

Can we use space magnetometer data in operational ionospheric models?

Mike Hapgood

mike.hapgood@stfc.ac.uk

Mike Hapgood

RAS SWARM meeting, 09 Oct 2009

INTRODUCTION

- Speculate how we might use satellite magnetic data in future models of thermosphere-ionosphere
- Raise ideas for future research
- Also set context on importance and impact

BACKGROUND and MOTIVATION (and IMPACT?)

RAS SWARM meeting, 09 Oct 2009

The ionosphere matters!

- Many advanced technologies require radio wave propagation through ionosphere
 - Communications, navigation and surveillance
- Propagation has wide range of sensitivities to electron density structure and dynamics including:
 - Reflection, refraction, absorption, group delay, scintillation

Ionospheric space weather

- Subject to many time-varying influences
 - Diurnal, seasonal, solar cycle, solar flares, magnetic storms, tides and gravity waves, electric coupling?, secular change of solar activity and geomagnetic field, climate change
- Users of sensitive technologies need range of ionospheric support:
 - Nowcasting (\leq 1hr, operational control)
 - Diagnostic support (is my kit broken or is it the ionosphere?)
 - Medium-term prediction (hours or days, holy grail)
 - Long-term trends (statistical risks => design margins)

Examples of users

Space surveillance

Tactical comms

Strategic military comms

Satcom

Next generation VLF navigation

RAS SWARM meeting, 09 Oct 2009

More examples

HF monitoring

Radio astronomy

VHF transmitter

location

Space radar

HF datalin

Aircraft comms

Charging environment

RAS SWARM meeting, 09 Oct 2009

Space situational awareness

- Ionosphere effects increasing seen as part of space situational awareness (SSA)
 - knowing & understanding what is going on in space around our planet in order to provide timely & accurate data and information to decision makers & planners
 - ESA/EU SSA programme started Jan 2009
 - Also major element in current FP7 Space Call
 - Strong collaboration with US SSA programme
- Ionospheric requirements embedded in Euro SSA (& in end user requirements for ILWS)
 - Many applications directly relevant to space activities (Radar, GNSS, SAR, ...)
 - Others (HF comms, VLF nav) provide added-value

What is needed?

- Models of ionospheric conditions including:
 - Total electron content
 - foF2 and M(3000)F2
 - Scintillation forecasts
 - Topside profiles including plasmasphere (partition of TEC)
- Preferably based on physical understanding
 - Builds confidence, better inter/extrapolation of observations
 - But mathematical models ok (e.g. data mining)
- Data to drive these models
 - Near real-time (minutes)
 - Diverse types for better constraints on models
 - Good geographic coverage
 - Can we use SWARM to explore additional diversity?

WHAT DATA DO WE HAVE?

RAS SWARM meeting, 09 Oct 2009

RAS SWARM meeting, 09 Oct 2009

RAS SWARM meeting, 09 Oct 2009

Data are global 2

Sensitivity to errors

- Real-time data automated
 - -Limited human QA checks increase risk of error
 - Can propagate into wrong nowcast or diagnostic
 - Diversity of data can help automated QA checks by highlighting inconsistencies

- Figure right shows comparison of ionosonde-derived TEC taken 50 km apart
 - Chilton vs Fairford
 - Excess of high values at Fairford due to auto-scaling errors

Mike Hapgood

20

25

HOW CAN WE USE MAGNETIC DATA?

RAS SWARM meeting, 09 Oct 2009

ROLE OF SWARM

- SWARM gives us the potential to explore possibilities
- Not an operational mission
- But may demonstrate what could be done
- Possible shape of an operational mission
 - Use nano/cubesats for low cost
 - Much work on low mass/power magnetometers
 - Can disperse several nanosats around each of a few orbit planes
 - See space weather nanosat study on http://epubs.stfc.ac.uk/work-details?w=42988

Space-based geomagnetic indices?

- Indices provide quantitative estimate of state of magnetosphere
 - Used in many space weather models including ionesphere
- Better proxy for energy deposition from aurora?
- Much better global coverage for Kp (Eur + NA + Aus)
- Better resolution on Dst/ring current?
 - But much knowledge on what t
- Space-based indices discussed in ESA
 - May provide more consistent dataset (gk
 - But will have very different characteristics
 - In Birkeland currents (right) spacecraft see sole field, but ground systems see N-S field from Hall
- Can this new view help?
 - SWARM well-placed to generate new indices for use in ionospheric modelling
 - Will these perform better or worse than ground-based indices?

J_{hall}

 $J_{\rm down}$

ped

-70 years

 J_{up}

ies

ge)

(E-W)

Constraint on assimilative models?

- Assimilative models now important in tracking and predicting state of complex physical systems
 - Underlying model (preferably physics-based)
 - Tune timeline with real data
 - Nowcasting, interpolation, re-analysis
 - Applications include meteorology, oceanography, orbit analysis
- Growing application to space environment
 - GAIM & DREAM in US,
 - QinetiQ ionospheric model (parametric)
 - Many discussions in UK and rest of Europe

How to use magnetic data?

SUMMARY

- Space magnetometer data has potential to provide novel constraints on models of upper atmosphere.
- SWARM can provide a test bed to explore this!

SPARES

RAS SWARM meeting, 09 Oct 2009

Image from Air University - Space Primer, Chapter 6, Space Environment, http://www.au.af.mil/au/awc/space/primer/space_environment.pdf

Some UK interests

Forest Moor & Kinloss, strategic comms

Fairford ionosonde, availability 70%

Fylingdales radar, ~420 MHz

Chilton ionosonde availability 97%

> Availability based on foF2 for 1 Mar to 12 May 2009

RAS SWARM meeting, 09 Oct 2009

More UK interests

RAS SWARM meeting, 09 Oct 2009

Science & Technology Facilities Council Rutherford Appleton Laboratory

More UK interests

Mount Pleasant, strategic comms

RAS SWARM meeting, 09 Oct 2009