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Exploring Earth’s Magnetic Field from Space

Why should we measure magnetic field from space?

Global coverage with ground observatories

... and with 3 days of satellite data
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Exploring Earth’s Magnetic Field from Space

Magnetic Field Model From Satellite Data

B = −grad V

V = a
N∑

n=1

n∑
m=0

[gm
n cosmφ+ hmn sinmφ]

(a
r

)n+1

Pm
n (cos θ)

+ V ext

r , θ, φ are spherical coordinates

a is Earth’s radius
gm
n and hmn are the spherical harmonic expansion coefficients

of the internal magnetic field
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Exploring Earth’s Magnetic Field from Space

Expansion Coefficients gm
n , h

m
n of the Internal Field
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Exploring Earth’s Magnetic Field from Space

Model Resolution
Vector data

10,000 observations
No external field
Static internal field

Perfectly polar orbit
(inclination = 90◦)

Vector data at all
latitudes

Ideal case:
Perfect satellite,
perfect environment, ...
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Previous Missions: POGO and Magsat

Satellite Missions: POGO
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Previous Missions: POGO and Magsat

Model Resolution
Scalar data

10,000 observations
No external field
Static internal field

Perfectly polar orbit
(inclination = 90◦)

Only intensity data

strong Backus effect!

Sectorial coefficients
gn
n , h

n
n are poorly

determined

Example: data from
POGO satellite series
(1965-72)
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Previous Missions: POGO and Magsat

Model Resolution
Vector and scalar data

10,000 observations
No external field
Static internal field

Perfectly polar orbit
(inclination = 90◦)

Vector data at non-polar
latitudes (below ±60◦),
else intensity data

Vector data only needed
at low latitudes to avoid
Backus effect
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Previous Missions: POGO and Magsat

Satellite Missions: Magsat
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Previous Missions: POGO and Magsat

Model Resolution
Vector and scalar data

10,000 observations
No external field
Static internal field

Near polar orbit
(inclination = 97◦)

Vector data at non-polar
latitudes (below ±60◦),
else intensity data

Zonal coefficients poorly
determined due to polar
gap

Example: data from
Magsat satellite
(1979-80)
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Present Missions: Ørsted, CHAMP and SAC-C
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Present Missions: Ørsted, CHAMP and SAC-C

Satellite Missions: Ørsted, CHAMP and SAC-C
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Present Missions: Ørsted, CHAMP and SAC-C

Present Satellites
Satellites of the International Decade of Geopotential Research

Ørsted
Launched on 23th February 1999
Polar orbit, 650-850 km altitude
all local times within 790 days (2.2 years)

CHAMP
Launched on 15th July 2000
low altitude (350-450 km)
all local times within 130 days

SAC-C
Copy of Ørsted experiment
Launched on 21th November 2000
700 km altitude, fixed local time 1030/2230
(no high-precision vector data due to payload failure)
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Present Missions: Ørsted, CHAMP and SAC-C

Single satellites: Space-Time Ambiguity

A low-Earth-orbiting satellite moves with 8 km/s.
It is difficult to distinguish whether an observed field change is due to a temporal
field change or due to the movement of the satellite.

Multi-point observations in space can resolve this ambiguity

Satellite Constellation
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Present Missions: Ørsted, CHAMP and SAC-C

N Single Satellites vs. Constellation of N Satellites

Data treated as multiple single-satellite observations

N satellites
→ increase of number of data by N
→ reduction of model error by

√
N

(if data are independent)
improvement less than

√
N if data are not independent

Take advantage of constellation:
potential of improvement better than

√
N
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Near Future: Swarm
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Near Future: Swarm

After Ørsted and CHAMP: Swarm
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Near Future: Swarm

The Swarm Concept

ESA mission, to be launched in 2010

3 satellites:
2 side-by-side in low orbit
1 in higher orbit

Three orbital planes with two
different near-polar inclinations

Science objectives

Monitoring of core field changes
after Ørsted and CHAMP
Improved determination of the
small-scale crustal field
3D mantle conductivity
Magnetospheric and ionospheric
current systems
Magnetic forcing of the upper
atmosphere
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Near Future: Swarm

