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Abstract 

This report investigates the arrangement of atoms and the crystal planes likely to be exposed 

on a single-grain, [100] bulk-terminated Ag-In-Yb 1/1 quasicrystal approximant. Of the two 

families of quasicrystalline alloys, icosahedral quasicrystals (QCs) have been of particular 

scientific interest since the discovery of stable binary samples. i-Cd-Yb is renowned for 

having its exact atomic positions modelled through a comparison of X-ray diffraction patterns 

with the structure of closely related crystals – called approximants. Sample surface 

preparation techniques (such as high temperature annealing) in vacuums of the order 10-10 

mbar are unsuitable for use on alloys containing Cd due to its high vapour pressure. 

Isostructural QCs, for example i-Ag-In-Yb and their approximants, can be prepared in such 

conditions and studied by means of LEED (low energy electron diffraction) and STM 

(scanning tunnelling microscopy).  Previous studies of XRD patterns (X-ray diffraction) have 

provided a well-proven computer model of the bulk atomic structure of the Ag-In-Yb 

approximant. This study indicated intermediate-density terrace step-heights of 2.77Å and 2.47 

Å, and a departure from the predicted bcc Tsai cluster lattice in the form of rectangular unit 

cells: the parameters of which were ax = 13.23 Å and ay = 15.42 Å. It is believed that the off-

centre rectangular unit belongs to the high density plane A/A’. Thermal drift of the sample 

has been ruled out of being responsible for this unusual observation, as has large-scale 

surface reconstruction. LEED suggests these planes are in the minority as a square reciprocal 

space lattice is observed. Future research into ridged intermediate planes by associated 

research teams is proposed as the next step for confirmation of the model.  
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1. Introduction  

2011 saw the prestigious Nobel Prize in Chemistry awarded to Israeli Professor Dan 

Shechtman for his discovery of the quasiperiodic, or quasicrystalline, structure in aluminium-

based metal alloys.(R.Noorden, 5th Oct 2011) The accolade gave distinguished 

acknowledgement to the rapidly growing study of these so-called quasicrystals (QCs). 

Shechtman’s QC was artificially composed of Al86-Mn14 (subscript indicating percentage of 

composition) and grown via rapid cooling of a melt-phase. The icosahedral phase produced 

possessed no periodicity, however retained perfect long-range order. The former is supported 

by the existence of 10-fold symmetries found in electron diffraction patterns, while the latter 

was proven by sharp, intense Bragg peaks from the constructive interference of diffracted 

electron beams. (Shechtman, et al., 1984) 

Within the international crystallography community QCs have caused a lot of commotion 

surrounding the new physical phenomena discovered in certain alloys. Shechtman was met 

with derision from all scientific fronts for his claim to have found a new class of solid that 

breaks many of crystallograhpy’s long-established laws; this included scorn from the two-

times Nobel Prize winner Linus Pauling. Yet now, more than 30 years later on and hundreds 

of quasicrystals have since been discovered. It seems now all that opposition has faded 

sheepishly into the past.  

Although metallic, QCs do not behave like metals: the way in which the electrons are 

confined within atomic clusters makes them poor conductors of heat and electricity. They 

also have incredibly low friction coefficients in non-lubricated conditions, and multi-pass 

tests liken the coefficient to diamond planes gliding over each other. (Dubois, 2002) Still, the 

fundamental effect of quasiperiodic structure on a material’s properties remains truly 

unchartered territory.  

Surfaces behave differently to the bulk material, thus are responsible for different 

phenomena. For example: the work function φ, normally thought of as a bulk property, is 

determined as a consequence of surface dipole layers. In the bulk electrons cannot escape 

through the surface without being given enough energy to penetrate the dipole layers. (Attard 

& Barnes, 1998) It is also observed universally that the termination of the bulk in crystals 

causes reconstruction of the atoms at and near the surface due to the relaxing of interatomic 

forces.  
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Appreciation of the surface of QC materials is therefore very important in identifying the 

influence of quasicrystallinity. Efforts to simplify the study of quasicrystallinity have been 

made in epitaxial experiments which have built quasicrystalline layers of single-element 

atoms using QCs as substrates. Monolayer depositions of Bi and Sb grown on QC become 

quasiperiodic; opening up the potential to study QC structures without the impact of complex 

alloy atomic composition. The only drawback to QC monolayers was that they could not be 

made into bulk structures and retain their quasiperiodicity. This is because of the weak 

atomic forces between successive layers and the need for the layer coverage to minimise 

energy.(Franke & Berlin, 2003)  

Where else then can we look simple quasiperiodic structures? Many stable QCs that are 

tertiary (compose of three elements) are still very complex. However the simpler binary (two 

elements) icosahedral QC phase was discovered in the i-Cd-Yb alloy, and subsequently its 

atomic structure was modelled using a combination of conventional band theory and XRD 

(X-ray diffraction) data. (Takakura, et al., 2007) This was an exceptional feat, and gave QC 

surface researchers a new opportunity to pursue surface characterisation. However i-Cd-Yb 

cannot be examined under UHV due to high vapour pressure of Cd which causes evaporation 

during heating. An isostructural counterpart, i-Ag-In-Yb emerged as a solution to the heating 

problem as both Ag and In are stable under UHV. Thus studies of this surface are relevant to 

evaluate the surface qualities of a whole family of quasicrystals.  

A number of interfaces studies already exist on i-Ag-In-Yb, (Sharma, et al., 2009)(Sharma, et 

al., 2010)(Nugent, et al., 2010)(Nugent, et al., 2011) but virtually no surface analysis exists 

for its closely related counterpart, the bcc structured Ag-In-Yb. This is an approximant of i-

Ag-In-Yb: sharing the same chemical composition as the QC however preserving a 

crystalline form. A periodic system is far easier to investigate, and for researchers, studies of 

the approximant can give an insight into the real differences between ordered and quasi-

ordered solids.  

For this project, two approximant Ag-In-Yb samples grown and cut by Tohoku University in 

Japan (collaborating with the National Institute of Material Science) were provided for 

scanning probe microscopy and electron diffraction examination. The quality of these 

samples is thus far unprecedented due to the achievement of single-grain specimens. The 

fundamental objective of the project was to use experimental data and a structural model 

provided by Tohoku University to determine the unit cell vectors of the [100] surface and 
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identify terraces formed on approximant exterior. The report will begin with some key 

concepts in crystallography and an explanation of how quasicrystals possess forbidden 

symmetries. Our definition of a QC approximant is made geometrically within external and 

internal subspaces, so to highlight the relationship between 2-dim periodic and quasiperiodic 

structures. The 3-dim model of the atomic structure is contained within an IGOR Pro 

software module: its predictions are herein discussed. Following this is a detailed insight into 

the preparation of samples for use in ultrahigh vacuum systems: the decision to expand lab 

notes into an essay format was made so to provide any future experimenters at the University 

of Liverpool with touchstone material to refer to, as well as to contextualise the processes of 

polishing, mounting, sputtering and annealing. Then the physical principles of the low energy 

electron diffraction (LEED) and scanning tunnelling microscope techniques (STM), and their 

suitability for surface analysis, will be explored.  

K-vector data compiled from LEED images of the Ag-In-Yb approximant will include a 

comparison with Cu(111) data for calibration of the LEED screen, then comparison using 

IGOR software will be shown to confirm the predicted real lattice vectors. Height maps 

obtained from STM imaging will give accurate pictures (the smallest image axes reaching a 

scale of tens of nanometres) of terraces on the sample surface and the atomic structure can be 

found when comparing against the bulk structure of modelled Ag-In-Yb. And while STM 

image analysis is a topic of great depth and breadth, a suitably basic guide to quality 

assessment and filtering techniques using Windows Scanning x Microscope (WSxM) and 

Gwyddion software is presented.  

STM data had to be collected from another source when a key component of the UHV 

chamber could not be used, so no STM methodology is included in the report. It was hoped 

that analysis of thin film growth of Pb to form quasicrystalline structures could occur during 

the project using the Auger electron spectroscopy system; however the project ran into a 

number of problems, so Pb epitaxial growth was not a viable option.  In light of these trials, 

an analysis and comparison of various STM images to the model has still been completed. 

The qualitative nature of the resulting data set means that quantifying error due to thermal 

drift of the sample, piezo-electric creep, or STM calibration, becomes somewhat redundant: 

the reasons why are noted. The report will conclude by identifying areas of improvement and 

further study.   
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2. QUASICRYSTALS: THE FUNDAMENTALS 

What is a quasicrystalline phase? What is an approximant? To answer these questions, we 

must first understand how atoms fill space in condensed matter states. Crystalline solids 

exhibit varying degrees of hardness, density, transparency, conductivity and diffusion that 

result directly from the nature of bonds and periodic arrangement of its constituent atoms. 

From the necessity to understand these properties was borne a mathematical illustration of the 

atomic arrangement, steeped in the understanding of allowed and forbidden 

symmetries.(Stadnik, 1999) This section will expand upon a few key crystallography 

concepts, as well as explaining the principle behind electron diffraction.  

2.1.1 THE BRAVAIS LATTICE  

The atoms in a ‘perfect’ crystal can be associated with an infinite three-dimensional (3-dim) 

array of points, where each point is treated as identical to its neighbours (i.e. a lattice). By 

giving the points an indistinguishable nature it would be observed that moving from one 

lattice point to another does not change the appearance of the lattice, and thus we say that the 

lattice has perfect translational symmetry. If we choose an arbitrary origin, any other lattice 

point will have the position vector: 

𝒓 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄 

Equation 1 

Here, the vector coefficients ni are integers, while a, b, c are known as primitive vectors, so 

called for they fundamentally decide the form of translational symmetry that the lattice will 

adopt. In reality there are only 14 different periodic ways of forming a lattice from the 

primitive vectors, and these arrays are called Bravais lattices.(Attard & Barnes, 1998) The 

smallest volume unit that contains information to describe the whole lattice is called a unit 

cell. Despite only containing a few points, the unit cell will accurately describe the lattice 

when replicated to infinity.  

2.1.2ATOMIC PLANES AND MILLER INDICES 

To further enhance the crystallographer’s vocabulary, Miller indices were introduced to 

denote planar direction in the Bravais lattice. The lattice may be considered not only as a 

boundless tessellation of unit cells but also as a stacking of 2-dim arrays. There are an infinite 
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number of these planes of points, organised into an infinite number of families. A family is a 

collection of parallel planes sharing the same primitive vectors. The families are 

characterised by the arrangement of points, density of points, and the spacing between planes 

(interplanar spacing increases with greater density).  

The rules for deriving Miller indices are as follows: 

 

➢ Determine the intercepts of the plane along the crystallographic axes, in terms of unit 

cell dimensions: i.e. 

𝑥

|𝒂|
 ,

𝑦

|𝒃|
 ,

𝑧

|𝒄|
 

➢ Take the reciprocals: i.e. 

|𝒂|

𝑥
 ,
|𝒃|

𝑦
 ,
|𝒄|

𝑧
 

➢ Write the reciprocals in the form of integers, so that their lowest common 

denominator is 1. 

➢ The generic form of the Miller index is then denoted by (hkl). 

