
Quasicrystal systems with simple symmetries

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Sam Coates

February 2019



Abstract

The primary investigations of this thesis concern epitaxial studies upon quasicrystal sur-

faces: specifically, quasicrystal surfaces which display rotational symmetries found in pe-

riodic systems. These types of quasicrystal surfaces are often overlooked. As a result, ad-

sorption or structural phenomena which may be unique to these systems is under–reported.

This work aims to bridge this gap.

Using experimental surface science techniques such as STM and LEED, adsorbates on

quasicrystal surfaces with 2–fold and 3–fold rotational symmetries have been investigated.

In each case, the structure of the clean substrate has also been re–evaluated either with

regards to structural models or to geometric constructs such as tilings.

C60 molecules deposited on the 2–fold i–Al–Pd–Mn surface were found to arrange in

a formation known as a Fibonacci square grid – a quasicrystalline structure with 4–fold

symmetry. This resulted in the first reported physical example of a Fibonacci square grid.

A surface model was used which produces a Mn distribution which matches the geometry of

the C60 network – indicating that C60 molecules adsorb exclusively at Mn atoms, motivated

by electron exchange. As a consequence, an open question on the specific structure of the

2–fold i–Al–Pd–Mn surface was answered.

Pb adsorption on the 2–fold and 3–fold surfaces of the i–Ag–In–Yb system was also

explored. This work built on a previous study, where Pb was observed to grow in quasicrys-

talline layers on the 5–fold i–Ag–In–Yb surface. Each layer exhibited a unique structure,

explained using planes from the bulk i–Ag–In–Yb model. Here, for the 3–fold system,

Pb follows a similar adsorption scheme, where each layer is structurally similar to specific

planes in the bulk. However, a difference in the density of ‘available’ adsorption sites in

the surface plane leads to a different growth mode. Instead of a layer–by–layer mechanism,

Pb was found to grow along z in a quasi–island type fashion, producing 3 dimensional

nano–structures.

On the 2–fold i–Ag–In–Yb surface, the density of available sites again changed the

growth mode. Instead of being explained by bulk planes, Pb adopted the highly dense

structure of the substrate, sitting at adsorption sites with high geometry, producing a

quasi–Stranski–Krastanov type film.

Additional work includes a new type of aperiodic tiling with 3–fold symmetry. The

first example of its kind, this tiling is derived in a similar fashion to the Penrose tiling, and

is used to re–examine the 3–fold i–Ag–In–Yb surface.
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Glossary of concepts

τ An irrational number known as the golden ratio, given as τ = 1+
√

5
2

= 1.618.... The golden ratio is linked to the Fibonacci sequence
(1, 1, 2, 3, 5, 8,...), where the ratio of consecutive terms tends
towards τ . It is a value interlinked with the studies of icosahedral
quasicrystals. As such, evidence of ‘τ–scaling’ – the multiplication
or division of dimensional values in experimental data – is often
used as a marker to indicate quasiperiodic order.

Hyperspace Refers to any space with a higher dimensionality than 3D. For
example, ‘5D hyperspace’.

Tilings Constructs which use geometric shapes (tiles) to fill a plane with
no gaps or overlaps between tiles. Aperiodic tilings are often used
to visualise quasiperiodic order in 2D.
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Chapter 1

Introduction

Quasicrystals are materials which exhibit long–range order, but are aperiodic in nature.

The surfaces of intermetallic quasicrystals provide a stimulating topic for experimental

exploration, as they give rise to aesthetically pleasing structural arrangements quite un-

like crystalline surfaces studied within the field. Likewise, adsorption studies upon these

surfaces can give unique or unexpected results compared to conventional epitaxy. As such,

exploring quasicrystalline epitaxy to the same extent of crystalline epitaxy (including a

full range of adsorbate types on all available quasicrystalline surface structures) could give

invaluable information not only on quasicrystal chemistry and formation, but could, for

example, uncover new adsorption growth–mode schemes.

Contained within this thesis, then, are studies of quasicrystal surfaces which are often

over–looked, i.e. those with rotational symmetries commensurate with periodic systems

(in this case, 2–fold and 3–fold symmetric). In each case, the clean surface has been

reinterpreted with respect to structural models, or to tilings with coincidental rotational

symmetry. As a consequence, the understanding of each surface is increased. Subsequently,

adsorption studies of molecules and elements are conducted to demonstrate the potential

for templated growth on these newly understood systems.

The thesis is structured as follows. Chapter 2 provides an introduction into quasicrys-

tals, including their place in crystallography, tools for understanding aperiodic long–range

order, and models for visualizing their structure. Chapter 3 details the mechanics, history,

and current state of adsorption on quasicrystal surfaces. A brief survey of the experimen-

tal techniques used, Scanning Tunnelling Microscopy (STM) and Low Electron Energy

Diffraction (LEED) are detailed in Chapter 4.

2



Chapter 1. Introduction 3

Chapter 5 presents LEED and STM images of the clean and C60 dosed 2–fold i–Al–Pd–

Mn surface. The C60 adsorption network is matched to a Mn distribution in a model of the

clean surface. Chapter 6 introduces 2 new related aperiodic tilings which display 3–fold

rotational symmetry. In Chapter 7, one of these tilings is used to reinterpret the 3–fold

i–Ag–In–Yb surface. Subsequent Pb deposition on this surface presents a unique adsorp-

tion growth–mode. Likewise, Chapter 8 shows STM images of the 2–fold i–Ag–In–Yb

surface with enhanced resolution compared to previous studies, which are then matched

to a structural model. Again, Pb is deposited, which is found to adsorb at sites of high

geometry.

Finally, a summary of all results and a comment on the future of each project is

contained within Chapter 9.



Chapter 2

Quasicrystals

Quasicrystalline phases of matter have been observed in a range of materials and are now

considered to be a sub–category of crystalline materials, which are defined as those mate-

rials which exhibit a discrete diffraction pattern. Typically, a quasicrystalline material is

described as possessing long-range aperiodic order with no translational symmetry. Most

commonly, these materials can display ‘unusual’ orders of rotational symmetry, where un-

usual is considered an order of symmetry which is incommensurate with periodic or Bravais

lattice systems (for example, 5–fold, 10–fold, 12–fold). Intermetallic alloys exhibiting these

structural properties are the most abundant and most studied quasicrystalline systems, and

are called ‘quasicrystals’ (QCs), derived and shortened from ‘quasi–periodic crystals’ [1,2].

The first quasicrystal was reported in 1984, by Shechtman, Blech, Gratias and Cahn [1].

Their work described a diffraction pattern obtained from a rapidly quenched Al–Mn melt,

which appeared to exhibit aperiodic order with icosahedral symmetry, including 5–fold

rotational axes. The idea of a singular phase of a material displaying these properties was

not immediately accepted, as an aperiodic system showing long–range order (as evidenced

by a diffraction pattern) appeared to be counter–intuitive. Indeed, initial attempts to

understand this structure using the then current laws of crystallography included the idea of

crystal twinning, where overlapping crystal structures mimic unusual degrees of symmetry

[3]. However, by considering entirely new structural arrangements, Blech found a system

of ‘random packing(s) of non–overlapping parallel icosahedra’ which adroitly explained

the diffraction pattern observed [1]. Consequently, crystallography was fundamentally

changed, and an entirely new category of solid–state structural order had been discovered.

Shechtman earned a Nobel prize in Chemistry for this work (2011). To date, there are over
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Chapter 2. Quasicrystals 5

100 chemically unique intermetallic quasicrystals [4,5]. Typically, these are ternary alloys,

although stable binary and quaternary QCs also exist [6–9]. Rotational symmetries of

these systems range from 5–fold to 10–fold. Intermetallic QCs are created using classical

crystal growth techniques, where close control of stoichiometry and growth parameters

is required to produce quasicrystalline phases. Two dimensional quasicrystals have also

been manufactured at crystalline surface interfaces using a range of materials (metals,

colloids, polymers etc.). These have been shown to have 8–, 12–, and 18–fold rotational

symmetries [10–13].

So far, intermetallic quasicrystals have limited technological use, although their po-

tential has been explored within numerous fields. Their low friction, high hardness, and

corrosion resistance have made them interesting candidates for metallic coatings for use in

cooking utensils, or as inclusions in surgical tools [14]. Equally, their chemical properties

have been explored with respect to catalysis in the steam reforming of methanol – a method

of producing hydrogen [15]. However, technological advancement has been slow compared

to ‘traditional’ alloys. Their brittleness is a drawback for coating applications, and there

is difficulty in up–scaling materials for industrial catalytic processes when close control of

growth is required [16].

Relating the properties of quasicrystals to specific structural aspects is a non–trivial

problem. First, how does the structural complexity of a 3–dimensional aperiodic system

explicitly affect its physical properties? Second, how much are the physical properties

influenced by the chemical complexity of the groups of atoms decorating the vertices of such

a material? Reducing the amount of structural or chemical complexity in these systems

whilst retaining the essence of a quasicrystalline material provides a plausible approach to

understanding these difficult questions. It is also a motivation for this work.

From this standpoint, pre–quasicrystalline crystallographic concepts will be introduced.

Following this, aperiodic schemes for producing long–range order will be presented, showing

how, for example, n ≥ 5 symmetries are obtained in a crystallographic system. From here,

the relationship between these aperiodic arrangements and quasicrystal structure will be

developed, necessary for the understanding of further work.

2.1 Basic Crystallography

Crystallography is a basic aspect of solid–state physics. The structure of any crystalline

material can be described with respect to one of the 14 Bravais lattices. Here, a lattice
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Figure 2.1: Pre–quasicrystalline crystallography: (a) A square lattice labelled with
its unit vectors. A rotation of 2π

4 reproduces the original lattice. (b) Pentagonal ‘lattice’
rotated by 2π

5 fails to reproduce original points. (c) Packing of 5–fold units does not cover
all space. The ratio between a pentagon’s diameter and edge length is shown (τ :1).

describes an infinite set of points arranged in a periodic fashion so that each point is iden-

tical, with identical environments. A position vector, R, describes how one can translate

one lattice point to another:

R = n1a + n2b + n3c (2.1)

where ni are integers, and a, b, and c are translation vectors.

The 14 Bravais lattices reflect the maximum number of ways these periodic lattice

points can be arranged in 3–dimensional space. Each Bravais lattice can be described in

terms of a crystallographic unit cell – an infinitely repeating unit of points which fills space

periodically and completely. By placing a basis (here, an atom or groups of atoms) at each

lattice point of a unit cell, we obtain 230 separate symmetry groups by simply combining

various symmetry operations upon the Bravais lattices, such as rotation and reflection.

Every crystalline structure can be described by one of these 230 space groups, no matter

how complex.

We can show how ‘allowed’ rotational symmetries are linked to these lattice structures

using a 2D example, Figure 2.1. Here, we can rotate the vectors used to describe a square

lattice about a single arbitrary lattice point. Every 2π
4 turn produces lattice points that

can be mapped using translations of the lattice vectors. This can similarly be completed
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with any Bravais lattice, so long as the angle of rotation maps the original lattice onto

itself. Permitted rotations are 2π, 2π
2 , 2π

3 , 2π
4 , 2π

6 , (1–, 2–, 3–, 4–, and 6–fold respectively).

We can easily show how 5–fold symmetry cannot be used in a similar fashion. If we

take a set of points defined by a regular pentagon, and, starting from an arbitrary origin,

rotate the system by 2π
5 , we create points that are not mapped onto the original lattice.

Similarly, if we attempt the inverse by constructing a periodic lattice with 5–fold units, we

cannot fill all space. The same can be said for any n–fold unit, where n > 6, and n is an

integer.

These rules are generalised by the crystallographic restriction theorem [17]. Thus we

have shown that, using the basic tools of crystallography, 5–fold symmetry is incompatible

with periodicity. The same is true for other forbidden rotational symmetries.

2.2 Aperiodic order

Aperiodicity with long–range order is the hallmark of a quasicrystal. Here, several examples

will be given of aperiodic order, in 1 and 2 dimensions. Included in this explanation is how

an aperiodic sequence can evidence long–range order, in the form of a diffraction pattern.

2.2.1 Fibonacci Sequence

The simplest ‘quasicrystal’ is a 1–dimensional set of segments, known as the Fibonacci

chain or sequence. It is used frequently in the analysis of QCs, as it is a simple model to

illustrate quasiperiodic order. It will be explained by three techniques, as all are pertinent

for later discussions: the substitution, cut and project, and section methods.

Substitution

If we consider two segment lengths, S, short, and L, long, and two substitution rules, S → L

and L→ LS, we can generate aperiodic order as follows:

(1) L

(2) LS

(3) LSL

(4) LSLLS

(5) LSLLSLSL...

(2.2)
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where (n) is the number of generations. Here, each segment of the chain at each generation

is treated individually and substituted according to the substitution rules. For example,

generation 4, LSLLS, is considered as 5 separate segments, L, S, L, L, S. Each segment is

then replaced according to the substitution rules.

If the ratio of L/S is an irrational number, we can guarantee that segment vertex

points on a line corresponding to the Fibonacci sequence have no translational symmetry.

Conventionally, the irrational number used is the golden ratio, given as τ = (1+
√

5)
2 =

1.618..., associated with the ratio between successive terms of the numerical Fibonacci

sequence (1, 1, 2, 3, 5, 8, 13,...). The golden ratio is a useful tool in quasicrystal studies

– the icosahedron, a Platonic solid which is used to characterize a family of quasicrystals

(discussed later) is defined by vertex coordinates calculated by a cyclical permutation of

(0, ± 1, ±τ). As a result, experimental evidence of τ–scaling (i.e. multiples or factors of

τ) between dimensional quantities in a quasicrystal is often used as a de facto method to

quickly assess quasiperiodicity. As a theoretical 1D example, we can consider the ratio of

L and S segments in successive generations of the Fibonacci chain. Here, the sum of L

segments across two consecutive generations are divided by the sum of S segments across

the same generations:

G2→1 =
2L

S
= 2

G3→2 =
3L

2S
= 1.5

G4→3 =
5L

3S
= 1.666...

G5→4 =
8L

5S
= 1.6

where Gi→j notes the ratio of consecutive generations of the Fibonacci sequence, so that

G2→1 refers to the sum of L segments across the first and second generations divided by

the sum of S segments across the same generations, and so on. The ratio of these summed

segments tends towards τ , indicating that the ratio of the total number of L and S segments

in each subsequent generation of the chain are ‘τ–scaled’.

Cut–and–project and Section methods

Another way of producing the Fibonacci sequence, which can be extended beyond n > 3D

space, is the cut–and–project method, Figure 2.2(a). Here we start with a 2–dimensional
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Figure 2.2: Cut–and–project method: (a) A periodic 2D lattice defined along two
orthogonal axes is intersected by a 1D slice, which is rotated with respect to x by an
irrational angle α. An acceptance window is attached to the slice. E|| and E⊥ are subspaces
orthonormal to the lattice. Points of the lattice which fall within the acceptance window are
projected perpendicularly down onto E||, forming a Fibonacci sequence. (b) The section
method, where atomic surfaces decorate the lattice. A 1D slice rotated with respect to x
by an irrational angle α intersects specific surfaces to create a Fibonacci sequence.

periodic array of points defined by orthogonal vectors x and y, and a lattice constant of a.

The density of points is given by:

ρ(x, y) =
∑
n,m

δ(x− na)δ(y −ma) (2.3)

where n and m are integers. A second set of orthogonal axes labelled as E|| and E⊥ is

then rotated around the origin of the original axes by an irrational angle α. In this case,

cotα = τ . E|| is known as parallel or physical space, whilst E⊥, is perpendicular space.

A 1D slice cuts through the periodic array parallel to E||. An ‘acceptance window’ is

then attached to this slice, with a width of ∆ = a(cos α+ sin α). ‘Accepted’ points of

the 2D lattice within this window are then projected onto E||, creating segments of either

S = asinα, or L = acos α. These segments are spaced in a Fibonacci sequence.

Likewise, shown in Figure 2.2(b), is the section method. The same formalism as the

cut and project method is used, except here, atomic ‘surfaces’ decorate each of the lattice

points, which are oriented perpendicular to E||. Their width is also ∆. The 1D slice parallel

to E|| intersects specific surfaces, creating sections of the Fibonacci chain.
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2.2.2 Diffraction from a Fibonacci chain

To show if any system of points exhibits long–range order, we can calculate its diffraction

pattern. The diffraction pattern or Fourier transform of a 1D Fibonacci sequence has been

derived and described elsewhere [2, 18–21]. Thus, only the pertinent results will be given

here. The Fibonacci sequence components produced using the cut–and–project method

will be used here.

To produce the diffraction pattern of the 1D chain, we calculate the Fourier transforms

of the accepted points of the lattice within the window in Figure 2.2(a). The transform

of the infinite lattice is simply a reciprocal lattice defined by a vector Qhh′ , where h,

h′ are the Miller indices. Qhh′ can then be decomposed into perpendicular and parallel

space components (Q⊥ and Q|| respectively). The Fourier components of the accepted

points are produced by a convolution of this reciprocal lattice and the Fourier transform

of the window function (i.e. a function which is 1 inside the window, and 0 outside).

This produces Fourier components which are then centred at the vertices of the reciprocal

lattice. These components are intersected by an irrational slope E||* (which is parallel to

E||), producing Bragg peaks at positions given by [20]:

Q|| =
2π

a

1

(2 + τ)
1
2

(h+ h′τ) (2.4)

We know intuitively from Figure 2.2 that these intersections will also be quasiperiodically

arranged in 1D reciprocal space.

It can be shown analytically that the intensity of the Bragg peak at each Q|| intersection

is dependent on Q⊥ [18, 20]:

Q⊥ =
2π

a

1

(2 + τ)
1
2

(h− h′τ) (2.5)

by

Ihh′ = ∆2 sin2(Qhh
′

⊥ )∆/2

(Qhh
′

⊥ ∆/2)2
(2.6)

It can be seen that values of Q⊥→ 0 give maximal intensity. In fact, as a and τ are

constants, we can see from equation (2.5) that Q⊥ is at its smallest when (h–h ′τ) ≈ 0, or,

when h
h′ ≈ τ . The consequence of this is that sharp Bragg peaks of maximum intensity
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Figure 2.3: Diffraction of a Fibonacci chain. Selected Bragg spots with radii scaled
with intensity are shown for the calculated diffraction pattern of a 1D Fibonacci sequence.
Indices refer to Miller indices (h,h′).

come from values of (h,h ′) that are successive integers in the Fibonacci series, i.e. (5,3),

(8,5) etc., shown in Figure 2.3, which displays a few calculated Bragg peaks for certain

(h,h ′).

The demonstration that an aperiodic set of points can display a discrete diffraction

pattern is a powerful one, and can be used reliably as a model for explaining how aperiodic

systems with higher dimensionality display long–range order. This information is vital for

understanding the basics of quasicrystalline structure.

2.2.3 Aperiodicity in 2D

The Fibonacci chain is useful as a model QC system for calculating properties of 1D QCs

[22–26]. However, it has no rotational symmetry. We can show how systems can exhibit

long–range aperiodic order and also display orders of rotational symmetry not explained by

pre–quasicrystalline crystallography by looking at several 2–dimensional examples. These

quasiperiodic systems are known as ‘tilings’.

Aperiodic tilings can fill all space, with no gaps, using a set of proto–tiles (building

blocks). The resultant arrangement has long–range order, yet no translational symme-

try. Examples of tilings which exhibit 5–, 8–, and 12–fold symmetry are shown in Figure

2.4 – known as the Penrose (P1), Watanabe–Soma–Ito, and the Stamplfi–Gaehler tilings

respectively [27–30]. The constituent proto–tiles of each are shown below the tilings.

Tilings can be constructed in a number of ways. The substitution method simply

replaces one proto–tile with a set of smaller proto–tiles, analogous to S and L substitutions.

Matching rules can also be used – where the edges of a set of proto–tiles follow rules which
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Figure 2.4: Aperiodic tilings with n ≥ 5–fold rotational symmetry. (a) The
Penrose P1 tiling, which exhibits 5–fold symmetry. (b) An example of substitution rules
for deflating the Penrose tiling. Matching rules of the constituent tiles are shown. (c) The
Watanabe–Soma–Ito tiling, which exhibits 8–fold symmetry. (d) The Stamplfi–Gaehler
tiling, which exhibits 12–fold symmetry.
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only allow specific pairings of tiles. Figure 2.4(b) demonstrates the substitution method

and tile matching rules for creating the Penrose P1 tiling. Here, the rules allow sides

with equal integers yet with unequal parities to be matched, where rotations of the tiles

are necessary to fill the plane. Other methods for tiling production and a more detailed

discussion on tilings in general can be found in Chapter 6.

The Penrose tiling is particularly useful, as the most common type of quasicrystal

exhibits icosahedral symmetries. N. G. de Bruijn used the cut–and–project method –

projecting from a 5D cubic structure onto a 2D plane – to predict the Penrose structure

across all space [31]. His work thus allows explicit calculations of quasicrystalline structure

[32]. It is also an excellent example of using higher–dimensional mathematics to understand

aperiodic structure, such as that used to create the 1D Fibonacci sequence.

Additionally, an important tiling used in this thesis is the Fibonacci square grid. Its

construction will be detailed in Chapter 5, but for now, it is sufficient to say that it is built

by two sets of overlapping orthogonal Fibonacci chains. It has 4–fold symmetry, and its

relative structural simplicity compared to the tilings in Figure 2.4 make it attractive for

experimental and theoretical exploration. A 3–fold aperiodic tiling can be constructed in

a similar fashion, which is detailed in Chapter 6.

2.3 Icosahedral symmetry

The majority of intermetallic QC phases have icosahedral symmetry [4]. As this thesis

concerns experimental measurements concerning icosahedral quasicrystals (iQCs), their

structure and formalism will be considered here. The icosahedron is one of the five Platonic

solids, formed of twenty identical triangular faces. It contains six 5–fold, ten 3–fold, and

fifteen 2–fold rotational axes. An icosahedron decorated with an atom at each vertex

and an additional central atom has a packing factor of 0.76, greater than hexagonally

closed packed (hcp) systems (0.74). However, unlike hcp–based structure, icosahedra are

incompatible as periodic unit cells, i.e. they lack translational symmetry in any direction.

Thus iQCs are aperiodic in all 3 dimensions.

Figure 2.5 shows six reciprocal space vectors which define the vertices of an icosahedron.

These vectors are used to index icosahedral diffraction patterns. They can be projected

along any of the high symmetry axes to index the relative rotational orientation of a QC,

as shown. They are labelled as a1 = a(0,0,1), aj = a(sinθcos2πj /5, sinθsin2πj /5, cosθ)

where j =2,...,6, and tan θ = 2. The vectors (a1−6) can also be labelled using generalised
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Figure 2.5: Icosahedral reciprocal vectors: (a) The six vectors required to construct an
icosahedron in reciprocal space are labelled a1...6. (b) Clockwise, from top: the projection
of the vectors in (a) along one of the 5–fold, 3–fold, and 2–fold symmetric axes.

Figure 2.6: Icosahedral indexing: (a) Diffraction pattern obtained from the quasicrys-
talline phase of Al–Mn. The pattern is indexed with respect to the icosahedral vectors in
Figure (2.5). Reproduced from [1]. (b) Line profile of the non–indexed vector in (a). The
profile shows τ–scaled spots of high intensity, as predicted by Figure (2.3).
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Figure 2.7: Occupation domain building blocks: (a) Rhombic hexacontahedron (or
dodecahedral star). (b) Rhombic triacontahedron (c) Rhombic icosahedron.

Miller indices as: [100000], [010000], [001000], [000100], [000010], [000001] [5].

Figure 2.6 indexes the original Al–Mn diffraction pattern observed by Shechtman [1].

Here, a1, the 5–fold direction, is perpendicular to the page. The pattern appears 10–fold

due to inversion symmetry. A line profile along one of the high symmetry axes produces a

set of Bragg peaks analogous to the 1D diffraction pattern in Figure 2.3.

2.3.1 Higher–dimensional crystallography

Periodic crystals are defined in reciprocal space by a lattice with three basis vectors i.e.,

their dimensional rank n = 3. The notion that iQC diffraction patterns are indexed

with six reciprocal space vectors confirms that icosahedral symmetry is incompatible with

periodic order in 3D. It also infers that their structure is embedded in a periodic, higher

dimensional lattice of rank n = 6. Indeed, icosahedral structures can be produced by a cut

and projection from an abstract 6–dimensional hypercube [4,6,20,33,34]. Here, analogous

to the projection method of the Fibonacci sequence, acceptance windows (often called

‘occupation domains’, or ODs), are decorated with atoms and placed at high symmetry 6D

lattice points. When the lattice is cut along an irrational slope and projected to 3D space,

the intersection of slope and occupation domain produces a 3–dimensional quasilattice

with icosahedral symmetry. Three types of quasilattice exist (primitive, body–centred,

face–centred), dependent on the type of periodic hyper–lattice used [35].

The structure factor of a quasicrystal can be calculated by the Fourier transform of
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these occupation domains, so careful calculation of its geometry is important [34]. Early

calculations considering spherical ODs for iQCs gave a rough atomic model of the quasicrys-

tal structure for, e.g. i–Al–Pd–Mn [36]. However, this method often caused unphysically

short atomic distances, and so, a polyhedral shape was considered for ODs. In the case of

iQCs, it is important to describe ODs with building blocks that exhibit icosahedral sym-

metry in order to describe an icosahedral system [37]. Using i–Al–Pd–Mn as an example

again, Yamamoto et al. calculated that ODs could be constructed using three icosahedral

building units, the dodecahedral star, rhombic icosahedron, and rhombic triacontahedron

that then decorated a 3D Penrose tiling, Figure 2.7 [37].

2.4 Cluster model

The use of hyper–dimensional maths to create quasilattices which exhibit icosahedral sym-

metry under diffraction is a crucial step towards understanding the structure of iQCs.

However, simply indexing the diffraction patterns of these quasilattices or real QCs does

not tell us the precise atomic structure of a QC, or, where the atoms are. We can use a

simple example to illustrate. If we consider a Penrose P3 tiling (or any aperiodic tiling), it

is locally isomorphic i.e. it can be shown that finite patches of an infinite aperiodic tiling

are identical. (Note: this is not the same as translational symmetry). Considering this,

we see that three structurally different areas of a Penrose P3 tiling, which share locally

isomorphic patches, produce three essentially identical diffraction patterns due to their

similar structure factors, Figure 2.8 [38, 39]. Conversely, this infers that any number of

precise but unique structures can be obtained from QC diffraction patterns.

2.4.1 Approximants

A route that has proven fruitful for understanding QC structure is to look to intermetallics

that closely approximate quasicrystals, known as approximants, whose structures can be

unambiguously solved. There are a few factors for this motivation. First, obtaining a phase

of matter which offers a periodic ‘cousin’ to an aperiodic material has obvious mathematical

and modelling advantages. Second, the chemical composition of approximants and QCs are

typically close, leading to similar physical properties [40]. In fact, approximants have been

described as ‘the missing link between quasicrystals and periodic crystals’ [40]. Structural

refinement can thus be achieved by close comparison of known approximant structures to
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Figure 2.8: Locally isomorphic Penrose tilings: Top: Three structurally distinct
patches of the Penrose P3 tiling. Highlighted are common motifs. Bottom: Diffraction
patterns from each patch, which are essentially identical. Reproduced and modified from
[34].

model QC structures.

On a general note, approximant structure (or indeed, any periodic structure) can be

modelled using higher–dimensional crystallography, by cutting through a 6D lattice by a

rational slope. We can decorate the 6D lattice with ODs to match the experimentally

observed approximant structure, and then make comparisons to the QC partner. Thus,

refinements of the approximant OD can lead to better models of the QC OD. Returning

to the 2D analogy in creating the Fibonacci sequence using the cut and project method in

Figure 2.2, if our angle of intersection is such that cot α = 2, we create a periodic chain of

LLS sections (a 2/1 ratio of L to S ). As the slope is tilted towards cot α = τ , we find longer

and longer repeatable units of approximation e.g. LLSLS, LLSLLSLS (LS ratios of 3/2,

5/3 etc.) [4]. Approximants are categorised by these ratios, where higher order Fibonacci

ratios more closely represent true QC structure.
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Figure 2.9: Clusters: (a) Mackay cluster: first shell is an Al/Si icosahedron. Second shell
is a Mn icosahedron. Third shell is an Al/Si icosidodecahedron. (b) Bergman cluster:
first shell is an Al/Cu icosahedron. Second shell is a Li dodecahedron. Third shell is an
Al/Cu icosahedron. (c) Tsai cluster: first shell is a Cd tetrahedron. Second shell is a Cd
dodecahedron. Third shell is an Yb icosahedron. Fourth shell is a Cd icosidodecahedron.
Fifth shell is a Cd rhombic triacontahedron.

