetric field possible for given misfit to the data and 
ohmic heating by directly inverting for (Oa, •ba) along 
with the field coefficients, but this would make the in- 
version nonlinear. Here we present results for the opti- 
mal axes calculated with the field coefficients above. 

We consider both symmetry at the surface (r - a) 
and also at a depth characteristic of the dynamo region 
(r/a - 0.75 for Uranus and r/a - 0.8 for Neptune), 
although our conclusions are not sensitive to the par- 
ticular values of r/a. We look for fields with a misfit 
of 1.0rr, and use the calculated ohmic heating bound as 
a measure of how reasonable the field model is. The 

results are presented in Table 5. Q$ is the measured 
surface heat flow, and Wopt is the ohmic heating bound 
of the optimal models Umoh and Nmoh. For both plan- 
ets it is possible to construct fields with a high degree of 
symmetry about the chosen axis. However, it is equally 
possible to construct fields with a similar misfit and 
ohmic heating norm, but with poor axial symmetry. 
We conclude that there is insufficient evidence to sug- 
gest that the fields display significant symmetry about 
a particular axis, particularly in the case of Neptune. 
However, equally, the data do not preclude such fields. 

Our results indicate some of the risks of hypothesis 
testing with poorly determined Gauss coefficients. As 
can be seen from both the synthetic experiments and 
the extremal modeling, while certain physical properties 
of the fields are robust to different models, the values 
of the Gauss coefficients which make up those models 
are not. Instead, tests should be made directly against 
the data. The data are available from NSSDC, and 
the models described in this paper can be calculated 
straightforwardly. 

Conclusions 

In this paper, we have presented and analyzed field 
models for Uranus and Neptune, broadly confirming the 
results of earlier workers. In the absence of new data, 
further insight must come from other magnetic related 
observations. We have already mentioned the possibil- 
ity of using our Neptune model to study the northern 
hemisphere radio sources. Using the footprint location 
of the Io flux tube to constrain the field of Jupiter has 
been considered [Connerney, 1992; Connerney et al., 
1993], and similar studies may be possible for Uranus 
and Neptune. However, such considerations are outside 
the scope of this paper. 

We conclude by considering the still open question of 

why these two fields should be so different from those 
of the other planets. Previous workers have sought 
to explain this in a variety of ways, including inter- 
nal convection with a few large-scale cells [Connerney 
et al., 1987, 1991], a thin-shell dynamo [Ruzmaikin and 
Starchenko, 1991], magnetic field reversal [Schulz and 
Paulikas, 1990], and the unusual orbital obliquity of 
Uranus [Podolak et al., 1991], although none of these 
mechanisms is entirely convincing. Here we examine 
two separate ways in which Uranus and Neptune are 
significantly different from the other planets, and how 
these might affect the dynamo process. 

First, we consider the dynamical balances that op- 
erate in planetary dynamos. As we have mentioned, 
measurements of the magnetic field only provide infor- 
mation about the poloidal ingredient of the magnetic 
field. The toroidal field is unknown and, according to 
some dynamical arguments, may be significantly larger 
than the poloidal field. It is usually assumed that plan- 
etary dynamos, including those of Uranus and Neptune 
[Hide, 1988; Podolak et al., 1991], operate in magne- 
tostrophic balance. This is a dynamical assumption 
that the Lorentz and Coriolis forces are of similar mag- 
nitude, so that 

1 
^ u --(V ^ B) ^ B (38) 

where p is the density of the dynamo region, f• is the 
angular rotation frequency of the planet, and/•0 is the 
permeability of free space. In the case of the Earth, we 
use the poloidal field at the core-mantle boundary (esti- 
mated using equation (8)) as a measure of the poloidal 
field strength in the core, and find that this is too weak 
to balance the Coriolis force. Thus, the balance must be 
fulfilled by the toroidal field. Following the treatment 
of Hide and Roberts [1979], this gives 

BT ,'• v/2nppoUL (39) 

where U and L are characteristic velocity and length 
scales. For the Earth it is possible to estimate U from 
models of the flow at the core-mantle boundary [Blox- 
ham, and Jackson, 1991]. 