It can be shown without much effort that if the x, y, z intercepts are 1, 2, and 3 in terms of the 

unit cell dimensions, the Miller indices are calculated as (hkl) = (632). The smaller the Miller 

index is, the closer the associated plane is to being parallel to the axis, whereas the larger the 

index the closer it is to being perpendicular. 

Some further observations: a) multiplying or dividing a Miller index by a constant has no 

effect of the orientation of the plan, b) if a plane is parallel to an axis, its intercept is at 

infinity and its Miller index is zero, c) if a plane has negative intercept, such that the plane 

slopes with a negative gradient component, the negative number is denoted by a bar above 

the number. It is erroneous to change the sign through division or multiplication when 

deriving a Miller index, as this implies symmetry that the crystal may not have. For example, 

do not divide (1̅1̅1̅) by -1 to get (111)  

Use of Miller indices removes the complication of dealing with infinite planar intercepts. 

Also, specifying dimensions in unit cell terms means that the same label can be applied to 

any plane with a similar stacking pattern, regardless of the way the unit cell repeats itself. 

(111) lattice planes will always ‘step’ the same way regardless of the type of crystal. 
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Other forms of the Miller notation include [hkl] and < hkl >: with square instead of round 

brackets denoting a direction in normal to the plane indices; and similarly, the chevron 

parenthesis represents the family of all directions that are equivalent to [hkl] by symmetry. 

2.1.3. THE BASIS 

Associated with the Bravais lattice are the physical sites of the atoms themselves. The atomic 

positions are captured on the Bravais ‘netting’, like a fisherman casting a vast net out into a 

sea of fish. For most crystals a shoal of atoms is caught by each lattice point, although 

simpler crystals (e.g. copper) will only have one atom per lattice point. This group of atoms 

associated with each point is called a basis. We can identify the atomic positions with the 

vector: 

𝒓𝒋 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄 + 𝑹𝒋 

Equation 2 

Here, Rj denotes the position of the atom j with respect to the Bravais lattice point.  

The basis is limited by symmetry however, much like the lattice. If the structure is to remain 

periodic on a short order scale, we must now account for the atomic arrangement being able 

to transform into an image of itself under rotational and reflection transformations. The 

possible combinations of transformations in 3-dim, whilst numerous, are constrained to the 

230 operations termed space groups. Space groups won’t be discussed in detail in this report 

but for further reading W. M. Meier provides an uncomplicated 3-dim appraisal of space 

group theory(Meier, 1984). 

We now have the two ingredients required to describe the atomic form of any perfectly 

periodic structure. Note that in practise crystalline structures contain many unwanted defects 

that are ignored when dealing with the ideal case. 

2.1.4. THE RECIPROCAL LATTICE AND BRAGG DIFFRACTION 

How can we confirm whether crystals adhere to this description of lattice and basis? The 

invention of X-ray, electron and neutron scattering experimentation proved to be a vital set of 

tools to determine bulk and surface crystal structure that are continued in their use today.  

Electron interactions with the target crystal differ from X-ray and neutron beam interactions, 

and each is useful for delving into different properties. The electron form factor takes into 
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account elastic electron cloud scattering and elastic nuclear scattering. Because of their strong 

interaction with matter they penetrate only a few atomic layers deep into sample the before 

being scattered, making electrons particularly useful for surface studies.  

The diffraction experiments take advantage of the long range order of crystalline solids, and 

the back-scattered interference pattern produced from a crystal sample placed in the path of a 

ray of energetic particles or high-frequency light. De Broglie’s concept of wave-particle 

duality explains why we can use particles to acquire diffraction patterns, providing they are 

of small enough wavelength. This is known as Bragg diffraction, and the pattern of intensity 

peaks they produce are representations of reciprocal lattices. 

The direction normal to a family of crystal planes, [hkl] can be written as a unit vector  𝒏ℎ𝑘𝑙  . 

We also know that the family of planes are separated by an interplanar distance 𝑑ℎ𝑘𝑙. Defined 

by these parameters, the set of vectors: 

𝑮ℎ𝑘𝑙 = 2𝜋
𝒏ℎ𝑘𝑙

𝑑ℎ𝑘𝑙
 

Equation 3 

define the reciprocal space, which we will further explain presently.  

𝑮ℎ𝑘𝑙 can be thought of as a vector that ends on a point of the reciprocal lattice. Thus 𝑮ℎ𝑘𝑙 can 

be described in another form: 

𝑮ℎ𝑘𝑙 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ 

Equation 4 

where 𝒂∗ 𝒃∗ 𝒄∗ are vectors related to the real space lattice 𝒓 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄 by: 

𝒂∗ = 2𝜋 
𝒃×𝒄

𝒂 . (𝒃×𝒄)
   𝒃∗ = 2𝜋 

𝒄×𝒂

𝒂 . (𝒃×𝒄)
   𝒄∗ = 2𝜋 

𝒂×𝒃

𝒂 . (𝒃×𝒄)
 

Equation 5 

and simplified in the case of the scalar triple product: 

𝒂∗. 𝒂 = 2𝜋  … 𝑒𝑡𝑐 … 

Equation 6 

Reciprocal lattices vectors exist in reciprocal space, or k-space. K-space refers to a collection 

of k wave vectors in their own vector space. The solution to Schrödinger’s equation is a plane 
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wave (or a wave-like particle) with  𝛹 = 𝐴𝑒𝑖(𝒌.𝒓−𝜔𝑡), containing the wave vector that denotes 

the direction of the incident wave. Traditionally in wave mechanics the propagation of a 

plane wave adheres to the Huygens-Fresnel principle: the rectilinear propagation of a wave 

arises from the initial wave front comprising of point sources of secondary spherical waves. 

In the classic single slit experiment the wave front is strongly diffracted when the slit size is 

comparable to that of the wavelength; a larger slit will diffract much less effectively, while a 

slit that is too small will act as a reflective surface. (See Figure 1) 

The diffraction of electrons from a surface can be considered as waves impinging upon a grid 

of atoms. The atoms act like re-emitting point sources through an elastic transfer of energy 

(with no change in wavelength of the beam) whereby the beam energy and atomic 

characteristics affect the angle and intensity of the diffracted electrons.  

 

Figure 1 : A wave approaches an aperture of a width comparable to the wavelength of the wave: point like radiations 
simulate the progression of the resulting diffraction. 

At a point far from the crystal, the condition for constructive interference of the diffracted 

waves is: 

𝑎𝑠𝑖𝑛(𝜃𝑖) =  𝑛𝜆 

Equation 7 

where θi is the incident angle, (normal to the surface), a is the lattice constant, n is an integer, 

and lambda is the wavelength of light. Recall that the incident wave has a wave vector k: 

when scattered by the family of identical planes of atoms it encounters, the outgoing wave 

changes in direction but not in magnitude, i.e. 𝐤 ≠ 𝐤′ but |𝐤| = |𝐤′|.  
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Also we know that the wavelength does not change in an elastic collision, and this can be 

represented by |𝐤| = |𝐤′| = 2π/λ. Taking this definition of the magnitude of k we can 

substitute into the Eq.7 to get: 

𝑎𝑠𝑖𝑛(𝜃𝑖) = 𝑛
2π

|𝐤|
 

Equation 8 

|𝐤|𝑠𝑖𝑛(𝜃𝑖) = 𝑛 (
2π

𝑎
) 

Equation 9 

|𝐤|𝑠𝑖𝑛(𝜃𝑖) is the component of the momentum vector parallel to the surface, which we can 

label 𝐤||. The right hand side of the equation is the magnitude of the reciprocal lattice vector. 

Note that this can only take discrete values due to the constraint of the integer values of n. 

The parallel momentum of the incident electron is exchanged with the surface in quantised 

units, providing us with a way of denoting the scattering effect, i.e. the change in the incident 

and outgoing waves is: 

∆𝐤|| = 𝐤′
|| − 𝐤|| 

Equation 10 

In order for constructive interference to be observed, ∆𝐤 must belong to the reciprocal lattice 

vector 𝑮ℎ𝑘𝑙 so that: 

∆𝐤 = 𝑮ℎ𝑘𝑙  

= ℎ (
2𝜋

𝒂
) + 𝑘 (

2𝜋

𝒃
) + 𝑙 (

2𝜋

𝒄
) 

=  ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ 

Equation 11 

The scattering event can therefore be drawn in k-space. Consider the 2-dim k-space diagram 

in Figure 2. The vertical lines intersecting the x axis are the reciprocal lattice rods, which are 

separated by 2𝜋/|𝒂| where |𝒂| is the nearest-neighbour atomic distance. The sample is 

positioned so its surface is orientated with respect to the x axis. To decide the starting point of 

the incident wave vector k, a point A associated with the orientation of the sample is chosen. 

The location of A is governed by the length of k and the incident angle θi. The end of k is 



15 
 

then positioned at the origin. The circle crossing through the reciprocal rods is drawn using A 

as its circle centre. Ewald’s circle (more commonly known as the Ewald’s sphere in 3-dim) 

demonstrates the fulfilment of the diffraction condition Eq.7 at the point of intersection of the 

circle and the rod.  

 

Figure 2: The Ewald sphere in 2-dim shows the incident wave vector as the radius of a circle that intersects the reciprocal 
lattice rods. Every time the circle intersects a rod, constructive diffraction peaks are produced. Any intersections below 
the central line occur in the solid, thus do not appear. The rods are spaced in reciprocal lattice vector units, where a  is 

the real space lattice constant. The angle in real space θi is equivalent to the angle to normal of the surface θ, which can 
found through the equations above. 

This means we can represent the possible 𝐤′ vectors as arrows that end at these intersections. 

In the case of the incident wave vector approaching normal to the surface, (θi = 0) then:  

∆𝐤|| = 𝑮ℎ𝑘𝑙 || = 𝐤′
|| 

Equation 12 

This is the condition for diffraction. k’ must have quantised parallel components for Bragg 

diffraction to occur. We see thus that although energy is conserved in the elastic diffraction 

process, if a Ghkl vector is exchanged with the surface, the incident wave / particle must 

undergo a quantised change in direction to preserve momentum. For constructive Bragg 

peaks to be realised, Eq.12 must be satisfied.  
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2.1.5 FORBIDDEN SYMMETRIES. 

Earlier in this chapter we stated that the crystal basis is subject to a set of symmetry laws. 

Outside of the 230 space groups that exist, there can be no 3-dim periodic crystalline 

structures. Let us take a 2-dim approach that will infer rules implicit in 3-dim symmetry: an 

infinite plane of lattice points could be thought of as a collection of tiles all slotted next to 

each other, where on the vertices of the tile lie the points.  

 

Figure 3: Examples of allowed (top: 3 fold and 4 fold symmetry) and forbidden (8-fold, 5-fold) tessellating tiles. The 
alternating coloured arrows show that although the top tilings have translational symmetry, the bottom two cannot 

possess this quality. 