On a specific note, we can take the α(Al–Mn–Si) approximant as an example of the

relationship between approximants and quasicrystals. Here α refers to one of the two

structures observed in this phase. Cooper and Robinson used diffraction and calculation

of atomic structure factors to understand the α(Al–Mn–Si) system, concluding that the

unit cell contained 138 atoms, arranged in ‘different coordination polyhedra’ [41]. These

polyhedra were identified as 54–atom Mackay clusters which were attached by Al octohedra

[40, 42]. The Mackay cluster is a hierarchical system of concentric atomic shells, packing

space densely in an icosahedral fashion [43]. It is constructed by an Al icosahedron, a

Mn icosahedron, and an Al/Si icosidodecahedron, Figure 2.9(a). After quasicrystals were

discovered, the α(Al–Mn–Si) structural system was found to approximate the i–Al–Pd–Mn

QC [42]. This gives the indication that Mackay clusters play a role in the i–Al–Pd–Mn
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Figure 2.10: Coordination polyhedra in face–centre aluminium: The range of poly-
hedra found around a single Al atom in face–centred Al. Reproduced from [46].

QC structure.

In general then, clusters can be used to understand both quasicrystal and approximant

structure. For icosahedral approximants, we can use Mackay, Bergman, and Tsai–types

[6, 43, 44], whose geometries are shown in Figure 2.9. The three cluster systems are also

known as the Al–Mn–Si, Zn–Mg–Al, or the Cd–Yb classes respectively, in relation to

the approximant/QC system type they help to classify. Within this thesis, two types of

quasicrystal have been used, differentiated not only by their constituents, but also by their

structure type. For example, i–Al–Pd–Mn can be modelled using a pseudo–Mackay cluster,

whilst i–Ag–In–Yb is isostructural to the Cd–Yb cluster model. Both types of these cluster

models will be discussed in greater depth within the next section.

2.4.2 Clusters in iQCs

Although clusters build approximant structure, it does not necessarily prove their stability

within intermetallic quasicrystals. In fact, the existence of a cluster-based QC system is

still debated, where even the definition of a ‘cluster’ in a QC is questioned [45,46]. Whether

clusters are purely geometrical or have structural stability, and whether adjacent clusters

can overlap are contested, open questions [47]. Certainly, there is an argument against

arbitrary geometric constructions i.e., creating atom–decorated polyhedra in the bulk and

assigning them as ‘clusters’. An excellent example is the coordination polyhedra which

can be formed around any Al atom in face–centred aluminium, shown in Figure 2.10 [46].

Ideally, these clusters should have some chemical or electronic stability. However, it is

certainly true that conceptualizing clusters as building blocks when analysing QC structure

is important and useful.
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Nevertheless, at this stage, we can describe iQC structure using one of the three

cluster–types as a basis centred at the vertices of a quasilattice projected from 6D space [45].

A good example is the Cd–Yb cluster system, the first stable binary quasicrystal. The pro-

jected structure from the approximant and QC occupation domains fits excellently, and

its relative lack of chemical complexity allows for a more precise model than ternary or

quaternary QCs, as there is a distinct difference in where each atom type lies based on

structure factor/electron density calculations [6].

2.5 Icosahedral quasicrystal surfaces

No known icosahedral quasicrystal surface (or for that matter, related approximant) has a

surface reconstruction [5]. As such, we can investigate energetically stable 2D cross sections

of a QC using a variety of surface–sensitive techniques. This can assist with the confirma-

tion/refinement of structural models: whilst the surfaces of QCs have been investigated

due to their advantageous macroscopic properties (such as low friction, high hardness, and

catalytic activity [15,48,49]), microscopic studies offer an interesting structural foil to the

higher–dimensional methods. The 5–fold surfaces of the i–Al–Pd–Mn and i–Ag–In–Yb

systems will be discussed here, as these QCs are relevant for this thesis.

A large body of work has concentrated on 5–fold iQC surfaces. The motivations are

two–fold. First, in general, these orientations are the most energetically stable – producing

atomically flat terraces when sputtered and annealed with little to no surface corrugation

[5]. Second, they are attractive because of their unusual symmetry. The corollary is that

the 2–fold and 3–fold iQC surfaces are less well explored.

2.5.1 5–fold Al–Pd–Mn

The bulk structure of i–Al–Pd–Mn can be described by pseudo–Mackay clusters which

decorate a 3D quasilattice originating from a face–centred hypercube [36]. Here, the inner

icosahedron of a Mackay cluster is replaced by a partially occupied dodecahedron, and a

central atom [50]. Refinements to this model include an interpenetrating pseudo–Mackay/

Bergman cluster, and ‘two types of icosahedral clusters and two types [of]...Mackay–type

clusters’ [5,37,51,52]. A side–view of a pseudo–Mackay cluster is shown in Figure 2.12. Blue

atoms are Al, yellow are Pd, and red are Mn. The positions of the inner Mn dodecahedron

have been randomly removed to give only 7 atoms.
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Figure 2.11: 5–fold Al–Pd–Mn surface: (a) STM image (10×8.7 nm2) of the 5–fold
Al–Pd–Mn surface. A white flower and dark star are highlighted by two pentagons. (b) A
patch of the P1 Penrose tiling is overlaid on (a) linking white flower centres, highlighted
by blue circles. (c) Deflated tiling from (b) (edge length = 7.8 Å) links bright features.
Reproduced and modified from [53].

LEED and helium atom scattering (HAS) analysis indicated that after sputtering and

annealing, the surface perpendicular to the 5–fold orientation is atomically flat and ex-

hibits 5–fold symmetry [5, 18, 54–56]. Likewise, comparisons of bulk reciprocal vectors

and surface–projected reciprocal vectors using x–ray diffraction (XRD) and HAS showed

that the surface is bulk truncated, with no reconstruction observed [5]. STM likewise

indicated an atomically flat surface, with a step–terrace morphology. Here, steps form

Fibonacci sequences with two heights, S and L [57–59]. Atomically resolved STM showed

features described as ‘white flowers’ and ‘dark stars’ which are linked to the truncations

of pseudo–Mackay/Bergman clusters [53]. The white flowers have been determined as in-

tersections of pseudo–Mackay clusters with a central Mn atom. The specific nature of the

dark stars is disputed dependent on the bulk model, with the most recent interpretation

being that they are produced by intersected Mackay clusters at a different height to the

white stars [60,61]. The centres of pseudo–Mackay clusters can be connected by a Penrose

P1 tiling of τ2×7.8 Å, with a deflated tiling of edge length of 7.8 Å linking other bright

features (Figures 2.11(b, c) respectively).

A calculation based on a bulk model of pseudo–Mackay/Bergman clusters gives a sur-

face structure which can also be characterized by a P1 tiling of 7.76 Å, where tiling ver-

tices intersect truncated Bergman clusters [62]. These calculations also predicted the white
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Figure 2.12: Cluster and plane model: A side view of a pseudo–Mackay cluster shows
how atomically flat surfaces are produced. Three planes with their constituents are high-
lighted.

flower and dark star structures, indicating that Al and Mn appear as brighter spots with

STM [62]. Here, the white flowers were also attributed to truncated Mackay clusters,

whilst the dark stars were deemed to be either truncated Bergman clusters, or surface

vacancies. Comparisons between these STM studies, dynamical LEED, and the refined

structure model [52,54,63] indicated the topmost surface layers are Al–rich, containing no

Pd.

The planar structure observed by these surface–sensitive techniques may seem at odds

to the proposed cluster model. However, consider the side–view of a pseudo–Mackay clus-

ter, Figure 2.12. Here, we are viewing perpendicular to the 5–fold orientation, i.e. along

the surface. We observe planes of varying density depending on their constituents i.e.

mixed planes of Al, Pd, Mn. The comparison between STM step–heights, LEED, and

the bulk model led to an agreement on how atomically flat planes could be observed

at a cluster–based bulk–truncated surface. However, Ebert et al. also explored a cleaved

i–Al–Pd–Mn surface, with no sputter–anneal treatment. Here, they observed rough protru-

sions with separations consistent with a Mackay cluster–model [64]. A lack of intra–cluster

resolution has left these results open to differing interpretations.
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2.5.2 5–fold Ag–In–Yb

Icosahedral Ag–In–Yb is isostructural to i–Cd–Yb, with Ag–In replacing Cd in equal

parts [65]. The advantage of studying the i–Cd–Yb system is the high level of structural

detail obtained from the cluster model [6]. However, the high vapour pressure of Cd makes

i–Cd–Yb unsuitable for study in ultra high vacuum (UHV). Although the specificity of the

chemical sites are lost (i.e. positions of Ag–In atoms in the Cd shells contained within the

Cd–Yb cluster), i–Ag–In–Yb is suitable for surface study under vacuum.

X–ray photoelectron spectroscopy (XPS) showed that after annealing, the 5–fold Ag–In–

Yb surface retained its bulk chemical composition [65]. STM revealed a step–terrace struc-

ture, again with L and S steps [66]. However, these steps do not directly follow a Fibonacci

sequence. Rather, it can be shown (along the 3–fold axis) that groups of steps are expected

to follow a Fibonacci sequence, whereby, for example, (3L+ 2S)/(S + 2L) gives τ . Occa-

sionally, less preferred medium M steps were observed, where L ∼ M + S.

Figure 2.13: Cd–Yb cluster: A side–view of the Cd–Yb cluster oriented along one of its
5–fold axes. Each shell is shown with the exception of the 1st. The atoms of each shell
are coloured, and the colour scheme used here is consistent through this thesis. The 2nd is
yellow, the 3rd green, the 4th blue, and the 5th red. A golden atom is the cluster centre.
Labelled is the surface plane. The sticks of the 5th are shown only, for clarity.
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Figure 2.14: 5–fold Ag–In–Yb surface: (a) STM image (30×30 nm2) of the 5–fold
Ag–In–Yb surface. Highlighted are pentagons surrounding cluster centres predicted by
the Cd–Yb model. (b) Model of the Cd–Yb system, where green circles are Yb atoms,
red circles are Cd, and blue circles are the cluster centres. A Penrose P1 tiling of edge
length 2.5 nm is overlaid. (c) Model schematic of one of the pentagons observed in (a).
(d) Negative bias STM image of feature (c), showing Ag/In sites. (e) Positive bias STM
image of feature (c), showing Yb sites. (a) reproduced from [67]. (b–e) reproduced
from [66].

As previously discussed, Cd–Yb clusters are formed by tetrahedron, dodecahedron,

icosahedron, icosidodecahedron, and rhombic triacontahedron shells, referred to as the

1st, 2nd, 3rd, 4th, and 5th shells respectively. Figure 2.13 shows a side view of a Cd–Yb

cluster, where each shell is coloured separately. The 1st shell (the tetrahedron) is omitted

as it is often not included in surface models, expanded upon in Chapter 7. The cluster

centre is marked as a golden atom. The 5–fold i–Ag–In–Yb surface was found to truncate

high–density regions of the Cd–Yb bulk model, which intersected the centres of the clusters,

producing flat planes of atoms analogous to Figure 2.12, highlighted in Figure 2.13 [66].

Chapter 7, Figure 7.2, shows an example of how clusters in 3 dimensions produce a surface

plane with different shell constituents.

The surface structure of the 5–fold Ag–In–Yb orientation was therefore found to be

dependent on the Yb icosahedron and Ag/In icosidodecahedron shells, with rings of Yb

and Ag/In atoms forming pentagonal motifs, shown in Figure 2.14. At a negative tip

bias (occupied sample states), Ag/In is resolved, whilst positive bias (unoccupied sam-
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Figure 2.15: Decagonal QC surface: (a) Model of two decagonal QC planes. Grey
circles are Al atoms, black, transition metal. Larger circles are in the surface plane, smaller
are in the plane below. A rhombus tiling links cluster centres together. (b) STM image of
the 10–fold d–Al–Ni–Co surface. Cluster centres are linked by a Penrose P3 tiling. Defects
in the tiling are highlighted in bold white. Reproduced and modified from [5].

ple states) resolves Yb. These findings are consistent with theoretical calculations which

show that unoccupied states of Cd–Yb are dominated by Yb–5d levels [66, 68]. Similar to

i–Al–Pd–Mn, a Penrose P1 tiling can be overlaid on the substrate, with an edge length of

2.4 nm. Here, the tiling was shown to explicitly intersect cluster centres.

2.5.3 Decagonal quasicrystals

Although not relevant for this thesis, a short summary of decagonal quasicrystals (dQCs)

and an example surface will be given for completeness. Unlike iQCs, decagonal qua-

sicrystals are not aperiodic in all directions. Rather, they can be considered as a set of

quasicrystalline planes stacked along a 10–fold rotational axis. The separation of these

planes along the QC’s 2–fold axis is periodic [5]. The much–studied d–Al–Ni–Co phase

will be discussed here.

The d–Al–Ni–Co quasicrystal is found in a variety of phases, either Ni or Co rich [5].

Each of these phases are structurally similar, however, not identical. They can be con-

sidered to be composed of columnar ‘clusters’ of stacks of quasicrystalline planes, roughly
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20 Å in diameter [69, 70]. Dependent on the phase, these clusters can be matched to the

vertices of a rhombic Penrose tiling (in a phase known as the type I superstructure), or

a pentagonal tiling (Co–rich phases). Each plane in the stack has 5–fold symmetry, with

neighbouring planes rotated by 36◦ to each other, producing 10–fold symmetry overall. As

with the icosahedral quasicrystals discussed, the 10–fold surface of d–Al–Ni–Co exhibits no

reconstruction, although a dynamical LEED study showed a slight vertical relaxation [71].

Figure 2.15(a) shows a model of the 10–fold d–Al–Ni–Co surface plane. Here, two

quasicrystalline planes are superimposed to give 10–fold symmetry. Grey circles are Al,

black circles are the transition metals. These black positions are filled specifically by Ni or

Co dependent on the phase. The centres of columnar clusters are linked with a Penrose P3

tiling. Figure 2.15(b) shows an STM image from the 10–fold d–Al–Ni–Co surface. Clusters

are circled, and are linked by a Penrose P3 tiling. Bold tiles indicate patches which break

the ideal Penrose tiling, suggesting a randomized tiling [5].
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Thin film growth on quasicrystals

Thin film growth has a wide range of uses, with applications in optics, mechanics, elec-

tronics, and chemistry. Modern techniques for thin film growth allow close–control of

constituents and thus a certain degree of property tunability. Thin film growth in terms of

adatom adsorption at surfaces will be discussed here, with a view to looking at epitaxial

modes on crystalline and quasicrystalline surfaces. This review will give context to the

results presented later in this thesis.

3.1 Adsorption energetics

The surfaces of crystals were first considered as part of an effort to understand crystal

growth, with the development of the terrace–step–kink model (TSK) [72,73]. A substrate

contains atoms with reduced nearest neighbour coordination compared to the bulk crystal.

Dependent on their position in the TSK model, these atoms may be more or less suitable

for seed points – for example, those with low coordination numbers are more viable for

initiating nucleation. The TSK model accurately predicted the presence of step–terrace

morphology upon crystal surfaces, observed by techniques such as STM.

Upon the creation of a surface from the bulk material, inter–atomic bonds are broken,

leading to a surface free energy. It follows that the surface is less energetically favourable

than the bulk, with a certain degree of surface tension expected. Adsorption of adatoms

(here generalised as atoms or molecules) may reduce the surface free energy. Adsorption is

dependent on the flux of the incident atoms, and the sticking coefficient of the surface (i.e.

probability an adatom will stay on the surface). Other factors include the temperature of

27
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Figure 3.1: Thin film growth modes: Frank–van der Merwe (layer–by–layer),
Volmer–Weber (island), and Stranski–Krastanov (layer–plus–island) type growth modes
shown for a range of coverages.

the substrate, and the chemical affinity between adatom and surface.

If we consider homoepitaxy (i.e. the thin film growth of like–like surface–adtom types),

it is easy to consider how surface energy will be decreased, as we are simply simulating

crystal growth i.e. replicating layers of the bulk. The structure of a heteroepitaxial film

(i.e. unlike surface–adtom types) will depend on how strong the surface–adatom interaction

is, and the lattice mismatch between the two species. In either case, a stable thin film

can be grown if the surface free energy is decreased when adatoms adsorb. Adsorbates

can be bonded to the surface by two mechanisms: either physisorption or chemisorption.

Physisorption relies on van der Waals forces, whilst chemisorption involves covalent bonding

between adatom and surface. Both schemes have an effect on the diffusion and nucleation

of adatoms (i.e. shorter diffusion lengths for chemisorbed species). Thin film growth can

be classified in three mechanisms, dependent on the surface and adatom chemistry. The

chemical potential per adatom is given as:

µ(n) = µ∞ +
[
φa − φ′a(n) + εd(n) + εe(n)

]
(3.1)

where n refers to the adatom, µ∞ is the bulk chemical potential, φa is the desorption

energy of an adatom from a layer of the same adatom type, φ′a(n) is the desorption energy

of an adatom from the substrate, εd(n) is the dislocation energy of the adatom, and εe(n)

is the adatom strain energy [74].



Chapter 3. Thin film growth on quasicrystals 29

Here, if dµ
dn < 0 (i.e. adatom–adatom interaction is favoured), we see Volmer–Weber

growth – as coverage of the adsorbate increases, adatom islands are grown [75]. If dµ
dn > 0,

(i.e. surface–adatom interaction is favoured), we observe Frank–van der Merwe growth, or,

layer–by–layer [76, 77]. Stranski–Krastanov growth is a mixture of both, forming a single

layer before growing islands [78]. This is due to the sign of dµdn flipping from an accumulation

of strain and dislocation energies. All three growth modes are shown in Figure 3.1.

The role of strain and dislocation energy becomes apparent if we again consider ho-

moepitaxy and heteroepitaxy. Homoepitaxy leads to small strain and dislocation values,

producing layers of adatoms with structure indicative of the surface (and bulk). On the

other hand, heteroepitaxy with adatoms that are highly incommensurate with the sub-

strate atoms will have correspondingly large dislocation and strain energies – resulting in

strong adatom–adatom interaction, and thus, island growth.

3.2 Quasicrystalline epitaxy

Quasicrystal surfaces offer interesting substrates for adsorption studies. From a structural

standpoint, their distinctive yet non–identical environments provide a different adsorption

landscape compared to crystalline materials [79]. As such, how adsorbates are arranged

on QCs, and why they are arranged in such fashion gives us information on QC surface

structure and chemistry.

The theoretical challenge to forming a commensurate epitaxial interface here is, of

course, the interaction between adsorbates which naturally crystallize in a periodic fashion,

and a substrate which is naturally quasicrystalline. Indeed, periodic epitaxial interfaces are

characterized by a shared interfacial unit cell [80]. Here, of course, QCs have no unit cell.

It has been shown, however, that an epitaxial interface can be formed between two crystals

so long as they share at least two non–collinear reciprocal space vectors which are projected

onto the proposed interface plane [81]. This derivation does not include periodicity as a

condition, and so is viable for the inclusion of quasicrystals [56]. Crystalline phases on QC

surfaces can be induced by heavy sputtering, depleting specific atom types preferentially,

altering the stoichiometry and thus phase [5]. Various studies investigated the interface

between these sputtered QC surfaces and the underlying QC structure as an approach

to epitaxial growth, finding vector coincidences between the two phases along axes of

rotational symmetry, as required [82–85].

Here, examples of different types of epitaxial growth on QC surfaces (not just iQCs) will
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Figure 3.2: Crystal–quasicrystal epitaxy interface: (a) FCC Al (grey circles) inter-
sects the 5–fold surface of the i–Al–Pd–Mn quasicrystal (black circles), viewed along a
2–fold axis. Other 2–fold axes are shown by dotted arrows. The [100] direction of Al is
labelled, showing that it intersects with sets of 2–fold axes at the 5–fold surface. Adapted
from [86]. (b) LEED pattern taken from the A–Pd–Mn surface, with a thick layer of
Al grown on–top. Five bright spots indicate highly crystalline islands oriented in five
directions. Reproduced from [87].

be given, classified by the level of influence the QC substrate has on adsorbate structure.

3.2.1 Rotational epitaxy

The minimum impact a QC surface can have on ordered growth is to align the natural

crystal structure of the adsorbate along one of the main axes of rotational symmetry. Here,

the surface and adsorbate energy is minimised by the lowest energy adsorbate allotrope

growing along coincidental, lowest energy rotational axes of the substrate [79, 82, 88]. For

example, nano–crystals of Al were grown upon the 5f–Al–Pd–Mn surface, with five domains

observed. Each domain exposed the [111] and [100] axes of Al to coincide with the 3–fold

and 2–fold axes of the substrate, respectively [86]. An example is shown in Figure 3.2(a).

Note that the adsorbed Al is not planar to the surface, in agreement with experiment [87].

The coincidental axes labelled match the vector requirements as discussed earlier. Similar

results (5–fold twinning) were found for Ag, Fe, Ni, Co, and Bi/i–Al–Pd–Mn, and Al,

Ag, Bi, and Xe on decagonal Al–Ni–Co (see [5, 89] for reviews). A Ag film on the 2–fold
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Figure 3.3: Aperiodically modulated Cu: (a) STM image of Cu domains oriented along
five high–symmetry axes of the i–Al–Pd–Mn surface. Rows in each domain are separated
by Fibonacci sequences. (b) LEED pattern of the Cu thin film, showing 5–fold twinning of
the Cu. The aperiodic nature of Cu perpendicular to the rows is evident by the streaking
in the pattern. (c) Schematic of how a vicinal surface could approximate aperiodic order.
Here, a1 and a2 correspond to segments along the [100] plane of a tetragonal bcc Cu
structure, with steps along b. α is the angle of the vicinal plane. Reproduced and modified
from [90,91].

i–Al–Pd–Mn surface produces an fcc[111] structure with no twinning, as aligning dense

atomic rows at the epitaxial interface leads to one rotational domain [89].

3.2.2 Aperiodic modulation

Rotational epitaxy produces thin films with crystalline order (whose structure is dependent

on the coincident lattice [82]), orientated along the substrate high symmetry axes. However,

a thin film can also be modulated aperiodically in order to maximise the coincident site

lattice with the underlying substrate (equivalent to shifts of the aforementioned reciprocal

lattice vectors).
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An excellent example of this type of growth is observed when Cu is dosed upon the

5–fold i–Al–Pd–Mn surface [92]. Up to ∼ 4ML of Cu, intra–layer interactions appear

to dominate [91]. At coverages between 5–25 ML, Cu domains grow oriented along the

high symmetry axes of the substrate. Within these domains are periodic rows pointing

in one direction which have a separation close to Cu–Cu spacing in bulk Cu. These rows

are separated by Fibonacci sequences in the perpendicular direction, with a length scale

indicative of the pentagrid used to describe the substrate [57]. Phason defects were also

detected, which is either an indication of such defects on the surface, or as a method

for relieving strain in the Cu from attempts to form a coincident lattice (phasons are

the collective motion of jumps or ‘flips’ of atoms in quasicrystals). As the interlayer

separation perpendicular to the surface is periodic throughout the film growth, the Cu is

labelled as uniaxially aperiodic. The delayed nature in its appearance (i.e. only from 5

ML and above) was explained by considering a plane vicinal to the (100) direction of a

body–centred tetragonal Cu structure [91]. Further experiments utilised the aperiodically

modulated Cu to grow a ‘checkerboard’ structure of pentacene (Pn) molecules [93]. Here,

Pn grew in a periodic–like fashion, where LS and SL segments of the Fibonacci chain

were considered indistinguishable, and as one length. This extends the chain into a more

periodic sequence [93].

3.2.3 Pseudomorphic/Templated growth

To a certain extent, the previous growth modes discussed have been pseudomorphic, in

that adsorbates are structured in an atypical manner to that of its natural crystalline

state. Here, examples will be given of overlayers that mirror structural aspects of the QC

substrates they adsorb to, i.e. pseudomorphically ‘templated’ by the quasicrystal surfaces.

These overlayers are the most studied modes in QC epitaxy. They pose intriguing questions

concerning the behaviour of adsorbate–QC systems, and present examples of limited form

single–constituent quasicrystals. The reduced chemical complexity of these systems (i.e.

containing only singular building blocks) can also help the exploration of QC behaviour,

as they act as models which completely exclude the chemistry of inter–atomic species

[67]. Successful templated films have been grown both using elemental and molecular

adsorbates across a range of QC substrates. At the atomic level, adsorbates can mimic

specific structural features from the substrate. At the molecular level, we can identify

specific atomic constituents of the surface based on their chemical interaction with the
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Figure 3.4: Al adsorption at 5–fold Al–Pd–Mn: (a) STM image (45×45 nm2) of Al
dosed upon the 5–fold surface of an i–Al–Pd–Mn QC. Red indicates the substrate, blue
indicates the adsorbed atoms. Two pentagonal features are highlighted. (b) Schematic
showing the adsorption scheme, where an Al atom adsorbs at the centre of a dark star,
providing a nucleation site for the ‘starfish’ formation. Same colour scheme as (a). Re-
produced and modified from [99].

adsorbing species. We can therefore utilise both elemental and molecular adsorbates as

chemical probes for understanding surface structure.

Elemental films

A number of reviews cover templated elemental adsorption over a range of coverages [5,

94–98]. Here, a few examples will be mentioned.

At low coverages (below 0.1 ML), both Cu and Al occupy the dark star sites of the

5–fold Al–Pd–Mn surface (Figure 2.11), forming structures which are templated by the

substrate [94, 99]. Here, the adsorbates diffuse at the surface before ‘dropping’ into the

hollow sites at the centre of the dark stars. Further adatoms can nucleate from these

‘centres’, forming pentagonal stars, or ‘starfish’. The nucleated positions (i.e. legs of the

starfish) sit at bridge sites of substrate pentagons, as shown in Figure 3.4. At higher

coverages, or when roughly every dark star is filled, a disordered ML is typically formed

[94,99].

There are a number of studies demonstrating successful high–coverage templated/ pseu-
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Figure 3.5: Pb on 5–fold Ag–In–Yb: (a) A side view of the Cd–Yb cluster, which is
oriented so that z is along its 5–fold orientation. The cluster has been truncated through its
centre, leaving a surface and vacant planes (translucent atoms). A few planes are labelled,
with their constituent shells noted. The 1st and 2nd shells are not shown for clarity.

domorphic growth. Monolayers of Bi and Sb were found to adopt the substrate struc-

ture of i–Al–Pd–Mn and decagonal Al–Ni–Co, confirmed by LEED and HAS patterns

which exhibit the requisite symmetries and diffraction intensities [56]. Bi adsorption on

i–Al–Pd–Mn was also investigated with STM, with the film proving too rough at high

coverages. At sub–ML (0.5–0.8 ML) coverages however, STM shows that Bi adopts sites

at ‘up’ orientated pentagons of a Penrose P1 tiling, enclosing a truncated pseudo–Mackay

cluster [100]. Likewise, Pb on i–Al–Pd–Mn was found to form a Penrose P1 tiling which

was τ–inflated with respect to the tiling that can decorate the substrate. Additionally,

this study investigated the properties of the Pb film, finding that a pseudo–gap is formed

at the Fermi level (minimal but non–zero states), directly correlated to its quasiperiodic

structure [101]. Other successful examples of templated growth include Pb on Al–Ni–Co,

and Sn on Al–Cu–Fe [102,103].
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A multi–layer quasicrystalline Pb film was grown using the 5–fold surface of the Ag–In–

Yb QC [67]. The growth mode of Pb in this system is unique to the previous systems,

and of relevance for this thesis. Here, we can consider a Cd–Yb cluster oriented along

a 5–fold rotational axis. If we view the cluster perpendicularly, we are looking along

the 5–fold surface. As in Figure 2.12, we see planes of atoms stacked along z, Figure

3.5. In the case for the creation of the surfaces of the i–Ag–In–Yb system, the cluster

is truncated through its centre. When Pb was dosed upon 5–fold Ag–In–Yb, each layer

adsorbed at sites which were explained by specific vacant planes of the Cd–Yb model

‘above’ the surface. This multi–layer system was the first example of a quasicrystalline

thin film that could be described as 3–dimensional. It has therefore been described as

the ‘simplest quasicrystal’, and is an excellent example of a quasicrystalline system with

reduced chemical complexity [67].

Molecular films

The variety and tunability of QC thin films can be increased by molecular adsorption.

Organic molecules were initially used to explore the chemical reactivity of QC surfaces,

with the majority of studies exploring these systems at room temperature [79,104]. These

explorations typically found no ordering of the chosen molecule. However, either by se-

lecting the ‘right’ molecule, or by using elevated temperatures (allowing surface diffusion)

templating of molecular species was achieved. In turn, the selection of adsorption sites by

the adsorbing species gives indications of surface chemistry, or even surface structure. C60

has been routinely used as it behaves isotropically (unlike more complex molecules), and

has 2–, 3–, and 5–fold symmetry – an important match to icosahedral QCs [104]. Indeed,

symmetry matching can play an important part in molecule–QC interaction [105].