Such estimates are not available for Uranus and Nep- 
tune, so instead we adopt an indirect approach to es- 
timate BT. We define the magnetic Reynolds number 
Rm = poaUL, in which case equation (39) gives 

BT ,'• B•(R.•)« (40) 
where the scale field is defined B8 = X/2f•p/cr. We 
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further assume that in the magnetostrophic regime the 
toroidal field is produced by differential shear of the 
poloidal field (the so-called w-effect), so that 

By • RmBp (41) 

where the magnetic Reynolds number is based on length 
and velocity scales characteristic of the shear. If the two ' 
magnetic Reynolds numbers (one based on the main 
flow, the other on the shear) are similar, this in turn 
suggests 

= = (42) 
For the Earth, the indirect estimate of the toroidal field 
obtained from equation (42) agrees well with the direct 
estimate from equation (39). Note that both of these es- 
timates are based on dynamical, rather than energetic, 
arguments. 

Returning to Uranus and Neptune, we estimate the 
characteristic value of the poloidal field to be the mean 
value at the approximate boundary of the dynamos, de- 
fined as being the midpoint of the region of decreasing 
conductivity ((b-c)/2 in the notation of equation (15): 
0.8Rr• and 0.75R•v), giving Br • 2 x 10 -4 T, and 
Bs = 0.016T. This gives Rm • 802 = 6400, and 
BT = 6400Br = 1.3 T. This is a large value for the 
toroidal field, and it is instructive to consider the as- 
sociated ohmic heating. If we define the mean toroidal 
field strength 

i f(B).uv (43) 
then, by expanding the toroidal field in the spherical 
decay functions [Backus, 1958; Gubbins, 1976], we can 
show 

W•- =/(V A B•,)2dV/(t•o2rr) >_ 84.57c<B•>/(l•o2a) 
(44) 

where to allow analytic calculation, we have assumed 
a uniformly conducting core, radius c. (Note for the 
toroidal field, the appropriate maximum length scale 
• c/5, not the often used c/3, which is appropriate for 
the poloidal field. This estimate of the length scale 
is a formal upper bound: for a smaller characteris- 
tic length, the magnetic heating estimate is increased.) 
Substituting values in equation (44), we obtain esti- 
mates for toroidal heating of 7.9 x 1017 W for Uranus 
and 8.2 x 1017 W for Neptune. The measured surface 
heat flows are 3 x 1014W for Uranus and 3 x 10 ls W for 
Neptune, so in both cases, the calculated ohmic heat- 
ing bound is several orders of magnitude greater than 
the observed surface heat flow. It is clear that the as- 

sumptions on which this calculation is based are not 
consistent with the observations. 

What if the assumption of strong differential rotation 
is in error? If we assume only that the dynamo region 
is in magnetostrophic balance, we must estimate BT 
from equation (40), where now the magnetic Reynolds 

number is unknown. If, as here, the magnetic Reynolds 
number is defined in terms of large-scale parameters 
(core radius and mean flow), then it is usually assumed 
that for dynamo action Rm _> 10 [e.g., Stacey, 1992, 
section 7.2.4]. For Rm - 10, BT -- v/•B8 -- 0.05 T, 
giving an estimate of the toroidal heating for Uranus 
of 1.2 x 1015 W and for Neptune of 1.25 x 1015 W. 
The Uranus value exceeds the measured value, while 
the Neptune value approaches it. 

Assuming that the scaling approach is valid (for some 
reservations, see Stevenson [1983]), it thus seems likely 
that, contrary to the assumption of previous workers 
[Hide, 1988; Podolak et al., 1991], the toroidal field is 
not in magnetostrophic balance. Physically, the avail- 
able energy source is insufficient to drive a strong field 
dynamo, given the high resistivity of the conducting re- 
gion. Stevenson [1984] has considered the possibility of 
an energetically limited dynamo to explain the field of 
Mercury, but we are not aware of a dynamical study of 
this scenario. If instead we assume a weak field dynamo, 
then we would expect By ,,• Bp [Busse, 1978], in which 
case there is no explicit problem with the heat flow con- 
straint. However, calculated weak field dynamos have 
much small-scale magnetic field structure, so that even 
a weak field state does not ensure that the heat gener- 
ation constraint is satisfied [Hide and Roberts, 1979]. 

The largest uncertainty in this argument arises from 
the value of the conductivity: since BT 
(r -3. Thus an order of magnitude increase in the con- 
ductivity estimate at higher pressures within the plan- 
ets would significantly decrease the bound. The experi- 
mental shock wave data of Nellis et al. [1988] is limited 
to pressures of up to i Mbar, but there are good the- 
oretical reasons to believe that the ionic conductivity 
will not increase significantly at higher pressures. Ross 
[1981] has suggested the planets may possess a layer of 
metallic carbon at great depths, although others [e.g., 
Podolak et al., 1991] consider this unlikely. Further, if, 
as some [e.g., Podolak et al., 1991] have suggested, the 
dynamo is located in a thin shell at the outer edge of 
the icy mantle, then the existence of a highly conduc- 
tive layer would not be relevant. If the thin shell has 
thickness Xc, then a scaling estimate for the ohmic dis- 
sipation gives 

4•r . •. 
W•. ,.., yc(B•,)/(pog'(r) (45) 

which is of the same order as the estimate in equa- 
tion (44), and therefore similarly unsatisfactory on en- 
ergetic grounds. 

