Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for *Swarm*

Nils Olsen

RAS Discussion Meeting on Swarm

October 9th 2009

DTU Space National Space Institute

Nils Olsen (DTU Space)

Ørsted, CHAMP, and Swarm

1 / 43

イロト イポト イヨト イヨト

- Exploring Earth's Magnetic Field from Space
- Previous Missions: POGO and Magsat
- 3 Present Missions: Ørsted, CHAMP and SAC-C
- 4 Near Future: Swarm
- 5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

Outline of Talk

Exploring Earth's Magnetic Field from Space

- 2 Previous Missions: POGO and Magsat
- 3 Present Missions: Ørsted, CHAMP and SAC-C
- 4) Near Future: Swarm
- 5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

Why should we measure magnetic field from space?

Global coverage with ground observatories

... and with 3 days of satellite data

Magnetic Field Model From Satellite Data

$$\mathbf{B} = -\operatorname{grad} V$$

$$V = a \sum_{n=1}^{N} \sum_{m=0}^{n} \left[g_{n}^{m} \cos m\phi + h_{n}^{m} \sin m\phi \right] \left(\frac{a}{r} \right)^{n+1} P_{n}^{m} (\cos \theta)$$

$$+ V^{\operatorname{ext}}$$

 $\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi}$ are spherical coordinates

a is Earth's radius g_n^m and h_n^m are the spherical harmonic expansion coefficients of the internal magnetic field

Nils Olsen (DTU Space)

イロト イヨト イヨト イヨト

Exploring Earth's Magnetic Field from Space

Expansion Coefficients g_n^m, h_n^m of the Internal Field

・ロト ・個ト ・ヨト ・ヨト

2

Expansion Coefficients g_n^m, h_n^m of the Internal Field

6 / 43

Expansion Coefficients g_n^m, h_n^m of the Internal Field

Exploring Earth's Magnetic Field from Space

Expansion Coefficients g_n^m, h_n^m of the Internal Field

Nils Olsen (DTU Space)

6 / 43

2

イロン イ団 とくほと くほとう

Vector data

- 10,000 observations No external field Static internal field
- Perfectly polar orbit (inclination = 90°)
- Vector data at all latitudes
- Ideal case: Perfect satellite, perfect environment, ...

Outline of Talk

Exploring Earth's Magnetic Field from Space

Previous Missions: POGO and Magsat

3 Present Missions: Ørsted, CHAMP and SAC-C

4) Near Future: Swarm

5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

Satellite Missions: POGO

10,000 observations No external field Static internal field

- Perfectly polar orbit (inclination = 90°)
- Only intensity data
- strong Backus effect!
- Sectorial coefficients g_n^n, h_n^n are poorly determined
- Example: data from POGO satellite series (1965-72)

- 10,000 observations No external field Static internal field
- Perfectly polar orbit (inclination = 90°)
- Only intensity data
- strong Backus effect!
- Sectorial coefficients g_n^n , h_n^n are poorly determined
- Example: data from POGO satellite series (1965-72)

<ロ> (日) (日) (日) (日) (日)

Vector and scalar data

- 10,000 observations No external field Static internal field
- Perfectly polar orbit (inclination = 90°)
- Vector data at non-polar latitudes (below $\pm 60^{\circ}$), else intensity data
- Vector data only needed at low latitudes to avoid Backus effect

Satellite Missions: Magsat

Vector and scalar data

10,000 observations No external field Static internal field

Near polar orbit (inclination = 97°)

- Vector data at non-polar latitudes (below $\pm 60^{\circ}$), else intensity data
- Zonal coefficients poorly determined due to polar gap

Example: data from Magsat satellite (1979-80)

Outline of Talk

- Exploring Earth's Magnetic Field from Space
- 2 Previous Missions: POGO and Magsat

3 Present Missions: Ørsted, CHAMP and SAC-C

- 4 Near Future: Swarm
- 5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

Satellite Missions: Ørsted, CHAMP and SAC-C

	POGO scalar only		Magsat				Ørsted, CHAMP, SAC-C			-
1965	1970	1975	1980	1985	1990	1995	2000 20	005 20	10 20	15 2020
	Nils Olsen (I	DTU Space)		Q	Ørsted, CHAN	1P, and Swarn	n			15 / 43