The tessellation of tiles mirrors the repeating unit cell volume of a crystal lattice – a tile’s 

vertices must share a point between other tiles if the plane is to be filled completely by the 

tiles, just as in the atomic case. Tessellation of polygons strictly limits the vertex angle to an 

integral fraction of 2π. Triangles, squares and hexagons obviously exhibit this property, and 

can be said to have three-, four-, and six-fold rotational symmetry, respectively. (In addition, 

two-fold symmetry is also contained in a square tile, and a hexagon tile has two- and four- 

fold as well.) Conversely, five-folded and greater than six-folded tile symmetries cannot fill 

2-dim space without leaving gaps or having the tiles overlap (see Figure 3). The regular 

polygons with these forbidden symmetries have vertex angles that do not wholly fit into 2π; 

e.g. a pentagon vertex angle of 2π/(3.333…). More generally, tessellation will only occur for 

n-sided polygons if 2𝑛/(𝑛 − 2) is an integer.  
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Moving on from 2-dim, it is not hard to envisage that similar restrictions apply to a 3-dim 

periodic lattice: if you were to throw a set of dodecahedron into a box, the way they fall will 

always leave gaps in the stack. Space groups were thought to define all crystalline matter by 

way of allowed symmetries. 

2.1.6 EXTRA DIMENSIONS AND QUASI-ORDER 

The following section is a meaningful step towards explaining why quasicrystals do not 

possess translational periodicity but do display long range order. The former is manifested in 

the presence of a non-crystallographic rotational symmetry and the latter in the occurrence of 

sharp diffraction spots. 

Amorphous and structurally disordered materials (i.e. metallic glass) are difficult to 

characterise using diffraction methods. Amorphous scattering is weak compared to that of a 

crystalline solid, and is spread throughout reciprocal space instead of being concentrated into 

a few sharp Bragg peaks. (Zallen, 1998) The detailed level of analysis to acquire real-space 

data is also much more involved for amorphous samples as they have no long-range order. 

Their systems may contain many similar regions, which might be evocative of possible 

crystal structure, but the interstices are packed in a chaotic manner. 

In normal crystals we can assign three values (Miller indices) to label the observable 

reflections. In order to assign integer indices to the diffraction peaks of quasicrystals, 

however, at least 5 linearly independent vectors are necessary. (Dubois, 2002) 

The necessary n vectors (n = 5 indices for polygonal quasicrystals and n = 6 indices for 

icosahedral quasicrystals) span an n-dim reciprocal space. Therefore there is also an n-dim 

real space in which a structure can be built that gives rise to a diffraction pattern showing the 

forbidden rotational symmetries. I.e. in non-random, higher dimensional constructs we can 

describe lower dimensional quasiperiodic arrangements as periodic ones. If we describe the 

structure in 3-dim space only, we would need thousands of atoms to represent a volume 

segment of the whole structure as well as all parameters that go with them (eg. thousands of 

positions). 

A common example to illustrate the use of higher dimensions is a quasiperiodic sequence in 

1-dim generated using a Fibonacci chain. The chain is a pattern of short and long segments 

that is governed by a higher dimensional space, V2, in which a 2-dim lattice is situated. Any 
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of the five 2-dim Bravais structures (oblique, rectangular, rhombic, hexagonal and square) 

can build up the lattice, with square being the simplest periodic structure to consider. Figure 

B shows the 2-dim lattice as a periodic repetition of dots. A set of axes define the orientation 

of two orthonormal subspaces, VI and VE. A subspace is simply a subset of a vector space. 

The 1-dim VI (internal subspace) must be combined with VE (external subspace) in order to 

complete V2.  

A useful trick to remove the contribution from hundreds of lattice sites is to design a 

projection strip (yellow) to a finite width Δ. Figure 4.a) shows the projection method: all 

points in the strip are projected as a straight line onto the external space VE, resulting in a 

quasiperiodic assortment of lengths designated either Short or Long in VE. It is helpful to 

think of these lengths L and S respectfully as ‘tiles’ of the 1-dim space. Recognising that VE 

is sloped with respect to the horizontal rows of the 2-dim lattice, α defines the tiles as:  

𝑎 cos(𝛼) = 𝐿, 𝑎 sin(𝛼) = 𝑆 

Equation 13 

Consequently, (tan 𝛼)−1 has to be irrational for an aperiodic sequence to be projected. Note 

that the closure condition of the strip is fulfilled provided that ∆= 𝑎(cos(𝛼) + 𝑎 sin(𝛼)). 

 

   

 

 

The Fibonacci sequence has an irrational slope (tan 𝛼)−1 that is equal to the golden mean, τ 

= 1.618 034… The golden mean has a recurring presence in the icosahedral symmetries, and 

is an important value in quasicrystalline structures.  

VI 
VE VE 

VI 

∆ 

 

Figure 4.a) : The quasicrystalline projection of 2-dim lattice 
points from area defined by Δ onto 1-dim space: red lengths 
are short S, blue lengths are long L, forming a Fibonacci 
sequence. 

a) b) 

Figure 4.b) : The cut method also produces a 
quasiperiodic 1-dim structure. 
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Figure 4.b) shows the cut method in which a hyperplane (here a 1D-line) that is parallel to 

VE cuts the higher-dimensional space. The occupation domains attached to each of the lattice 

points (here: bars) intersect with the hyperplane, producing the same quasiperiodic sequence 

as in the picture a). These occupation domains (the atomic basis as a 2-dim entity) extend 

parallel to the internal space VI.   

The cut or projection method can be generalised to an n-dim instance with n = 5, 6, ... etc. 

The contents of that n-dim unit cell consists of "hyperatoms" (occupation domains) which are 

analogous to the atoms in a normal unit cell. Therefore, quasicrystal structures in 3-dim can 

be describe with a finite set of parameters that exist in the higher dimensions. (Stadnik, 1999) 
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3. QUASICRYSTALS AND APPROXIMANTS 

Quasicrystals can be categorised based on their structure. The two QC families that exist are 

polygonal and icosahedral. The first type has an axis of 8, 10 or 12-fold rotational symmetry 

of its crystal structure: they are periodic along this axis and quasiperiodic in planes normal to 

it. Icosahedral QCs on the other hand relates to a 5-fold symmetry and are aperiodic in all 

directions. Thermal stability also classifies QCs and their approximants into either stable or 

metastable phases. Stable QCs are the most ordered phases formed through slow-cooling / 

casting with subsequent annealing. (Tsai, 2009) However the process requires meticulous 

stochiometry, one of the reasons that QCs are never found in nature (extraterrestrial 

Icosahedrite is an exception to this rule(Bindi, et al., 2011)). A metastable QC is made by 

melt-spinning or crystallisation of the amorphous phase. QCs can be made unstable if heated 

too extensively, and will revert back to a periodic polycrystalline phase upon melting. 

The atomic structure of QCs is very difficult determine for two main reasons:  

➢ The aperiodic lattice cannot be conventionally labelled using a unit cell and Miller 

indices. An example of a 2-dim quasicrystal lattice would be the well-known Penrose 

tiling; on the vertex of each tile lies a lattice point. 

➢ The basis that decorates the lattice is not simple: instead of single atoms, clusters of 

atoms made up of concentric polyhedral shells are placed on the lattice points. The 

constituent elements that make up the QC can adopt different locations in the shells 

depending on the percentages of each element used during sample growth. In 3-dim 

the clusters can also orientate themselves at different angles to each other to reduce 

energy.   

The simplest of Penrose tilings (see Figure 5) consists of only two shapes: rhombi related to 

each other by the golden ratio of their angles. The rules that match the squat rhombi to the 

thin ones determine that the tiling can continue indefinitely and never repeat itself, but also 

ensure that long-range order exists in the form of the underlying symmetry. Tilings such as 

these (others do exist through rules of deflation of the tiles into new tessellating shapes) are 

considered to be realistic models of growth for the lattice of quasicrystals: take for example 

Figure 6 which shows the aperiodic form of the i-Ag-In-Yb quasicrystal surface.(Sharma, et 

al., 2009) Notating these quasi-unit cells requires many more vectors than in conventional 

cells, as previously stated.    
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3.1.1. CLUSTERS AND PLANES 

Understanding the atomic structure presents yet another challenge. There are two different 

strategies for creating quasicrystalline model structures. One decorates the vertices of the 

quasi-unit cell tiles using information from closely related phases of the same atomic 

composition: i.e. for the i-Al-Cu(Zn)-Mg(Li) QC, squat and thin rhombohedra and a 

composite structural unit can (a rhombic dodecahedron) describe the 3-dim Penrose tiling 

lattice that obtains atomic motifs ‘borrowed’ from the structure of the Frank-Kesper phase 

Al(Zn)Mg. The Penrose tiling in this instance is generated from the projection method of a 6-

dim lattice onto the 3-dim external space, and was experimentally confirmed with XRD 

data.(Stadnik, 1999) 

The other strategy generates the atomic positions directly from 6-dim hyperspace. Positions 

and their occupation by different chemical species are determined by various properties of 3-

dim atomic surfaces in perpendicular space. All quasicrystals have a ‘hard core’ which 

represents about 80% of the atomic position; these exist as 3-dim structures that can be 

described either in terms of local i  clusters or alternatively in terms of dense atomic planes 

(projected from 6-dim hyperspace). The remaining atomic positions can be found via a 

comparison of XRD and approximant phase data. 

  

Figure 5: An example of the tessellating aperiodic P2 
Penrose tiling. Matching rules prevent the system 
from becoming completely chaotic and result in an 
underlying forbidden symmetry – in this case 
decagonal.  

 
Figure 6.a) : The projected in plane structure for the fivefold 
surface of i-Ag-In-Yb over an area of 10x10nm. The central six 
pentagons are deflations of a larger pentagon. b) shows a single 
pentagonal unit. Also real STM measured height maps show the 
pentagonal unit obtain using different bias voltages: c) negative 
and d) positive. 
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.  

3.1.2. PHASON FLIPS 

 

  

VE 

 

VI 

 

𝒖⃑⃑ = 𝒖⃑⃑  𝑬 + 𝒖⃑⃑  𝑰 

 
𝒖⃑⃑ = 𝟎 

VE 

 

VI 

 

VE 

 

VI 

 

VE 

 

VI 

 

𝒖⃑⃑ = 𝒖⃑⃑  𝑰 

 

𝒖⃑⃑ = 𝒖⃑⃑  𝑬 

 

Figure 6: The cut method of producing quasiperiodic lattices can be seen here affected by displacement of the 
2-dim architecture. A) shows the original 2-dim lattice producing a quasi-lattice, where the displacement 
vector is zero. B) shows the displacement vector (blue arrow) with components in external and internal space 
– the phason strain resulting from an excitement in internal space causes some of the lengths to swap around. 
C) and D) demonstrate how the flip only occurs when displacement in the internal space occurs. Phonons do 
not affect the structure of the external space lattice. 
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The additional dimensions of perpendicular space also have an impact on the elastic 

properties of quasicrystals: excitations of the lattice in external space (known as phonons) are 

complemented by an additional degree of freedom in internal space called phasons. 

Consider Figure 6 where the Fibonacci sequence is represented by the cut method on external 

and internal axes. A displacement of the 2-dim lattice by a vector 𝑢⃑  can be separated into 

displacements along internal and external space, i.e.,  

𝑢⃑ = 𝑢⃑  𝐸 + 𝑢⃑  𝐼  

Equation 14 

Periodic crystals have translational freedom in the external space, and a displacement in 𝑢⃑  𝐸 

results only in a translation of the Fibonacci sequence as indicated in Figure 6.c). The related 

elastic excitations are conventional phonons. Quasicrystals on the other hand gain a non-zero 

𝑢⃑  𝐼 displacement, representative of an additional degree of freedom in internal space, 

introducing a local rearrangement of atoms (for example LS ↔ SL). These jumps in atomic 

structure are also called phason flips.  

