

Modelling the ionospheric current system with General Circulation Models

Tim Spain Atmospheric Physics Laboratory, UCL

Swarm RAS/BGA Specialist Discussion 9th October 2009

Overview

- What is a GCM?
- GCM
 - Advantages
 - Limitations
- UCL GCMs

A (very) short guide to GCMs for people who aren't modellers

- General Circulation Model
 - Or: Global Climate Model
- A model of the Earth's atmosphere based around integrating the governing equations with time
- Fluid dynamics of the neutral atmosphere the central feature

GCM neutral atmosphere

- Governing equations always included
 - Navier-Stokes equation
 - Conservation of energy
 - Conservation of matter

- Often included for simplicity
 - Incompressibility
 - Hydrostatic balance

Iono- and plasmasphere

- Plasma transport
- Interaction between ions and the magnetic field
- Ionization of neutral components and recombination of charged components
- Ion-neutral interactions
- Conservation of charge

UCL atmospheric models I: CTIP

- Coupled Thermosphere Ionosphere Plasmasphere
- Developed from the neutral atmosphere model of Fuller-Rowell and Rees (1980; 1983)
- Adds the plasma tube model of Quegan & al. 1982
- Fixed resolution and boundaries
- Dipole magnetic field
 - Aligned, tilted or offset-tilted

UCL atmospheric models II: CMAT2

- Coupled Mesophere And Thermosphere, version 2
- Initially an extended version of CTIP (version 1, unreleased)
- Flexible resolution and lower boundary
- Ionosphere model separate
 - Global Ionosphere Plasmasphere model of Millward
 - Paramaterized ionosphere
 - Chiu ionosphere
 - PIM ionosphere

Model grids

Electrodynamics

- Magnetic field coordinates
 - CTIP: tilted dipole
 - CMAT2: IGRF 2003
- Pedersen and Hall currents
 - Ion-neutral interaction
 - Electric field
 - Electric field due to current divergences
- No parallel currents

GCM advantages

- Global coverage
- Comprehensive model
- Feedback
- High temporal resolution
 - Response to short-lived inputs
- Steady state solution
- Diagnostic fields reveal what physics drives what phenomena

Feedback

- Large currents cause Joule heating
- Increased neutral temperatures drive neutral winds
- Changed ion-neutral interactions change the Pedersen and Hall currents

GCM limitations

- No weather forecasting
- Artificial boundaries (except whole Earth models)
- Complexity
 - Interaction of different parts
- Difficulty of use

Limitations of CTIP

- Fixed resolution
- Low vertical resolution
- Rigid at-rest lower boundary
- No field-parallel currents
- Dipole magnetic field
- Old FORTRAN IV and FORTRAN77 era source code

Limitations of CMAT2

- No electrodynamics
- Long run time (~ten times real time) compared to CTIP and simpler models
- Some components remain unvalidated

Example: Geomagnetic storm

- Shows the high time resolution and rapid response
- A 3 hour storm excites global, propagating waves in the neutral atmosphere, driving currents through ion-neutral drag
- See CTIP video

Conclusions

- GCMs are a valuable tool in the study of ionospheric currents
- Global, comprehensive data coverage
- High temporal resolution and feedback are useful in the study of storm events
- As with all models, there are limitations due to the nature of the model and the assumptions made