Present Satellites

Satellites of the International Decade of Geopotential Research

Ørsted

Launched on 23th February 1999 Polar orbit, 650-850 km altitude all local times within 790 days (2.2 years)

CHAMP

Launched on 15th July 2000 low altitude (350-450 km) all local times within 130 days

SAC-C

Copy of Ørsted experiment Launched on 21th November 2000 700 km altitude, fixed local time 1030/2230 (no high-precision vector data due to payload failure)

Single satellites: Space-Time Ambiguity

A low-Earth-orbiting satellite moves with 8 km/s.

It is difficult to distinguish whether an observed field change is due to a temporal field change or due to the movement of the satellite.

Multi-point observations in space can resolve this ambiguity

Satellite Constellation

• Data treated as multiple single-satellite observations

• Data treated as multiple single-satellite observations

- N satellites
 - \rightarrow increase of number of data by N
 - ightarrow reduction of model error by \sqrt{N}
 - (if data are independent)

イロト 不得 トイヨト イヨト

• Data treated as multiple single-satellite observations

- N satellites
 - \rightarrow increase of number of data by N
 - ightarrow reduction of model error by \sqrt{N}
 - (if data are independent)
- improvement less than \sqrt{N} if data are not independent

• Data treated as multiple single-satellite observations

- N satellites
 - \rightarrow increase of number of data by N
 - ightarrow reduction of model error by \sqrt{N}
 - (if data are independent)
- improvement less than \sqrt{N} if data are not independent
- Take advantage of constellation: potential of improvement better than \sqrt{N}

Outline of Talk

- Exploring Earth's Magnetic Field from Space
- 2 Previous Missions: POGO and Magsat
- 3 Present Missions: Ørsted, CHAMP and SAC-C
- 4 Near Future: Swarm
 - 5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

After Ørsted and CHAMP: Swarm

	POGO scalar only		Magsat vector and scalar				Ørsted, CHAMP, SAC-C vector and scalar Smather	Swarm 3-sat constellation	
1965	1970	1975	1980	1985	1990	1995	2000 2005 201	0 2015	2020
	Nils Olsen (DTU Space)			Ørsted, CHAN	IP, and Swarr	n		20 /

20 / 43

The Swarm Concept

- ESA mission, to be launched in 2010
- 3 satellites:
 - 2 side-by-side in low orbit
 - 1 in higher orbit
- Three orbital planes with two different near-polar inclinations
- Science objectives
 - Monitoring of core field changes after Ørsted and CHAMP
 - Improved determination of the small-scale crustal field
 - 3D mantle conductivity
 - Magnetospheric and ionospheric current systems
 - Magnetic forcing of the upper atmosphere

イロト イポト イヨト イヨト

The Swarm Concept

- ESA mission, to be launched in 2010
- 3 satellites:
 - 2 side-by-side in low orbit
 - 1 in higher orbit
- Three orbital planes with two different near-polar inclinations
- Science objectives
 - Monitoring of core field changes after Ørsted and CHAMP
 - Improved determination of the small-scale crustal field
 - 3D mantle conductivity
 - Magnetospheric and ionospheric current systems
 - Magnetic forcing of the upper atmosphere

イロト イポト イヨト イヨト

Lower Pair of *Swarm* Satellites Measures Magnetic Field Gradient

Swarm allows to measure the East-West Gradient, which is more sensitive to the small-scale lithospheric field

Advantage of two satellites flying side-by-side

Quasi-complex representation of crustal field:

$$\begin{array}{lll} \mathbf{B} &=& -\operatorname{Re}\{\operatorname{grad} V\} \\ V &=& a \sum_{n,m} \left(\frac{a}{r}\right)^{n+1} \gamma_n^m P_n^m e^{im\phi} \\ \gamma_n^m &=& g_n^m - ih_n^m \end{array}$$