We can find the elastic strain in conventional crystals using 
𝑑𝑢⃑⃑  𝐸

𝑑𝑟  𝐸
 : analogous to this is the 

corresponding phason strain leading to the phason flips 
𝑑𝑢⃑⃑  𝐼

𝑑𝑟  𝐸
. Single-atom jumps were 

observed experimentally by transmission electron microscopy and their vibrational properties 

studied. (Ritsch & Nissen, 1996) Collective phason flips leading to the deformation of the 

tiling underlying the quasicrystalline structure have been also been observed. Phason flips are 

regarded as a key mechanism for structural phase transitions: this will be emphasised with 

respect to the approximant phase in the next section. 
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3.1.3. QUASICRYSTAL APPROXIMANTS 

Approximant crystals are vital for our understanding of the effect of quasicrystallinity on 

physical and surface properties. They provide a study of a periodic structure made up of the 

same elements and structures as their QC counterparts. Quasicrystals and approximant 

crystals have a number of relationships to one another. One particularly illustrative 

relationship fits into the framework of our concept of a Fibonacci sequence: remember that 

the only thing distinguishing a periodic structure in 2-dim from a quasiperiodic one was the 

intersection of the occupation domains with the angled external 1-dim space vector.  

 

Note that a slope equal to 1/τ (as well as other irrational numbers) describes the condition 

when the external space vector passes through only one node of the square lattice – i.e. 

qualitatively a quasiperiodic structure. However if several nodes of the square lattice are 

intercepted by VE then the 1-dim structure becomes periodic. In the previous section it was 

illustrated than a non-zero atomic displacement resulting from a phason strain leads to a 

change of atomic positions. A phason strain causing a rotation of the axes (equivalent to a 

shear strain within the crystal) can provide the necessary change in the slope.  

The slope of the 0/1 line constructs the simplest repetitive pattern. 1/1 and 2/1 have a periodic 

repetition length of a√2 and a√3. The allowed rational slopes converge towards the 1/τ value 

as they get larger (3/2… 5/3…), becoming a better approximation of the quasiperiodic lattice 

structure with each increasing order.  

Figure 7: In the cut method the slope at 
which the external space axis 
intersects the 2-dim lattice can have 
irrational (red arrow) or rational (blue 
arrows) values. In the rational case, the 
sequence of slopes (0/1) (1/1) (2/1) … 
etc represent periodic approximant 
lattices. The notation relates to the 
frequency that the line produced by a 
slope of (n/m) passes through the node 
of each atomic domain. Each 
successive member of the sequence 
gets closer and closer to representing 
the irrational slope 1/τ; hence the 
name ‘approximant’.   
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In summary, a ‘periodic approximant’ material can be thought of as follows: a deformation of 

the QC subspace intersecting the higher dimensional lattice, producing a periodic 

arrangement of points in 3-dim space.  

3.1.4. TSAI CLUSTERS IN i-CD-YB  

It is known that the same atomic clusters attach themselves to the higher dimensional lattice 

points are found in both QCs and in approximant from studies of the bulk using X-Ray 

diffraction of isostructural materials. (Sharma, et al., 2009) Detailed X-Ray structure 

determination of Cd-Yb QC 1/1 and 2/1 approximants found that the approximants were 

made up of large rhombic triacontahedral (RTH) units. These units presented well-defined 

chemical order, and were positioned in the case of the 1/1 approximant on a bcc 

lattice.(Gomez, 2003) The study of 1/1 Cd-Yb yielded the necessary information to tile the 

QC (3-dim Penrose tiling) and complete its structural model.  

Soon after this accomplishment Takakura et al began work on other binary QCs that were of 

an isostructural nature to i-Cd-Yb. (Takakura, et al., 2007)The relationship between members 

of the i-Cd-Yb comes down to the number of valence electrons available per atom in the unit 

cell: in the case of the i-Cd-Yb quasicrystals this ratio e/a = 2.0; while in the approximant 

case the ratio is 2.09. This means that so long as elements similar in atomic weight and 

electronic structure replace Cd or Yb, and their proportion to each other in the alloy maintains 

this ratio, the new alloy will be almost perfectly isostructural. (Dubois, 2002)  Figure 8 below 

explains why swapping Cd for Ag and In is viable. 

 

 

 

 

 

 

 

 

Ag 

 

47 

Ag 
107.87 

48 

Cd 
112.41 

49 

In 
114.82 

70 

Yb 
173.05 Figure 8: The proximity of Ag and In to Cd in the periodic 

table. The diagram also demonstrates the relative weights 
of the elements compared to Yb which is far heavier. This 
results in Yb forming much more stable bonds in the 
approximant structure than the other constituent 
elements. 
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The structure is made up of Tsai clusters. Each Tsai cluster is made of concentric shells as 

seen in Figure 9. The outer-most shell is the RTH unit, with successively smaller shells 

within. The decoration of these shells with each elements is shown (percentages indicating 

the most up-to-date theoretical placement of atoms (Shimoda & Gomez, 2011) for certain 

chemical compositions of the 1/1 approximant). Owing due rights to the scientist cooperating 

with the University of Liverpool from Tohoku / NIMS in this report, the model has been 

named the “Shimoda” model. 

  

Figure 9 

a 

b 

c 

d 

e 

3.2.1. THE “SHIMODA” MODEL  

Data from refinement of XRD data taken from 

an Ag-In-Yb approximant was stored in 

Crystallographic Information File (CIF) format 

and accessible through IGOR Pro. The data 

package that accompanies the CIF file is a 

specifically designed module used to explore the 

structure of the approximant. In this section the 

predictions of that model are obtained.     

IGOR can be used as a visualisation tool and 

plots the position of atoms on the surface of a 

bulk-terminated approximant. Within the data 

module are a number of preset applications: one 

illustrates the density of atoms per plane as a 

function of the z coordinates in the crystal; 

another allows selection of a desired number of 

planes found in the model of the bulk structure 

and produces a 2-dim representation as if 

observing the sample top-down.  

Figure 9: Atomic composition of Tsai clusters, made up out 
of a) a deformed tetrahedron; b) a dodecahedron; c) an 
icosahedron; d) an icosidodecahedron; and e) a RTH unit.  

At any point the currently observed selection can be exported as a coordinate file (.xyz) 

which can be viewed in a number of other visualisation programs.  

The immediately interesting features of the model are the symmetries involved.  
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Figure 10 clearly shows a bcc lattice with cluster-like rings around core centres. The cluster 

centres (CC) are positioned on the lattice points of the bcc lattice, where the lattice constant a 

is calculated as 15.42Å. The highest density planes parallel to the (100) surface intersect the 

cluster cores, whilst intermediate density planes arising from the overlap of clusters exist in 

between the CC planes. Due to the unit cell being body centre cubic, the sequence of high 

density planes shifts the cores along a translation of 45˚ when moving through the crystal in 

the z direction. (see Figure 10).  

 

 

A’ 

C B 

A 

 

A’ 

C B 

A 

B C 

A 

Figure 10: Top . Four images show the peaks of Fig.10 as (100) planes. All planes have a 2-fold basis 
symmetry attached to a 4-fold lattice. Planes A’ and C are simply translations at 45˚ of the A and B planes, 
however the every plane is defined differently by the structure beneath the exposed plane.  
Figure 11: Below. Density of atoms per plane is plotted against the Z axis over a distance of the bcc unit 
cell. The sequence of planes repeats throughout the crystal after mirroring around the A/A’ planes. 
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The ‘in phase’ plane that has no translation is termed A, while the ‘out of phase’ plane is 

termed A’. The distance between these planes is a / 2 = hAA’ = 7.71Å. Between the A planes 

are less populated planes: these mirror their structure about the A/A’ density planes. In the 

diagram they are labelled B and C, and they show the same translational relationship as the 

A/A’ planes. However the key distinction between B and C are the lesser planes ‘below’ 

them, which are different depending on where in the crystal the cut is made. 

 

 

 

 

 

 

 

 

 

 

 

  

Plane Height in Z (Å) Step Height Step Height 

A 7.71 ------------ ------------ 

 
6.31 

hAB = 2.47Å 

hAA’ = 7.77Å 

 
5.94 

B 5.24 ------------ 

 
4.86 

hBC = 2.77Å 

 
4.66 

 
4.62 

 
3.99 

 
3.73 

 
3.10 

 
3.06 

 
2.86 

C 2.47 ------------ 

 
1.78 

hCA’ = 2.47Å 

 
1.40 

A' 0 ------------ ------------ 

  
  

Bcc structure lattice constant a = 15.42Å 

Reciprocal lattice constant a* = 2π / a = 0.407 Å-1 

   

 

Table 1: the top area of the table shows all planes within half a unit cell of 
the Ag-In-Yb approximant, and highlights the predicted terraces/step 
heights most likely to occur in the topography of the Ag-In-Yb surface. 
Bottom values are the expected lattice constant and reciprocal lattice 
constant 
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3.2.2. PREDICTIONS FOR THE STRUCTURE OF AG-IN-YB 

The table above shows the (100) planes inside a half of a unit cell that are predicted to 

contain atoms. The highest density planes are expected to appear in the greatest frequency 

when observing terraces of atoms on the surface of the Ag-In-Yb approximant; this is due to 

the high density planes possessing a greater thermal stability after crystal formation than the 

intermediate planes. During STM analysis we would expect to find the majority of step 

heights to be hAA’ = 7.77Å.  

The intermediate steps (hi where i = AB, BC, CA’, AC, BA’) are also expected to appear 

however with much lesser total coverage of the surface: manifesting in narrow terraces.  

The separation of clusters is expected to be measured (using both LEED and STM) as a = 

15.42 Å in both x and y components. This is due to the 4-fold symmetry of the lattice upon 

which the clusters lie. 
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4. EXPERIMENT ONE: LEED 

4.1 SURFACE PREPARATION  

Oxidation studies on i-Ag-In-Yb yielded that no quasiperiodicity could be observed from a 

surface exposed to air, as the oxide is too thick (2 - 3nm layer) for surface analysis to be 

effective.(Nugent, et al., 2010) Isolating samples from air in vacuum conditions is therefore 

necessary to use techniques such as LEED and STM for surface structure analysis.  

The cleaving method (sharp cutting of an alloy) of exposing quasicrystal crystal planes in 

UHV cannot prevent the atomic surfaces becoming roughened, making it an unsuitable 

method for examination of the approximant Ag-In-Yb surface. On the other hand, the use of 

ion bombardment (sputtering) and annealment in UHV on well-polished crystal samples 

yields atomically flat crystal planes(Sharma, et al., 2009). Appendix-1 provides a detailed 

adaptation of lab notes into a readable format for experimenters wanting to repeat 

experiments on Ag-In-Yb approximant samples. In summary of Appendix-1:  

➢ The samples provided were both single-grain 1/1 approximants  

➢ Both samples were polished using diamond paste (6 / 1 / 0.25 

micron grain size) in order to make the (100) surface as reflective 

and flat as possible. STM and LEED require a flat mirror-like 

surface for optimum operation. 