C60 was chosen as an adsorbate on the 5–fold Al–Pd–Mn surface as its cage diameter

(∼7Å) is equivalent to the height of the dark star vacancies observed. At low coverages

and at room temperature, it was found to adsorb at positions which were τ–scaled, forming

sections of the pentagrid used to describe the dark star hollows [57, 106]. These results

mirror (on a different length scale) the Al/i–Al–Pd–Mn experiment detailed above (Figure

3.4). Higher C60 coverages resulted in a disordered layer.

Experiments using substrates above room temperature yielded ordered layers of C60.

These have been grown on the 5–fold Al–Cu–Fe surface, and the 10–fold Al–Ni–Co and

Al–Cu–Co surfaces (i–Al–Cu-Fe is structurally very similar to i–Al–Pd–Mn [107], Al–Ni–Co



36 Chapter 3. Thin film growth on quasicrystals

Figure 3.6: Quasicrystalline molecules: (a) STM image (40×40 nm2) of C60 forming
a quasicrystalline adlayer on top of Al–Cu–Fe. Here, bright (labelled as B) C60 adsorb
to surface Fe atoms, while dark (D) C60 adsorb to sub–surface Fe. An autocorrelation
function (inset) shows the symmetry and aperiodicity of the molecules. (b) Model of Pn
adsorbing at i–Ag–In–Yb. Here, each end of the Pn molecule adsorbs to Yb atoms (purple
atoms). Ag/In atoms are pink. Pn molecules are the dark translucent rods. (a) and (b)
reproduced and modified from [110].

and Al–Cu–Co are isostructural [108, 109]). For example, in the C60/Al–Cu–Fe system,

two adsorption sites were found, labelled as bright (B) and dark (D), Figure 3.6(a). Each

were associated with Fe adsorption sites, where the bright C60 bonded to surface Fe, and

dark C60 to sub–surface Fe. These dark C60 were suggested to slightly reconstruct the

sub–surface layer so that a bond could be made [110]. The premise that the minority

constituent (here, Fe) plays an important role in adsorption/templating mirrors some of

the findings where atomic templating was observed (Si, Bi, and Pb on i–Al–Pd–Mn all

adsorb at truncated pseudo–Mackay clusters, the centre of which is a lone Mn atom).

The implication from these studies is that, at a unique adsorption–site network, there

is a strong enough molecule–surface interaction for C60 films to grow in a quasicrystalline

manner rather than in its close–packed crystalline form [111]. These QC C60 examples

are in contrast to self–assembled C60 layers upon non–QC metal surfaces. Here, generally,

C60 grows in a close–packed (hexagonal/honeycomb) fashion with initial nucleation often
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Figure 3.7: Hydrogen–bonded 2D quasicrystal: Ferrocenecarboxylic acid on top of a
Au(111) substrate self–assembles into a quasicrystalline film with 5–fold rotational sym-
metry. Overlaid are tiles of the Penrose P1 tiling [115].

observed at step edges [112]. The lattice parameters of these hexagonally close–packed

structures are approximately equal to the Van der Waals diameter of an individual C60

molecule (1 nm). In this case, intermolecular (Van der Waals) interactions are the primary

driving force behind the structure of these films, with molecule–substrate interactions

principally affecting the properties of the film. These crystalline phases will often align

with high symmetry orientations of the surface, or will bear some indication of the sub-

strate structure – for example, reflecting the herringbone reconstruction of the Au(111)

surface [112]. Likewise, changes in brightness detected in these crystalline C60 films are

often an indication of a surface reconstruction caused by the C60, electronic effects, or are

indicative of molecular orientation on the surface [112–114]. The difference in C60 film

structure (i.e. QC or close–packed) and the interactions that mediate the film growth (i.e.

molecule–substrate or intermolecular) are demonstrated in Chapter 5.

Aside from C60, Pn was found to adsorb on the 5–fold Ag–In–Yb surface at specific

sites between two Yb atoms at room temperature. Here, the separation of these partic-
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ular Yb atoms is approximately the length of a Pn molecule. Pn was observed by STM

to show a 4–lobed structure, as opposed to its natural 5–lobed state. It was presumed

that its electronic structure was altered by the substrate and adsorption site. The Pn

positions are quasicrystalline (as determined by the substrate), and their orders of rota-

tion are commensurate with the substrate. This was demonstrated by auto–correlation

functions calculated simply using the positions and then, separately, including the rotation

of a rod–shaped molecule [110]. A further example of molecular–QC templating is that

of corannulene on the 5–fold Ag–In–Yb surface. Both at room temperature, and raised

temperatures, the molecule forms a QC layer [116].

Aside from QC surface–molecule systems, there are some examples of molecules forming

quasicrystalline arrangements outside of the influence of QC substrates that are of general

interest. Here, molecules form stable quasicrystalline arrays upon periodic substrates, or

in liquid/micellar formations [10, 13, 115, 117–119]. Figure 3.7 shows an example, where

ferrocenecarboxylic acid (FcCOOH) has self–assembled into a quasicrystalline overlayer on

a Au(111) substrate. Here, pentamers of the molecule are hydrogen–bonded in a cyclic

fashion, joined by FcCOOH dimers. An overlay of a Penrose P1 tiling highlights the

quasiperiodic ordering [115].
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Experimental Methods

4.1 Introduction

The methods used within this thesis are based on investigating surface and adsorbate

structure of quasicrystals and adsorbate overlayers on these surfaces. The techniques used

are amongst the most widespread and well–known within surface science. Here, a brief

summary of these techniques will be given, with caveats or specifics relating to quasicrystals

stated. Most examples are taken from [120], which provides an excellent summary of surface

science in general.

4.2 Ultra High Vacuum

Like any reactive metal sample, ultra high vacuum conditions are important for studying

clean quasicrystal surfaces. In air, Al–based QCs oxidize similarly to elemental Al, with

the surface passivated by nanometre thick layers of oxide similar to Al2O3 [121]. Like-

wise, the oxidation of the Ag–In–Yb QC surface is similar to the oxidation of each its

constituents [122]. In each case, the quasicrystalline structure of the surfaces is destroyed.

It is important, then, to provide an environment free of ambient gases with which to study

these surfaces. Likewise, UHV conditions are often a pre–requisite for some surface sen-

sitive techniques, due to the requirement of a large mean free path for incident radiation,

for example. The basic techniques for creating an ultra–high vacuum environment will

be demonstrated here, including how the pressure of the system is measured, as well as

sample preparation under these conditions.

39
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Figure 4.1: UHV chamber: The UHV chamber used to produce the results in Chapter
8, with highlighted parts for later discussion.

4.2.1 Pumps and gauges

A UHV chamber is a stainless steel or mumetal vessel, with appropriate ports for connecting

the various electronics used for experimental techniques. Additionally, it has ports for

windows for ease of manipulating samples within the chamber, and for pumps to connect

to. Figure 4.1 shows an example, with labelled ports and windows. Also highlighted is

a manipulator, which is used to hold the sample and to change its position within the

chamber.

To evacuate a UHV chamber to the requisite ultra–high vacuum pressure (10−10–10−11

mbar), a series of pumps are used, as no single pump can reach ultra–high vacuum pres-

sures alone. Initially, roughing pumps are used to create a rough vacuum (10−3 mbar),

before turbomolecular and ion pumps are used to reach the UHV vacuum level. Titanium

sublimation pumps can additionally be used to improve the vacuum further [120].

A rotary vane pump is a type of roughing pump, typically able to pump down to 10−3

mbar. These can be used simply to achieve a relatively low vacuum, or, to act as a backing

pump for a turbomolecular pump. Here, an eccentrically mounted rotor rotates around

a stator block. Gas on the chamber side is trapped between the rotor and stator, before

being compressed and expelled through an exhaust to the atmosphere. Figure 4.2(a) shows
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Figure 4.2: Pump schematics: (a) The schematic of a rotary vane pump. An eccentri-
cally mounted rotor spins, trapping gas between the walls of the rotor and stator block.
This compresses and expels gas through an exhaust. An oil reservoir acts as a sealant.
(b) Schematic for a turbo pump. A set of rotor and stator blades are labelled, which force
gas molecules towards an exhaust. (c) The schematic of an ion pump. Labelled are Ti
cathodes and stainless steel cylinders. Reproduced and modified from [120].

a schematic.

A turbomolecular pump also uses a set of rotor vanes, which have an angled lead-

ing edge, and are stacked between stator vanes. The rotor vanes rotate at high speeds

(50,000–100,000 RPM) directing gas molecules to its exhaust. Figure 4.2(b) shows an ex-

ample. Turbo pumps are excellent at providing vacuum conditions, yet their high rate of

rotation can induce vibratory noise when conducting STM, for example [120].

Ion pumps provide an elegant solution, having no moving parts. Here, two Ti cathode

plates are separated by an array of anodic steel cylinders. A magnetic field is applied across

the whole assembly, parallel to the cylinders. Electrons are emitted from the cathode plates,

travelling in a helical motion around the steel cylinders due to the applied magnetic field.

These electrons ionise gas molecules, which are accelerated to a cathode plate by an electric

field. Upon impact, Ti is sputtered onto the surrounding chamber walls, steel cylinders,

and cathode plates. The result is that the ionised molecule is buried into the cathode,

and neutral molecules can react with the sputtered Ti, leading to a net reduction in the

pressure. Figure 4.2(c) shows a schematic of an ion pump. The pressure of the system

can also be measured in the ion pump, as the number of incumbent ionized molecules per

second gives an indication of the overall pressure.

Finally, a titanium sublimation pump (TSP) is often used to remove further gases.
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This works similarly to the sputtered Ti from the ion pump. Here, a Ti filament is heated

by a high current, subliming Ti atoms which are sputtered onto the walls of the chamber.

Active gases interact with the Ti, reducing the overall pressure.

To pump a chamber from atmospheric pressure to UHV, the rotary and turbomolecular

pumps are used to reach pressures down to 10−7–10−8 mbar. Afterwards, the whole system

is ‘baked’ i.e. covered with a metallic ‘tent’ and heated to ∼120◦C. This is to help evaporate

and remove any residual gases, particularly water vapour. Then, the ion pump is de–gassed

(i.e. removing adsorbed gas molecules from the pump assembly) and turned on. Likewise,

other filament–based instruments are slowly degassed during or shortly after the bake–out,

to reduce contamination when they are used later.

To measure the pressure of the chamber (below 10−3 mbar), an ion gauge is used.

Similar to the measurement of pressure from an ion pump, the number of ionized molecules

which impinge upon a collector are a direct indication of the pressure of the system.

Here, again, a filament emits electrons which are attracted to a grid which is held at a

positive potential. The electrons ionize molecules and atoms in the chamber, which are then

collected, giving a current proportional to the number of molecules within the system. For

lower pressures, useful for knowing when the requisite pressure for backing a turbo pump

is reached, a Pirani gauge can be used. Here, the resistance of a filament is monitored, so

that the higher the resistance measured, the lower the pressure.

The data presented within this thesis were obtained using two separate UHV machines,

one of which is shown in Figure 4.1. This machine consists of a central chamber connected

to an STM scanner, as labelled. The chamber was evacuated to ultra–high vacuum using

a rotary, turbo, and ion pump. A TSP was routinely used in addition to these pumps. An

extra rotary and mini–turbo pump were used to evacuate a load lock – an intermediary

port between the UHV chamber and atmosphere which allows for sample insertion/removal

without breaking the main chamber vacuum. The base pressure of the main chamber was

routinely in the low 10−10 mbar range. The second UHV machine consisted of two separate,

yet connected, chambers – one ‘preparation’ chamber, and one ‘analysis’. Again, these

were evacuated using rotary, turbo, ion, and TSP pumps. A gate valve separated the two

chambers when necessary. This set–up allows complete isolation of the STM scanner and

LEED optics when preparing the sample. The base pressure of the preparation chamber

was typically in the high 10−10 mbar range, whilst the analysis chamber was held in the

mid 10−11 mbar range.
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4.2.2 Sample Preparation

Large single–grain quasicrystals can be grown using any of the typical crystal growth

techniques, such as the Czochralski, Bridgman, floating–zone, or self–flux method [123].

Each will be briefly described. The Czochralski method [124] uses a ‘seed’ crystal (i.e.

a small single–grain crystal or polycrystal with the same or similar composition of the

desired material), typically oriented along a specific direction, which is attached to a ‘pull

rod’. This seed crystal is inserted into a molten solution of the correct stoichiometry of the

desired alloy, which is held in a crucible. The seed is then pulled slowly from the molten

mixture, and rotated as it is pulled. As the pulled mixture cools, it crystallizes, Figure

4.3(a). Similarly, the Bridgman method uses a seed crystal inserted into a melt. Here,

however, the molten mixture is cooled gradually from the seed end, either using a heating

element with a temperature gradient, or by slowly pulling the crucible through two (high

and low) temperature zones [125].

The floating–zone method employs a polycrystalline ‘feed’ rod of the same composition

of the target quasicrystal, Figure 4.3(b). Here, a heating coil creates a high temperature

Figure 4.3: Crystal growth techniques: (a) The Czochralski method. A seed crystal
is inserted into a melt which is held (in this case) a boron nitride crucible. The melt is
heated by an induction coil. The seed is retracted and spun. The cooling melt crystallizes.
(b) The floating zone method. An induction coil melts a ‘floating’ zone of a polycrystalline
feed rod. The rod is pulled through the heating coil, so that the floating zone is moved
upwards. A single crystal is created at the bottom. Reproduced and modified from [123].
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Figure 4.4: Sample plate and sample: An example of a quasicrystal mounted to a
sample plate. Here, the sample pictured is a 10–fold Al–Ni–Co. It is mounted to the
sample plate using tantalum (Ta) wire, as shown.

zone which melts the polycrystal as it is pulled through. Single–crystal growth occurs by

moving this ‘floating zone’ from the bottom to the top of the feed rod. Finally, the self–flux

method relies on the fact that for some QC alloys, the solid QC is in equilibrium with its

melt in its phase diagram. Here then, the correct ratio of pure constituents is melted in

a crucible or tube, and slowly cooled. For each type of growth method used, a detailed

phase diagram for the relevant mixture of constituents is needed for successful growth.

Upon growth of a single grain quasicrystal, a ‘sample’ which will be used for surface in-

vestigations is produced by cleaving the ingot along the required high–symmetry direction

(deducted by Laue diffraction). These samples are typically 10–15 mm in diameter, and

perhaps 1.5 mm thick. Before insertion into UHV, these samples are polished using dia-

mond paste and a lapping film. The lapping film or paper is an abrasive material (0.01–45

µm grades), upon which a small amount of diamond paste is placed (1 mm diameter bead).

The required surface of the sample is then placed face–down onto the diamond paste, and

polished using a figure of 8 formation for approximately 15 minutes, with even pressure

applied across the sample. This ensures that no one orientation is polished favourably, or

that facets are induced. Successively finer grades of diamond paste are used (6–0.25 µm)

after each 15 minute cycle. In between cycles, the sample is washed in a beaker containing
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methanol (or other suitable solvent), inserted into an ultrasonic bath, to remove residual

paste.

After a mirror shine of the surface is produced, the sample is mounted to a plate which

can be used for manipulation inside the UHV chamber, shown in Figure 4.4. This plate is

typically made of stainless steel, tantalum, or molybdenum. The sample is fixed in place by

spot–welding tantalum wire straps to the plate. A tight fit is needed to ensure no sample

movement during surface investigation. Once the sample is mounted, it can be inserted

into the load lock of a UHV machine, which is then pumped down until it can be opened

to the main chamber, and inserted into the manipulator.

4.2.3 Surface Preparation

To prepare atomically flat surfaces, cycles of sputter–annealing are used. Sputtering is the

process of using ionised inert gases to clean the surface. Within an ion gun, a filament

emits electrons producing ions of the chosen inlet gas (here, Ar) which are then accelerated

to energies of 0.5–5.0 keV [120]. These ions are directed towards the sample. The sample is

tilted to provide a grazing angle for the impinging matter, so that the ions are not directly

embedded into the surface. Additionally, the sample is grounded, so that impinging ions

do not build up a net charge which would cause other ions to be deflected by repulsive

interactions. The drain current of the incident ions gives a measure of the number of ions

in the sputter beam. Incident ions then eject both physisorbed and chemisorbed species

from the surface, alongside surface atoms. This process therefore removes contamination,

but also causes damage to the surface structure, producing a rough topography. Typically,

surface atomic species which are not tightly bound or the lighter mass elements are ejected

preferentially. When quasicrystals are sputtered, a crystalline phase is created through

this change of stoichiometry [5, 126].

To gain an atomically flat surface, the sample is then heated, which is known as an-

nealing. This provides enough thermal energy for surface atoms to diffuse and maximise

their coordination number. It also allows for the desorption of any Ar ions which have ad-

sorbed to the surface. Likewise, it enables diffusion of atomic species from the bulk, which

replenishes the elements removed preferentially by sputtering. Repeated cycles of sputter-

ing and annealing create a flat, ordered surface which is suitable for structural analysis or

adsorption studies.
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4.2.4 Evaporation of adsorbates

To deposit adsorbates onto the surface, physical vapour deposition is used. Here, high

purity adsorbates are sublimed through either filament heating or an e–beam evaporator,

dependent on the sublimation temperature of the source material. For lower sublimation

temperatures (molecules and low–melting point metals) filament heating is often adequate.

Here, the adsorbate is contained within a high melting point cell (Pyrex, for example) with

a tungsten filament tightly wound around the cell. The filament provides conductive and

radiative heat to sublime the adsorbate, which is directed towards the substrate. Other

direct heating methods include passing a current through a tungsten foil packet which

contains the adsorbate.

For higher melting point materials, an e–beam evaporator is used. Here, the adsorbate

is either a rod, or is contained within a high melting–point crucible, typically alumina or

molybdenum based. A high voltage is applied to the rod/crucible, with a nearby heated

filament providing thermally emitted electrons which are attracted to the rod/crucible by

its high voltage bias. This provides a localised high temperature, evaporating the adsorbate

within the crucible.

4.3 Surface analysis techniques

4.3.1 Scanning Tunnelling Microscopy

Scanning tunnelling microscopy is a widely used surface specific technique developed by

Binnig and Rohrer, for which they received a Nobel prize (1986) [127]. STM explores the

joint electronic density of states of the sample surface and the tip, which gives an indication

of the surface topography. Careful consideration of data is important, as protrusions could

be topographical, or merely an increase in the local density of states.

In operation, the STM uses (ideally) an atomically sharp tip, typically made of W,

Pt–Ir, or Au, which is physically sheared or electrochemically etched ex–situ. From here,

the tip is inserted into the STM scanner which consists of piezoelectric ceramics which

govern fine control in x, y, and z. The tip coarsely approaches towards the sample, before

being finely controlled to within < 1 nm of the surface. Figure 4.5(a) shows a schematic

of the basic principle. Here, the wave functions of the surface and the closest tip atom

overlap [120]. By applying a bias to either the tip or the sample, electrons can tunnel

between the two. If we consider applying a bias to the tip, then filled surface states are
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Figure 4.5: Schematic of STM: (a) A diagram of the basics of STM. A tip is attached to
a scanner which is moved using piezoelectric ceramics. The signal from the piezoelectrics
are amplified and interpreted to give an STM image. (b) A diagram showing the principle
of quantum tunnelling to produce an STM image. φi refers to the work functions of the
sample and tip, whilst EFi are their Fermi levels. Other notations are referred to in the
text. Reproduced and modified from [120].

explored if the bias voltage is positive and vice versa for negative bias. Figure 4.5(b) shows

an example of how negative bias explores empty states. The tunnelling current produced

is given as:

j =
D(V )V

d
exp(−Aφ1/2

B d) (4.1)

where d is the effective tunnelling gap, D(V) is the electron density of states, A is a

constant, and φB is the effective barrier height of the junction between the Fermi levels of

tip and surface [120]. Inspection of Equation 4.1 reveals a high dependence of the tunnelling

current on d – the distance between tip and surface. Indeed, a change of 1Å causes an

order of magnitude difference in the tunnelling current. Lateral resolution is dependent on

the shape of the tip, so that single atom tips provide the greatest resolution (∼2Å).

STM is run in two different modes, constant current or constant height. In constant

current mode, the z piezo changes the height of the tip above the surface to keep a constant

tunnelling current set–point. The changes in z are then interpreted as topographic data.

Constant height mode keeps the tip at set height above the surface, so that topographic

changes in the surface result in a change in tunnelling current. Constant current mode is

the most widely used method, and is used in this work [120].
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Structural analysis techniques

Within this thesis, the primary interest in STM images is to identify substrate and ad-

sorbate structure. As such, it is appropriate to explain techniques/software which are

used to help deduce ordering in images. Two techniques which are used with regularity

in this work are fast Fourier transforms (FFTs) and autocorrelation functions. Both FFT

and autocorrelation function analysis are accomplished in this thesis using the WSxM and

Gwyddion software packages [128, 129]. Likewise, these packages are used for measuring

distances, heights etc.

The FFT process deconvolves any signal from an image into its sin and cosine functions,

each with its own amplitude and frequency. The transformation of a real–space image is

then represented in the Fourier domain, where each point in the Fourier domain corresponds

to the frequencies of these functions. High intensity spots in the Fourier domain correspond

to repeated ‘measurements’ of particular frequencies i.e. common separations in real–space.

Consequently, taking an FFT of an image reveals any repeated pattern in any direction.

Therefore, the rotational symmetry of an STM image may also be inferred from an FFT.

Taking an autocorrelation function of an STM image also shows its measure of order.

Here, the analysis is completed in real–space. The image matrix of an image is taken and

shifted some distance in x and y with respect to the origin. The difference between the

original and shifted image is then taken. As a consequence, any similarities between the

shifted images will give rise to a similar pattern in the autocorrelation.

If we consider quasicrystals and the Fourier transform of a 1D Fibonacci chain, then

we produce a dense set of components in the Fourier domain analogous to its diffraction

pattern in Section 2.2. As with the diffraction of a 1D chain, however, spots of appreciable

intensity in Fourier space are only found at certain frequencies. A similar phenomena

occurs when taking the autocorrelation function.

Throughout the discussion sections of the data presented in this thesis, FFT and au-

tocorrelation function analysis is used to assess the long–range structure of both substrate

and adsorbate. As previously mentioned in Chapter 2, section 2.2, if quantities which are

representative of a crystal’s long–range order are τ–scaled, then said structure is consid-

ered quasicrystalline (e.g. high intensity diffraction spots). This holds for both FFT and

autocorrelation analysis. Both techniques highlight rotational symmetries and long–range

order (through the presence of high intensity spots relating to commonly occurring frequen-

cies/separations). If we consider the FFT of a single quasicrystalline phase, the presence of
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high intensity τ -scaled spots along high–symmetry directions indicates an irrational ratio

between length scales within the structure (for example 1:τ , or S :L), which in turn indicates

aperiodicity, or, a lack of translational symmetry. By the definition used in this thesis and

the wider literature, a structure which gives such an FFT would be classified as quasicrys-

talline i.e. a structure with aperiodic long–range structure. Of course, careful analysis

is required both in Fourier and real–space to ensure that multiple (periodic) phases are

not producing sets of high intensity spots with a commensurate, rational modulation ratio

of ∼1.6, akin to the twinning argument proposed by Pauling to explain quasicrystalline

diffraction patterns [3].

STM image distortion

With the possible exception of images obtained through low–temperature operated STM,

raw STM images are rarely free of any distortion. Distortion here refers to any artefact

of the image that is not directly or graphically representative of the topography of the

surface. These can be induced by, for example, the STM tip, the piezoceramics in the

scanner, or, the interface between tip and surface. The software used here has options

for removing/fixing these, with a few examples detailed here. Plane levelling is used to

correct the fact that tip and sample are never truly perpendicular, levelling out heights

across the scan. Drift correction corrects the drift which arises from thermal expansion in

the scanner. Finally, scar removal averages out corrupted lines/points which arise from a

fault in the closed loop between tip and surface.

4.3.2 Low Energy Electron Diffraction

Theory

Low energy electron diffraction is another technique which is used to probe surface struc-

ture. Here, a beam of electrons scatter elastically from the sample surface, providing

information on the reciprocal space lattice of the surface. Low energy electrons are as their

de Broglie wavelengths are comparable to or less than inter–atomic distances at a surface:

λ =
h√

2mE
(4.2)

where h is Planck’s constant, m is the mass of the electron, and E is the energy of the

electrons. If E = 30–200 eV, the wavelength of the electron is approximately 1–2 Å.
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Likewise, their mean–free path is short, leading to elastic collisions occuring only in topmost

surface layers [120].

As this technique relies on diffraction, analysis of the deflected electron beam is re-

quired. The reciprocal lattice of a set of points in real–space is defined by:

Ghkl = ha∗ + kb∗ + lc∗

where h, k, and l are Miller indices, and a∗, b∗, and c∗ are reciprocal space vectors, related

to real–space lattice vectors a, b, c by:

a∗ =
2πb× c

a · (b× c)
, b∗ =

2πc× a

b · (c× a)
, c∗ =

2πa× b

c · (a× b)
,

Now, the wave vector of an incident (K0) and scattered (K) electron beam are related by:

K−K0 = Ghkl

and as the scattering is elastic, |K|=|K0|. Furthermore, as the periodicity of the surface

lattice is zero in the direction normal to the surface, we can say that

K|| −K
||
0 = Ghk

i.e. the incident and deflected beam only need to be considered in terms of directions

parallel to the surface. This also implies that the conservation of momentum need only be

considered for the parallel component of the wave vectors.

Now, the reciprocal lattice of the surface can be considered as a set of rods which extend

perpendicularly from the surface lattice, where the reciprocal lattice points are infinitely

dense along the rods. We can then model an incident wave vector K0 terminating at a

reciprocal lattice rod that has its origin at a surface lattice point. A sphere of intersection

(known as Ewald’s sphere) is therefore defined by the radius of the incident wave vector,

with an origin at the centre of the incident wave vector. The rods which intercept the Ewald

sphere therefore give the wave vectors K for diffracted beams, shown in Figure 4.6(a) [120].

These ‘allowed’ beams give spatial information on the surface lattice in reciprocal space.

The intensity of these beams can be interpreted to give information on the arrangement

of atoms in the surface unit cell. The technique used to discern this information is known as

LEED I–V, where the intensity of the observed diffraction spots is monitored as a function
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Figure 4.6: LEED schematic: (a) The construction of the Ewald sphere which shows
the allowed diffracted beams from an incident beam K0. (b) A schematic of the LEED
experimental setup, with an example LEED pattern from the Si(111)7×7 reconstruction.
Reproduced and modified from [120].

of changing electron energy. This is an iterative process, which is compared to calculated

I–V curves generated for a number of possible structures. For example, a LEED pattern

gives the surface reciprocal lattice. From here, an initial surface structure is proposed, and

I–V curves are calculated bearing this structure in mind. These theoretical curves are then

compared to experimental ones, and the structural model is refined until a satisfactory

match is made. The fit between theory and experiment is given quantitatively by the

reliability factor R. The lower the R–factor (< 0.5), the better the match [120].

LEED pattern of a quasicrystal

The diffraction of a Fibonacci chain was derived in Section 2.2.2. A 1D Fibonacci structure

can be described by two periodic functions, each with mutually incommensurately modu-

lated periods [20, 130]. Each function therefore is spaced periodically in reciprocal space

with sets of Bragg peaks at an incommensurate periodicity of Q1 and Q2, and additional

sets from linear combinations of Q1 and Q2. This leads to an infinitely dense set of Bragg

peaks. However, as previously shown, only a few of these peaks have any appreciable in-

tensity. This simple demonstration shows how a quasicrystal can exhibit a LEED pattern

despite its aperiodicity.
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Experimental setup

The basic constituents of a LEED unit are shown in Figure 4.6(b). These are an electron

gun with a focussing Wehnelt cylinder, and a hemispherical fluorescent screen, which is

used to observe the diffracted beams from the sample surface. The screen is held at a high

voltage for acceleration of diffracted electrons. In front of the screen are four grids, the

first of which is grounded to act as a block between the field of the screen and the sample.

The second and third grids are held at potentials close to the potential of the cathode of

the electron gun, and are used to reject inelastically scattered electrons. The voltage of

these screens can be adjusted to give the greatest signal–to–noise ratio, where the larger

the difference to the cathode voltage, the brighter the spots and background intensity. The

fourth grid is again grounded, and acts as a voltage screen between the other grids and

the field of the fluorescent screen.