Difference of **B** at two satellites separated by $\Delta \phi$ in longitude:

$$\begin{split} \Delta \mathbf{B} &= \mathbf{B}(r,\theta,\phi) - \mathbf{B}(r,\theta,\phi + \Delta\phi) \\ &= -\operatorname{Re}\{\operatorname{grad} \Delta V\} \\ \Delta \gamma_n^m &= \gamma_n^m \left(1 - e^{im\Delta\phi}\right) \end{split}$$

East-West gradient data

10,000 observations No external field Static internal field

Near polar orbit (inclination = 97°)

East-West gradient data

Zonal coefficients undetermined

Enhanced resolution of sectorial coefficients

End-To-End Mission Simulation

Generation of synthetic orbits

- simulation starts on July 1, 1998 (one solar cycle before anticipated launch)
- simulation length of 4.5 years

End-To-End Mission Simulation

Magnetic Field Generation

- Core field time changes up to n = 19
- Crustal field (static) up to n = 250
- Ionospheric field, daily + seasonal periodicity Amplitude modulated by daily values of F10.7 Induced field by means of 1D conductivity model
- Magnetospheric field

Time dependence of external coefficients up to n = 3, m = 0, 1 given by observatory data (hourly mean values)

- Induced field (up to *n* = 45) calculated using 3D mantle conductivity, including oceans
- Toroidal (non-potential) field daily + seasonal periodicity
- Instrument noise

・ロト ・回ト ・ヨト ・ヨト

Crustal Field Recovery from **B** alone

Single satellite approach

イロト イヨト イヨト イヨト

Crustal Field Recovery from $~\boldsymbol{B}$ and $[\nabla \boldsymbol{B}]_{\rm EW}$

Constellation approach

Same observations in both cases, but different arrangement of data subsets

Nils Olsen (DTU Space)

イロト イポト イヨト イヨト

Crustal Field Recovery

Sensitivity matrix: relative error in %, normalized by mean power at that degree n

< 🗇 🕨

Map of Crustal Field Difference using **B** only ΔB_r at surface, in nT

Nils Olsen (DTU Space)

Map of Crustal Field Difference using **B** and $[\nabla B]_{\rm EW}$ ΔB_r at surface, in nT

Nils Olsen (DTU Space)

Improvement of Lithospheric Field Model

POGO and Magsat ...

 $n \leq$ 30, resolution: 1330 km

Magnetic field of Earths crust radial component at 10 km altitude

イロト イヨト イヨト イヨト

Improvement of Lithospheric Field Model

- POGO and Magsat ...
 - $n \leq$ 30, resolution: 1330 km
- ... with present satellites Ørsted and CHAMP ...
 - $n \leq$ 60, resolution: 670 km

Magnetic field of Earths crust radial component at 10 km altitude

イロト 不得 トイヨト イヨト

Improvement of Lithospheric Field Model

- POGO and Magsat ...
 - $n \leq$ 30, resolution: 1330 km
- ... with present satellites Ørsted and CHAMP ...
 - $n \leq$ 60, resolution: 670 km
- ... and with Swarm
 - $n \leq$ 130, resolution: 300 km

Magnetic field of Earths crust radial component at 10 km altitude

イロト 不得 とうせい うせい

Outline of Talk

- Exploring Earth's Magnetic Field from Space
- 2 Previous Missions: POGO and Magsat
- 3 Present Missions: Ørsted, CHAMP and SAC-C
- 4) Near Future: Swarm
- 5 Recent Core Field Changes

<ロ> (日) (日) (日) (日) (日)

Core field changes

2

イロト イヨト イヨト イヨト

Core field changes

Ground observatory data monitor field change in time at a fixed location in space The role of observatory data:

- help in separating spatial and temporal variations when analyzing satellite data
- help in bridging the gap between satellite missions

- 4 回 > - 4 回 > - 4 回 >

Observatory monthly means

- monitor field change at fixed locations
- but: contain internal and external field contribution
- challenge: extraction of core field signal