➢ A “sonic bath” was used to blast the surface with 

methanol molecules: the sonic vibrations from a water 

bath transfers energy to a beaker filled with 

methanol; sample is placed in the beaker and left 

for 15 mins every time a cycle of polishing has 

been completed so to reduce the chance of cross-

contamination of polish grains.  

➢ Spot welding fixed down the sample to a sample plate: this was 

made secure enough that the approximant crystal could 

not move or rotate in a tungsten wire cage when forced 

with tweezers. 

➢ Argon ion sputtering (Filament current 30mA) and annealing of sample (400 - 430˚C) 

clean the surface in UHV conditions: cycles on average of sputter: 40mins / anneal: 

Figure 12: Photograph taken of Room 
Temperature STM chamber, University 
of Liverpool 2011. 
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2hrs respectively were performed under pressures of approximately 2x10-10mbar. This 

pressure was 3x10-5mbar during argon sputtering. 

➢ Pressures were maintained through use of rotary pumps (10-3
 mbar) turbomolecular 

pumping (10-10) ion pumps (10-10) and titanium sublimation pumping. 

4.2.1. LOW ENERGY ELECTRON DIFFRACTION 

In LEED, electrons incident on the surface of a sample are elastically backscattered (through 

the process of Bragg diffraction) and are analysed in an energy range of 20-1000 eV. 

Electrons in this range are excellent probes of surface structure because they possess de 

Broglie wavelengths of the same order of magnitude as the interatomic spacing between 

atoms / molecules at surfaces.  

For a massless particle such as a photon diffraction is governed by the photon’s wavelength 

substituted into the diffraction condition Eq. 7. For a particle with mass however, the de 

Broglie wavelength is calculated using the following equation 𝜆 = ℎ/√2𝑚𝐸 where h m and 

E are Planck’s constant, the mass and the kinetic energy of the particle respectively. For an 

electron this reduces nicely to: 

𝜆(Å) =  √
150.6

𝐸(𝑒𝑉)
 

Equation 15 

This manifestation of wave/particle duality principle explains why electrons are able to 

undergo Bragg diffraction when they collide with a periodic structure. The de Broglie 

wavelength can be substituted into Eq.7 to give the angle at which the k-space vector 

intersects the nth rod on the Ewald sphere. In 2-dim this gives: 

𝜃𝑓 = 𝑠𝑖𝑛−1 (
1

𝑎
.√

150.6

𝐸
) 

Equation 16 

A reasonable assumption to make at this point is that the sum of the terms inside the brackets 

must not exceed unity or the arcsine becomes invalid. This puts a limit on the energy range 

for particular lattice constants in which LEED can directly probe the surface structure. 
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4.2.2. LEED APPARATUS 

 

Figure 13: Diagram showing the apparatus required to observe Low Energy Electron Diffraction. The sample must be 
grounded to prevent charging. 

The negatively charged electrons are produced monochromatically by a cathode filament at a 

negative potential. The energy can be varied by changing the filament current which heats the 

cathode. Thoriated tungsten or lanthanum-hexaboride filaments are used in Omicron LEED 

electron guns; both materials require careful monitoring due to sensitivity to misuse. 

Exposure to reactive gases (for example H2, O2, H2O) above 1x10-7 during operation can 

damage or poison filaments: this makes LEED exclusively operational in UHV. Electrodes in 

the gun act as electron lenses, focusing the beam to typical widths of around 0.1 to 0.5mm. 

The width of the beam must be comparable to the size of the surface in order to obtain strong 

diffraction peaks.  

Modern LEED systems use a reverse view scheme consisting of an unobtrusive electron gun 

in front of a hemispherical transmission screen or position sensitive detector. The position 

detector (called a delay-line detector) has powerful resolution: it has charge-sensitive 

elements that focus electrons into 30µm holes that sense the electrons presence and send a 

signal that is converted into X-Y coordinates. The expense of installing a delay-line detector 

means that a phosphor screen is more commonly used: providing a dark environment, one 

can observe the screen as it emits light locally from the intersection of the screen with 

diffracted beams of electrons. The diffraction pattern can be viewed and digitally recorded 

through a viewport in the chamber using a CCD (charge-coupled device) camera. 

Camera 
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Only a small fraction of the monoenergetic electrons backscatter without losing any energy. 

The remaining electrons, due to strong interaction with matter, are found to be either 

completely absorbed by the upper atomic layers of the sample (related to the work function of 

the material) or are inelastically diffracted. Electrons can lose their energy through three main 

mechanisms: 

i) Plasmon excitation: quantized electron density oscillations of valence or 

conduction electrons in the sample. The quanta of energy involved in plasmon 

excitations are of the order of 10eV and depend on the nature of the substrate. 

ii) Electron-hole pair formation: an electron is promoted from a filled to an empty 

electron state when an energetic incident particle (electron/photon) interacts with 

the atoms / molecules in the sample. An energy loss range exists around 0-10eV. 

iii) Phonon excitation: atomic vibrations of the solid lattice are quantized and 

coupled. Exciting these quantized vibrations (known as phonons) takes little 

energy: a phonon typically is of the magnitude of 0.5-0.01eV. 

The result of these mechanisms on the LEED electron beam is a spray of inelastic electrons 

that head towards the screen: recall that the angle of diffraction is related to the energy of the 

electrons and it becomes obvious that the wide range of potential will cause a relatively 

continuous background range of energies.  

The LEED apparatus ensures that only electrons of kinetic energy of the primary beam E 

reach the phosphor screen. To strip away electrons of unwanted energy from reaching the 

screen, energy selection grids (collectively known as a field retarding analyser) are placed in 

the path of the backscattered electrons. Out of the three (or some cases four) grids used in the, 

the grid nearest the sample is connected to ground, facilitating a field free zone for the 

electrons to move through. The outer most grid, closest to the screen, protects the field free 

zone from the high voltages placed on the phosphor screen. The inner most grid / grids are at 

negative potentials and serve as cut-off filters to discourage low energy electrons. Finally, the 

phosphor screen itself maintains a positive potential to accelerate the electrons that made it 

through the filtering grids; if the surface has been well prepared, the majority of these 

electrons will have resulted from elastic scattering.  
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Table 2: Specifications for the Omicron SpectaLEED used for these experiments 
(OmicronNanoTechnology, 2003) 

 

Screen 

Viewing 

Angle:  

Spherical 

Radius:  

 

Circular 

Diameter:  

 

Electron 

Beam 

Current: 

Screen 

Voltage:

  

Beam 

Energy:  

102˚ 66mm 104mm 1.2A 4 - 5kV 30eV-160eV 

  

4.2.3. LEED ANALYSIS OF AG-IN-YB 

Through volunteering with the Surface Science department  I was able to gain experience 

using the UHV system with a copper (111) crystal sample, and gained some of the skills 

necessary for my dissertation project. However, practising with Cu(111) was not a trivial 

pursuit. When analysing a sample through LEED, most of the structural information of the 

atoms is contained with the intensity of the diffracted Bragg peaks on the phosphor screen, 

which changes with respect to the energy of the electrons. Qualitatively we can use LEED to 

observe rotational symmetries and relative surface sizes of the unit cells. For example if a 

superstructure exists on top of the substrate, either some of the diffraction spots of the 

original pattern will increase in intensity, or completely new spots will appear).  

The size of the unit cells of the superstructure can then be compared to that of the substrate 

through reciprocal space. This can be done because both the substrate and super structure 

have incident electrons of the same energy diffracting from them. They share the same 

projected reciprocal space unit vectors at that energy. It can be assumed then: when using the 

Figure 14.a: FCC lattice structure Figure 14.b: BCC lattice structure 
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same LEED optics and parameters, (e.g. the distance from screen to sample) that any two 

LEED patterns obtained at the same electron energy E share the same projected reciprocal 

space. Tremendously this allows for a quantitative appraisal of an unknown unit cell. A well 

known lattice constant can scale the reciprocal space seen on the screen, and thus a new 

pattern can have its lattice constants revealed. 

A sample of Cu(111) was readily available for use. Copper has a face centred cubic (fcc) 

lattice with lattice constant a = 3.615Å, and the (111) plane exposes a hexagonal arrangement 

of atoms (see Figure 14.a). Bragg diffraction works on the principle of constructive 

interference from surface atoms periodically spaced apart. The strongest diffraction comes 

from the planes of atoms separated by a distance close to the de Broglie wavelength of the 

incoming electrons, so the correct plane separation should be identified for use in Eq. 16. 

Figure 16 shows two possible diffraction directions along the (111) surface. (Sharma, 2011) 

Figure 14c indicates that the nearest neighbour 

atomic spacing in the (111) plane is 𝑎/√2 = 2.556. 

From the geometry of the hexagonal Bravais lattice, 

made up out of equilateral triangles, values for d1 and 

d2 were calculated: 

𝑑1 =
𝑎

√2
 . cos 60° = 1.278 Å 

  
𝑑2

=
𝑎

√2
 . sin 60° = 2.213 Å 

It would be natural to assume that the shortest distance d1 would provide the strongest 

diffraction, however as stated previously, diffraction is governed by the matching of the 

wavelength (and thus the energy of the electron) to the planar spacing. The lowest energy 

value that obtained a suitable LEED image (see below) was at 65eV. Substitution into Eq. 15 

gives: 

𝜆 =  √
150.6

65
=  1.522 Å 

At this energy, d2 will produce Bragg diffraction very close the maximum strength. However, 

it is likely that d1 is too small to allow for diffraction. As described in the next section, 

Figure 14.c: The selection of the correct 
diffraction distance is vital to obtain the correct 
diffraction angles. 
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experimentally it was found that d2 was the plane spacing that produced the Cu(111) LEED 

pattern. 

It was not until some way into the project that a model for the Ag-In-Yb approximant 

structure was produced by Shimoda et al. The model gave a predicted lattice constant of a = 

15.42 Å for the body centred cubic structure, and the sample was cut along the (100) plane. 

The exposed (100) plane of a bcc lattice is square with lengths of side a.  

It is non-trivial to estimate the plane separation that gives rise to a diffraction pattern. Recall 

the need to calibrate the LEED screen’s coordinate system. To do this the LEED pattern for 

Cu(111) must be visible at an energy that accesses diffraction in the Ag-In-Yb system. If it is 

found that the calibration sample was unable to produce diffraction patterns at the necessary 

energies, another well-understood material could replace it: e.g. silicon (111) would be able 

to access different energies. Figure 15 shows calibration of the screen at 65eV, whereby the  

 

original LEED diffraction pattern is captured digitally, and the distance from the centre of the 

image to the diffraction spots R is measured in units of pixels: the pixel space is then made 

equivalent to that of the reciprocal lattice by taking the average distance RA and equating it to 

the a* = 2π / a. If the approximant pattern is able to reach this energy range then the scale 

(now in units of pixels) can be used to measure the reciprocal lattice vector of Ag-In-Yb. 

There are cut-off energies from which discernible LEED patterns do not occur. For example 

in the case of Cu(111): 

Figure 15: Above; LEED 
image captured at 65eV 
and enhanced using 
photo-editing software, 
Right; The same software 
is used to measure the 
pixel distances in the 
image from screen centre 
to diffraction point.  
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• For energies above 120eV a saturation effect is produced whereby the screen 

collected background diffracted electrons; electrons with more energy can travel 

further into the sample surface before being backscattered, causing them to diffract at 

a large range of angles.  