Chapter 5

2–fold i–Al–Pd–Mn: clean surface

and C60 adsorption

The work contained in this chapter focusses on the 2–fold surface of the i–Al–Pd–Mn

quasicrystal, C60 adsorption on the QC phase, and other impurity phases detected at

the surface. Also of note is the introduction of the Fibonacci square grid to this thesis.

This 4–fold rotational quasicrystal plays an important role in the results discussed here.

Previously only considered as a theoretical construct, it is shown that C60 adsorbs in a

Fibonacci square grid structure at the 2–fold i–Al–Pd–Mn surface as a result of a sparse

Mn adsorption site distribution.

5.1 Introduction

In comparison to the 5–fold termination, the 2–fold surface of the i–Al–Pd–Mn quasicrystal

has been relatively under–researched. LEED and XPS studies indicated that this surface

could exhibit ‘a bulk–terminated face–centred icosahedral 2–fold surface with a bulk com-

position’ [131]. Prior to the work detailed here, two studies were successful in using STM

to gain atomic resolution of 2–fold i–Al–Pd–Mn [132, 133]. However, neither came to any

conclusive agreement on the specific nature of the surface in terms of atomic motifs, in

contrast to the body of work discussing the origin of the white flowers and dark stars of

the 5–fold surface [57–60,62].

As evidenced by STM, the 2–fold surface shows step heights that follow a τ–scaled

relationship, h × τn, where h = 0.24 nm, and n is an integer. [132–134]. These heights

53
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Figure 5.1: STM of 2–fold i–Al–Pd–Mn: (a) STM image (60×60 nm2) of the clean
2–fold i–Al–Pd–Mn surface. A row structure is visible, with bright features in rows high-
lighted, forming a Fibonacci sequence. Reproduced from [132]. (b) High resolution STM
image (10×9 nm2). Highlighted are rectangles with 1:τn edge lengths. For example, rect-
angle 1 has edge lengths of 0.480 nm and 1.257 nm (1:τ2). Reproduced from [133].

have been related to the edge lengths of pentagonal faces of Bergman clusters along the

5–fold orientation, with the conclusion that the 2–fold surface does not relax in any manner

[133]. Terraces are rough, with rows and troughs oriented in two orthogonal directions.

These features are thought to be due to missing rows of atoms in the formation of the

surface, attributed to preparation conditions [133]. Bright features in rows were found to

be separated by Fibonacci sequences with S = 1.4 nm, L = 2.2 nm, Figure 5.1(a) [132].

Likewise, rectangles with edge length ratios of 1:τn were observed, tentatively identified as

contributions from Al atoms, Figure 5.1(b) [133].

Deposition of Ag on the 2–fold i–Al–Pd–Mn surface resulted in an fcc(111) structure,

with the Ag growing along the atomic rows to produce one rotational domain [89]. Cu has

also been deposited, producing islands which show a LEED pattern which is commensurate

with the substrate – here, atomic–scale resolution of the Cu was not achieved, so a detailed

discussion on its structure was not possible [132].

The Penrose P1 tiling was used as a tool to aid structural understanding of the 5–fold

surface, connecting the centres of truncated Bergman clusters [53]). In comparison, the lack
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Figure 5.2: Fibonacci square grid: (a) Superimposed orthogonal sets of Fibonacci
chains create the square grid, composed of S×S, S×L and L×L tiles (red, green, and blue
respectively). (b) Deflation rules for each proto–tile.

of identifiable motifs makes application of similar techniques on the 2–fold surface difficult.

However, it was noted that the LEED pattern and FFT observed from the 2–fold surface

was ‘very reminiscent of the square Fibonacci tiling’, a 4–fold aperiodic tiling introduced

by Lifshitz [21,132].

The Fibonacci square tiling, or grid, can be constructed by superimposing two identical

sets of extended Fibonacci chains perpendicularly to each other, Figure 5.2. The square grid

has 4–fold symmetry, exhibits aperiodic, long–range order, and displays no translational

symmetry. Lifshitz argued that it was a model quasicrystal, and that the definition of a

quasicrystal should not depend on the exhibition of classically ‘forbidden’ symmetries. The

grid can be decomposed from the orthogonal superposition of chains into proto–tiles. They

are labelled as S×S, S×L and L×L tiles in Figure 5.2, with reference to the segments of

the chain that enclose each tile. Each tile can be inflated/deflated according to the scheme

presented in Figure 5.2(b). Indeed, it is easy to consider how such a structure could

aid characterisation of the 2–fold i–Al–Pd–Mn surface, if the length scale of one of the

constituent sets of Fibonacci sequences differed to the other, producing 2–fold symmetry.
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Similarly, basis decoration of the vertices of the grid could produce a 2-fold symmetric

structure embedded within a 4–fold framework. Lifshitz noted in his original paper that

there had been no observation of a physical quasicrystal with Fibonacci square (or cubic)

grid ordering. However, photonic properties of manufactured arrays with the Fibonacci

square grid structure have been investigated [22].

In this study, new STM images are presented, showing a conclusive structural match

to specific truncations of the bulk model structure proposed by Bourdard et al. [36]. The

surface is identified as two closely separated planes, with the bright features previously ob-

served identified as Al dimers. This surface model produces a sparse Mn distribution that

shows a Fibonacci square grid structure, with occasional τ–deflated positions. This model

successfully explains adsorption sites for the epitaxial growth of C60 at the surface, which

produces a Fibonacci square grid structure with the same length scale as the Mn distribu-

tion. This study was motivated by the previous studies of templated molecular growth on

raised temperature QC substrates, in which C60 adsorbed at minority constituents of each

surface, as described in Chapter 3.

5.2 Experimental details

An i–Al–Pd–Mn quasicrystal was polished perpendicular to its 2–fold orientation using a

series of successively finer diamond pastes (6–0.25 µm). After each polishing treatment,

the sample was washed in methanol. After insertion into UHV, the surface was prepared

by sputter–annealing treatments. Each sputter used Ar+ for 30 minutes, with an average

drain current recorded as 6.5 µA. Each anneal lasted 2 hours at 900 K. Surface ordering and

cleanliness was monitored by LEED and STM, where the diffraction pattern was indexed

with respect to the clean Cu(111) surface, measured by the same LEED optics, at the same

electron energy.

For the C60 experiments, the molecules were evaporated in–situ using a Pyrex tube

filled with the powdered C60, with a tungsten filament tightly wound around the tube.

During deposition, the substrate was held at room temperature (300 K).
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5.3 Results

5.3.1 Clean bulk–terminated 2–fold i–Al–Pd–Mn surface

LEED

The termination of the 2–fold i–Al–Pd–Mn surface (i.e. bulk–truncated, reconstruction)

can be found by indexing its diffraction pattern with respect to the six bulk reciprocal

vectors discussed in section 2.3. The spatial distribution of the projected vectors is given

in Figure 2.5. Similarly, the lengths of the vectors in the 2–fold plane can be calculated by

the projected lengths of these bulk reciprocal vectors onto the 2–fold orientation, where

each length is dependent on the angle of projection. If the reciprocal space vector length of

a diffraction spot is equal to the corresponding projected surface vector (including multiples

and τ–scaled values), then the surface can be considered to be bulk–terminated.

Figure 5.3(a) is a LEED pattern taken from the clean surface of the 2-fold Al-Pd-Mn

quasicrystal. It shows intense diffraction spots aligned along two perpendicular high sym-

metry directions. Spot positions along the 2–fold axes are τ–scaled, as evidenced by the

vector lengths of two successive spots, a = 1.41 ± 0.03 Å−1 and b = 2.25 ± 0.09 Å−1

giving a ratio of b/a = 1.6 ± 0.1. Figure 5.3(b) shows the same LEED pattern, decorated

Figure 5.3: 2–fold i–Al–Pd–Mn LEED pattern: (a) Diffraction pattern (60 eV) from
the 2–fold i–Al–Pd–Mn surface. High intensity spots are highlighted in one direction by
lengths a and b, where b = τa. (b) The 2–fold projected vectors from Figure 2.5 overlaid
onto the pattern, showing spots of high intensity along high–symmetry directions.
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with the projected vectors from Figure 2.5. Each vector points to a high intensity spot.

The projected vector lengths are calculated as: a1 = aBcos(α), a2 = aBcos(18◦), and

a6 = aBsin(α), where cot−1α = τ , and aB = 1.04 Å−1, the bulk (i.e. non–projected) recip-

rocal vector corresponding to the ‘physical space projection of the 6–D periodic reciprocal

lattice of 1/a lattice constant’ [5]. Vectors a4 and a5 are mirror symmetrical to a2 and a6

respectively. Not shown is a3, which is τ deflated from a1. The vector length of spot a in

Figure 5.3(a) corresponds to τ×a6 = 1.42 Å−1. Thus, the surface is consistent with a bulk

truncation, as reported [131–133].

STM of the clean surface

STM images of the clean surface shows similar features to those previously discussed [132,

133]. A step–terrace morphology is observed, with step heights forming Fibonacci chain

segments, where S = 0.26 ± 0.02 nm, and L = 0.39 ± 0.03 nm. Figure 5.4(a) shows an

atomically–resolved STM scan of the surface. Highlighted are two rectangles with edge

length ratios of 1:τn connecting bright protrusions (e.g. rectangle 2: 0.48 × 2.0 nm2).

Rows (on top of which the bright protrusions sit) are marked by a Fibonacci chain, where

S = 1.25 ± 0.02 nm, and L = 2.02 ± 0.02 nm. The rows and troughs of the surface

lead to a root–mean–squared (RMS) roughness of 0.046 ± 0.004 nm. An FFT of Figure

5.4(a) shows a set of spots which are τ–scaled in two orthogonal directions, Figure 5.4(b).

Labelled in one direction are τ–scaled spots of high intensity. Note that in the orthogonal

direction spots at equivalent positions are reduced in intensity, a consequence of the 2–fold

symmetry of the surface – this shall be discussed in detail later. Each of these observations

is consistent with the STM scans shown in Figure 5.1 [132,133].

The bright protrusions can be used as a rudimentary motif in analogy to the bright

flower or dark star motifs from the 5–fold surface. They are distributed in two orthogonal

directions, parallel and perpendicular to the row orientation. Sets of protrusions parallel

to the rows can be separated by segments of a Fibonacci chain, whose length–scale is

τ–inflated to the perpendicular row separation, so that S|| = L⊥. These two (τ–related)

length–scales are also a consequence of the two–fold symmetry of the surface, similar to

the ratio of spots b and a in Figure 5.3(a), or the ratio of a1 to a6 in Figure 5.3(b).

Occasionally, τ–deflated positions are also observed, so that S||/τ = S⊥. Figure 5.4(c)

shows an enhanced area of Figure 5.4(a), highlighting three sets of protrusions, with their

relationship to the row separation marked. Pairings of the spots can build 1:τn edge length
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Figure 5.4: STM from 2–fold i–Al–Pd–Mn: (a) STM image (Vb = 1000 mV, It =
0.217 nA) of the clean 2–fold i–Al–Pd–Mn surface. Highlighted are two rectangles formed
by bright protrusions, with edge length ratios of 1:τn. A Fibonacci chain separates rows.
Scale bar represents 3 nm. (b) The FFT of (a). Spots are highlighted in two orthogonal
directions, with τ–scaled separations. (c) An enhanced view from (a), showing bright
protrusions separated by a τ–inflated length scale Fibonacci chain compared to the rows.
Scale bar represents 2 nm.

rectangles. The protrusions are composed of two bright spots, forming a dimer.

The dimers and overall surface structure can be understood with respect to a model

proposed by Boudard et al. [36,135]. Figure 5.5(a) shows two closely separated planes from

the Boudard model (∆z = 0.092 nm). Typically, single dense atomic planes separated by

observed step heights can be considered as surface terminations [96]. Here, the collective

density of the two planes is equivalent to a single dense plane. Blue atoms are Al, yellow

are Pd, and red are Mn, where the Mn atoms are the centres of the pseudo–Mackay

clusters [50]. The larger atoms are the top surface plane. A side view of the planes shows

their height difference, and relative composition (i.e. no Mn in the sub–surface plane).
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Figure 5.5: Model of the 2–fold i–Al–Pd–Mn surface: (a) Top: Surface model
consisting of two closely separated atomic planes. The top plane has enlarged atoms
compared to the bottom plane. Blue atoms are Al, yellow are Pd, and Mn are red. Dimers
of Al atoms are highlighted. Bottom: The separation of planes as viewed perpendicularly
to the surface. (b) Same as (a), but with Fibonacci square grid tiles linking Mn atoms
together. Here, S =1.26 nm, L = 2.04 nm. A τ–deflated Mn pair is marked. Scale bars
represent 2nm.

Highlighted by circles in Figure 5.5(a) are top–layer Al atoms which are separated by

0.484 nm. This distance fits very well with the intra–dimer separation measured by STM

(0.49 ± 0.02 nm). Likewise, the separation of the planes, 0.092 nm, fits with the measured

height of the dimers above the rows (0.089 ± 0.004 nm). Rows formed by surface and

sub–surface atoms are marked by parallel lines, upon which Al dimers sit. The model rows

can be separated by a Fibonacci sequence of S =1.26 nm, L = 2.04 nm, again consistent

with the row separation measured by STM (an S length is marked on Figure 5.5(a)).

Finally, the height difference between the protrusions and the darkest features, one of which

is highlighted by an arrow in Figure 5.4(a), is 0.25 ± 0.02 nm. In the model, the distance

between the top layer and the plane below the sub–surface layer is 0.24 nm, an excellent

fit. Therefore, the morphology of the surface can be explained by a partial desorption of
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the top surface layer, leaving behind Al dimers which sit atop the Al–dense rows. This

matches with the missing row theory expressed in [133]. In addition, calculations suggest

that Al/Mn atoms contribute to bright STM contrast within the i–Al–Pd–Mn system [62].

Furthermore, there is a precedent of constituents from a partially desorbed surface layer

exhibiting morphology indicative of the surface model or symmetry, for example, in the

ξ′–Al–Pd–Mn approximant [136]. Here, STM showed two planes on the pseudo–10–fold

surface, where the top layer was partially desorbed, leaving groups of atoms sitting on top

of the substrate. Isolating these groups of atoms and taking an FFT from them reproduced

the pseudo–10–fold symmetry of the orientation [136].

As a result of the model planes selected, there is a very sparse Mn distribution in the

top surface layer. The Mn atoms can be linked by a Fibonacci square grid, as shown in

Figure 5.5(b). The length–scale of the grid is the same as the row separation observed in

the model/by STM i.e. S = 1.26 nm, L = 2.04 nm. Occasionally, τ–deflated positions

occur (highlighted in Figure 5.5(b)), appearing to break long–range 4–fold symmetry.

5.3.2 Quasicrystalline C60

Dosing the 2–fold i–Al–Pd–Mn surface with C60 produces a quasicrystalline network, with

orthogonal chains of C60 separated by Fibonacci sequences with identical length scales

in both directions. Figure 5.6(a) shows an STM image with segments connecting C60

molecules – here, S = 1.26 nm and L = 2.04 nm. The majority of molecules therefore sit

at the vertices of a Fibonacci square grid, as shown in Figure 5.6(b). The occupation of

the vertices of the prescribed grid is approximately 70 %. The remaining molecules which

are not described by this grid can be labelled by a τ–deflated grid, a section of which is

overlaid on top of the original, in white. Closely separated C60 molecules at consecutive

τ–deflated positions appear squashed, as their smallest separation is S/τ = 0.77 nm, smaller

than the van der Waals diameter of individual molecules. These positions and their steric

interactions will be discussed in detail later.

Fast Fourier transforms

To assess the degree of order of the adsorbed molecular film, an FFT has been taken

from Figure 5.6, where the substrate has been filtered out so that only the C60 molecules

are visible. Figure 5.7(a) shows the FFT, which displays high intensity spots along two

orthogonal directions. First and second order spots are highlighted at the vertices of two
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Figure 5.6: C60 on 2–fold i–Al–Pd–Mn: (a) STM image (Vb = -700 mV, It = 0.217
nA) showing C60 arranged quasiperiodically on the 2–fold i–Al–Pd–Mn surface. Segments
of Fibonacci chains are marked in two orthogonal directions, linking individual molecules.
Here, S = 1.26 nm, L = 2.04 nm. Scale bar represents 4 nm. (b) Image (a), with a
Fibonacci square grid overlaid, with segments labelled in each direction. Again, S = 1.26
nm, L = 2.04 nm. On the right–hand side, a τ–deflated grid is overlaid on top in white.

concentric τ–scaled squares. Two equivalent vertices of each square are highlighted in

pink and yellow respectively. The length–scales of the k–vectors pointing to these spots

correspond to the values of S and L from the C60 grid. The high intensity, τ–scaled nature

of the spots indicates a quasiperiodic film has been produced. As expected, the spots can

form a Fibonacci square grid in reciprocal space.
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Figure 5.7: Comparison of FFTs: (a) An enhanced view of the FFT from the clean
2–fold i–Al–Pd–Mn surface (Figure 5.4((b)). Highlighted in white are τ–scaled squares.
Small pink and yellow squares highlight spots at equal k–vectors at two corners of each
white square. (b) FFT taken from the C60 contribution to Figure 5.6(a). Spots are labelled
as in (a). The scales of (a) and (b) are equal in k–space. (c) FFT calculated from a
Fibonacci square grid. Spots are labelled as in (a, b). Scale is arbitrary.

As the Fibonacci square grid exhibits 4–fold symmetry, it is pertinent to compare the

rotational symmetries of the film and the 2–fold symmetric substrate. Figure 5.7(b) shows

the FFT from the clean surface, where both Figure 5.7(a, b) are at the same length–scale.

The high intensity spots of the surface FFT therefore correspond to the length–scale of the

row separations, or S and L of the C60 grid. Figure 5.7(b) has been annotated similarly to

the FFT of the C60 grid, with τ–scaled squares. The rotational symmetries of these two

transforms can be determined by the ratio of the intensity of spots at equal k–vector lengths

in the two primary axes i.e. pink/pink or yellow/yellow. A 2–fold FFT would exhibit a

ratio above or below 1 for equivalent spots [133], whereas a 4–fold FFT would have a

ratio of exactly 1. The intensity of each highlighted spot, and thus their ratios, has been

calculated by integrating the pixel intensity around the local spot area. For the C60 film,

Figure 5.7(a), the ratio is 1.03 ± 0.01. For the clean surface, Figure 5.7(b), the ratio is 1.27

± 0.01. Hence, the FFT from the molecular film shows 4–fold symmetry, commensurate

with a Fibonacci square grid. As the k–vector length–scale is equal in both FFTs, this

difference in intensity indicates that the molecules are highlighting surface constituents

with a distribution not observed in the clean STM image.

For further comparison, Figure 5.7(c) is a Fourier transform of a Fibonacci square grid

of arbitrary length. Here, the positions and intensities of the spots are calculated using an
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orthogonal superposition of Fourier transforms of cut–and–projected 1–D Fibonacci chains,

a method set out in [21], utilising the Fourier transform calculations described in Chapter

2. The FFT is decorated as in Figure 5.7(a, b). The intensities of spots at equal k–vector

lengths is equal, as expected.

Autocorrelation functions

The long–range order of the film in real space can also be characterized by taking the

autocorrelation function of the STM data. Again, the contribution from the substrate

has been removed, so that only the C60 network is considered. Figure 5.8(a) shows the

function of the data in Figure 5.6(a), with a Fibonacci square grid overlaid, where S =

1.26 nm, L = 2.04 nm. Spots of high intensity intersect with the vertices of the grid. The

streak–like behaviour of local areas of the function is attributed to the nature of the STM

scan (i.e. the slow scan direction is parallel to the streak direction). A deformed square is

also highlighted, attributed to the C60 molecules at τ–deflated positions. Here, either steric

interactions induce a displacement (or squashing, as previously mentioned), or, inverted

Fibonacci chain segments created by τ–deflated C60 positions create a distortion. Both

points will be discussed later.

Figure 5.8(b) shows an autocorrelation function taken from a 50×50 nm2 Fibonacci

square grid model where S = 1.26 nm, L = 2.04 nm. Here, point–like objects decorate

each vertex of the grid. The autocorrelation function shows high intensity spots, with a

square grid overlaid matching the dimensions of the experimental grid in Figure 5.8(a).

The excellent fit between model and experimental functions confirms the validity of the

C60 Fibonacci grid model.

The τ–deflated C60 vertices in Figure 5.6(a) do not contribute extra sets of spots to

the experimental autocorrelation function, and are therefore at a low occupancy compared

to the vertices of the ‘original’ grid. This is revealed by the close match between the two

autocorrelation functions, as the model function does not consider any τ–deflated positions.

Indeed, as measured by STM, only ∼8% of the C60 molecules sit at vertices solely described

by the τ–deflated grid (i.e. at vertices not shared between the original and τ–deflated sites).

This is contrary to what is expected from the relationship between a Fibonacci grid and its

τ–deflated cousin: a perfect τ–deflated Fibonacci grid has τ2 the number of vertices than

the original grid1. The relative number of points in a τ–deflated grid that do not overlap

1If a chain of LSLLS is deflated to LSLLSLSL, the relative number of segments produced is ∼ τ .
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Figure 5.8: Autocorrelation function of C60: (a) The autocorrelation function from
the molecules in Figure 5.6(a), where the substrate contribution has been removed. A
Fibonacci square grid is overlaid, with S = 1.26 nm, L = 2.04 nm. A deformed square is
also highlighted, which originates from steric contributions displacing S/τ C60 molecules.
(b) A model autocorrelation function, taken from a perfectly decorate Fibonacci square
grid, again with S = 1.26 nm, L = 2.04 nm. An equivalent grid to (a) links spots of high
intensity.

with the original grid is thus τ2−1 = τ , or, τ times as many points as the original grid. This

is in stark contrast to the number of vertices occupied experimentally. Therefore, there is

little to no spatial contribution (aside from the steric deformations) from the τ–deflated

positions observed in the autocorrelation function. The same may hold for the FFT in

Figure 5.7(a). These sites may break the 4–fold symmetry of the film over an infinitely

large patch, but are at low enough occupancy so as to be considered as defects of the

grid, rather than creating a 2–fold structure. As previously mentioned, a suitable physical

decoration of the square grid could break its 4–fold symmetry.

The measurements of the grid directly from the STM image and the analysis of the

Extending this to orthogonal chains in 2–D gives τ2.
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Figure 5.9: C60 model and experimental motifs: (a) A model schematic of C60

(green) decorated Mn atoms producing S×S and S×L tiles. A τ–deflated position is also
occupied. Inset is the corresponding motif as seen by STM in Figure 5.6. (b) Inverted LS
and SL chain segments of C60 decorated Mn atoms. Vacant Mn atoms are at τ–deflated
positions. Inset is the corresponding motif as seen by STM in Figure 5.6. C60 orientations
are arbitrary.

FFT patterns and autocorrelation functions all point to an adsorption network with a

Fibonacci square grid distribution that exhibits a minimal amount of τ–deflated positions.

As introduced with the surface model in Figure 5.5, we see that Mn atoms in the surface

plane match these attributes exactly, whilst Al and Pd adsorption sites are too densely

distributed, and would produce a disordered film. Comparisons made below between model

Mn sites and experimental C60 motifs also confirm this theory. Furthermore, previous

studies have shown that Mn can act as active adsorption sites on QC surfaces [137].

Models of C60 motifs

C60 adsorption sites on the surface can be rationalised with reference to Mn atomic posi-

tions. The insets in Figure 5.9(a, b) show a couple of C60 motifs taken from Figure 5.6. The

main figures show models of these motifs using the model surface structure. Figure 5.9(a)

shows S×S and S×L tiles, with a τ–deflated position also occupied. As evidenced by the

STM inset, the C60 at the S/τ position is deformed, or slightly displaced by this small sep-

aration presumably due to the steric interaction between the neighbouring molecules. Such

distortions will then translate into the autocorrelation function, as previously discussed.
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Figure 5.10: 2–fold and 5–fold model comparison: The relationship between the
2–fold and 5–fold Mn distribution in i–Al–Pd–Mn is shown. The 5–fold orientation is
coloured pink, with Mn atoms joined by a Penrose P1 tiling of edge length 0.77 nm. The
2–fold orientation is cream, with Mn atoms joined by a Fibonacci square grid of S = 1.26
nm, L = 2.04 nm. Model C60 molecules decorate a patch of the grid, and a 3–D STM
image is overlaid, showing the occupancy of the square grid tiles.

However, the S/τ positions can be occupied without steric distortion. Figure 5.9(b)

shows two C60 occupied segments of a Fibonacci chain which are inverted i.e. LS and SL.

The inversion occurs due to the particular occupation of the local τ–deflated Mn positions.

Again, this may translate into a distortion of the autocorrelation function of the STM

image, as two separate mirror–inverted Fibonacci chains are represented here. Combined

with the STM, FFT, and autocorrelation analysis, the fit to these model motifs indicates

that Mn atoms at the surface provide a sparse adsorption network for the C60 to grow

a Fibonacci square grid. Furthermore, as C60 is an electron acceptor [138], and Mn an

electron donor [105], there is also an electronic motivation for this adsorption scheme.

Additionally, as previous mentioned, the k–vector length–scale of the FFTs in Figures

5.7(a, b) are equal, showing spots of high intensity at real space lengths indicative of the

either the C60 grid or the row separation. The extra spots (and increased intensity of shared

spots) of the molecular FFT therefore highlight surface constituents with a distribution

not observed in the clean STM image, i.e. the Mn network.

The relationship between the 5–fold and 2–fold Mn distribution in i–Al–Pd–Mn is

shown in Figure 5.10, where a slab of the model structure is shown with only Mn atoms.
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The 5–fold orientation (pink) is linked with a Penrose P1 tiling, and the 2–fold (cream) by

a Fibonacci square grid. For comparison, model C60 molecules decorate a section of the

grid, and a 3–D STM image is overlaid of the same tiles. The L lengths labelled correspond

to the size of the grid, and to a collection of step heights between terraces, both 2.04 nm.

5.3.3 Other surface phases observed on the clean surface

During investigation of the clean quasicrystal surface, several other structural phases were

observed. Previously, an orthorhombic domain was described in this system [132]. Prepa-

ration conditions and sputtered QC surfaces lead to similar observations on the 5–fold

surface [139, 140]. The phases discussed here can be considered either as facets of the

2–fold surface, or as a separate phase produced by impurities. Each of these structural

differences were observed after using the same preparation conditions as to obtain the clean

quasicrystal surfaces. The domain sizes of each phase were on the order of 100 nm or less,

unsuitable for conducting elemental analysis of their constituents (via XPS, for example).

Figure 5.11(a) shows an STM scan which displays aperiodically spaced, triangular

protrusions. Vertices of these triangles can be linked with a Fibonacci chain of S =

0.43 ± 0.04 nm, L = 0.76 ± 0.05 nm, as labelled. This L value corresponds to the edge

length of the Penrose tiling which decorates the Mn distribution in the 5–fold surface, or

the S/τ separation of Mn atoms in the 2–fold surface. Therefore, it is suggested that

this domain is a facet along the 3–fold orientation, with a Mn dense surface forming a

quasicrystalline arrangement of triangles. A model motif of Mn has been overlaid, obtained

from the same model used to describe the 2–fold surface. The fit of the model suggests a

partially desorbed surface layer.

Figure 5.11(b) shows a periodic phase, with a unit cell of a = 0.64± 0.02 nm, b =

0.62 ± 0.02 nm, highlighted. Figure 5.11(c) is a rectangular phase, with a unit cell of

a = 0.56 ± 0.08 nm, b = 0.42 ± 0.02 nm, also highlighted. Both surface domains can

be explained by planes of the body–centred cubic β–Al–Pd phase, which has a lattice

constant of 0.304− 0.306 nm [141]. As previously mentioned in section 3.2.1, crystalline

and quasicrystalline structures may have high symmetry axes which coincide. Metastable

films of the β–Al–Pd phase have been observed at the i–Al–Pd–Mn surface after sputtering

of high–symmetry orientations [136, 140]. Considering this, the phases shown in Figure

5.11(b, c) are tentatively identified as the [100] and [112] directions of the β–Al–Pd phase.

Representations of each model unit cell are overlaid on each image. For Figure 5.11(b),



Chapter 5. 2–fold i–Al–Pd–Mn: clean surface and C60 adsorption 69

Figure 5.11: Different surface domains: (a) 3–fold facet with a Fibonacci sequence
indicated. A model Mn distribution is overlaid. (b–d) shows unit cells with a and b
values in the text. Each also shows the relationship between model structures and those
observed by STM. Scale bars represent 1 nm. (b) The β–Al–Pd(100) surface. (c) The
β–Al–Pd(112) surface. (d) Either the 2–fold surface of the ξ′–Al–Pd–Mn approximant
(left model), or the β′–Al–Pd(1̄01̄) surface (right model). An arrow indicates a row ‘flip’.
Underneath are side views for each model showing how the row structure is formed.

the β–Al–Pd(100) unit cell would be cubic, with a = b = 0.304–0.306 nm. It is presumed

that the unit cell measured by STM (approximately twice the model structure) is due to

a lack of atomic resolution, and that clusters of atoms are represented by each protrusion.