・ロト ・回ト ・ヨト ・ヨト

Observatory monthly means

- monitor field change at fixed locations
- but: contain internal and external field contribution
- challenge: extraction of core field signal

dY/dt at Niemegk/Germany

annual differences of monthly means

Scatter (partly) due to magnetospheric ring-current contributions

Revised monthly means

50 years (1958-2007) of hourly mean values from Niemegk

Traditional way: arithmetic mean (all days, all local times)

<ロ> (日) (日) (日) (日) (日)

Revised monthly means

50 years (1958-2007) of hourly mean values from Niemegk

Traditional way: arithmetic mean (all days, all local times)

New: robust (Huber) average of data

after correction for ionospheric and magnetospheric contributions

Revised monthly means

50 years (1958-2007) of hourly mean values from Niemegk

Traditional way: arithmetic mean (all days, all local times)

New: robust (Huber) average of data

after correction for ionospheric and magnetospheric contributions

Standard deviation σ (wrt a GCV spline fit) is reduced by a factor of 3

Nils Olsen (DTU Space)

The CHAOS Field Model Series

• CHAOS

- 6.5 years of satellite data (March 1999 and December 2005)
- Order 4 splines up to spherical harmonic degree n = 14, static up to n = 50
- Regularization of $< |\ddot{\mathbf{B}}|^2 >$ at Earth's surface

• CHAOS-2

- 10 years of satellite data (March 1999 and March 2009)
- Observatory monthly means (1997-2006)
- Order 6 splines up to n = 20, static for n = 21 60
- Regularization of $< |\ddot{\mathbf{B}}|^2 >$ at Core-Mantle Boundary (CMB)

• CHAOS-3

- 10.5 years of satellite data (March 1999 and August 2009)
- Revised observatory monthly means (1997-2009)
- Order 6 splines up to n = 20, static for n = 21 60
- Regularization of $< |d^3 \mathbf{B}/dt^3|^2 >$ at CMB

イロト 不得 トイヨト イヨト

CHAOS-3 Data Selection

Distribution of non-polar data

stacked histogram

Spectrum of first and second time derivative at t = 2005.0

CHAOS-3 shows less secular acceleration power at n = 1, more power at n > 6

Nils Olsen (DTU Space)

Fit to observatory data

	CHA	OS-2	CHAOS-3		
component	mean	rms	mean	rms	
\dot{X} [nT/yr]	-2.74	13.42	0.02	7.35	
Ϋ́ [nT/yr]	0.17	11.41	-0.02	5.02	
\dot{Z} [nT/yr]	0.92	9.91	-0.10	7.02	

CHAOS-3 rms misfit reduced by factor 2 for X and Y, and by 30% for Z The non-zero mean values of CHAOS-2 are not present in CHAOS-3

・ロト ・個ト ・ヨト ・ヨト

Fit to observatory data

	CHA	OS-2	CHAOS-3		
component	mean	rms	mean	rms	
\dot{X} [nT/yr]	-2.74	13.42	0.02	7.35	
Ϋ́ [nT/yr]	0.17	11.41	-0.02	5.02	
\dot{Z} [nT/yr]	0.92	9.91	-0.10	7.02	

CHAOS-3 rms misfit reduced by factor 2 for X and Y, and by 30% for Z The non-zero mean values of CHAOS-2 are not present in CHAOS-3

Also satellite rms misfit data is slightly lower for CHAOS-3 compared to CHAOS-2

イロン イヨン イヨン イヨン

Fit to observatory data

Ørsted, CHAMP, and Swarm

40 / 43

Conclusions

• Bright future for space magnetometry (until 2015 ?)

2

イロン イ団 とくほと くほとう

Conclusions

- Bright future for space magnetometry (until 2015 ?)
- Constellation aspect:

"1+1+1 is sometimes more than 3"

3

イロン イ団 と イヨン イヨン

Conclusions

- Bright future for space magnetometry (until 2015 ?)
- Constellation aspect:
 - "1+1+1 is sometimes more than 3"
- changed role of ground observatory data

・ロト ・個ト ・ヨト ・ヨト