• Below 65eV diffraction peaks simply did not exist: electrons with less energy are 

more likely to be involved in interactions with matter and thus tend not to be 

elastically scattered. They are prevented from reaching the screen by the retarding 

field analyser.   

There are two more reasons why some E values will not provide a visible pattern.  

• 1) In practise the LEED phosphor screen is not hemispherical, and instead spans a 

fraction of a sphere’s surface so that the solid angle Ω = 2π(1 − cosθO). The 

Omicron LEED apparatus uses an angle θO = 51˚ so if low electrons are backscattered 

at an angle greater than 51˚ they will not be observed. 

• 2) The size of the 2-dim Ewald sphere produced by the k-vector of the electrons is 

proportional to E1/2 (see Eq.16) and for the reciprocal space lattice rods to intersect 

the sphere it must have a minimum radius. If 𝑘𝑖 =
2𝜋

𝜆
= 2𝜋√

𝐸

150.6
<

2𝜋

𝑎
 then Bragg 

diffraction will not occur and we will not see diffraction spots at that energy. 

These observations can be made with knowledge of the lattice constant a. As was the case, 

most experimental work using LEED had already be completed before model for the 

approximant became available. Cu(111) was the only means of calibrating the screen, 

however the Cu(111) sample DID NOT reach the energy range required to calibrate the 

screen at an energy the approximant could produce clear diffraction spots. A compensation 

method is described in the next section) 

4.2.4. LEED RESULTS AND DISCUSSION 

The Cu(111) crystal sample produced a clear hexagonal pattern at E = 65eV. The RA value 

calculated was 208 ± 4 pixels. The systematic error arose from the diffuse spread of the 

diffraction spots. The radius of the full screen in pixels was 228 pixels. The angle of 

diffraction can thus be found using the Omicron SpectaLEED specs in Table 2:  

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑐𝑟𝑒𝑒𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 =
208

228
= 91.2% 
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𝑠𝑐𝑟𝑒𝑒𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 = 52𝑚𝑚    𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑒𝑒𝑛 d = 66𝑚𝑚    

𝑅𝐴 = 208 𝑝𝑖𝑥𝑒𝑙𝑠 =
208

228
. 𝑟 = 47.4𝑚𝑚      𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝜃𝑓 = 𝑠𝑖𝑛−1 (

𝑅𝐴

𝑎
) 

= 45.9° 

Checking that the Bragg diffraction theory agrees with this value gives: 

𝑎 = 𝑑2 =
𝑎

√2
. 𝑠𝑖𝑛60° = 2.213 Å 

𝑎∗ =
2𝜋

𝑎
= 2.839 Å−1              

2𝜋

𝜆
=  √

150.6

𝐸
= √

150.6

65
= 4.128Å−1  

𝜃𝑓 = 𝑠𝑖𝑛−1 (
1

𝑎
.√

150.6

𝐸
) = 𝑠𝑖𝑛−1 (

2.839

4.128
)    =   43.5° 

The angles match well, so we can assume that the LEED apparatus is functioning correctly 

and that our theory is correct. 

Upon varying E between 28eV and 50eV Ag-In-Yb approximant sample produced its clearest 

square pattern at E = 32.5eV. The RA value calculated was 44 pixels, and using the same 

technique as shown for the Cu(111) surface by measuring RA in pixels, we find that the angle 

of diffraction 𝜃𝑓 =  8.7°. However, the beam energy was half that used for the calibration 

material diffraction pattern. Without another means of calibrating the LEED screen, a 

possible (albeit crude) solution was to predict where the spots from the copper would lie if 

they had been seen at energies of 32.5eV. Therefore the change in angle with respect to 

energy needs to be known. 𝑠𝑖𝑛 𝜃𝑓 is simply modified by a factor of 1/√𝐸  (see Eq.16) so if 

we half the energy we multiply 𝑠𝑖𝑛 𝜃𝑓 by a factor of √2.  

 

  

Figure 16: Photo capture of Ag-In-Yb 
LEED pattern modified using photo-
editing software. Left: Inverted spots 
can be seen in black.  Right: grid 
approximately matching the square 
reciprocal space lattice measures 44 x 
44 pixels wide per grid square. 
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The experimental diffraction angle of copper (𝜃𝑓 = 45.9°) at 65eV then becomes 76.6° at 

32.5eV. This new angle corresponds to a new diffraction spot at a distance of 𝑟 𝑠𝑖𝑛 𝜃𝑓 away 

from the centre of the screen – equal to 60.6mm, or 265.7 pixels.  

We reach the conclusion that 265.7 pixels are equivalent to the reciprocal space vector of the 

(111) Cu lattice and also that 44 pixels equals the reciprocal lattice vector for the 

approximant. Taking the ratio of the two and multiplying with the copper reciprocal lattice 

parameter 𝑎∗ = 2.839 Å−1 gives an estimate 𝑎∗
𝐴𝑝𝑝𝑟𝑜𝑥 = 0.470 Å−1   𝑎 

𝐴𝑝𝑝𝑟𝑜𝑥 = 13.364 Å. 

When compared to the modelled value of a = 15.42 Å  we see there is a 13% difference 

between a and 𝑎 
𝐴𝑝𝑝𝑟𝑜𝑥. The compensating method used tries to model an unrealistic scenario 

in which the Bragg diffraction laws are manipulated crudely: we could never observe low 

energy electrons diffracting from Cu(111) at such large angles because of the geometry of the 

apparatus and due to the reduced intensity of Bragg spots at lower energies. Large deviations 

from the true value are thus likely to occur, however the procedure demonstrates 

measurements of the same order of magnitude as the predicted values. 

4.2.5. SUMMARY   

➢ The LEED experiment was able to acquire diffraction patterns for both Cu(111) and 

1/1 Ag-In-Yb (100) over various energies: the clearest patterns were obtained at 65eV 

for copper and 32.5eV for the approximant. 

➢ Cu(111) could not access the low energy range that produced sharp diffraction peaks 

in the approximant system; instead a compensation method attempted to predict 

where Cu(111) diffraction spots would fall at 32.5eV (half the energy of its highest-

quality diffraction pattern) in order to calibrate the LEED screen. 

➢ 𝑎 
𝐴𝑝𝑝𝑟𝑜𝑥 was measured to be 13.364 Å with a 13% error. 

➢ The compensation method provided a useful exercise in understanding the 

dependency of diffraction angle on energy. 
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5. EXPERIMENT TWO: STM 

5.1. SCANNING TUNNELLING MICROSCOPY 

LEED provides us with reciprocal 

space data generated by the long-range 

order present in a periodic crystal 

sample. However the LEED pattern is 

made up of constructive wavefunctions, 

and without measurements of the 

intensity of diffracted beams it ignores 

much of the nanoscale structural detail 

of the surface: it just doesn’t paint a 

picture of the dramatically irregular 

topography of the surface. This was the 

job that the scanning tunnelling 

microscope (STM) was designed for, 

and its creation and application in 1981 paved the way for a new era of science – the age of 

atomic resolution and manipulation as predicted by Richard Feynman in his famous 1959 

speech “There’s Plenty Of Room At The Bottom”. 

A probing tip is attached to a set of three mutually perpendicular piezoelectric transducers, 

representing a Cartesian coordinate space (xyz). Piezoelectric transducers – or piezo for short 

– expand or contract when a potential difference is placed across them: upon applying a 

sawtooth voltage across the x piezo and a voltage ramp on the y piezo, the tip is able to scan 

across the xy plane. A sample is positioned beneath the tip and is brought to within a 

nanometre of the atoms on the sample surface. The tip (made of W or an alloy such as Pt-Ir) 

is atomically sharp so that a protruding atom is in closer proximity to the surface than all 

others. Typically for electrons to escape a solid they require energies of up to a few eV to 

overcome the work function of the material– in comparison the average thermal energy at 

room temperature can only supply energy of the order of tens of meV. Electrons in the tip 

(and sample) however can be encouraged to escape into vacuum through the phenomenon of 

electron tunnelling. Once brought near the surface the wave functions of the electrons in the 

tip overlap with those in the sample.  

Figure 17: A well-known diagram showing the principle of 
piezoelectric control of a tip scanning over a surface. Detection of 
the tunnelling current feeds back into the distance control and 
scanning unit and maintains either a constant current or a constant 
height throughout the duration of the scan. The results are 
recorded in real time and displayed using digital imaging software. 
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When a bias voltage is set across the tip and sample there is a shift in the density of states 

near the Fermi energy on either the tip or sample. For example a forward bias will provide a 

greater density of empty states in the sample as seen by electrons in the tip; for a negative 

bias it is vice versa. In both these cases electrons are encouraged to escape their bound states 

by an increase in tunnelling probability, and will flow to / from the sample. This can be 

measured as a tunnelling current. This makes STM a fantastic tool for 

surface studies, as it does not require a probing particle and only 

accesses surface electron orbits.  

The tunnelling current depends on the lateral variaiton of electron 

density of the sample. These changes are mapped in images. 

Changes in current with respect to position can be measured, or the 

height, z, of the tip corresponding to a constant current can be 

measured. The larger the distance between the tip and the sample, 

the smaller the current is. This relationship is described by the 

equation   𝐼(𝑑) = 𝐶𝑒−𝑑 к. 

 

Maximum 

Scan Size: 

Maximum 

Sample Size 

Tunnelling 

Current: 

Piezo Sens- 

itivity XY: 

Piezo Sens- 

itivity Z: 

Maximum 

Bake-out: 

Typ.           

2.3 x 2.3µm 
11 x 11mm 

20 pA – 

50nA 
9.5 nm/V 5 nm/V 180˚C 

 

5.2.1. AIMS AND HYPOTHESIS 

The aims of STM image analysis of the backup data were to measure step heights and cluster 

separation using WSxM and Gwyddion software, produce a histogram of step heights h, and 

identify (100) planes in the bcc Ag-In-Yb quasicrystal approximant. 

Studies of the occurrence of high density planes had not been published by other researchers 

at this time of writing, although data from 2009 had been presented by T. Yadav at the 

CMMP 11 convention showing evidence of terraces of intermediate planes B and C. The 

coverage of these intermediate density planes was small in comparison to the A and A’ 

planes. This would imply that the intermediate planes would either occur less often or in 

Table 3: Omicron Room Temperature STM Specifications 

 

Figure 18: Omicron STM used in the RT-
STM, University of Liverpool 2011 
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smaller sized terraces due to the lower stability of planes B/C.  Hypothetically is was 

assumed that STM analysis would uncover a distribution of step heights representing a high 

frequency of hAA’ step heights and a low frequency of hAB hBA’ hCA’ hAC hBC providing that the 

images used in analysis contained many large terraces. The Shimoda model predicts the bbc 

lattice constant and the step height values to be:  

a = 15.42 Å    hAA’ = a/2 = 7.71 Å            

hAB = hBA’ = hCA’ = hAC = 2.47 Å 

hBC = 2.67 Å 

5.2.2. ORIGIN OF DATA 

Originally it was expected that STM data could be collected and analysed during the start of 

the second semester of the year. Around this time a new sample of Ag-In-Yb had become 

available that promised to be of higher quality than the previous sample in terms of its 

thermal stability, size of surface, and surface level. It was found a lot less residual material 

was removed from the sample during extensive polishing, verifying an improvement in 

quality. The stable approximant sample was grown by Tohoku University using the slow-

casting method. The previous sample was removed from the UHV chamber and put back into 

storage while the new crystal was prepared for analysis. This delay was furthered by other 

experiments on the RT-STM chamber obtaining priority. A new set of LEED images were 

taken in April, which were to be followed by a week of scrutinising the approximant via 

STM. With little assigned time left on the chamber, the compressed air system running 

through the Surface Science labs had used up its reserves: this was with great misfortune as 

the STM instrumentation requires isolation from large vibrations caused by mechanical 

pumps, and this was achieved through the use of a pneumatic valve. This rendered the STM 

practically unusable at ambient room temperatures – where thermal and mechanical 

fluctuations held greater influence over the quality of the images. Options to temporarily refit 

the chamber with an adaptation attachment for the compressed argon tank were disregarded 

as costly in both time and effort.  