Indeed, there is a good match (± 3%) between twice the model value and those measured

by STM. The β–Al–Pd(112) unit cell is a = 0.528 nm, b = 0.431 nm. Here, there is a good

match with b measured in Figure 5.11(c): ± 3 %. If only either Al or Pd are resolved,

the measurement of a is doubled compared to the model. Considering this, the model and

experimental values match within ± 6%.

Finally, Figure 5.11(d) displays another periodic phase, characterized by bright and
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dark rows. The unit cell is measured as: aSTM = 0.85 ± 0.01 nm, bSTM = 0.45 ± 0.03nm

as labelled. A defect or dislocated row is highlighted by an arrow. This phase can be

tentatively identified as either the 2–fold orientation of the ξ′–Al–Pd–Mn approximant

(i.e. the ξ′–Al–Pd–Mn(100) surface), or the β′–Al–Pd(1̄01̄) surface.

The ξ′–Al–Pd–Mn approximant unit cell is given as: aξ′ = 2.35 nm, bξ′ = 1.66 nm,

cξ′ = 1.23 nm [36]. Here, the 2–fold orientation is perpendicular to a, giving a surface unit

cell of bξ′ = 1.66 nm, cξ′ = 1.23 nm. When compared to STM measurements, aSTM =

bξ′/2 (±3%) and bSTM = cξ′/3 (±9%). A model has been overlaid on Figure 5.11(d, left)

for comparison, with a unit cell highlighted in white. The comparatively large difference

between bSTM and cξ′ can be considered as a modulation of the separations of pairs of

atoms along each row (an example is highlighted), giving an average value that roughly

corresponds to cξ′/3. Here, it is presumed that the two atoms are resolved as one protrusion.

For example, if we take the Mn–containing row, the average separation of atom pairs is

0.50± 0.06 nm, within error of the value of bSTM .

Conversely, the β′–Al–Pd phase has a unit cell aβ′ = 1.57 nm, cβ′ = 0.53 nm [142]. The

[1̄01̄] direction consists of mixed planes of Al/Pd separated by planes of either pure Al or

pure Pd, depending on stoichiometry. The mixed plane creates a row structure of either

Al or Pd atoms that forms a surface rectangular unit of bβ′(1̄01̄) × aβ′(1̄01̄) = 0.48× 0.78

nm2, so that aSTM = aβ′(1̄01̄) (±6%) and bSTM = bβ′(1̄01̄) (±8%). A model unit cell has

been overlaid on Figure 5.11(d, right), where Al atoms have been arbitrarily chosen as the

bright row constituents.

The average height corrugation between the dark and bright rows is 0.5± 0.1 Å. This

can be explained by selecting a plane, or set of planes, from the ξ′–Al–Pd–Mn approximant

to produce a row–like structure in which one set of rows desorbs preferentially, or, are not

detected by STM. One such set of planes is shown underneath Figure 5.11(d, left), where

Mn or Al rich rows are labelled. The corrugation could simply be a slight relaxation of the

β′–Al–Pd(1̄01̄) surface, where rows of one atom type relax in z, shown underneath Figure

5.11(d, right).

5.3.4 C60 adsorption on the different surface phases

Adsorption of C60 was observed on the ξ′–Al–Pd–Mn/β′–Al–Pd and β–Al–Pd phases.

Figure 5.12(a) shows a low coverage STM image of two phases of C60 on the ξ′–Al–Pd–Mn/

β′–Al–Pd surface i.e. the surface phase detected in Figure 5.11(d). Labelled are the unit
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Figure 5.12: C60 on periodic phases: (a) Two phases of C60 structure are observed on
the ξ′–Al–Pd–Mn/β′–Al–Pd surface. The unit cell vectors of a honeycomb structure are
indicated as a and b. A parallel row structure is also highlighted. Scale bar represents 2.0
nm. (b) Model structure of the C60 phases in (a) on ξ′–Al–Pd–Mn (left) and β′–Al–Pd
(right). Adsorption sites are marked by C60, or unit vectors. A C60 lattice is marked for
the β′–Al–Pd(1̄01̄) surface phase. Scale bar represents 0.5 nm.

cell vectors of one phase, a honeycomb–structured island, with aC60 = 1.00 ± 0.07 nm,

bC60 = 1.03 ± 0.05 nm, and γ = 123 ± 2◦. Each C60 appears to sit in–line with the

row structure, either directly on top of bright rows or between them. Also marked as a

second phase are parallel rows of C60 which are separated by 1.25±0.05 nm, approximately

0.75× bξ′ , or, 1.5× aβ′ . The separations along the parallel C60 chains are 0.98± 0.02 nm.

A switch of bright/dark substrate rows is observed between the start and end of rows of

C60, both in its honeycomb and parallel row form. Two arrows are overlaid on the parallel

row structure, with the left–hand arrow initially on a bright row, and the right–hand on a

dark. At the ends of each arrow, the row structure is switched. This indicates either that

C60 adsorption induces a row reconstruction, or, that the row switching defect produces

an attractive site for C60 to nucleate.

Prospective adsorption sites for each C60 phase on each surface structure are shown in

Figure 5.12(b). For each surface model, the honeycomb phase has been matched so that the

C60 intersects with the row structure described in Figure 5.11(d). For ξ′–Al–Pd–Mn, the

model C60 structure has unit cell values of a = 1.0 nm, b = 0.99 nm, and γ = 123◦, a good fit

within error to the experimental values, Figure 5.12(b, left). Here, rows containing Mn have
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Figure 5.13: C60 on periodic phases: (a) A honeycomb structure of C60 on the
β–Al–Pd(112) phase. Unit cell vectors are highlighted. Scale bar represents 2 nm. (b)
Model structure of the C60 phase in a). Again adsorption sites are marked by C60. A C60

lattice is also shown. Scale bar represents 1 nm.

been chosen arbitrarily as adsorption sites. The lack of templated growth indicates a weak

bond to any potential site. Additionally, the imposed constraint of bSTM = cξ′/3 creates

chemically non–specific adsorption sites in the C60 network i.e. the C60 can adsorb between

any pair of surface atoms along the rows. Likewise, the parallel row C60 molecules are

speculated to adsorb at chemically non–specific sites, forming rectangles with dimensions

0.95 nm × 1.24 nm, as highlighted.

For β′–Al–Pd, the model honeycomb C60 structure has unit cell values of a = 0.97

nm, b = 0.92 nm, and γ = 122◦, adsorbing at bridge sites in the Al/Pd rows, Figure

5.12(b, right). The parallel structure forms rectangles of 0.97 nm × 1.18 nm, as high-

lighted. Compared to the C60/ξ′–Al–Pd–Mn model, the match between these values and

the experimental measurements is less impressive. However, the geometry of adsorption

sites is much more chemically specific. If we presume the surface rows are Al, for example,

then C60 would adsorb at a bridge site between Al atoms of the rows (honeycomb) or at a

Pd site between four Al atoms (parallel), Figure 5.12(b), right.

In either case, it is apparent that intermolecular forces are responsible for the struc-

ture of the C60 here, as opposed to a strong substrate–molecule bond. In contrast to the

quasicrystalline phase, C60 is growing in a close–packed structure with a periodicity ap-

proximately equal to the Van der Waals diameter, aligned along high symmetry directions
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(i.e. along the row direction). This behaviour is similar to C60 on other non–QC surfaces,

as mentioned in Chapter 3. This may explain the lack of chemical specificity or adsorption

site ambiguity in the models proposed in Figure 5.12. The parallel row structure in this

case may simply be a result of two rotated close–packed C60 domains meeting at a common

interface.

Figure 5.13(a) shows C60 at the β–Al–Pd(112) surface. Here, only a honeycomb struc-

ture is observed. Again, unit cell vectors are highlighted, where a = 0.96 ± 0.07 nm,

b = 1.01±0.04 nm, and γ = 122±2◦. Each C60 row appears to sit at a bridge site between

two substrate rows, as indicated with an arrow. The proposed adsorption sites are shown

in Figure 5.13(b), where C60 sit between four atoms, two Al, and two Pd. The unit cell of

the model structure is a = 1.06 nm, b = 1.01 nm, and γ = 121.5, an excellent fit with the

experimental values. As with the ξ′–Al–Pd–Mn/β′–Al–Pd C60 phases, intermolecular in-

teractions appear to dominate, creating a close–packed C60 structure. Again, the proposed

adsorption sites are arbitrary, with the only stipulation that the close–packed structure is

oriented along the surface row direction.

The difference between these close–packed C60 results and those of the Fibonacci square

grid C60 is, of course, the change in surface structure. The unique nature of the Mn

distribution in the quasicrystalline phase provides a network for selective adsorption, whilst

the interaction between the C60 and non–QC phases is as most common metal surface/C60

interfaces.

5.4 Summary

The surface structure of the 2–fold termination of the i–Al–Pd–Mn quasicrystal has been

investigated and compared to the model proposed by Boudard et. al. Here, bright dimers

at the surface observed by STM are attributed to Al dimers in a surface model consisting

of two closely separated planes. The surface plane also displays a sparse Mn distribution

with a Fibonacci square grid structure.

C60 is found to adsorb exclusively to Mn sites at the 2–fold i–Al–Pd–Mn surface, itself

forming a Fibonacci square grid of equal size to the Mn network. This observation leads

to a confirmation of the surface model, as well as representing the first measurement of

a physical Fibonacci square grid. The observation of such a structure has extended the

quasicrystal family beyond the forbidden symmetry systems previously observed. From a

general standpoint, this work shows that a distribution of minority constituents in complex
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metallic alloys can present a unique adsorption landscape. For example, utilising similar

networks and choosing the correct molecule could permit the construction of a molecu-

lar magnet array of chosen magnetic behaviour. Furthermore, the relative simplicity of

the constructed quasilattice opens up a stepping-stone to the understanding of complex

phenomena in quasicrystals.

Different surface phases of the system have also been investigated, with a 3–fold aperi-

odic patch identified as the 3–fold orientation of the i–Al–Pd–Mn system. Several periodic

domains were observed, and attempts have been made to identify them with respect to

structural models of chemically similar phases. The lack of templated growth of C60 on

these periodic phases compared to i–Al–Pd–Mn illustrates the different adsorption poten-

tials induced by structurally and chemically related phases which are similar, yet unique.



Chapter 6

3–fold aperiodic tilings

In this chapter, two examples will be given of aperiodic tilings which exhibit 3–fold rota-

tional symmetry, the first such tilings. Their construction and relationship to each other

will be discussed. In Chapter 7, one of the tilings will be used to link 3–fold i–Ag–In–Yb

surface features together. A third tiling derived by a different method is also contained

within Appendix A. This work was completed in collaboration with Prof. Uwe Grimm and

Dr. Ron Lifshitz, who helped explain the various techniques of creating valid aperiodic

tilings (in particular, vertex matching rules and deflation behaviour), as well as assisting

with the nomenclature of the field.

6.1 Introduction

Aesthetics has been conjectured as the driving force behind a mathematical mind, as

opposed to simply logic [143]. Both share simplicity and brevity as two basic criteria

[144]. Additionally, the role of aesthetics has been cited as ‘(a), motivating the choice of

certain problems to solve, (b), guiding the mathematician to discovery, and (c), helping

a mathematician decide on the significance of a certain result’ [145]. Often, the concept

of mathematical beauty is associated with elegant theorems and proofs [146]. However,

the ability to convey a mathematical argument in a concise, visually beautiful way can be

invaluable. Likewise, its power as an educational (and publicly engaging) tool is important

[147].

An excellent example to encapsulate both the aesthetically pleasing and logical argu-

ments are aperiodic tilings. The concept of mapping aperiodicity in two dimensions was
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briefly introduced in section 2.2. Several examples of tilings were given which fill 2D space

completely, yet exhibit non–periodic, long–range order. These can be constructed both

using geometric matching/substitution rules, or by projection from higher dimensions. Of

particular importance in this thesis is the Penrose tiling, which accomplishes all of the

above whilst also being the first to display 5–fold symmetry, an excellent tool for mod-

elling quasicrystals with icosahedral structure. [28]. Penrose himself extolled the virtue of

the aesthetically pleasing in his work [27].

It is often commonplace, then, in the analysis of images from either QC surfaces

or epitaxial structure to use a relevant rotationally–symmetric tiling. There are exam-

ples of pentagonal 5–fold, decagonal 10–fold, and dodecagonal 12–fold systems being

decorated with specific tilings to aid their understanding, or to confirm their aperiodic

structure [5, 6, 53, 57, 62, 66, 67, 79, 148, 149]. Indeed, highlighted within this work is the

4–fold Fibonacci square grid tiling, linked to the molecular overlayer grown on 2–fold

Al–Pd–Mn [21]. Visualizing a tiling with atom–decorated vertices can be a simple way to

interpret quasicrystalline structure.

Aperiodic tilings with lower orders of rotational symmetry which may be related to

QCs have not been widely explored, as the main focus has been on icosahedral QCs with

5–fold orientation. Certainly, 2–fold, and 3–fold symmetries are hardly unique in crys-

tallography. Here however, a new set of linked aperiodic tilings will be introduced which

display 3–fold symmetry. Their construction will be shown by two methods, ranging from

purely geometric and aesthetic creations to an inferred hyper–dimensional projection. One

of these tilings will be used to re–interpret the clean 3–fold i–Ag–In–Yb surface in Chapter

7.

First, a brief summary of the Penrose tiling will be given to give these results some

methodological context.

6.1.1 Penrose Tiling

The first Penrose tiling, the P1, has already been introduced in section 2.2.3, Figure 2.4.

His third version, the P3, was created by ‘a little slicing and rejoining’ of the six P1 tiles,

so that he ended up with just two – a fat and thin rhombus [28]. The relationship between

the P1 and the P3 tilings is shown in Figure 6.1(a).

The first method we consider to build the P3 tiling is substitution/deflation. Figure

6.1(b) shows the rules for deflating the two tiles, where each tile is split into two ‘Robinson’
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Figure 6.1: Penrose P1 and P3 tiling: (a) The Penrose P3 tiling (pink and blue tiles),
with the P1 tiling overlaid in white. (b) The deflation rules for each rhomb of the P3 tiling.
Each can be split into two triangles which are then deflated. (c) The vertex configurations
of the P3 tiling.

triangles (a mutually locally derived tiling [150, 151]) which are then deflated into further

triangles. These can then be combined to create a deflated tiling.

The second method is vertex matching, similar to the edge matching rules introduced

for the P1 tiling in Figure 2.4. Here instead, a maximum number of configurations for

vertices are given. Figure 6.1(c) shows the seven configurations for the P3 tiling. These are

sometimes referred to as eight configurations, where the star configuration of the fat rhombs

is simply rotated by 36◦. Vertex enforcement is a more robust way of building the P3 tiling

than using edge matching rules. These rules can be used to build the tiling infinitely, whilst

still covering all space and maintaining aperiodicity. Edge matching rules can lead to ‘dead

surfaces’, where, through no errors of construction, either empty spaces are created, or,

the ‘next step’ to continue the tiling is ambiguous. Therefore, edge matching rules are

considered a consequence of vertex enforcement, rather than a method of construction
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Figure 6.2: Penrose tiling acceptance window: (a) The rhombic icosahedron. (b) The
four planes inside of the rhombic icosahedron along the 5–fold direction. The pentagonal
planes are shown below. (c) The projection of (a) along the 5–fold direction. Also shown
with P3 tiles.

[20, 31].

The third way of building/creating the P3 tiles is by projecting from higher dimensional

space. Analogous to the Fibonacci sequence described in section 2.2, the vertices of the

P3 Penrose tiling can be created by projecting a certain 2D surface from 5D space onto

a 2 dimensional plane [31, 152, 153]. For the cut–and–project method used to create the

Fibonacci sequence, section 2.2, a line is cut through 2D space, with an attached acceptance

window. If points fall within this window, they are projected to construct the Fibonacci

sequence. Here, the 2D surface in 5D space is analogous to the 1D line. The (multiple)

windows which accept the projected points are defined by a 3 dimensional body, which

itself is a projection onto 3D perp–space by the unit cell of the 5D lattice. Figure 6.2(a)

shows the 3D shape, which is the rhombic icosahedron also used as a constituent of the 3D

Penrose tiling. Planes are labelled inside the body in Figure 6.2(b), making four pentagons

of either different size or orientation, shown below. These are the acceptance windows for
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the Penrose tiling.

An interesting coincidence which will be utilised later, is that the projection of the

edges of the rhombic icosahedron along its 5–fold orientation produces the P3 tiles. Figure

6.2(c) shows an example of the projection, along with a few constituent P3 tiles.

6.2 Method

Two 3–fold aperiodic tilings will be produced using two different methods. First, a Fi-

bonacci tri–grid is produced, using a similar method to that used to create the Fibonacci

square grid. Then, the rhombic icosahedron from Figure 6.2 will be used to infer proto–tiles

for a linked tiling.

6.3 Results

Fibonacci tri–grid

The tri–grid tiling is created in a method analogous to the Fibonacci square grid. Here,

three sets of Fibonacci sequences are overlaid at relative angles of 120◦. Figure 6.3(a)

shows such a construction with the axes of 3–fold rotational symmetry passing through

the pink circle. To generate the two other examples shown, one set of the three grids is

simply shifted by either L or L+S along its relevant axis.

Each have similar tiles: triangles, trapezoids, and shields, shown underneath each.

Figure 6.3(c) also has diamonds. The three tri–grids shown are therefore distinct in terms

of tile constituents and tile frequency. Their construction is similar to the different types

of Penrose tiling created by different cuts through hyperspace which are locally isomorphic

[34]. Their difference is best demonstrated by their vertex distribution – Figure 6.4 shows

just the vertices of each type, alongside auto–correlation functions taken from each to

demonstrate their aperiodicity. High intensity spots which are marked are τ–scaled, as

expected.

Using the tiles given by the superposition, one can construct a set of deflation and vertex

configuration rules for a given tiling. Figure 6.5 shows an example of such a tiling after six

generations of deflations starting from the green triangle. Adjacent are the deflation rules

and vertex configurations which enforce particular matching rules. The obvious drawback

however are the non–discrete deflation rules – the trapezoid deflating into 4 separate sets of
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Figure 6.3: Fibonacci tri–grids: (a) Three Fibonacci sequences are overlaid at 120◦

relative to each other. A pink circle shows the centre of rotational symmetry. Constituent
tiles are below. (b) Same as (a), but one set of sequences shifted by L. (c) Same as (a),
with one set of sequences shifted by L+S.

Figure 6.4: Tri–grid vertices: The vertices of the three tri–grids generated in Figure 6.3.
Below each are the auto–correlation functions taken from each.

tiles is not ideal, for example. This issue could be solved by colouring specific orientations

of each tile, but this method increases the number of tiles and unique deflation rules to
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Figure 6.5: The tri–grid tiling: Starting with the green triangle, a tri–grid tiling is
produced using the deflation rules on the left–hand side, whilst enforcing the vertex con-
figurations on the right–hand side.

a tedious level. However, its 3–fold rotational nature, aperiodicity, and long–range order

are guaranteed by its construction using the Fibonacci sequences, and is therefore a good

example of a new quasiperiodic tiling which fills all space.

Rhombus tiling

The hyperspace construction of the Penrose tiling has previously been explained. The

projection of a 5D hyper–cube onto 3D space gives a rhombic icosahedron, which then

gives 4 atomic windows. Any projected vertices of the 5D hypercube which fall within

these acceptance windows correspond to vertices of the Penrose P3 tiling. It has also been

shown that the superposition of the rhombic icosahedron along its 5–fold axis suggests

the thick and thin rhombs of the P3 tiling. It follows that a rotation of the rhombic

icosahedron (and therefore a different projection plane through the 5D hypercube) would

give a different set of atomic windows with which to project through. Here, a geometric

argument will be made that demonstrates such a rotation produces a 3–fold aperiodic

tiling.

Figure 6.6 shows a rhombic icosahedron which has been rotated to demonstrate its

3–fold axis. A set of planes which would act as atomic windows are also shown adjacent.

These are shown below, and are a set of triangles, and trapezoids which are reminiscent

of the tiles created in the previous section. A projection of the edges of the rhombic
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Figure 6.6: Rhombic icosahedron and 3–fold projection windows: (a) The rhombic
icosahedron tilted to show its 3–fold axis vertical to the page. (b) The planes of the rhombic
icosahedron which would act as the acceptance windows of projection. (c) Superposition
of the edges of the rhombic icosahedron. Three constituent tiles are highlighted: large
rhomb (blue), small rhomb (yellow), and skewed rhomb (pink)

icosahedron along its 3–fold orientation is also shown, which produces a set of rhombs.

These are coloured yellow (small rhomb), pink (skewed rhomb), and blue (large rhomb).

Using these tiles as a precursor, Figure 6.7 shows a section of a 3–fold aperiodic tiling.

Underneath are a set of vertex configurations. Two of these configurations (far left and far

right) could produce a periodic set if only these vertices were considered. Therefore, it is

likely that refinement is needed by giving the larger rhombs unique colours, or by stating

that these vertex types are not allowed to exist ‘consecutively’. Like the tri–grid tiling, the

deflations of each of the constituent tiles are non–discrete, and are not shown here. An

auto–correlation function of the vertices of the tiling is shown in the top–right of Figure

6.7. As expected, τ–scaled high intensity spots are found.

Much like the relationship between the P1 and P3 Penrose tilings shown in Figure 6.1,

there is a relationship between the tri–grid and rhombus tiling. Figure 6.8 shows a section

of the tri–grid tiling overlaid with the edges of the rhombus tiling, white. There is a 60◦

rotation difference between the two. It can be seen that there is a relationship between

each of the tiles. For example, and highlighted adjacent, are three large rhombs, and two

skewed rhomb tiles with different tri–grid tiling constituents. Each of the large rhomb tiles

have been coloured differently (blue, green, red) to show that their tri–grid constituents

are unique, and likewise for the two skewed rhombs. These relationships could be the key
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Figure 6.7: Rhombus tiling: Using the three tiles created in Figure 6.7(c), a tiling can be
grown with vertex enforcement rules (shown below). The tiling is aperiodic, has long-range
order, and is 3–fold symmetric.

to understanding or deriving discrete deflation rules (i.e. unique colours). Again however,

this could lead to an unwieldy amount of tiles.
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It can be said that these tilings are mutually locally derivable [151], where each is

obtainable from the other. For example, the rhomb and diamond tiling can be obtained by

removing extraneous edges, and vice versa. This relationship serves to prove that not only

Figure 6.8: Tri–grid and rhombus tiling relationship: The rhombus tiling is overlaid
in white over the tri–grid. The right–hand side shows relationships between each of the
tiles.

can the tri–grid be constructed through a consequence of higher–dimensional projection,

but also that the deflation rules for both tilings appear to be related.

6.4 Summary

Examples of two new 3–fold aperiodic tilings have been given using geometric arguments.

First, a version was created using a superposition of three Fibonacci sequence sets, placed

at 120◦ relative to each other. This can produce a number of discrete tilings dependent on

the relative position of each grid. An example tiling was shown with vertex matching rules

and rough deflation examples. Then, using an approximate analogue of the 5D hyperspace

projection method, a rhombus and diamond tiling was presented. Again, its aperiodicity

and 3–fold symmetry was shown, with vertex configurations given. Its relationship to the
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tri–grid was highlighted, with suggestions that the lack of discrete deflation rules is in–built

into the system.

A rigorous formalism of these tilings is limited by a lack of strict mathematical language.

Hopefully in the future, they each can be defined by a method which does not depend simply

on aesthetic geometry. The experimental application of the rhomb tiling will be shown in

Chapter 7.



Chapter 7

3–fold i–Ag–In–Yb: clean surface

and Pb adsorption

In this chapter, new STM data from the clean surface of the 3–fold i–Ag–In–Yb orientation

is re–interpreted with respect to the 3–fold tiling introduced in Chapter 6. It is shown that

both cluster centres and general features observed at the surface can be linked by the rhom-

bus tiling. Pb deposition on the surface is then discussed, with adsorption sites explained

by planes of the Cd–Yb model. This behaviour is similar to Pb on 5–fold i–Ag–In–Yb, as

discussed in Chapter 3. However, a difference in density along the 3–fold axis produces a

quasi–island Pb film, characterized by sparsely distributed Pb nano–structures.

7.1 Introduction

Unlike the 5–fold i–Ag–In–Yb surface, there are only a few studies of the 3–fold termina-

tion, with one paper describing its atomic structure, and the other looking at the reactivity

of all the high symmetry surfaces of the i–Ag–In–Yb system [122,154,155].

LEED patterns from the 3–fold i–Ag–In–Yb surface show a discrete 3–fold symmetric

diffraction pattern, with τ–scaled spots [154]. Similar to the 5–fold surface, the atomic

structure of the 3–fold termination can be described by bulk planes of atoms which intersect

cluster centres. The observed step–height distribution correlates with the distribution of

cluster centre planes in the Cd–Yb model. Step heights of S = 0.12 nm, L = 0.43 nm were

observed, with a frequency of 15% and 85% respectively. Note that this distribution does

not create a Fibonacci sequence, unlike the Al–based QCs [155]. As previously mentioned

86
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Figure 7.1: 3–fold i–Ag–In–Yb surface: (a) Large scale STM image of an S and L
terrace from the 3–fold i–Ag–In–Yb surface. (b) Enlarged view of the section highlighted
in (a). Several motifs from this image are shown and labelled in (c). (c) Triangle,
distorted hexagon, large triangle, regular hexagon, and flower motifs highlighted in (b).
(d) Autocorrelation function of an area of (a). τ–scaled spots are marked. (e) Model
plane of the surface. Motifs from (c) are marked. Reproduced from [154].

in Chapter 2 however, groups of these steps are predicted to form Fibonacci sequences.

These planes are dense in In/Yb atoms, and it has been suggested that a high density of

In/Yb atoms is required across all surface orientations to reduce surface free energy [156].

Motifs observed by STM were therefore compared to motifs in the cluster centre planes,

as shown in Figure 7.1. Here, a series of triangles, hexagons, and ‘distorted’ hexagons

were correlated with Yb arrangements in the cluster centre planes. Ag/In positions were

not resolved, unlike with the bias dependent 5–fold termination [66]. However, a certain

amount of bias dependency was observed at the 3–fold surface, with Yb atomic resolution

only achieved with positive bias.

The stability of each terrace (S or L) was linked to the density of Yb atoms. Fragments

of S terraces were routinely observed on top of L terraces, thought to be due to evaporation
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of S terrace atoms. Here, S terraces contain more ‘glue’ Yb atoms but less cluster Yb

atoms. Glue atoms refer to atoms which are not part of the Cd–Yb cluster, but act as

joining units between adjacent clusters [6]. However, the overall density of Yb atoms was

considered equal between each type of plane. It was concluded that the relatively higher

density of glue Yb atoms reduced the stability of the S terraces [154].

Vacancy creation is observed across both types of terraces, and is linked to the rel-

atively homogeneous separation of planes along the 3–fold orientation. Both the 5–fold

and 2–fold directions display step–bunching, where closely separated groups of planes form

steps, which are then separated by large distances. Along the 3–fold direction however,

the relative proximity of neighbouring planes suggests that atoms can ‘jump’ from plane

to plane; the implication being that atoms can readily desorb from the surface plane [154].

These vacancies and the generally rough surface that results may provide selective adsorp-

tion sites. However, there have been no adsorption studies on the 3–fold orientation – unlike

the metallic and molecular growth reported on the 5–fold termination [67,110,116,157].

In this chapter, the 3–fold i–Ag–In–Yb surface will be revisited with respect to the

rhombus tiling defined in Chapter 6. Cluster centres and Yb motifs can be linked by the

vertices of the constituent rhombus tiles. From here, Pb adsorption will be discussed. Pb

has been dosed in order to compare with the multi–layer film on the 5–fold surface, previ-

ously discussed in 3. Due to the difference in atomic density along the 3–fold orientation,

the Pb grows in a different scheme compared to the 5–fold surface, with quasi–island growth

leading to quasicrystalline, 3D nanostructures. The planar and cluster Cd–Yb model first

introduced in sections 2.5.2 and 3.2.3 will be referred to often, with a brief summary of

the model given at the start of the Pb results section.