Lower Pair of Swarm Satellites
Measures Magnetic Field Gradient

Swarm allows to
measure the East-West
Gradient, which is more
sensitive to the
small-scale lithospheric
field

02.11.2007  | Geophysical Colloquium, ETH Zurich | page 32

Pair of Swarm Satellites 
Measures Magnetic Field Gradient
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Near Future: Swarm

Advantage of two satellites flying side-by-side

Quasi-complex representation of crustal field:

B = −Re{grad V }

V = a
∑
n,m

(a
r

)n+1

γmn P
m
n e imφ

γmn = gm
n − ihmn

Difference of B at two satellites
separated by ∆φ in longitude:

∆B = B(r , θ, φ)− B(r , θ, φ+ ∆φ)

= −Re{grad ∆V }
∆γmn = γmn

(
1− e im∆φ
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Near Future: Swarm

Model Resolution
East-West gradient data

10,000 observations
No external field
Static internal field

Near polar orbit
(inclination = 97◦)

East-West gradient data

Zonal coefficients
undetermined

Enhanced resolution of
sectorial coefficients
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Near Future: Swarm

End-To-End Mission Simulation
Generation of synthetic orbits

simulation starts on July 1, 1998 (one solar cycle before anticipated launch)
simulation length of 4.5 years
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Near Future: Swarm

End-To-End Mission Simulation
Magnetic Field Generation

Core field time changes up to n = 19

Crustal field (static) up to n = 250

Ionospheric field, daily + seasonal periodicity
Amplitude modulated by daily values of F10.7
Induced field by means of 1D conductivity model

Magnetospheric field
Time dependence of external coefficients up to
n = 3,m = 0, 1 given by observatory data (hourly
mean values)

Induced field (up to n = 45) calculated using 3D
mantle conductivity, including oceans

Toroidal (non-potential) field
daily + seasonal periodicity

Instrument noise
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Near Future: Swarm

Crustal Field Recovery from B alone
Single satellite approach
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Near Future: Swarm

Crustal Field Recovery from B and [∇B]EW
Constellation approach
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Near Future: Swarm

Crustal Field Recovery

Sensitivity matrix: relative error in %, normalized by mean power at that degree n
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Near Future: Swarm

Map of Crustal Field Difference using B only
∆Br at surface, in nT
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Near Future: Swarm

Map of Crustal Field Difference using B and [∇B]EW
∆Br at surface, in nT
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Near Future: Swarm

Improvement of Lithospheric Field Model

POGO and Magsat ...
n ≤ 30, resolution: 1330 km

... with present satellites
Ørsted and CHAMP ...
n ≤ 60, resolution: 670 km

... and with Swarm
n ≤ 130, resolution: 300 km

Magnetic field of Earths crust

radial component at 10 km altitude

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 31 / 43



Near Future: Swarm

Improvement of Lithospheric Field Model

POGO and Magsat ...
n ≤ 30, resolution: 1330 km

... with present satellites
Ørsted and CHAMP ...
n ≤ 60, resolution: 670 km

... and with Swarm
n ≤ 130, resolution: 300 km

Magnetic field of Earths crust

radial component at 10 km altitude

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 31 / 43



Near Future: Swarm

Improvement of Lithospheric Field Model

POGO and Magsat ...
n ≤ 30, resolution: 1330 km

... with present satellites
Ørsted and CHAMP ...
n ≤ 60, resolution: 670 km

... and with Swarm
n ≤ 130, resolution: 300 km

Magnetic field of Earths crust

radial component at 10 km altitude

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 31 / 43



Recent Core Field Changes
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Recent Core Field Changes

Core field changes

Ground observatory data monitor field change in time at a fixed location in space
The role of observatory data:

help in separating spatial and temporal variations when analyzing satellite
data

help in bridging the gap between satellite missions
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Recent Core Field Changes

Observatory monthly means

monitor field change at fixed locations

but: contain internal and external field
contribution

challenge: extraction of core field signal

dY /dt at Niemegk/Germany
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magnetospheric ring-current
contributions
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Recent Core Field Changes