Thus, if we assume that the fields of the Earth, 
Jupiter, and Saturn are in magnetostrophic balance, 
but those of Uranus and Neptune are not, then the 
differences between the fields are less surprising. We 
might further speculate that the reason for the lack of 
a dominant dipole field is that the magnetic field is not 
important in the first-order dynamics, and so the influ- 
ence of rotation on the field is weaker. 
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Second we consider the effect of a conducting solid 
inner core on the dynamo process. It has recently been 
suggested that the Earth's conducting solid inner core 
may play a significant role in the dynamics of the fluid 
outer core and the generation of the geomagnetic field. 
In studies of an aw-like dynamo, Holierbach and Jones 
[1993] found that chaotic oscillations of the field gen- 
erated in the outer core are stabilized on the diffusive 

timescale of the solid inner core. A similar effect has 

also been observed in the fully dynamical calculations 
of Glatzmaier and Roberts [1995a, 1995b]. The range of 
possible internal structures for Uranus and Neptune al- 
low at one end for iron/silicate cores of up to 1/5 of the 
planetary radius and at the other for no distinct rocky 
core [Hubbard et al., 1991]. The Lindemann melting law 
[Hubbard, 1981, 1984] suggests that a rocky core would 
be solid, but even if iron has differentiated to form a 
highly conducting solid inner core, this would probably 
be too small compared with the dynamo region to be 
important. If a large solid conducting inner core is re- 
quired to stabilize the magnetic field, then the reversal 
explanation for the fields of Uranus and Neptune could 
be partially correct, as they could be varying chaotically 
with no strongly preferred orientation. 

This suggestion also has ramifications for the fields 
of Jupiter and Saturn. The current data for the field 
of Jupiter do not suggest main field magnetic secular 
variation [Connerney and Acu4a, 1982] (although this 
issue will be clarified by data from the Galileo space 
probe), and indirect evidence from ring structure sug- 
gests that the Saturnian field might have been stable 
for over 100 m.y. [Northrop and Conncrney, 1987]. The 
temperatures in both planets are too high for hydro- 
gen to exist in a solid metallic phase [Stevenson and 
Salpeter, 1976; Hubbard, 1989]. However, if the fields 
are not generated in the metallic regions, but instead 
in more weakly conducting regions located above the 
molecular-metallic phase transition [Stevenson, 1983], 
then the interior metallic region could provide the re- 
quired stabilizing influence. 

We have discussed two possible explanations for field 
morphologies of Uranus and Neptune. These two hy- 
potheses, an energetically limited dynamo and a chaot- 
ically reversing dynamo, are both amenable to inves- 
tigation by fully dynamical numerical simulation. Nu- 
merical simulation is our next line of investigation, given 
that further data that might resolve secular variation of 
the Uranus and Neptune will not be forthcoming in the 
foreseeable future. 

Appendix A' Ohmic Heat Flow 

We wish to obtain a lower bound for the ohmic heat 

generation within a planet, radius r, given a particular 
external potential magnetic field, and a known inter- 
nal conductivity structure. This is a generalization of 
the result of Gubbins [1975], who considered a core of 
constant conductivity encased in an insulating mantle. 

The ohmic heating within a volume can be written 

f J•' f (V A B) •' W - --dV - dV (A1) 

We use a poloidal-toroidal decomposition for the field 
[Gubbins and Roberts, 1987]. To match the external 
field, we need only a poloidal field; thus for the lower 
bound, we set the toroidal scalar to zero. We write the 
poloidal field 

c• 1 

B -- Z • V A V A [pp(r)y•m(9, •b)r] (A2) 
1:1 ra:--I 

where Y•ra(O, qb) are fully normalized spherical harmon- 
ics, defined such that 

Y tin( O, (•)YT* (0, (•)di] - &8•m,'. (A3) 
Substituting equation (A2) into equation (A1), after 
some manipulations, we obtain 

W- Z•o'a( l(1-]-l)r2 1,.• p.•rr(r) X 
d-p• 2 dp• l ( l + 1)p• 2 
dr 2 + dr (A4) r dr r 2 