7.2 Experimental Details

The surface perpendicular to the 3–fold orientation of an i–Ag–In–Yb quasicrystal was

polished with diamond paste of successively finer grade (6–0.25 µm) before washing in

methanol. Upon insertion into a UHV chamber, the surface was further prepared by cycles

of sputter–annealing. Ar+ was used to sputter the surface for 30 minutes, with an average

drain current recorded at 6.8 µA. The sample was then annealed to 700 K, with each anneal

lasting 2 hours. Surface cleanliness was monitored by STM.

For the Pb experiments, Pb was dosed from a crucible, contained within a Focus EFM

3 evaporator. The flux of the evaporated Pb beam was monitored and kept at a constant
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rate of ∼ 5× 1011 atoms cm−2s−1.

7.3 Results

7.3.1 Clean surface tiling analysis

As the clean surface of the 3–fold i–Ag–In–Yb has been atomically resolved and, in a

previous study, compared to planes of the Cd–Yb model, this section will simply show how

the 3–fold rhombus tiling defined in Chapter 6 can be used practically, to link, for example,

cluster centres at the surface termination. As the tiling was first introduced in this work,

such a comparison has not been made previously.

Along the 5–fold and 3–fold orientation, individual, equatorially truncated clusters do

not donate their Yb atoms to the surface plane. Rather, Yb positions can be explained by

clusters which are centred either above or below the cluster centre plane before truncation.

Figure 7.2(a) shows an example. Here, three Cd–Yb clusters are shown, with only their

3rd (Yb, green) and 4th (Cd or Ag/In, blue) shells shown. The middle cluster is centred

at a surface truncation plane. The left and right clusters are centred below and above

this truncation respectively. Cluster centres are coloured to correspond with their position

(red is below, gold is surface, and purple is above). It can be seen that the surface–centred

Figure 7.2: 3–fold Cd–Yb cluster surface truncation: (a) Three Cd–Yb clusters
are shown with only their 3rd (Yb, green) and 4th (Cd or Ag/In, blue) shells shown.
Cluster centres are coloured with respect to a surface truncation: red is below, gold is
surface–centred, whilst purple is above the surface. (b) A top–down view of a surface
arrangement. Cluster centres are shown, highlighting the contribution of each cluster to
the surface plane.
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Figure 7.3: 3–fold surface model: (a) STM image (Vb = 3079 mV, It = 0.119 nA)
of the clean 3–fold i–Ag–In–Yb surface. Marked are motifs previously observed in [154].
Surface cluster centres are also marked, either by an arrow (CC), or by white circles. (b)
Same image as (a), with the Cd–Yb model overlaid. Yb atoms are green, cluster centres
are gold. Scale bars both represent 2 nm.

cluster donates Cd atoms only to the substrate. Similarly, both the above and below surface

clusters donate Yb atoms only. Figure 7.2(b) shows a top–down view of an example of such

an arrangement. Two Cd hexagons are surrounded by up and down Yb triangles, with

their donating cluster centres coloured with respect to the colour scheme in Figure 7.2(a).

Here, up triangles are donated by above surface clusters, and vice versa. As only Yb atoms

are resolved on the 3–fold surface by STM, we are therefore observing atoms which are not

donated by surface–centred clusters [154]. However, common Yb motifs which are created

by the interaction of below and above surface clusters can be linked to the Cd–Yb model,

as discussed above.

Figure 7.3(a) shows an STM image obtained from the 3–fold surface with near atomic

resolution. Highlighted by a diamond is a section of the surface containing motifs from

Figure 7.1. Labelled is a distorted hexagon, reminiscent of the shield tile from the tri–grid

in chapter 6. The shield tile is shown adjacent in black. Also marked by three translucent

lines is a ‘flower’ which is resolved as three protrusions. A single triangle is also marked.

In between these motifs are small protrusions, with one marked by an arrow. Others are

highlighted below by white circles. The separation of these protrusions along the high

symmetry axes are S = 1.57±0.07 nm, and L = 2.43±0.07 nm. These lengths, along with
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the Yb motifs, can be used to match the protrusions to surface truncated cluster centres.

Figure 7.3(b) shows an overlay of the Cd–Yb model on top of (a). Green circles are Yb

atoms, golden circles are the cluster centres. Here each Yb motif is replicated with respect

to Figure 7.1 and the previous report on the surface [154]. Likewise, the protrusions from

Figure 7.3(a) match the model cluster centres. The model cluster centre separations are

given with a percentage difference to the experimentally measured values: S = 1.57 nm

(±1%), and L = 2.53 nm (±4%). As these protrusions do not match any Yb sites, and

fit with the model surface cluster centres, it is proposed that, despite the cluster centre

containing no atoms, in some form, each protrusion is indicative of a surface–truncated

cluster centre.

These protrusions could belong to atoms from the 1st shell, which lie 0.091 nm below the

surface plane in the Cd–Yb model. The protrusions observed lie, on average, 0.10 ± 0.03

nm below the Yb atoms. The 1st shell atoms are typically not considered in terms of

surface structure or as part of an adsorption scheme, as this shell reorients itself within

the Cd–Yb bulk cluster dynamically – essentially ‘spinning’, with only a time–averaged

position considered [158–160]. The dynamic timescale of the tetrahedron is on the order

of a few picoseconds. It is possible to consider, then, that a time–averaged position is

observed by STM if the partial density of states of the shell is considered constant over

the timescale of the raster of the STM scan (on the order of seconds).

Before the experimental cluster centres can be linked by the 3–fold rhombus tiling, it is

important to note the degree to which a tiling can link together Cd–Yb cluster centres in

the model. Figures 7.4(a, b) show the cluster centres of 5–fold and 3–fold Cd–Yb surface

planes, respectively. Linking the centres together in (a) is a Penrose P1 tiling in black

(edge length 2.54 nm), and also in purple (edge length 1.57 nm). Circled in black are

‘extraneous’ cluster centres which are ‘missed’ by the tiling, whilst purple circles indicate

non–existent cluster centres at the vertices of the τ–deflated tiling. A similar scheme for

the 3–fold distribution is labelled in Figure 7.4(b), with the same edge lengths. The match

between the cluster centres and the rhombus tiling vertices is excellent, as expected from

the link to the 3D Penrose tiling structure [6].

This simple example illustrates the concept that the cluster centre distribution on either

surface is not bound by a single discrete 2D tiling of a particular length scale. Rather,

when matching cluster centres to a tiling, a choice must be made to either ‘miss’ cluster

centres (black), or to create a tiling in which not every vertex intersects with physical

cluster centres (purple). For the experimental comparison, an edge length of 2.54 nm is
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Figure 7.4: Penrose and 3–fold rhombus tiling comparison: (a) The distribution of
cluster centres at a surface plane of the 5–fold i–Ag–In–Yb QC. Cluster centres are linked
by a Penrose P1 tiling with two edge lengths: black = 2.54 nm, purple = 1.57 nm. (b)
Same as (a), along the 3–fold orientation. A rhombus tiling is overlaid, with edge lengths:
black = 2.54 nm, purple = 1.57 nm.

chosen for the rhombus tiling – whereby cluster centres are sometimes ‘missed’. This length

refers to the large rhombus tile edge length.

Figure 7.5(a) shows a high contrast, larger scale STM image from Figure 7.3. Here, the

protrusions are more visible than in Figure 7.3, at the expense of some resolution of Yb

features. Using this image, a collection of surface cluster centre protrusions can be marked

by blue circles, and linked by the the rhombus tiling. Figure 7.5(b) shows (a) with cluster

centres and 3–fold rhombus tiles overlaid. The vertices of each tile is matched to a surface

cluster centre. The good fit between the experimental cluster centres and tiling vertices

indicates the rhombus tiling is a good match to the data. Likewise, the mutually locally

derivable nature of the rhombus and tri–grid tiling infer that the tri–grid could also link

the cluster centres highlighted.

Additionally, Figure 7.5(c) shows the rhombus tiling linking individual shield motifs

and bright protrusions. The shield structures are explained by clusters both above and

below the surface truncation plane ‘donating’ Yb triangles. Therefore, it is more accurate

to say that the vertices intersect with either an up or down Yb triangle donated from
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Figure 7.5: The rhombus tiling on the 3–fold i–Ag–In–Yb surface: (a) High con-
trast STM image of the 3–fold i–Ag–In–Yb surface. Surface cluster centres are highlighted
in blue. (b) Same as (a), with tiles from the 3–fold rhombus tiling overlaid. (c) STM
image with rhombus tiles linking shield Yb motifs. A white circle indicates an ‘up’ triangle
from Figure 7.1. All scale bars are 3 nm.

a cluster either above or below the surface. This tiling therefore maps below or above

surface–centred clusters.

7.3.2 Pb dosed 3–fold surface

Dosing Pb on the 3–fold i–Ag–In–Yb surface produces a quasicrystalline arrangement of

3–dimensional nanostructures. Here, Pb is considered to grow in a ‘quasi’–Volmer–Weber

type growth mode, where successive Pb layers begin growing before the previous layer

reaches full ML coverage. Pb atoms adsorb at specific heights above the substrate. Their
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Figure 7.6: Planar Cd–Yb model: (a) Planes of either Cd or Yb atoms can be stacked in z,
corresponding to their heights in individual Cd–Yb clusters. The chart shows the density
of planes of atoms from each shell, where the 2nd is yellow, 3rd is green, 4th blue, and
5th red. A few planes are marked as so. A close collection of planes are labelled for later
discussion. (b) A truncated cluster shows how to consider the planes, where the atoms
shown above the surface plane are from the 4th. The surface plane is labelled. The cluster
centre is shown as gold.

in–plane adsorption positions can be explained by planes of the Cd–Yb model, as with the

5–fold system.

Here, the structure of each layer will be discussed. To determine which plane can

describe adsorption sites, a ‘height–motif’ technique is used: the height of each layer is

measured above either the substrate or above previous layers. This height is compared to

a planar model of the 3–fold orientation. Shells from the Cd–Yb cluster model contribute

layers of planes at specific heights in z, Figure 7.6. Matching heights therefore suggest

planes which can describe in–plane adsorption positions. Motifs in the planes can then be

compared to motifs observed in each layer. Subsequently, the relative (and often unique)

geometries between each layer can be compared between model and experimental observa-

tion. Figure 7.6, which details the planar model, will therefore be referred to with respect
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to the heights of planes above the substrate. The 1st shell is omitted from this figure, as

it is not relevant for explaining adsorption sites. A table of heights is also included at the

end of this section.

The contrasting growth method to the multi–layer film system on the 5–fold surface

will be discussed, along with its implications for the 3–fold system.

First layer

At low Pb coverage, it is difficult to distinguish Pb atoms and the substrate due to the

roughness of the clean surface (RMS roughness = 0.05 ± 0.01 nm). At higher coverages

however, Pb grows with a structure which is distinctive from the substrate. Figure 7.7(a)

shows an STM image after dosing Pb for 10 minutes, with a coverage of approximately

0.6 ML. The image has been filtered so that the substrate is barely visible, and the bright

protrusions are Pb atoms. The coverage was therefore estimated by subtracting the area

representing the substrate from the image. Contained within three white triangles, labelled

as 1–3, are motifs which appear throughout the film. Here, each motif will be referred as

motif 1 = M1, etc. Their edge lengths are measured as M1 = 1.11±0.08 nm, M2 = 1.5±0.1

nm, and M3 = 2.6 ± 0.1 nm. The three motifs are related to each other by: M3 = τM2,

and M2/M1 = 2/τ . Each labelled motif are oriented ‘upwards’, although downwards

orientations of each are also found. Marked by a dashed triangle is a bright protrusion

sitting at the centre of a downwards facing M2 triangle. This is the start of the second

layer of Pb.

Figure 7.7(b) is an FFT of Figure 7.7(a), which shows τ–scaled spots along a set of

6–fold rotational axes, a consequence of the inversion symmetry of the motifs (up and down

orientations). Likewise, Figure 7.7(c) shows an autocorrelation function from Figure 7.7(a)

with the same τ–scaled behaviour and 6–fold symmetry. Thus, the film is quasiperiodic

considering the definition outlined in Chapter 4.

The height of the film above the substrate is measured using the histogram in Figure

7.7(e). Marked are the heights of the substrate and the film, with the difference also shown,

0.058± 0.003 nm. The planar model of the 3–fold orientation (Figure (7.6)) shows a plane

0.054 nm above the surface termination, which is attributed to the 5th shell of the Cd–Yb

cluster. The plane is shown in Figure 7.7(d). It contains dense triangles, hexagons, and,

predominantly, dimers oriented along the principal 3–fold axes. These closely separated

features (nearest neighbour ∼ 0.3nm) are not resolved: the average diameter of individual
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Figure 7.7: First Pb layer on the 3–fold i–Ag–In–Yb surface: (a) STM image
(Vb = −1969 mV, It = 0.243 nA) of the first Pb layer. Highlighted in white are three
motifs for comparison with the model structure. Marked in a dashed triangle is the start
of the second layer. Scale bar is 4 nm. (b) An FFT of (a). Marked are τ–scaled spots,
indicating quasiperiodicity. (c) Autocorrelation function of (a), also showing τ–scaled
spots of high intensity. Scale bar is 2 nm. (d) Model plane from the 5th Cd–Yb shell
which can explain adsorption positions of Pb atoms. Marked are the same motifs as in (a).
Scale bar is 2 nm. (e) A histogram used to calculate the height of the Pb atoms above the
substrate.

protrusions has been measured along the three high symmetry directions as: 0.8 ± 0.1

nm. This measurement is consistent with two Pb atoms with a Van der Waals radius

of 0.2 nm [161] separated by 0.3 nm, as predicted by the model plane. Given the lack

of resolution achieved by STM however, it may be more accurate to describe this layer

as groups (dimers/trimers) of Pb atoms which lie at the average positions of the dense

features in Figure 7.7(d).

Figure 7.7(d) shows the highlighted motifs, 1–3, from Figure 7.7(a). The model edge
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Figure 7.8: 1st Pb layer comparison: (a) Inverse FFT calculated using Figure 7.7(b).
Overlaid in black is a section of the plane used to model the first Pb layer. Also shown is
a section of the rhombus tiling. Scale bar is 2nm. (b) Same as (a), using the raw STM
image from Figure 7.7 (a).

lengths of the motifs are calculated by considering, as a single point, the average position

of the dimers at each vertex, to compensate for the lack of resolution achieved. They are

given, along with their percentage match with the experimental value, as MM1 = 1.17nm

(±5%), MM2 = 1.42 nm (±6%), and MM3 = 2.68 nm (±3%), where subscript M refers to

the model. The ratio of MM3/MM2 = τ , and MM2/MM1 = 2/τ , again in agreement with

the experimental ratios. The match between the model plane and STM is illustrated by an

inverse FFT calculated from Figure 7.7(b). Figure 7.8(a) shows the inverse FFT, with a

section of the model plane overlaid. Also shown are protrusions joined by a patch of 3–fold

rhombus tiles of edge length 2.53 nm. Figure 7.8(b) shows the original STM image, with

the same illustrations overlaid. There is a good fit between the film and model plane.

Second layer

Figure 7.9(a) shows an STM image taken after dosing the clean surface with Pb for 15

minutes. Here, the substrate has been filtered out, so that three Pb layers are visible – the

third layer has been marked with a black ring. Two second layer motifs are highlighted

and numbered as 4 and 5. M4 and M5 have similar edge lengths, M4 = 1.1± 0.1 nm and
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Figure 7.9: Second Pb layer on the 3–fold i–Ag–In–Yb surface: (a) STM image
(Vb =-1543 mV, It = 0.101 nA) of the second Pb layer. Highlighted and numbered are two
similar motifs in up and down orientations. The dashed triangle is the same motif from
Figure 7.7(a). Circled in black is the start of the third layer. Scale bar is 3nm. (b) Model
plane of the second Pb layer. Green atoms are Yb sites predicted by the Cd–Yb clusters,
yellow are Yb glue atoms. Highlighted are the same motifs from (a). The first Pb layer is
superimposed on the dashed triangle. Scale bar is 2nm. (c) Histogram of (c) with relative
heights of each layer labelled. (d) Inverse FFT of (a). A portion of (b) is overlaid, along
with a section of the rhombus tiling. Scale bar is 2nm.

M5 = 1.0 ± 0.1 nm. They are rotated by 60◦ with respect to each other (down and up

orientations respectively). The bright protrusion inside an M2 triangle from Figure 7.7(a)

is marked with a dashed triangle. Inset is an FFT taken from the second layer Pb atoms

only, with two sets of τ–scaled spots indicated. Therefore, the second Pb layer is also
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considered quasiperiodic.

Figure 7.9(c) is a histogram taken from Figure 7.9(a), which shows three distinct peaks

above the substrate, which is labelled. The height difference between each peak is marked.

The second layer therefore lies 0.056±0.004 nm above the first, corresponding to an atomic

plane of Yb atoms in the planar Cd–Yb model (Figure 7.6). Figure 7.9(b) shows this plane.

Here, green atoms are Yb sites which can be explained by the 3rd shell of the RTH cluster,

whereas yellow atoms are glue atoms from the units that join RTH clusters [6]. Motifs 4 and

5 from Figure 7.9(a) are labelled, with their edge lengths agreeing with the experimental

values: MM4 = 0.97 nm (±4%), MM5 = 0.97 nm (±3%). The match between the model

structure and STM image is compared in Figure 7.9(d). Here, a section of the model plane

is overlaid on an inverse FFT calculated from the inset of Figure 7.9(a), with a good fit

observed. Also overlaid is a section of the rhombus tiling.

The selection of this plane to explain the second layer adsorption sites can also be

checked against the relative geometries of the first and second layer Pb atoms. Marked

in Figure 7.9(b), inside a dashed triangle, is a second layer triangle with an edge length

of 0.60 nm. Surrounding the triangle are atoms which are superimposed from the first

layer plane. This configuration would therefore produce the bright protrusion inside an

M2 triangle seen in Figures 7.7(a), 7.9(a), where the small 2nd layer Pb triangle is not

resolved and appears as a single point.

Motif 5 is only found in the model plane if it contains at least 1 glue atom, suggesting

that Pb adsorbs at sites explained by the cluster–joining units. This is counter to the

previous findings on the 5–fold surface, where Pb adsorbing at positions predicted by Yb

planes ignore the glue atom sites [67]. The potential explanation for this difference will be

discussed later on.

Third layer

After dosing Pb for 30 minutes on the clean surface, the third layer observed in Figure

7.9(a) develops triangular features. Figure 7.10(a) shows an STM image where again the

substrate has been filtered out. Here, the first layer is approaching 100% coverage, defined

here as completely filling the positions of the model plane used to describe the adsorption

sites. Highlighted and numbered is a third layer Pb triangle, motif 6, which is largely

the only motif observed in the third layer, occurring only in an ‘up’ orientation. Its edge

length is M6 = 0.96± 0.03 nm. Motif 7 shows second layer Pb atoms which form a shield



100 Chapter 7. 3–fold i–Ag–In–Yb: clean surface and Pb adsorption

Figure 7.10: Third Pb layer on the 3–fold i–Ag–In–Yb surface:(a) STM image
(Vb =967 mV, It = 0.258 nA) of the third Pb layer. Numbered and labelled are two motifs.
Motif 7 shows the distinction between the second and third Pb layers. The fourth layer is
circled in black. Scale bar is 3 nm. (b) Model plane of the third Pb layer. Labelled are
the same motifs as in (a). Scale bar is 3 nm.

tile, inside of which sits an M6 triangle. Its edge lengths are MS7 = 1.5 ± 0.1 nm, and

ML7 = 2.4 ± 0.1 nm, where L/S = 1.6 ± 0.1. Circled in black is the start of the fourth

layer.

Using the histogram from Figure 7.9(c), the third layer is 0.130 ± 0.004 nm above

the second. Figure 7.6 shows that there are three planes which could explain prospective

adsorption sites with this height – one 5th shell plane, and two 4th shell planes, which are

marked. The 5th shell plane is discounted as, although it produces triangles of the correct

size, they appear in two orientations. The two fourth shell planes both produce triangles of

the correct size with a single orientation, yet these planes are rotated by 60◦ with respect

to each other (i.e. one produces ‘up’ triangles, the other ‘down’). Motif 7 can be used

to distinguish the correct plane, as its construction is dependant on the superposition

and relative orientations of the second and third layers. Figure 7.10(b) shows the plane

selected (1.23 nm above the second layer), where the shield feature from the second layer

is also included in green. The comparison and match of the second and third model plane

geometry is important, as each plane confirms the others’ selection: no other combination

of second and third layer planes produce the triangle–in–hexagon motif as above. The edge

lengths of the model motifs along with their percentage difference are given as: MM6 = 1.04
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nm (±8%), MMS7 = 1.57 nm (±5%), and MML7 = 2.4 nm (±6%).

STM images filtered to include only the third layer provide a very weak τ–scaled FFT

(inset on Figure 7.10(a)). Considering that the Pb positions/motifs match well with a

quasiperiodic plane (and the distribution of atoms is qualitatively non–periodic), it is

presumed that the low intensity of these spots is indicative of the relatively low coverage

of the third layer.

Fourth layer

Figure 7.11(a) shows an STM image after dosing the surface with Pb for 120 minutes.

The image has been adjusted to show the third and fourth Pb layers only. Highlighted

are three motifs, 8, 9, and 10. A black circle marks the start of further Pb growth, see

next subsection for details. Motifs 8 and 9 have similar length scales, and are rotated

by 60◦ with respect to each other (up and down orientations). Their edge lengths are

M8 = 1.6±0.1 nm, and M9 = 1.5±0.1 nm. Motif 10 consists of three small Pb triangles of

edge length 1.0± 0.1 nm, constructing a larger triangle with edge length M10 = 2.5± 0.1

nm. The edge length here is measured from the centre of each triangle at the vertex of

the larger triangle structure. A further motif for comparison is highlighted by a dashed

triangle. Figure 7.11(c) shows an FFT taken from the fourth Pb layer only. Two sets of

6–fold τ–scaled spots are observed, and are marked. This suggests that the fourth layer is

also quasicrystalline.

Figure 7.11(b) shows an enlarged view of the feature contained within the dashed

triangle. This configuration can be used to find the height of the fourth layer. Adjacent

to the fourth layer structure is a triangular formation which consists of three M6 triangles

from the third layer, which are marked. Highlighted is the direction of a line profile, which

is shown below the STM image.

Using the line profile, the relative height difference between the two layers is measured

as: 0.11± 0.01 nm. The planar Cd–Yb model gives a plane 0.12 nm above the third layer

(Figure 7.6), which is constructed of 3rd shell (Yb atoms), and shown in Figure 7.11(d).

Glue Yb atoms are not included in this figure, as there is no strong evidence to suggest

adsorption at these sites in this layer. Labelled are the motifs observed in Figure 7.11(a),

with their edge lengths given with their percentage difference to the experimental values:

MM8 = 1.57 nm (±2%), MM9 = 1.57 nm (±5%), and MM10 = 2.54 nm (±2%). The

individual triangles which form MM10 have a model edge length of 0.97 nm (±3%).
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Figure 7.11: Fourth Pb layer on the 3–fold i–Ag–In–Yb surface: (a) STM image
(Vb =2725 mV, It = 0.168 nA) of the fourth Pb layer. Motifs 8–10 are labelled. A dashed
triangle marks (b), which is used to distinguish between the fourth and third layers. A
black circle notes the beginning of another Pb layer. Scale bar is 3 nm. (b) An enlarged
view of the dashed triangle from (a), with a line profile between the fourth and third layer
shown. Scale bar is 2 nm. (c) An FFT from the fourth Pb layer. τ–scaled spots are shown.
(d) A model plane of the fourth Pb layer. Highlighted are the same motifs as in (a). Scale
bar is 2 nm. (e) Enlarged model view of (b), with the third layer superimposed. Scale
bar is 1 nm.

As with the triangle–in–shield construction in Figure 7.10(a), a comparison between

the fourth and third layer geometries can indicate whether the correct plane has been

chosen to explain adsorption sites. Figure 7.11(e) shows an enhanced model view of Figure

7.11(b) and its surrounding atoms in green, alongside three M6 triangles in blue, whose

positions are predicted by the third plane. This arrangement matches very well with the
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Layer HeightSTM (nm) HeightM (nm) Motif EdgeSTM (nm) EdgeM (nm)

1 0.06 ± 0.01 0.05

1 1.11 ± 0.08 1.17

2 1.5 ± 0.1 1.42

3 2.6 ± 0.1 2.68

2 0.11 ± 0.01 0.11
4 1.1 ± 0.1 0.97

5 1.0 ± 0.1 0.97

3 0.23 ± 0.01 0.23

6 0.96 ± 0.03 1.04

7(S) 1.5 ± 0.1 1.57

7(L) 2.4 ± 0.1 2.54

4 0.35 ± 0.02 0.35

8 1.6 ± 0.1 1.57

9 1.5 ± 0.1 1.57

10 2.5 ± 0.1 2.54

Table 7.1: 3–fold Pb heights and edge lengths: The heights of Pb layers and edge
lengths of motifs, compared to their model plane counterparts. Subscript STM refers to
the experimentally measured heights and edge lengths. Subscript M refers to the Cd–Yb
model values. Here, heights are referred to as above the substrate.

experimental observation, and, again, can only occur if these particular planes are selected

to explain the adsorption sites. For clarity, the edge lengths of all experimental and model

motifs are collected alongside the heights of each plane/layer in Table (7.1).

Islands

Further Pb deposition (> 150 minutes) results in crystalline Pb islands. Figure 7.12 shows

a collection of STM images at a range of magnifications, obtained after dosing for 240

minutes. Highlighted in Figure 7.12(a) is an angle, α = 120± 7◦, between two edges of an

island. Likewise marked in Figure 7.12(b) is β = 61 ± 4◦. These angles are indicative of

3–fold and 6–fold symmetry respectively. Atomic resolution of the islands was not achieved,

so their crystalline nature is inferred: considering the co–existence of small islands and

quasicrystalline nano–structures in Figure 7.12(c), the islands are identified as growth of

the [111] orientation of fcc Pb (60◦), which are constricted along a set of 3–fold axes

(120◦). Such an observation is consistent with crystalline allotropes of Pb observed on the

5–fold i–Ag–In–Yb surface, which show crystalline island edge angles of n π
5 [162]. The

formation of islands before previous layers reach 100% occupancy Figure 7.12(c) indicates

that crystalline growth is preferred to filling, say, the third and fourth quasicrystalline Pb

layers.
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Figure 7.12: Crystalline Pb islands: (a) High coverage Pb produces crystalline islands.
Marked as α is the angle between edges of a Pb island. Scale bar is 40 nm. (b) Same as (a),
with a different angle, β, highlighted. Scale bar is 50 nm. (c) Simultaneous measurement
of crystalline islands and quasicrystalline nano–structures. Scale bar is 9 nm.

7.3.3 Pb nano–structures

A theoretical film where each of the planes is 100% occupied by Pb can be modelled. Figure

7.13(a) shows each layer superimposed on top of each other. Each is coloured with respect

to the plane/shell which explains their adsorption sites (Figure 7.6), with the exception of

the fourth layer, which is coloured purple to distinguish it from the second layer. Fourth

layer atoms are also enlarged for clarity. Labelled are the experimental motifs M9 and

M10. This model film produces areas of high and low atomic density, as evidenced by

the fourth layer atoms either stacking on top of the previous layers, or by sparse patches

which can extend down to the first Pb layer. A colourmap of the film illustrates this.

Figure 7.13(b) shows areas of low and high Pb density in z, where the scale goes from

blue to red respectively. The individual triangular shaped protrusion in red are the fourth

layer triangles with edge length 0.96 nm. Three of these triangles form motif 10, which is

labelled. Also highlighted is motif 9. M10 and M9 from Figure 7.11(a) are also included
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Figure 7.13: 3–fold Pb nano–structures: (a) A model film of all four Pb layers. High-
lighted are motifs 9 and 10. Colour scheme is as other figures, with the exception of the
final layer, which is coloured purple. (b) A colourmap of (a), indicating areas of low and
high density (blue to red respectively). Labelled are M9 and M10. Individual protrusions
form a Fibonacci sequence. (c) Enlarged view of M10. (d) Enlarged view of M9.

for comparison as enlarged views in (c) and (d) respectively.

The relatively isolated nature of each of the high density triangles indicates a strong

distinction between a film of 3D nano–structures and a multi–layer film (as in the 5–fold

system). Each red triangle in Figure 7.13(b) has, on average, a hollow of roughly 0.1 nm3

adjacent to at least two of its edges, whilst the cavity at the centre of M10 is ∼0.5 nm3.

Furthermore, each triangle can be used as a basis in a Fibonacci chain, with an example

highlighted on Figure 7.13(b). This, combined with the FFT from Figure 7.11(a), shows

that the distribution of these nano–structures is quasiperiodic.