Revised monthly means
50 years (1958-2007) of hourly mean values from Niemegk

Traditional way: arithmetic mean (all days, all local times)
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New: robust (Huber) average of data
after correction for ionospheric and magnetospheric contributions
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Recent Core Field Changes

Revised monthly means
50 years (1958-2007) of hourly mean values from Niemegk
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Recent Core Field Changes

The CHAOS Field Model Series

CHAOS

6.5 years of satellite data (March 1999 and December 2005)
Order 4 splines up to spherical harmonic degree n = 14, static up to n = 50
Regularization of < |B̈|2 > at Earth’s surface

CHAOS-2

10 years of satellite data (March 1999 and March 2009)
Observatory monthly means (1997-2006)
Order 6 splines up to n = 20, static for n = 21− 60
Regularization of < |B̈|2 > at Core-Mantle Boundary (CMB)

CHAOS-3

10.5 years of satellite data (March 1999 and August 2009)
Revised observatory monthly means (1997-2009)
Order 6 splines up to n = 20, static for n = 21− 60
Regularization of < |d3B/dt3|2 > at CMB
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Recent Core Field Changes

CHAOS-3 Data Selection
Distribution of non-polar data
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Recent Core Field Changes

Spectrum of first and second time derivative at t = 2005.0
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CHAOS-3 shows less secular acceleration power at n = 1, more power at n > 6
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Recent Core Field Changes

Fit to observatory data

CHAOS-2 CHAOS-3
component mean rms mean rms

Ẋ [nT/yr] -2.74 13.42 0.02 7.35

Ẏ [nT/yr] 0.17 11.41 -0.02 5.02

Ż [nT/yr] 0.92 9.91 -0.10 7.02

CHAOS-3 rms misfit reduced by factor 2 for X and Y , and by 30% for Z
The non-zero mean values of CHAOS-2 are not present in CHAOS-3

Also satellite rms misfit data is slightly lower for CHAOS-3 compared to CHAOS-2
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Ż [nT/yr] 0.92 9.91 -0.10 7.02

CHAOS-3 rms misfit reduced by factor 2 for X and Y , and by 30% for Z
The non-zero mean values of CHAOS-2 are not present in CHAOS-3

Also satellite rms misfit data is slightly lower for CHAOS-3 compared to CHAOS-2

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 39 / 43



Recent Core Field Changes

Fit to observatory data

1998 2000 2002 2004 2006 2008 2010

−25

−20

−15

−10

−5

0

5

dX
/d

t [
nT

/y
r]

KAK X

1998 2000 2002 2004 2006 2008 2010

−15

−10

−5

0

dY
/d

t [
nT

/y
r]

KAK Y

 

 

CHAOS−2
CHAOS−3

1998 2000 2002 2004 2006 2008 2010

−5

0

5

10

15

20

25

30

35

dZ
/d

t [
nT

/y
r]

KAK Z

1998 2000 2002 2004 2006 2008 2010

−25

−20

−15

−10

−5

0

dX
/d

t [
nT

/y
r]

HER X

1998 2000 2002 2004 2006 2008 2010
−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

dY
/d

t [
nT

/y
r]

HER Y

1998 2000 2002 2004 2006 2008 2010

40

50

60

70

80

dZ
/d

t [
nT

/y
r]

HER Z

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 40 / 43



Conclusions

Conclusions

Bright future for space magnetometry (until 2015 ?)

Constellation aspect:
”1+1+1 is sometimes more than 3”

changed role of ground observatory data

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 41 / 43



Conclusions

Conclusions

Bright future for space magnetometry (until 2015 ?)

Constellation aspect:
”1+1+1 is sometimes more than 3”

changed role of ground observatory data

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 41 / 43



Conclusions

Conclusions

Bright future for space magnetometry (until 2015 ?)

Constellation aspect:
”1+1+1 is sometimes more than 3”

changed role of ground observatory data

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 41 / 43



Conclusions

Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 42 / 43


	Exploring Earth's Magnetic Field from Space
	Previous Missions: POGO and Magsat
	Present Missions: Ørsted, CHAMP and SAC-C
	Near Future: Swarm
	Recent Core Field Changes
	Conclusions