The project then fell back on unanalysed STM images recorded in 2011 provided by Sharma 

et al. 

Background Information for 2011 Ag-In-Yb approximant data:  

Finding these step heights in the 

STM image data would indicate 

stable A/B/C/A’ planes in an Ag-

In-Yb approximant. 
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➢ Sample was cut in the (100) plane and prepared by polishing, then sputtering and 

annealing in a room temperature STM. 

➢ Data was acquired by NIMS, Tokyo, Japan.  

➢ The data set consisted of 115 .par files, a format of file containing z height maps of 

the forward and backward scan directions as well as the current map for every scan. 

➢ Pixel resolution was 512x512px for all scan areas. 

➢ Mapped scan areas ranged from 1x1µm to 20x20nm, with cluster resolution becoming 

visible at 100x100nm. 

Lab notes with any specific experimental or laboratory conditions (room temperature, 

proximity to sources of vibration, STM malfunction or irregularities etc) did not accompany 

the data set; however the .par file format contains important information about the scanning 

process. Recorded parameters can be seen in Figure 21. The crucial information for this 

project included: 

  Figure 19: Information panel opened in Gwyddion. Highlighted in red boxes are the key parameters required 
place the the STM image data relative to other images 
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➢ Scanning amplitude of the x and y axes (scan area)/ 

➢ Scan speed in the horizontal direction. 

➢ Probe tip’s xy piezo offset from default central point; the centre point is where the tip 

positions itself after coarse movement using the piezo inchworm motor system. 

➢ Time and date of data acquisition. 

These four parameters were of exceptional importance in interpreting the data. The axis 

amplitude / field size / scan area provides a surface parallel scale that is used to identify the 

relative widths and lengths of key structural features. All SPM software packages build 

measurement tools that source their readout from the field size.   The scan area is also useful 

in finding the time constant, in combination with the horizontal scan speed. Each scan is set 

to take a certain amount of time to complete. A complete set of data is usually taken using the 

same time constant, as this results in a resolution increase proportional to a decrease in axis 

amplitude: as the scan area gets smaller the tips speed decreases proportional to the time 

constant.  Usually, initial scans are used to determine if there is anything worth investigating 

in the area selected, and data acquisition would take far too long to validate the use of large 

time constants.   Knowing the time constant gives access to the vertical scan speed. The xy 

piezo offset and timestamp are crucial for knowing the order in which the height maps were 

taken and where they were taken relative to other images. Deficiency of this information 

means we cannot be sure the data is consistent with other images. Our need for consistency 

can be traced back to the aims of STM analysis of Ag-In-Yb. The STM exhibits a startling 

capability to zoom in on scan areas that are mere hundreds of angstroms wide. A great 

advantage of the Ag-In-Yb approximant is that clusters lie on the square lattice in the (100) 

plane with lattice constant a = 1.54nm: these features should be easily resolved at scan areas 

of 100x100nm. Atomic resolution allows us to go further and match atomic positions up 

against the model; it is the comparison of atomic model to terrace step height that 

quantitatively establishes which of the high density planes are revealed when a (100) cut is 

made through the crystal. 

5.2.3. RELATED AND UNRELATED DATA 

To arrive at atomic resolutions takes many attempts due to numerous factors: tip quality, tip 

crashes, surface quality, thermal drift etc. We must search across vast portions of the surface 
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landscape to find the perfect ‘atom-spotting’ site, and in doing so the tip is often retracted 

from the surface and coarsely. When approaching the surface once more it is almost 

impossible to find the same scan areas, especially on a sample more than x1000 larger than 

the maximum axis amplitude. All knowledge of the position of previous scan areas before tip 

retraction is lost.  

Figure 22 shows a plot of the piezo offset for a several images that appear to be close 

together: without timestamp data these all are mapped to the same space simultaneously. We 

need to distinguish between related and unrelated data. The method following is designed as 

necessary to cope with the lack of lab notes to go with the data (and also no current STM 

software offers a way to map relate images to each other) but is not exclusively useful for 

STM images, and could be used for any SPM data that requires spatial mapping.  

 

 

 

 

 

 

 

 

 

 

Method of proximity grouping to find related / unrelated data:  

➢ Obtain parameters for each .par image file: file name; xy offset values; timestamp; axis 

amplitude. 

➢ Arrange all .par image files and associated data into a chronological list. 

➢ Plot each image as a point on a graph that has xy offset values as their coordinates. 

➢ Label each point with its corresponding file name or number. 

➢ Add to each data point error bars (horizontal and vertical) that simulate the size of the 

scan area. 

Figure 20: A plot of the piezo xy offset for each image. The images are represented by error bars of 
height and width equal to the image dimensions. The range of images 8-19 and 21-22 are all part of 
the same proximity group because they overlap and were taken consecutively; image 20 belongs to 
no proximity group; 23-25 belong to a different proximity group. 
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➢ Record the identity of ‘proximity groups’ of data points that all fall within each 

other’s error bars. This indicates members of proximity groups may be images of the 

same area of the sample surface. 

➢ Return to the list and then inspect the following:  

o A ) how a group is composed of smaller and smaller images – i.e. once an 

experimenter has reached the highest resolution possible with the current area 

being scanned, he or she may choose to image a lower resolution image that is 

zoomed out above the high-res image… or may retract the tip in order to 

image another area elsewhere on the sample. It is thus unclear whether the 

piezo offsets are related to each other. Therefore it is best to assume from the 

chronological order of data acquisition that where scan area has increased 

from high-res to low-res (e.g. 40x40nm to 500x500nm) a new proximity group 

is formed. An exception would be if the offset remains exactly the same, 

suggesting that the tip has not been retracted.  

o B ) whether any data points in each group were taken at times much greater 

than 90 mins* between each other – this suggests that although they share 

similar piezo offsets the tip has been retracted since then and they do not 

image the same area. The later images belong to a proximity group of their 

own. 

➢ Result: raw data is sorted into proximity groups that the user can chronologically 

‘travel’ through in order to zoom in on the sample.  

*based on the time constant of the Ag-In-Yb scans, which would allow for many images to 

be taken within a period of 1.5hrs; this assumes that the experimenter would move onto a 

new portion of the sample after sufficient data acquisition. 

The success of the proximity group categorisation was marred by the data set however. 

Proximity groups in this data set were always composed of either: 

• high quality terraces at scan sizes above 400x400nm but no cluster resolution and no 

underlying phase patterns picked up by FFT in images below 400x400nm. 

• impossible to measure terrace images (blurry / streaked)  but high resolution images 

of clusters below 100x100nm 

An example is given below of the first case: 
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5.2.4. SPM SOFTWARE  

Two software packages – WSxM and Gwyddion (Gwyd) were used to analyse the STM data 

in tandem with the Ag-In-Yb approximant model data stored in IGOR. WSxM and Gwyd are 

both freeware projects that can open a wide variety of SPM data files, including the widely 

used bitmap, .xyz and .par file formats. This section details the use of statistical filters such as 

FFT filtering, self correlation and plane subtraction in both programs. The filters and other 

techniques are able to highlight 

visual features of data that 

statistically would be impossible to 

comprehend, and as it will be made 

clear towards the end of this report, 

equal measures of intuition and 

experience make these tools 

invaluable to investigate structures 

as the nanoscale.  

 

 

 

Figure 22: Plane filtered STM image of the 1/1 Ag-In-Yb (100) approximant 
surface 

 

Figure 21: The above set of images is a proximity group as they share portions of the same scan area through the next 
image being a zoom of the last. Across the whole data set no proximity groups could identify step heights AND cluster 
separation, as shown here: the largest image is too distorted to use, however the 400x400nm image has large terraces 
and a step height available to measure. The final zoom into the terrace shows only noise and no underlying pattern (can 
be checked using FFT) 
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5.3. PROCESS OF IMAGE ANALYSIS 

The aim of image analysis is to reveal information about the structure of the approximant 

sample through the minimum amount of STM image enhancement. Changing the raw data 

will always result in the loss of information and distortion of measured values. 

Some images are unsuitable for analysis from the very start, and these need to be selectively 

removed from the data set. Before becoming accustomed to viewing data acquired through 

STM, it was easy for me to relegate many of the images away from assessment, but upon 

review of my selection method it was clear that much more structural information could be 

extracted from seemingly “trashed” data. 

 

Figure 23: the WSxM taskbar, with highlighted operations used to measure and filter STM data. From left to right: 
multiple plane subtraction, line profiling, roughness analysis (histogram), FFT, self-correlation, and flattening   
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5. 3.1. UNUSABLE DATA  

STM image data is heavily reliant on the tip and surface quality, as well as ambient effects 

such as thermal and mechanical vibrations. Below are a number of examples of different 

images taken that did not get selected for the data set, and why: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Example of tip not being 
able to reach into the depths of the 
surface – a streaking effect is 
produced as the tip tries to find 
electron orbits to image. 

Figure 24: An unsuitable image. 
Too many narrow terraces suggest 
the scan area contains few stable 
terraces (which are the focus of 
this study). 

Figure 25: Noise can be generated 
from many different random 
sources – for small scan areas, if an 
FFT filter does not show the 
expected lattice symmetry (i.e. 2 or 
4-fold) then the image is more likely 
just noise 

Figure 27: Tip crashing is often the 
result of a large island or irregularity 
on the surface, (i.e. the blob near 
the middle) and can cause damage 
to the tip as well as produce 
streaked images like this one. 
Applying a voltage pulse can clean 
the tip if it has picked up any 
residual matter from the surface. 

Figure 28: When a large offset is 
performed a DC voltage is applied to 
the piezos. The majority of the offset 

distance occurs quickly, but the 
remaining movement is slow. This 
slow portion of the travel is known 

as piezo creep. In images, creep 
causes distortion in the direction of 

the offset. 

Thermal drift of the sample can also 
have the effect of distortion but 

tends to only occur in the slow scan 
direction and affects the whole 

image. 
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5.3.2. FILTERING STM IMAGES 

Several processes in both Gwyd and WSxM can extract information about the atomic surface 

from STM images. Without these processes, the data remains qualitative and often very 

obscure to the untrained eye. The three main processes are plane averaging, FFT and self-

correlation.  