Figure 7.14 shows a 3D STM image of an area from Figure 7.11(a). Marked with

a white ring is M10. An arrow points to a triangular protrusion analogous to those in

Figure 7.13(b). Similar protrusions (either whole triangles or with a vertex missing) are

distributed throughout the image. The beginnings of the crystalline islands are visible as

the darker red areas. Further experiments holding the substrate at raised temperatures

could allow a homogenization of the film (in essence recreating the colourmap in Figure

7.13), whereby the Pb which creates the crystalline islands can more readily diffuse to

quasiperiodic adsorption sites.
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Figure 7.14: 3D view of 3–fold Pb nano–structures: A 3D representation of a section
of Figure 7.11(a). Circled is M10. An arrow indicates one of the small triangular protrusions
in Figure 7.13(a,b). Scale bar represents 5 nm.

7.3.4 Pb Growth Mode

To understand the specific nature of the growth mode of Pb here, it is pertinent to compare

this system with metallic adsorption on 5–fold i–Ag–In–Yb. On the 5–fold surface, where

multi–layer systems are formed, Pb and Bi form ‘under’ and ‘inter’ layers which energeti-

cally stabilise the films due to a minimisation of nearest neighbour distances. Under–layers

are formed underneath the first layer, whilst inter–layers are those between already estab-

lished layers (i.e. first and second). These layers are unobservable by STM, but are

confirmed by Density Functional Theory (DFT) [67, 157]. As a result, the relationship

between deposition time and coverage observed by STM is non–linear.

On the 3–fold surface, coverage has been defined here as the fraction of the total

available adsorption sites which are filled for each plane. For each layer, the x–y density

of the corresponding model plane is calculated. This density is used to calculate the

maximum number of sites available over a certain size area (60 × 60 nm2) for each layer,

defined as a monolayer. Then, the ratio to this maximum is measured for each layer from



Chapter 7. 3–fold i–Ag–In–Yb: clean surface and Pb adsorption 107

Figure 7.15: Coverage relationship of Pb on 3–fold i–Ag–In–Yb: The relation-
ship between deposition time and observed coverage by STM. Each layer is labelled with
reference to its observation by STM.

the STM images. This method ensures that the contribution from each layer to the total

coverage of the film is considered, and neglects any additional sites. Figure 7.15 shows the

relationship between the Pb film coverage and the deposition time. Each layer has been

labelled. Similar to the 5–fold orientation, we see a non–linear relationship. The potential

explanation for this will be discussed in the next section.

Nearest Neighbours

Considering the argument of inter–atomic distances stabilizing films in the 5–fold system,

we can look to nearest neighbour (NN) distances within the 3–fold system to explore the

non–linear coverage relationship. To do so, the majority of the model film in Figure 7.13(a)

can be deconstructed into an arrangement which mimics the Cd–Yb cluster shell geome-

tries. Figure 7.16(a) shows a surface–centred Cd–Yb cluster, which has been truncated

equatorially. The 5th, 4th, and 3rd shells are shown as truncated polyhedra. Each Pb

layer has been placed at the positions which they ‘occupy’ considering the model planes
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Figure 7.16: 3–fold Pb building block: (a) A truncated Cd–Yb cluster with 3rd, 4th,
and 5th shells visible. Pb atoms decorate each shell according to their placement in the
model film. Colour scheme is as previous. Grey atoms are surface Cd atoms. (b) View
of a section of (a) with nearest neighbour distances labelled. (c) Side–view of (b), with
a section of the planar model adjacent showing the relative heights of each layer. Nearest
neighbour distances are labelled.

that explain their adsorption positions i.e. the vertices of these shell polyhedra. The

colour scheme is as previous for each layer. Surface Cd atoms are in grey. The fourth

layer (purple atoms) do not occupy positions explained by the surface truncated cluster,

rather, the individual sites originate from three clusters centred below the surface plane

(each ‘providing’ a site for a single atom). This arrangement of all four layers produces M9

as seen in Figures 7.11(a,d) and 7.13(a,b,d). Likewise, the first layer M1, second layer M4,

and third layer M6 motifs are also constructed. The contribution of this ‘building block’

to other motifs will be discussed later.

Figure 7.16(b) shows a section of the building block, with nearest neighbour distances

labelled between various layers and the substrate. All values are on the nm scale. Simi-

larly, Figure 7.16(c) shows a side–view of this section, with further NN distances marked.

Adjacent is a representation of the Cd–Yb planar model for each of the Pb layers. The

labelled NN values can indicate whether the Pb will interact with the substrate, or other

Pb layers. If a nearest–neighbour (NN) distance is larger than that of crystalline Pb (0.32

nm), then it is likely that a stabilising layer is needed. As indicated on Figure 7.16, all
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Figure 7.17: Motif 10 model: Motif 10 (STM image, right) is constructed using six
building blocks from Figure 7.16(a) and three additional ‘units’, one of which is highlighted.
These additional units are stabilised by the first Pb layer, as shown adjacent by a labelled
side–view and NN distance. The centre of motif 10 shows another arrangement between
the first (red hexagon) and second (green triangle) layers. The NN distance marked shows
their interaction.

values are within range of this value.

This building block can explain ∼ 85% of the sites in the film. The remaining sites

can be explained by isolated interactions between each of the layers. Figure 7.17 shows

a model of M10, including the contribution of the building block to its construction. The

cluster centres are marked by golden spheres. Each building block ‘donates’ a single fourth

layer atom, creating two vertices of the smaller triangles that form M10. The remaining

vertices (one is circled) are simply fourth layer atoms which bond directly with the first

layer. A side view is shown adjacent, with a NN distance labelled. Likewise, the centre of

M10 contains a first layer hexagon, with a second layer triangle on top. The NN distance

between these two arrangements is labelled. Again, values are on the nm scale. The
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Inter–layer distance (nm)

Layers NN

S–1 0.32*

S–2 0.34*

S–3 0.40

S–4 0.58

1–2 0.34*

1–3 0.32*

1–4 0.34*

2–3 0.60

2–4 0.82

3–4 0.32*

Intra–layer distance (nm)

Layer NN1 NN2 Average

1 0.30* 0.97 0.63

2 0.60 0.97 0.78

3 0.52 1.04 0.78

4 0.60 0.97 0.78

Table 7.2: Nearest neighbour inter– and intra–layer distances of Pb: (Left) Table
of values for distances between each layer. Highlighted with asterisks are values which are
close to the nearest neighbour value for crystalline Pb. (Right) Intra–layer distances. NNi

refers to distances which are observed with equal regularity.

remaining ∼ 15% of the film can be explained by similar structures which are stabilized

by previous layers.

A comparison of specific inter–layer and average intra–layer distances is presented in

Table 7.2. Here, each layer is noted by its integer, and the substrate by an S. Distances

have been calculated using the model planes. An average value for the intra–layer distance

is calculated as, for each model plane, there are two ‘NN’ separations which are observed

with equal regularity. The same is not required with the inter–layer calculations. With the

exception of the first layer, each layer is stabilized exclusively (in terms of NN distances) by

previous layers, or the substrate, as opposed to intra–layer, x–y interaction. This suggests

that stabilising layers are not necessary within this system.

If this is the case, then the non–linear deposition/coverage relationship may be due

to a reduction in the sticking coefficient of the film. As previously mentioned in section

7.1, the Yb sites of the substrate are particularly reactive. The sticking coefficent of the

surface may then be proportional to the ‘capping’ of Yb at the surface, so that once the

first layer is complete and the substrate is covered – approximately at the inflection point

between the third and fourth layers, Figure 7.15 – the sticking coefficient of the system

decreases. This also may be due to the quasicrystalline nature of the film. The number of

available adsorption sites will decrease as each unique layer is filled, unlike upon a dense



Chapter 7. 3–fold i–Ag–In–Yb: clean surface and Pb adsorption 111

homo/hetero–epitaxial interface.

Relative densities

The growth of Pb cannot be explicitly defined in terms of the three growth modes explained

in section 3.1. The Pb grows in z after an initial wetting layer, as in the Stranski–Krastanov

mode. However, the first layer does not reach 100% coverage until the third layer is well

established. Likewise, the ‘islands’ on top of the first layer in this case do not prioritize

adsorbate–adsorbate interaction, as each successive layer is a quasicrystalline allotrope.

Neither is the growth mode Volmer–Weber, as, although we see isolated 3D structures,

again, their structure must be dependent on a strong interaction with the substrate po-

tential. It may be that, at room temperature, the Pb is grown in a kinetically limited,

metastable state, and that adequate thermal energy upon adsorption may allow ‘typical’

growth as defined by an adsorbate film in equilibrium.

The suggestion from experiment and the model NN distances is that growth is ener-

getically preferred in z rather than x–y. As the adsorption sites are explained by planes

of the Cd–Yb system, the preference for out–of–plane growth to in–plane growth can be

considered in terms of plane densities. If we consider an equally sized 3D slab of planes in

both the 5–fold and 3–fold orientations, then a potential motivator for the two different Pb

growth modes is found. Here, there are less atoms per plane, but more planes per nm in z

for the 3–fold system i.e. there are more potential sites for adsorption along z rather than

in x–y. This may explain why Pb atoms in the second layer adsorb at the ‘unstable’ glue

sites. To speculate, it may be that if the 3–fold orientation is truncated with no relaxation

or reconstruction (as is the case), then there may be some directional energy potential

created which is minimized by growth along z, as would be expected in the bulk.

7.4 Summary

The clean 3–fold i–Ag–In–Yb surface has been revisited with respect to the rhombus tiling.

In agreement with the Cd–Yb model, cluster centres at the surface can be linked by tiles,

where the vertices of tiles coincide with cluster centres. This practical application high-

lights the usage of the 3–fold rhombus tiling, as opposed to existing simply as a geometric

construction.

Pb was dosed upon the clean surface over a range of coverages. As with previous studies,
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the growth of Pb appears templated by a surface potential, with Pb atoms occupying sites

which can be explained by planes of atoms in the Cd–Yb model. The specific growth

mode is unique to this system, with substrate–adsorbate interaction clearly preferred, but

with quasi–island growth observed. As a result, Pb nano–structures are grown, which are

indicative of the Cd–Yb cluster model.

Further deposition of Pb lead to crystalline islands, consistent with previous work [67,

157,162]. Potential further research into this system could include fine–tuning the growth

process, investigating the properties of the Pb structures (electronic, plasmonic, catalytic),

or dosing further atomic or molecular species to assess reactivity/unique templating i.e.

utilising the hollows as ‘seed’ points for growing quasicrystalline thin films.



Chapter 8

2–fold i–Ag–In–Yb: clean surface

and Pb deposition

In this chapter, new high resolution STM images of the 2–fold i–Ag–In–Yb surface are

presented and are compared to the Cd–Yb model. These images show different struc-

tural features to those previously published – attributed to the STM tip condition. Fur-

thermore, Pb has been dosed on the surface to compare with the other high symmetry

Pb/i–Ag–In–Yb systems. Here, Pb appears to adopt the surface structure, as opposed to

being explained by Cd–Yb bulk planes, as with the other systems.

8.1 Introduction

Previous research concerning the 2–fold surface of the i–Ag–In–Yb quasicrystal has led

to its description in terms of a bulk truncation of the Cd–Yb model. As with the other

high symmetry orientations, its LEED pattern is discrete, and indicative of the surface

symmetry, i.e. 2–fold [156]. STM gives step heights of S = 0.27 nm and L = τS = 0.45

nm, which are consistent with the distribution of cluster–centre planes in the Cd–Yb model.

Therefore, the surface structure can be explained, as with the other orientations, by dense

planes of atoms intersecting Cd–Yb cluster centres.

However, unlike the 5–fold and 3–fold surfaces, atomic resolution of the 2–fold surface

was not achieved by STM [66, 154, 156]. Figure 8.1(a) shows a section of the surface

observed by STM from a previous report. A row structure is clearly seen, which was

compared to the distribution of the 5th shell of the Cd–Yb cluster, Figure 8.1(c). This

113
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Figure 8.1: Previous results from the 2–fold i–Ag–In–Yb surface: (a) STM im-
age of the 2–fold i–Ag–In–Yb surface. Highlighted are the directions of the 2–fold vec-
tors. A black square indicates an area enlarged in (b). (b) The row structure, protru-
sions, and zig–zag nature of individual rows are compared to the Cd–Yb model. (c) The
cluster–centred atomic plane used to explain the surface. Cluster centres are blue, 5th shell
atoms are red, 1st shell are pink, 2nd, 4th shell are light pink, whilst Yb atoms are green –
glue atoms are dark green. Reproduced from [156].

shell forms zig–zag rows separated by 1.57 nm. The ‘twist’ angle i.e. the angle between

zig and zag, matched well with the model value. Isolated protrusions are also observed,

separated by τ–scaled distances along the direction parallel to the row structure. These

were attributed to the 1st shell, with the relatively inhomogeneous distribution attributed

to the partial occupancy of these sites within the model used1 [156, 158–160]. As large

terraces were found of comparable size to the other high symmetry directions, the stability

1The Cd–Yb cluster contains a dynamic tetrahedron as its 1st shell. The atomic model used approximates
its position by a partially occupied dodecahedron (occupancy = 0.2).
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and surface free energy of the 2–fold surface was considered comparable to the 3–fold and

5–fold orientations.

In the i–Ag–In–Yb system, each of the high symmetry surfaces were found to intersect

with cluster–centre planes [66,154,156]. Similarly, step heights on each surface were linked

to cluster centres along the relevant direction. However, along the 3–fold and 5–fold orien-

tations, these cluster–centre planes were not the most dense. The stability (and therefore

selection) of each of these surfaces was related not to overall atomic density, but to the

In/Yb density. Indeed, along these two directions, the surface planes contained ∼90%

In/Yb [156]. Along the 2–fold orientation however, the densest planes coincide with the

cluster–centre planes, with a relatively even surface composition (Ag31In42Yb27).

Before this work, there have been no adsorption studies on the 2–fold surface. Here, new

STM images will be presented which offer atomic resolution of the surface. Rather than

the zig–zag structure observed previously, individual protrusions can be linked directly

to the 4th shell of the Cd–Yb cluster, which has an occupancy of 80% In [155]. It is

proposed that the bright protrusions are In atoms, which appear to form rows ‘on–top’ of

a Yb distribution. The surface has also been used to template the growth of Pb. Here, as

opposed to the other surfaces in the i–Ag–In–Yb system, Pb appears to grow epitaxially in

a layer–by–layer fashion – that is, mimicking substrate–specific adsorption positions over

each of the layers. Further Pb deposition results in a rough system, with crystalline islands

aligned along high symmetry directions of the substrate.

8.2 Experimental Details

The 2–fold surface of an i–Ag–In–Yb QC was polished with diamond paste of successively

finer grades (6–0.25 µm) before washing in methanol. After insertion into a UHV chamber,

the sample was cleaned by cycles of sputtering and annealing. The surface was sputtered for

30 minutes with Ar+, before annealing for 2 hours at 700 K. Pb was dosed at a constant flux

of ∼ 5× 1011 atoms cm−2s−1 over a range of coverages, using a Focus EFM 3 evaporator.
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8.3 Results

8.3.1 Clean Surface

Figure 8.2(a) shows an STM image taken from the clean 2–fold i–Ag–In–Yb surface, with

increased resolution compared to the previous report [156]. The clean surface here primarily

consists of bright protrusions which are arranged in both horizontal and vertical rows, with

finer arrangements between rows sometimes observed. The same image is shown in Figure

8.2(b), where the rows have been highlighted. There are no aperiodic sequences observed.

The horizontal separation of vertical rows is RH = 1.27 ± 0.04 nm. Occasionally, small

perturbations also occur – a purple oval highlights an example in Figure 8.2(b). This

separation is measured as 0.94 ± 0.04 nm. The vertical separation of horizontal rows are

either RV 1 = 2.06 ± 0.07 nm or RV 2 = 2.4 ± 0.1 nm. The ratio of these vertical row

values is not related to τ , nor do the vertical rows form a Fibonacci sequence. However,

the ratio of RV 1/RH gives 1.59 ±0.08. The highlighted rows in Figure 8.2(b) are placed

at an average separation between these values (2.2 ± 0.1 nm). Also highlighted within a

rectangle is a rectangle with a central protrusion. The two edge lengths of this formation

correspond to the horizontal and vertical row (RV 2) separations. The diagonal direction

(i.e. bottom left to top right, or vice versa) of the rectangle is at 59±0.1◦ to the horizontal,

which corresponds to the angle between the 2–fold and 5–fold axes, as indicated by a set

of vectors overlaid on Figure 8.2(b). The average distance from corner to corner of any

rectangle is 2.6± 0.2 nm – this value is dependent on whether a rectangle is formed by a

vertical separation of RV 1 or RV 2.

The FFT of the data from Figure 8.2(a) is shown in Figure 8.2(c). The spots in the

FFT have been highlighted by coloured circles to indicate which part of the surface they

represent. The row separations (both horizontal and vertical) give rise to purple–circled

spots arranged in a diamond. There is no evidence of τ–scaling of these spots in either

direction, in agreement with the seemingly periodic rows observed. A weak set of spots

appearing at double the vertical separation are also highlighted in purple. The row sepa-

rations calculated from the primary spots give: RH−FFT = 1.25 ± 0.05 nm and RV−FFT

= 2.19 ± 0.08 nm. These values agree with the measured RH , and the average of RV 1

and RV 2. Additionally, three sets of τ–scaled spots are highlighted by white spots. Their

angle from the horizontal is 30 ± 1◦, corresponding to the 5–fold direction in real–space

(90◦ − 31.7◦ = 58.3◦, the angle between the 2–fold and 5–fold axes).
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Figure 8.2: Clean 2–fold i–Ag–In–Yb surface: (a) STM image (Vb = 800 mV, It =
0.309 nA) of the clean 2–fold i–Ag–In–Yb surface. (b) Same image as (a), with horizontal
and vertical rows highlighted. Also marked is a rectangular feature, and a closely separated
dimer. Vectors indicate the high symmetry axes of the surface. (c) FFT of (a). Spots
are highlighted which are related to specific features of (a). (d) Left: Inverse FFT of
purple spots in (c). A lattice highlights the row separation, with an oval highlighting a
close dimer. Right: Inverse FFT of white spots in (c). A Fibonacci sequence links high
intensity spots along the 5–fold axis. All scale bars represent 5 nm.

Figure 8.2(d) shows the inverse FFT created by the purple spots, in addition to the

spots circled in yellow, where a purple lattice indicates the periodic row structure. The
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Figure 8.3: 2–fold i–Ag–In–Yb surface model: (a) The 4th shell of the surface plane
used to described the 2–fold i–Ag–In–Yb surface. Vertical and horizontal rows are high-
lighted, formed by dimers. Their separations are marked. (b) Same as (a), but with circles
indicating dimers oriented in the 5–fold and 3–fold direction.

yellow spots induce a slight spatial perturbation in the rows and a modulation in intensity

in the inverse FFT. Their origin will be discussed later. The inverse FFT calculated from

the white spots is shown in Figure 8.2(e). Here, along the 5–fold direction, high intensity

spots are separated by a section of the Fibonacci chain. The length scales of the chain

segments are L = 3.89 ± 0.06 nm, and S = 2.52 ± 0.08 nm. This S value corresponds to

the length–scale of the diagonal of the highlighted rectangle in Figure 8.2(b).

Using the real–space measurements and the FFT, the surface structure observed by

STM can be interpreted by considering the 4th shell of a surface truncated Cd–Yb cluster.

Figure 8.3 shows a model of the surface plane, with only the 4th shell atoms shown. Marked

are horizontal and vertical row locations, where the horizontal model row separation is

RHM = 1.27 nm, and the two vertical rows are RV 1M = 2.04 nm, and RV 2M = 2.54 nm

(where M = model). These rows form a modulated rectangular lattice which matches the

dimensions measured by STM. At each vertex are closely separated dimers. It is therefore

proposed that these dimers appear as singular protrusions in STM. A rough ‘unit cell’ can

therefore be composed by the rectangular formation in Figure 8.2(b), with dimers at each

of its vertices. This may explain why there is no τ–scaling observed in the FFT along the
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Figure 8.4: 2–fold surface contribution: (a) STM image from Figure 8.2(a), filtered
so that only the bright protrusions corresponding to the 4th shell model plane are visible.
Scale bar is 5 nm. (b) FFT of (a), with coloured spots following the same colour scheme
as Figure 8.2(c). Green spots are along the 3–fold axis in real–space. (c) Enlarged view
of a rectangular motif. Scale bar is 1 nm. (d) Model of (c), including Yb atoms (green).

2–fold symmetric axes. Figure 8.3(b) shows that these dimers can be separated along the

5–fold axes by a Fibonacci sequence of the same scale in Figure 8.2(e). The model gives

values of S = 2.41 nm (±4%), and L = 3.85 nm (±1%). Therefore, this model plane can

explain the bright features observed by STM.

The chemistry of the 4th shell protrusions (and the reason why they are observed

primarily over any other shell) can be inferred by considering the occupancy and density

of this shell with reference to the Cd–Yb model. i–Ag–In–Yb is isostructural to Cd–Yb, as

previously stated, with Ag/In replacing Cd. The specific nature of this replacement is not

known i.e. whether Ag occupies a specific vertex of the 4th shell, for example. However,

the atomic occupancy of each shell is known in terms of an approximate ratio: the 4th

shell contains ∼80% In, if not more [155]. Now, in terms of atomic density, the 4th shell

represents ∼17% of the total atoms in the selected surface plane. Therefore, it is reasonable

to speculate that roughly 14–17% of the surface plane contains In from the 4th shell.

Considering this, Figure 8.4 shows Figure 8.2(a) thresholded to show the bright pro-

trusions covering ∼ 19% of the image area. It is speculated that these contributions are

from In only. Figure 8.4(b) shows an FFT of Figure 8.4(a), with spots circled considering

the same colour scheme as in Figure 8.2(c). Conspicuously, there are no yellow circled
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spots – and a set of green circled spots are more prominent. These are aligned 60± 4◦ to

the horizontal, or 30 ± 2◦ in real space – corresponding to the 3–fold direction (31.72◦).

Dimers oriented along the 3–fold direction are highlighted in the model surface plane in

Figure 8.3(b).

Therefore, the remaining structure of the surface must have some contribution from

the other shells at the surface plane. Figure 8.4(c) shows an enlarged view of the rectangle

feature in 8.2(b). At this scale, the contrast difference between the vertices of the rectangle

and its centre are more obvious. Likewise, the centre protrusion appears more square–like

than the vertices. Figure 8.4(d) shows a model schematic of the rectangle, where Yb atoms

are also included. Here, an Yb square is predicted at the centre of the rectangle, fitting

with the square centre of Figure 8.4(c). The marked distance between adjacent In–Yb

dimers is given as 0.92 nm, which fits well with the observed perturbation in the vertical

rows (±2%). It is therefore suggested that Yb atoms have some effect on the observed

partial density of states at certain positions, or, at other positions, induce some spatial

perturbation. These factors therefore may produce the yellow circled spots in the FFT

in Figure 8.2(c). In general, therefore, the surface can be considered as a set of bright

protrusions (In atoms) which appear to form a row structure, which sits on a ‘base’ of

Yb atoms. This row structure is consistent the previous report, with the exception here

that different structural aspects of the surface (i.e. different Cd–Yb shell contributions)

are resolved [156]. This yields a difference in row separation measurements.

The previous report studied bias dependency of the tip to the surface, finding none.

Bias dependency was not explored here. The enhanced resolution of the clean surface

compared to the original report may be due to the condition and shape of the STM tip.

8.3.2 Pb dosed surface

Pb grown on the 2–fold i–Ag–In–Yb surface differs from the 3–fold and 5–fold systems.

Here, rather than Pb sitting at sites and heights which are explained by planes ‘above’

the surface, Pb appears to directly adopt the structure of the underlying substrate over

multiple layers. The growth mode is again different to the other systems, with a modified

Stranski–Krastanov type mode observed. A dense initial wetting layer is grown to 1 ML

coverage, which appears to mimic aspects of the substrate structure. Afterwards, small

structures at multiple heights grow upon the first layer along z. Their structure (at each

height) also appears indicative of the substrate. Further coverage results in a rough film,
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with crystalline island–type growth, consistent with the other high symmetry systems [67].

The structure of each Pb layer on the 2–fold surface will be discussed here, and com-

pared to Pb adsorption on the other high symmetry surfaces of i–Ag–In–Yb.

First Layer

Figure 8.5(a) shows an STM image taken after dosing the clean surface with Pb for 10

minutes. The coverage of Pb is approximately 0.6 ML, calculated by subtracting the area

representing the substrate from the image. Rectangular features with edge lengths of RH

and RV are often observed from the substrate – one example is highlighted within a white

rectangle. The adsorbed Pb can be split into two categories dependent on resolution in

STM – either individual Pb atoms, or, larger collections which appear as single protrusions.

Examples of each are highlighted by white circles.

To understand the Pb adsorption sites, Pb motifs will be considered with reference to

the model substrate. Figure 8.5(a) shows 4 Pb atoms arranged in a vertical line, highlighted

by a white oval. The separation of these Pb atoms is 1.28 ± 0.08 nm. Also indicated in

Figure 8.5(a) is a diamond, where each of the vertices are protrusions which, individually,

appear larger than the atoms highlighted in the vertical chain. The edge lengths of the

diamond are 2.40±0.05 nm, and its horizontal and vertical diameter are 2.41±0.04 nm and

4.01±0.08 nm respectively. Both of these motifs can be related to a chemically non–specific

model of the substrate. This non–specificity will be discussed later.

Figure 8.5(d) shows the surface model, where each of the Cd–Yb shells have been

coloured blue to reveal adsorption sites of high symmetry. Cluster centres are coloured gold.

Labelled are the vertical line and the diamond, in addition to other features discussed later.

The adsorption sites of both model Pb structures can be categorised as either hexagon or

triangle sites, shown in an enlarged view next to Figure 8.5(d), where they are abbreviated

as H and T. These are characterised by the surrounding atomic symmetry, so that a

hexagonal adsorption site is a site surrounded by six substrate atoms, etc. Using these

as model adsorption sites, the separations of the Pb line and percentage difference to the

experiment are 1.20 nm (±7%). The edge length, horizontal and vertical diameters of the

model diamond are 2.41 nm (±1%), 2.53 nm (±5%), and 4.10 nm (±2%) respectively.

The larger radius of the protrusions which form the diamond (in comparison to the single

atoms forming a line) could originate from multiple Pb atoms which are adsorbing at closely

separated hexagon and triangle sites, as shown in Figure 8.5(d). This may also cause the
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Figure 8.5: Low coverage Pb on the 2–fold i–Ag–In–Yb surface: (a) STM image
(Vb = −0.806 mV, It = 0.198 nA) of the 2–fold i–Ag–In–Yb surface after dosing with Pb
for 10 minutes. A white rectangle indicates a substrate rectangle. An oval highlights 4
Pb atoms. A small circle indicates a single Pb atom, whilst a larger circle shows a denser
protrusion. A diamond indicates four Pb protrusions arranged in a diamond. Scale bar
represents 5 nm. (b) Enlarged area of (a). A Pb structure of atoms is highlighted with
horizontal and vertical separations. Scale bar represents 5 nm. (c) Enlarged area of (a)
Another Pb structure is highlighted. Dimers are marked which lie along the 3–fold and
5–fold axes. Scale bar represents 5 nm. (d) Model of the potential adsorption sites for
the first layer of Pb. Blue atoms are the substrate, yellow, the cluster centres. Each of
the highlighted structures in (a, b, c) are labelled. Adjacent are enlarged views of the
hexagonal, triangular, pentagonal, square, and cluster centre adsorption sites.

variation in percentage difference between model and experimental values as calculated

above.

Further examples are also consistent with this hypothesis. Figure 8.5(b) shows an

enlarged view of (a). A Pb structure is labelled as ‘1’. The labelled vertical separation

of 1 is 1.22 ± 0.05 nm, whilst the two horizontal values are S = 1.49 ± 0.07 nm, and

L = 2.41 ± 0.03 nm. The ratio of L/S is 1.62 ± 0.08, or ∼ τ . A similar arrangement is

marked in the model in Figure 8.5(d), with corresponding values for the vertical separation:

1.24 nm (±2%), S = 1.57 nm (±5%), and L = 2.54 nm (±5%). These horizontal isolated

atoms are therefore τ–scaled. In addition to hexagonal and triangular adsorption sites,
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two atoms of motif 1 sit at pentagonal sites, with an example again shown adjacent to

Figure 8.5, abbreviated as P. Again, this is characterised by the surrounding substrate

atoms forming a pentagon.

Figure 8.5(c) also shows an enlarged view of (a), with a Pb structure labelled as ‘2’.