We wish to minimize this functional. Writing 

9. m m m 
d'p• 2 dp• l (l + 1)pc 

Q? = dr 2 + (A5) r dr r 2 

and solving the Euler-Lagrange equations for Q•, we 
obtain 

m 
9. TO, m TO, 

d-p• 2 dpt l ( l + 1 
= + 

dr 2 r dr r 2 

= a(r)(AFr•+B[% .-•-•) (A6) 

where A• and B/• are arbitrary constants of integra- 
tion. We set B• - 0 by requiring finite currents at 
r- 0. Substituting for QF in equation (A4), 

j•0 a W- y•(A?) 2 l(l + 1) (r)r2• + •,,• /• a 2dr (A7) 
The constants A• are determined by the external field. 
Integrating equation (A6), 

+ Ciera+ Dj•r -•-• 

cr(r") (r") 2(•+•) dr"dr' 

(A8) 

C/• and D• are further arbitrary constants which de- 
fine a potential field (i.e., no currents and so no ohmic 
heating). For finite B at r - 0, D• - 0. We must 
matd• the internal field B at r = a to an external poten- 
tial field, requiring continuity of both p• and dp•/dr. 
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For a potential field bounded at infinity, with scalar 
potential 

l=l m=-I 

the poloidal scalar function is 

p? - ECr -t-x (AlO) l 

For any set of coefficients E•, 

r dp? =0 (All) P•q /+1 dr 
Differentiating equation (A8), 

= ----q- Apr -'-•' a(r')(r')•"+•'dr' (A12) 
dr r 

Combining equations (A10)- (A12) gives 

EC 21 + 1 = A•' a(r)r2'+adr (A13) 
l 

so substituting for A• in equation (A7), 

W = E(E•) 2 (l + 1)(2/+ 1) •'/fo a t,m ll• a(r )r •'t+=dr 
(A14) 

It remains only to convert the coefficients E• to the 
Schmidt normalized coefficients gr ß and h• in common 
use in geomagnetism. This gives 

47ra2/+4 (! q- 1)(2/q- 1) l/t02 ((g?) + (h?) •') 

/i"a(r)r•"+•'dr (A15) 
If a is constant over a core of radius c, we recover the 
result of Gubbins [1975]' 

W • 4•ra •,•• •.,+3 (l + 1) 1)(2/ 3) l 

x [(g?)•' + (hi") •'] (A16) 

Appendix B' Upper Bound on the 
Symmetry Parameter f2 

We seek the axis (0., 05.) which minimizes 

(I) -- Dini q- Qijninj q- Oijkninjnk q- ... (B2) 

where 

n =(sinO cos 05, sinOsin 05, cos0) (B3) 

is the unit normal at the point (8, •), and the terms Di, 
Qij, Oij• are the elements of Cartesian tensors. The 
'dipole coefficients are represented by a vector D with 
three independent components, the quadrupole coeffi- 
cients (in which we are interested here) are represented 
by a real symmetric, traceless, two-tensor Q with five 
independent components, and so on. Equating equa- 
tion (B2) to equation (1), and taking into account the 
Schmidt normalization, we may write 

(-g2 q- v/•ga2)/2 •ha2/2 Q - xf•h]/2 (-g2 ø - •g22)/2 
,Sg/2 

(B4) 

As Q is real symmetric, it may be diagonalized by rotat- 
ing into the frame of its three orthogonal eigenvectors. 
Working in this frame, 

(-g2 ø q- v/•g22)/2 Q- 0 
0 

v•g•/2 ) g•0 

0 0) (-g2 ø - v/•g•)/2 0 
o g=O 

(B5) 
By either maximizing equation (37), or arguing directly 
from the elements of the tensor, we may show that the 
maximum absolute value for • is either Igl (Ig01 + 
'•lg•l). Writing g22 = Ag2 ø, the corresponding values of 
f2 are 

A 2 (V•- A) 2 (B6) A = • + A•., 4(x + •-) 
We wish to obtain the minimum value of ]•., and so 
adopt the smaller of these two values. Given this choice, 
the luaximum value occurs at A - 1/v/• or A -• •, 
when ]2 - 1/4. In these cases, we may define a ref- 
erence fralne in which the quadrupole field is entirely 
nonaxial and can be described with a single coefficient 
g•. 
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A = - 
½2 

and show that the optimized value of ]2 cannot exceed 
1/4. The spherical harmonic potential at a point (•, 
can be written as a tensor expansion 
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