The horizontal and vertical edge lengths of 2 are 1.5± 0.1 nm and 2.79± 0.05 nm. Again,

the corresponding features are marked in Figure 8.5, with edge lengths: 1.57 nm (±4%)

and 2.82 nm (±1%). These atoms sit at T and H sites. In addition, two sets of Pb atoms

have been marked on Figure 8.5(c) which are oriented along the 3–fold and 5–fold axes.

Their separations are 2.48± 0.04 nm and 1.54± 0.03 nm respectively. Corresponding sets

have been marked on Figure 8.5(d) with 3–fold and 5–fold symmetry directions labelled,

with separations of 2.54 nm (±2%), and 1.57 nm (±2%) respectively. Both sets sit at T

and P sites.

As such, it is suggested that the Pb atoms are adsorbing at sites with high symmetry.

These are labelled adjacent to Figure 8.5(d). In addition to the triangular, pentagonal,

and hexagonal sites which have been discussed, a square site is also highlighted. Other

potential sites include positions surrounding the cluster–centres. This is contrary to the

other high symmetry i–Ag–In–Yb surfaces, where the structure of Pb layers were explained

using planes ‘above’ the substrate. The potential explanation for this difference will be

discussed later.

If indeed the growth mode is dependent on some aspect of the substrate structure,

then a denser Pb layer than the 3–fold and 5–fold Pb systems will be observed. Higher

Pb coverage shows that the Pb adopts the row–like substrate structure. Figure 8.6(a) is

an STM image of the surface after dosing with Pb for 12 minutes. Here, the coverage is

calculated as ∼0.8 ML. A clearly defined row structure is observed in the vertical direction.

The start of the second Pb layer is highlighted by a white circle.

The FFT of the high coverage first layer is shown in Figure 8.6(b), taken after thresh-

olding out the substrate contribution. Only 4 spots are visible, appearing along the 2–fold

symmetric axes. No τ–scaling is observed, due to a lack of FFT spots. This behaviour

is similar to the purple–coloured spots forming a diamond in the FFT taken from the

substrate, Figure 8.2(c). Indeed, the lengths of the rows in real–space taken from Figure

8.6(b) are, for the horizontal: 1.22± 0.05 nm, and the vertical: 2.1± 0.1 nm. These values

correspond with those measured from the In/Yb rows from the substrate in Figure 8.2.

Therefore, it is suggested that in Figure 8.6(a) and similar to the image of the substrate,

Figure 8.2, multiple Pb atoms are resolved as single protrusions, with the film growing in
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Figure 8.6: High coverage Pb on the 2–fold i–Ag–In–Yb surface: (a) STM image
(Vb = -100 mV, It = 0.149 nA) of high coverage Pb from the first layer. A white circle
highlights the start of the second layer. Scale bar is 8nm. (b) The FFT taken from (a).
Four spots are labelled with no τ–scaling. (c) A model of the first Pb layer. Prospective
high symmetry T and H sites are occupied along two rows separated by 1.26 nm. A vertical
separation of 2.2 nm highlights a section of a row between two gaps in high symmetry sites.
A larger row separation is marked on the right–hand side.

a manner commensurate with the row structure of the substrate.

Figure 8.6(c) is a model of the first Pb layer on top of high symmetry sites along one of

the 2–fold symmetry axes. Here, each hexagonal and triangular adsorption site is occupied
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along two rows. These rows are separated by 1.26 nm, marked by a set of arrows. This

value fits with the horizontal rows in Figure 8.6(b), (±3%). Also labelled is a vertical

separation of a section of one of the rows. This section is created due to gaps between the

next hexagonal and triangular adsorption sites. Its length is 2.20 nm, in agreement with

the vertical separation measured in Figure 8.6 (±5%). Whilst this section does not appear

directly adjacent in the next row, sections of similar lengths and similar start/end points

between parallel rows are observed throughout the model structure. This may lead to the

corresponding vertical separation FFT spots. Likewise, the non–specific chemical nature

of the model presumes a 100% occupancy of each hexagonal and triangular site. In reality,

there may be preferred sites at the coverage in Figure 8.6(a) which generate this vertical

separation in the FFT.

In Figure 8.5(d), other high symmetry sites were identified. At the bottom of Figure

8.6(c) several pentagonal sites are occupied, shown as pink atoms. These sites appear

between the hexagonal and triangular rows, with a much lower frequency than the hexag-

onal and triangular positions (roughly 40% of the total hexagon and triangle sites). This

difference in density of available sites may also play a role in the row structure observed.

Cluster centre and square sites are also highlighted with green and red atoms, respectively.

They appear with less regularity, and are situated between hexagonal and triangle site

rows.

Hexagonal and triangular rows can occasionally be separated by 1.57 nm, as labelled in

Figure 8.6(c). This row distance is not measured by STM, nor is it indicated in the FFT

of Figure 8.6. The Cd–Yb model predicts these row separations appearing between ∼14%

of the total rows. It is suggested then, that either these rows are at low enough occupancy

that they do not appear in the FFT, or, that at higher coverage, Pb adsorbs at the rows

containing pentagonal or cluster–centre sites, in–between hexagonal and triangular rows.

This may lead to a dense structure which is not resolved by STM.

Second Layer

Figure 8.7(a) is an STM image taken after dosing the surface with Pb for 20 minutes.

At this coverage, the first layer is almost completely filled, and two further layers are

observed. The second layer appears to grow in a row–like structure, oriented along one of

the 2–fold axes. A third layer is highlighted by a black circle. Horizontal row separations

are marked on Figure 8.7(a) as S/2, S, and L. These give values of S/2 = 0.66± 0.05 nm,
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Figure 8.7: Second Pb layer on the 2–fold i–Ag–In–Yb: (a) STM image (Vb = 500
mV, It = 0.5 nA) of the second Pb layer. Rows are separated and marked by S/2, S, and L.
Segments of rows are marked as 1 and 2. A white box indicates an area of interest shown
in (b). A black circle indicates the third layer. Scale bar is 4nm. (b) Enlarged view of
(a). 3 and 4 are distances noted in the main text. Scale bar is 2 nm. (c) Model schematic
of the first (black) and second Pb (yellow) layers on the substrate (blue). Distances 3 and
4 from (b) are marked. Scale bar represents 1 nm.

S = 1.26± 0.06 nm, and L = 1.96± 0.08 nm. The relationship between S and L does not

appear τ–scaled. Likewise, the smaller row separations are not S/τ . This will be discussed.

The lengths of two row segments are marked as 1 and 2, giving values of 2.6± 0.1 nm and

4.1± 0.1 nm respectively. These segments are τ–scaled, giving a ratio of 1.6± 0.1.

Each of these separations and lengths match those of the previous layer. However, the

preferred occupancy of hexagonal, triangular, pentagonal, square, and cluster centre–based

adsorption sites of the first layer is not known. Therefore, directly understanding specific

second layer adsorption sites with respect to an accurate structural model of the first layer is

not possible. However, second layer separations can be compared to first layer separations,

and as a consequence a rough model can be suggested. For example, the S row separation
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of the second layer is the same as the first layer horizontal row separation from Figure

8.6(a) (±1%), or, the RH value from the substrate (±2%). Likewise, RH/2 = 0.64 nm

= S/2 (±3%). The vertical segments, 1 and 2, are related to the large vertical separation

from the substrate RV2M = 2.54 nm, so that 1 = RV2M (±4%), and 2 = τRV2M (±1%).

These structures and values may also be related to the segments of atoms produced in the

vertical chains of the first layer, Figure 8.6(c).

The highly linear nature of the second Pb layer indicates an adsorption site network

with similar geometry, which fits with the high density row structure of the first Pb layer.

As such, it is suggested that the second layer Pb atoms are adsorbing on top of the first

layer Pb rows, with a preference given to the hexagonal and triangular site rows. Figure

8.7(b) shows a collection of second layer Pb protrusions. Labelled as 3 is a single vertex

from a rectangular feature. The marked length (i.e. the width of the protrusion forming

the vertex) is 0.71 ± 0.02 nm. Likewise, marked as 4, is a length of 1.43 ± 0.03 nm.

These features can be explained by the linear adsorption network suggested. Figure 8.7(c)

shows a model of the first Pb layer (black) on top of the substrate (blue). These rows are

formed along hexagonal and triangular substrate sites. Yellow atoms are second layer Pb,

adsorbing at bridge sites in between two first layer Pb atoms. Both 3 and 4 are marked,

giving distances and agreements with the experimental values of 0.66 nm (±6%) and 1.40

nm (±2%).

The S/2 row value measured from the second layer indicates that it is also possible for

a Pb rows to lie between consecutive S rows – giving a finer structure than that observed

in the first layer. These rows are analogous to atoms sitting within the pentagonal or

cluster–centre rows in the first Pb layer. This also explains the lack of τ–scaling between

S/2, S, and L, as, rather than adsorbing at quasiperiodically spaced separations (which

are often chemically specific, see Mn atoms in Chapter 5) the Pb atoms are adsorbing

in–between rows of high density, at sites of high symmetry. A yellow oval in Figure 8.7

highlights three second layer atoms which fall into a row structure between the two high

density rows of the first layer as an example.

Third Layer

Dosing the surface with Pb for 20 minutes provides enough coverage to resolve some struc-

ture of the third Pb layer. Figure 8.8(a) is an STM image of an area which shows the

third layer clearly. Marked is a rectangular arrangement of six Pb atoms, with horizontal
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Figure 8.8: High coverage Pb on the 2–fold i–Ag–In–Yb surface: (a) STM image
showing the first, second, and third layers of Pb. Marked are horizontal and vertical
separations of a third layer feature. Scale bar is 5nm. (b) STM image showing the initial
growth of crystalline islands, with examples of 3D growth circled with black ovals. The
same rectangular feature from (a) is marked with a rectangle. The corner angle of an
island is marked, which is itself oriented along the 5–fold direction, also marked. An inset
shows an enlarged view of this feature. Scale bar is 10 nm.

and vertical separations labelled. The horizontal separation is 1.26 ± 0.06 nm, whilst the

three pairs of horizontal dimers are each separated vertically by 1.23 ± 0.05 nm. Both of

these values, again, are reminiscent of the previous layers and the substrate. The relatively

sharp signal along the rows of this feature (in contrast to the dense second layer rows) sug-

gests that these are individual atoms/dimers. Isolated third layer atoms are also observed,

adsorbing on top of second layer rows.

Further Pb deposition shows that growth of the third Pb layer is preferred to the

continuation/completion of the second layer. Figure 8.8(b) is an STM image of the surface

after dosing Pb for 90 minutes. Highlighted by a rectangle is a similar feature to that

observed in Figure 8.8(a). The coverage of the image appears similar to Figure 8.8(a),

indicating that the incident Pb adsorbs preferentially to the second layer, rather than

the first. This is different from a layer–by–layer growth scheme (Frank–van der Merwe).

Likewise, it is expected under the Stranski–Krastanov growth mode that the islands on
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top of an initial wetting layer are dependent on adsorbate–adsorbate interaction, resulting

in a minimum energy allotrope. Neither occur within this system. Rather, it appears that

the sparse density of the second layer compared to the first is preferred for third–layer

adsorption.

Marked by two ovals in Figure 8.8(b) are areas of Pb at larger heights than the third

layer. Also marked with a set of axes is a crystalline island oriented along the labelled

5–fold axis of symmetry. The highlighted angle between two edges of the island is 92± 1◦,

corresponding to a cubic growth plane. Further deposition of Pb results in a larger coverage

of these islands upon the surface. The observation of crystalline Pb islands is consistent

with previous results in the i–Ag–In–Yb system [67].

8.3.3 Pb on i–Ag–In–Yb

Comparison of growth modes

The adsorption of Pb on the i–Ag–In–Yb system has been reported for the 5–fold surface

[67], whilst the 3–fold and 2–fold surfaces have been discussed in this work. The growth

mode of Pb is different across each of the high symmetry surfaces. On the 5–fold surface, Pb

grows in a strict layer–by–layer system, with each layer explained by planes from the Cd–Yb

model. The 3–fold surface produces isolated nano–structures, with growth preferred along

z. Each layer was again explained by planes in the Cd–Yb model. However, the 3–fold

orientation has a greater density of planes along z, yet smaller in–plane atomic density than

the 5–fold system. It was previously deduced that the nature of ‘available’ adsorption sites

in the 3–fold system can be explained by, and is perhaps dependent upon, this variation

in density.

The key difference between these systems and the Pb/2–fold surface is that here, Pb

appears to grow in a modified Stranski–Krastanov type growth where, over several layers,

Pb exhibits a structure related to the substrate. If the previous argument is followed, this

difference in growth mode could be linked to the atomic density of the 2–fold surface. As

previously discussed and unlike the other high symmetry directions, the 2–fold surface is

formed from the densest planes available in the Cd–Yb model, which also coincide with the

cluster–centre planes. This is partly due to the fact that the 2–fold surface is composed

of all 5 shells from the Cd–Yb cluster – the other surfaces are formed only from the 3rd

and 4th shells [66,154,156]. A rough atomic density per surface plane for each orientation

gives, for the 2–fold: 7.9 atoms per nm2, the 3–fold: 2.6 atoms per nm2, and the 5–fold:
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4.6 atoms per nm2. Likewise, the number of planes over a 0.5 nm slab in z, for each

orientation gives, for the 2–fold: 28 planes per nm, the 3–fold: 52 planes per nm, and the

5–fold: 36 planes per nm. So, here, the 2–fold surface has the highest in–plane density, yet

the sparsest distribution of planes per nm in z in the i–Ag–In–Yb system.

The density of planes may be linked to the surface potential which dictates the ad-

sorption sites for each of the high symmetry surfaces. If we consider the 3–fold and 5–fold

systems, successive Pb layers have been matched to ‘vacant’ planes above the truncated

surface in the planar Cd–Yb model. To speculate, the surface potential determining the

growth in these systems must in some way represent these vacant planes, either through

the truncation of the bulk, or the bulk itself. Upon the 2–fold surface however, the distance

between neighbouring planes from the surface may be too large for this potential to act,

discussed in the next section. Here, instead, it appears that adsorption sites with high

symmetry are the driving force behind the structure of the film. Therefore, rather than a

surface potential which dictates film structure, or a strong chemical adsorbate–substrate

interaction (as seen with C60 on 2–fold Al–Pd–Mn), these sites may be attractive only so

that incident Pb atoms may maximise their coordination number.

This theory is strengthened when considering the non–chemically specific substrate

model used to explain the film structure. Here, triangular, square, pentagonal, and hexag-

onal adsorption sites have been identified which can describe the Pb adsorption sites. These

sites are in fact composed of a mixture of all the Cd–Yb shells, in a non–specific manner

i.e. a pentagonal site could be all Cd, or a mixture of Ag/In etc. As the model fits well

with the experimental data, but considers no specific chemistry of the sites, it is suggested

that the atom type of each adsorption site is not important.

Layer Heights

In previous work [67], and in Chapter 7, the heights of each Pb layer above the relevant

i–Ag–In–Yb substrate have been compared to the planar Cd–Yb model. In doing so, the

structure of each layer has been explained using planes of matching heights. The same

method has not been employed here, as the heights and structure of the observed Pb

layers do not match Cd–Yb planes above the surface termination. Figure 8.9(a) shows the

planar Cd–Yb model along the 2–fold orientation. Figure 8.9(b) shows a histogram taken

from Figure 8.5, of the height difference between the first layer and the substrate, ∼ 1.1

Å. Figure 8.9(c) shows the histogram taken from Figure 8.7(a), which shows the difference



Chapter 8. 2–fold i–Ag–In–Yb: clean surface and Pb deposition 131

Figure 8.9: 2–fold Pb layer heights: (a) The planar model along the 2–fold axis.
Planes are coloured and labelled with their shell numbers as before. Marked with dotted
lines are the heights of each Pb layer. (b) A histogram taken from Figure 8.5(a). The
difference between substrate and Pb layer is marked. c A histogram taken from Figure
8.7(a). Marked are the height differences between the first and second, and second and
third Pb layers.

between the first and second, second and third Pb layers, marked as 1→2 and 2→3. Each

are ∼ 1.1 Å. Inspection of the planar model shows no planes at these heights, which are

marked as dotted lines. Additionally, the nearest planes which could be considered (albeit

with a significant relaxation in z ) do not match the observed structure of the Pb in any of

the layers.

Stability

Each of the other Pb/i–Ag–In–Yb systems have had their coverage and growth mode

assessed with respect to stabilising planes. For example, the 5–fold system has inter–
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and under– layers which are not observed by STM. These stabilise the film by reducing

nearest neighbour distances [67]. The 3–fold system is predicted not to have these planes,

as nearest neighbour distances are reduced by vertical growth, Chapter 7. As previously

discussed, the Pb/2–fold system appears not to be dependent on the planar Cd–Yb model;

rather, it mimics the surface on a layer–by–layer basis. Likewise, the start of the third layer

before completion of the second suggests Pb is interacting primarily with itself – adsorbing

at sites with low coordination numbers. Additionally, the in–plane atomic density of the

2–fold surface is the highest of all three high symmetry surfaces. As a consequence, the

number of available adsorption sites at the substrate is maximal compared to the other

high symmetry directions. Naturally, this density of sites reduces the nearest neighbour

distance for Pb adatoms in each layer. Therefore, it is inferred that there is also no need

for stabilising planes in this system.

8.4 Summary

In this chapter, the clean surface of the 2–fold orientation of the i–Ag–In–Yb QC was

re–interpreted with respect to the Cd–Yb model. Bright protrusions observed by STM,

which are most likely In atoms from the 4th shell of the (Ag/In)–Yb cluster, appear to form

a horizontal and vertical row structure. The remaining features observed are most likely

cluster and glue Yb atoms. The enhanced resolution compared to the previous report is

considered to be STM tip–induced.

After characterization of the surface, Pb was dosed over a range of coverages. Unlike

the other high symmetry systems, Pb grows on the 2–fold i–Ag–In–Yb in a layer–by–layer

fashion, adsorbing at high symmetry sites to match the density of the surface. Second

and third Pb layers were observed with similar structure characteristics. The change in

growth mode has been speculated to be due to the density of the surface. Higher coverage

produces crystalline islands oriented along the high–symmetry axes, consistent with the

other systems (see e.g. Chapter 7) [67].
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Summary

The aim of the work contained within this thesis was to expand the understanding of

surface and adsorbate structure of quasicrystals with orders of rotational symmetry which

are found in periodic systems. This was achieved through the exploration of 2–fold and

3–fold rotationally symmetric surfaces, dosed with either molecules or elemental metals.

As a consequence, a number of new structures or adsorption growth–modes were identified.

First, it was shown that dosing C60 on the 2–fold i–Al–Pd–Mn surface produced the

first example of a Fibonacci square grid in a physical system. This was attributed to a

Mn distribution at the surface, predicted by a surface model which was also used to ex-

plain bright features of the clean surface. These protrusions were attributed to Al dimers

which were constituents of a partially desorbed top layer. The use of C60 molecules here

demonstrated that they can be used as a probe for determining surface structure if surface

chemistry is considered. In addition to these findings, several other phases were explored

on the surface. Each of these phases were tentatively identified considering the stoichiom-

etry of the sample, and structural models which appeared to fit the STM data. C60 dosed

on these phases gave a honeycomb structure, indicating a minimal surface–adsorbate in-

teraction. This highlights the impact surface structure has on templated overlayers – these

phases are likely chemically similar, but are structurally different to 2–fold i–Al–Pd–Mn.

Next, two 3–fold aperiodic tilings were introduced. The first was constructed in an

analogous manner to the Fibonacci square grid. Here, three Fibonacci sequences were

overlaid at 120◦ relative to each other. This produced a set of tiles, which can be used to

fill all space in an aperiodic, long–range manner. Likewise, a set of vertex configuration

rules were shown. In addition, a rhombus tiling was introduced which was formed by a
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projection of the 6D hyper–lattice used to create the Penrose P3 tiling. Again, this tiling

covers all space in an aperiodic manner. Vertex configurations were shown, along with the

relationship to the tri–grid tiling described above.

The rhombus tiling was then used in a reinterpretation of the 3–fold i–Ag–In–Yb sur-

face. Here, protrusions which represent the centre of Cd–Yb clusters were linked by vertices

of the tiling. In addition, other bright features were shown to match with the tiling. Then

Pb was dosed on the surface, producing a multi–height 3D system of nano–structures.

Each layer of Pb was described structurally in terms of vacant planes belonging to the

Cd–Yb model. Growth was preferred along z, attributed to the surface potential repre-

senting the high atomic density of the bulk in the z direction, and low atomic density in the

x–y plane. The growth–mode was identified as a quasi–island type, as, although Pb grew

along z, there must be significant surface–adsorbate interaction to grow a quasicrystalline

allotrope. High coverages of Pb grew crystalline islands oriented along the high symmetry

directions of the surface.

Then, the 2–fold i–Ag–In–Yb surface was explored. A finer structure was resolved when

compared to previous reports, although similar row features were seen. Bright protrusions

arranged in horizontal and vertical rows were considered as In atoms from the 4th shell of

the Cd–Yb cluster. Then, Pb was dosed, with a quasi–Stranski–Krastanov growth mode

observed. Here, a dense first layer adopted the surface structure by adsorbing at substrate

sites with high geometry (hexagonal, triangular, pentagonal, square, and cluster centre

sites). The second layer grew in a linear fashion, matching the row structure formed by

the first layer. The third layer grew before the second had completed, indicating that

the second layer sites were more attractive for adsorption than the first layer. Further

Pb deposition resulted in crystalline islands oriented along the high symmetry axes of the

surface.

Future studies

As speculated upon in the introduction, a full exploration of as many relevant adsorbates on

as many QC surfaces as possible will lead to a better understanding of both the surfaces

themselves, but also the adsorption schemes which may be specific to them. Certainly,

within this thesis, the advantage of studying ‘over–looked’ surfaces has become apparent.

As such, it is suggested that any potential future work should include an iterative approach

to adsorption studies. By cycling through the high symmetry surfaces of a particular
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QC system, and gradually working through an exhaustive list of viable adsorbates, the

catalogue of information already obtained can be built upon. From here, the properties of

these systems could be investigated on a more structured basis. For example, how do the

properties of quasicrystalline Pb differ to quasicrystalline Bi, or C60?

In addition, it would be interesting to build upon single–adsorbate systems. For in-

stance, it is well known (and documented here) that C60 molecules can produce quasicrys-

talline networks on QC surfaces. But, can these networks be built upon themselves? A 2D

multi–molecule network built upon a QC substrate would be a challenging experimental

prospect, but perhaps rewarding for creating intriguing systems for exploration. Likewise,

a 3D quasicrystalline multi–molecule network would be even more difficult to produce, but

would be interesting for application in multi pore–size gas capture, for example.

The tilings outlined in Chapter 6 leave open questions. First of all, both tilings need

strict mathematical formalism as opposed to the geometric arguments used to introduced

them. This formalism is beyond the scope of this thesis, and is work for the future. Second,

the specific deflation rules for both tilings are still to be found – again, problems to be

solved in further work.

Aside from quasicrystalline surfaces and adsorbates, the potential for macro–scale ex-

ploration of aperiodic structures is as varied as for any other commonly used structure.

For instance, how do microwaves propagate through a structure based on the Fibonacci

square (or cubic) grid? How would a metal–based structure based on the 3–fold rhombus

tiling act under compression? The dispersion of any energy–carrying medium through an

aperiodic array could be of interest for any application based on dampening. Hopefully,

these questions, as well as the ideas posed above, can be explored in the future.
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M. Schröder, N. R. Champness, and P. H. Beton. Random tiling and topological

defects in a two-dimensional molecular network. Science, 322(5904):1077–1081, 2008.



Bibliography 151

[120] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama. Surface

science: an introduction. Springer Science & Business Media, 2013.
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Sierpiński sieve. Nonlinearity, 17(4):1455, 2004.



Appendix A

τ–deflated Sierpiński triangle

The Sierpiński triangle is a fractal constructed by recursively subdividing an equilateral

triangle into three smaller equilateral triangles [163]. Its mathematical definition is beyond

the scope of this work, so it will be defined simplistically. Other resources can be used to

explore its definition, such as [164], and references therein. Like many other fractal entities,

its usefulness is not just limited to its aesthetic qualities. Its mathematical definition

is applicable in biology with examples including self–assembly of DNA, gene structure,

and diagnostic medicine [165–167]. Other fields include geology [168], image processing

Figure A.1: Sierpiński triangle after 4 generations: Starting from top left, an equi-
lateral triangle is subdivided into 3 smaller equilateral triangles. Each successive triangle
is recursively treated in the same manner.
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Figure A.2: Aperiodic Sierpiński triangle An aperiodic tiling is created using the
Sierpiński triangle method. Labelled across the figure are τ and Fibonacci sequence–related
lengths and tiles.

[169], and music theory [170]. Examples of experimentally constructed Sierpiński triangles

include molecular arrays, and a quantum fractal produced by CO on a copper surface

[171–173].

Figure A.1 shows how the triangle is constructed. An equilateral triangle is shrunk

into 3 equilateral triangles, and each are placed at the vertices of the original triangle.

Importantly, the ratio of edge lengths between the first generation and the original triangle

is given as n = 0.5. Now, each of these triangles is shrunk, and so on. Figure A.1 shows
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Figure A.3: ‘Tiles’ of the aperiodic Sierpiński triangle: Each tile created using the
Sierpiński method is shown, with deflation rules for each. On the right hand side is a hole,
with grey lines showing ‘leap–of–faith’ tiles inside.

the procedure for 4 generations. The end result is a self–similar fractal, with large holes

created. Labelled underneath the 3rd generation are a set of line segments corresponding

to the base of several triangles. They form a periodic sequence.

Now, if the ratio of the edge lengths between successive generations, n, is altered, these

triangles can either overlap (if n is increased) or create enlarged holes (if n is decreased). If

we choose an irrational ratio so that n = 1/τ = 0.618... then the overlap creates a fractal

triangle with an in–built relationship to the Fibonacci sequence. Broomhead, Montaldi,

and Sidorov provide a generalization and some properties of the case of a Sierpiński system

with n = 0.618... [174]. Here, it shall be shown that it has links to an aperiodic tiling.

Figure A.2 shows such a construction. The first generation has its bottom left triangle

coloured to highlight the overlap on its top and right–hand corners.

The overlap creates a set of ‘tiles’: three triangles, three kite type tiles, and a smaller

centre triangle, or hole. The ratio of the labelled kite edge length to the triangles is τ :1, as

marked. Likewise, a section of the Fibonacci sequence is labelled on the edge lengths of the

second generation. As the generations progress, the sequence of edge lengths includes S/τ

positions as noted on the third generation. These can be combined with nearby S edge

lengths to create an L length, upholding the Fibonacci sequence. Likewise, individual tiles

are separated by a Fibonacci sequence, as shown adjacent to the sixth generation. This

behaviour occurs along each of the three high symmetry directions. As this construction is

self–similar, each of the constituent tiles can be deflated. Figure A.3 shows the constituent
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tiles, and each of their deflation rules. Amongst several colours of triangles are a kite

(blue), a trapezoid (light green), and a shield (yellow).

It should be noted that the red downwards facing triangle tiles are not strictly part of

the Sierpiński triangle. They are a coincidence of the overlapping geometry, and should

simply be holes. These tiles are eventually replaced by a hole once their edges do not

coincide with surrounding tiles. However, a secondary tiling can be created if the hole is

treated as a tile – taking a ‘leap of faith’ by continuing the coincidental lines that surround

the hole. An example is shown in Figure A.3. Light grey lines therefore infer the deflation

rules of the hole. These create the same tiles of the original deflation (generation 1),

yet inverted, with τ–deflated edge lengths compared to the ‘original’ tiles. Indeed, if one

re–applies this method after each generation, a second set of tiles is created. These tiles

are the same shapes as the first set, but rather, are all τ–deflated and inverted. As such,

their deflation rules are different. This second set of tiles then produces upward facing

holes. Eventually, these holes grow large enough to require another leap–of–faith, leading

to the creation of the original set of tiles. Therefore, each ‘version’ of this leap–of–faith

tiling creates either up or down holes which self–perpetuates the other version.

Here, a purely geometric link has been made between a Sierpiński system and two

aperiodic ‘tilings’. The first is constructed from a set of 5 tiles, with 3 additional tiles filling

certain sized holes created by the overlapping nature of the Sierpiński triangle method.

Each tile has a set of deflation rules. The growth of large holes in the tiling could be

considered analogous to the ‘dead’ surfaces created by building a Penrose P3 tiling only

using edge–matching rules [20]. The second tiling is created by extending the lines of the

original across these holes. These create further tiles in a fractal manner. Both versions

exhibit aperiodicity as a result of the ratio n = 1/τ . Their long–range order is guaranteed

by their fractal nature. Likewise, 3–fold symmetry is guaranteed by the nature of the

Sierpiński deflation i.e. placing triangles at the corners of triangles.
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