Plane Averaging 

A collection of tools fall under this category of filtering, including: the correction of 

horizontal scars and streaks, subtraction of the average plane from the whole image, creating 

a local plane to subtract from the whole image, and row levelling. For the most part they are 

one-click or click-and drag operations on the height data. They should be used for the 

smoothing of noise or streaks, however work best when used on images with few major faults 

(this can be achieved through cropping the image). (See Figure 22) Careless use of these tools 

can however result in the loss of important information: for example, multiple local plane 

subtractions will change the height map so much it no longer represents the original image.   

FFT 

1-dim and 2-dim Fast Fourier 

Transforms are able to pick up one 

underlying patterns in STM images 

based on intensity and phase 

information. Sometimes images that 

look like they yield little information 

can be transformed when FFT is used 

as a filter to extract phase data. The 

FFT pattern represents a form of 

reciprocal space, similar to a LEED 

pattern, and the intense spots (as seen 

in Figure 29) are the contributions 

from all the components of the 

underlying pattern to the original 

image.  

  

 

Figure 29: The large gradient image is the original STM data. 
The cross-hatched image is the underlying phase extracted by 
the Fast Fourier Transform in the bottom right corner. A 
square lattice can be observed in the FFT pattern and in the 
extracted pattern. 

40 nm 



51 
 

As with LEED diffraction, measurement of the vectors that make a lattice between the spots 

gives the reciprocal lattice vectors of the unit cell.  

FFT filtering then extracts the pattern and creates a new image with only the phase 

information present (no influence from intensity). The new pattern is a good approximation of 

the position of atomic clusters, however the process to create the pattern is very selective and 

dependant of which intensity spots are selected to obtain phase information on and which are 

left out. Essentially any pattern can be extracted if the right phases are chosen, so knowledge 

of the unit cell geometry is essential. 

Self Correlation 

The self correlation technique is very similar to the FFT however does not depend on ‘phase’. 

Instead it looks at how different the original image will be when moved by a vector k. The 

more similar the shifted image is to the original, the greater the correlation. The correlation is 

given as an intensity which is plotted as a new image.  

Thus repeating patterns can be enhanced by the 

self-correlation method without the need to 

manually filter in/out certain phases. This method 

doesn’t work well for images that possess lots of 

distortion however, which FFT is good at ‘seeing 

through’ to find the phase. 

 

 

5.3.3 TERRACE STEP HEIGHT AND UNIT CELL LATTICE VECTORS 

The measurements for the terrace step height can be made using WSxM: by plotting a 

histogram of heights – once an image has been successfully filtered –terraces with large 

coverage of the surface will be identified by peaks in the height distribution. WSxM can slide 

markers along the histogram and measure the difference between the two heights: the 

difference between two immediately neighbouring peaks is equal to the step height between 

large terraces, and should equate to one of the step heights predicted by the Shimoda model.   

Figure 30: The correlation between shifted 
images produces the pattern shown above: it is 
subtly different from the FFT filter and does not 
require manual filtering. Each of the blobs is an 
atomic cluster. 
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To measure the unit cell lattice constants, Gwyd has a clever tool called an averaging line 

profile. The line profile can be drawn across a series of atomic clusters and create a 2-dim 

height map: the distance between peaks is the distance between the Tsai clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Example of the histogram method. The distance between the two planes (left) was measured as the 
distance between the peaks of the histogram (right). Here h = 7.883Å. 
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 5.4. STEP HEIGHT 
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5.4.1. HISTOGRAM / RESULTS 

A histogram of step height occurrence – Graph 1– showed some significant departures from 

the hypothesis. Three bin sizes were tested to gain an insight into the data: S1 = 0.5Å, S2 = 

0.1Å, S3 = 0.01Å.  S2 is used in Graph 1 and shows two Gaussian-like peaks. The S1 

histogram did not illustrate these peaks in enough detail, while the axis of the S3 histogram 

was taxing to interpret: S2 mediated between these two factors. 

 

  

The hypothesis stated during the discussion of STM analysis predicted intermediate steps 

would occur in moderate frequency but that the expectation was to find high density planes 

A/A’ forming the majority of large terraces. However Graph 1 shows a clear abundance of 

the step heights corresponding to the intermediate steps for large terraces. The step height 

hAA’ is rarely ever recorded, hinting at very stable structures existing in the cross over 

between clusters – i.e. B and C planes. The assumption that the high density planes are the 

most stable needs reviewing. Returning to the Shimoda model provided an explanation. 

Inside the unit cell there is a 2:1 ratio between the B/C planes and A/A’ planes. Due to low 

data set population it was unlikely to measure this exact ratio and instead more likely to 

obtain an indication of this relationship.  

The correct way to find ratios between peaks is to fit Gaussian curves to the histogram data. 

Statistically it is viable to collect up any counts found inside the bell-shaped curves 

representing the spread of step heights around a predicted value. Graph 4 shows the 

procedure whereby normalised Gaussian curves have been aligned with the model step height 

Graphs 2 & 3: Histograph data using bin sizes S1 = 0.5Å and S3 = 0.01Å. See Graph 1 for S2 histogram 
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values and the scaled S2 diagram is plotted beneath. A larger than expected ratio of the two 

curves was found: however we can assume that the data set is not representative of the true 

population, allowing for discrepancies in such statistical analysis. 

 

 

What is also highlighted by the Gaussian curves is that the region to the left of the green 

curve, (see also Graph 1) appears to be uncharacteristically populated by values smaller than 

the AB/BA’/AC/CA’ step height. Note as well that the bin with the highest counts is shifted 

away from the expected value h = 2.47 towards this region. If this region was produced by 

images of a single proximity group, it could imply that the group examined was anomalous. 

The region also had the possibility of belonging exclusively to very small terraces appearing 

between larger terraces. When investigating the raw data to ascertain whether this was the 

case, it was discovered that the smaller step heights were distributed regularly throughout 

most of the images, and so were not anomalous. However the associated terraces they were 

taken from almost always had very narrow surface coverage. The presence of this region can 

be removed from the ratio calculation so to reduce the size of the prescribed Gaussian curve 

and the number of counts under the curve.            

  

AB/BA’/AC/CA’

80 counts 

BC                           

26 counts 

Ratio:             

~ 3 : 1 

Graph 4 
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5.4.2. DISCUSSION OF RIDGED TERRACES 

To explain the high frequency of intermediate planes, we can call upon one possible solution: 

a modification of the Shimoda model that involves cutting ridged planes instead of flat slices 

through the clusters.(M.Krajčí & H.R.Sharma, 2012) (Publishing of paper pending: all the 

speculations below are made by the author of this report and not associated with the research 

carried out by Slovak Academy of Sciences) The refinement results in shifts of a group of 

atoms from their idealized positions and atomically flat layers of the ideal structure are 

modified. 

The intermediate density planes B and C are at distances of 5.24 Å and 2.47Å above the A’ 

plane. Take the case where a cut is made through plane B and all material above this plane 

(coined here as the ‘planar crust’) is removed. The binding effect of that crust material no 

longer impinges upon atoms on the surface of the B plane. Ag and In atoms in the B plane 

have low atomic weight compared to Yb, and will belong to shells in the Tsai clusters that 

have been removed with the planar crust. Recall that in the Tsai cluster bcc structure, the 

icosahedral shell of Yb atoms does not overlap into the crossover zone of the next cluster; 

while the outermost shells containing Ag and In will do so.  

In theory the atoms in the overlap regions could either:  

➢ …be removed as part of the planar crust because of the lower energy bonds that the 

Yb. A ridged planar crust is removed and a ridged terrace is left behind possessing 

greater structural than the original B plane;  

➢ …undergo surface reconstruction to minimize the energy of the surface. This seems to 

be unlikely due to the bulk of literature documenting the preservation of the bulk 

structure at the surface of stable quasicrystals and their approximants. (Gomez, 2003) 

Surface reconstruction could however explain unaccountable surface features such as 

rectangular unit cells. (Franke & Berlin, 2003) 

Cutting through a cluster at an intermediate plane will destabilise the cross-over structure of 

both clusters above and below the B plane. However it will only intersect the Yb shell of the 

cluster above the B plane and not below. In Figure 32 the proposed ridged plane is shown 

above A and A’ planes. The Yb atoms rest very close to the surface of the ridges due to 

strength of its bonds.  Figure 33.a) and b) highlight the icosahedral structure and show that 
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the planar crust removed from the top produces a stable surface that mostly uses the Yb 

bonds for structural integrity.  

 

 

 

 

Figure 33.a) and b) showing the icosahedral shells in the Tsai clusters, providing strongly bound structures within the 
ridged surface. The red zone indicates the removal of the planar crust, leaving behind the ridged surface. 

 

5.4.3. ERROR ANALYSIS 

The mean value of all step heights was calculated as havg = 2.429Å (σ2 = 0.849). The variance 

accounts for the smaller step height values and the intermediate terrace signature peaks. 

A’ 

A 

A 

B/C 

B/C 

Figure 32: The proposed ridged model from the B/C planes. Instead of a flat plane being 
exposed, the removal of weakly bound atoms between the peaks of the blue line could 
produce a ridged surface.  

b) a) 
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The sample data population is too small for quantitative conclusions to be made: the nature of 

scanning tunnelling microscopy in this project is, like LEED, mainly a qualitative analytical 

process. This makes an assessment of the ‘error’ on values somewhat futile. Values of the 

average step height per step collected from 16 images were arranged into a data set that 

consists of no measurable error. Statistical error is reduced by using the height map histogram 

sliders to intersect the centre of Gaussian-like peaks in the terrace heights: this software 

feature removes much of the hassle encountered in trying to fit profile lines across step edges. 

(see section). Systematic errors on the step height are related to the quality of each individual 

image mapped by the STM – this is affected by piezo creep, thermal drift and STM system 

calibration. Other issues such as tip crashing or a dirty tip will usually leave an image 

unsuitable for analysis, rather than producing error. Now we left to quantify the effects of 

creep, drift and calibration, and it becomes extremely difficult to account for systematic error. 

In the z axis the piezo system cannot ‘creep’ – this is an effect on the horizontal plane piezo 

offsets only. Drift is mainly considered in the xy plane and this does not affect the step height 

measurement by a great degree. Any z drift is usually removed during filtering through 

average plane subtraction. Finally, the calibration of the STM itself is unknown in the 

absence of lab notes. The action taken to analyse results was to instead to calculate the 

variance of results from expected values found in the Shimoda model through standard 

deviation.  

5.4.4. SUMMARY 

➢ The data population was too small to make any asserted claims of accurate step height 

measurement. In light of this, peaks in the step height histogram were found to concur 

with the Shimoda model intermediate structure.   

➢ Intermediate step heights belonging to planes A/B, B/A’, A/C, C/A’ and BC were 

observed in much greater occurrence than the expected planes AA’ that separated 

cluster cores.  

➢ Expected peaks from intermediate planes:   

hAB = hBA’ = hAC = hCA’ = 2.47Å,    hBC = 2.77 Å 

➢ Gaussian curves were fitted to the histogram to establish ratio between step heights.  

➢ The ratio of step heights (hAB hBA’ hAC hCA’) to (hBC) was found to be approximately 

3:1 which was larger than predicted, however a group of small step heights belonging 
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to narrow-coverage terraces could have weighted the data set in favour of a larger 

ratio: future data sets should exclude narrow-coverage terraces.  

➢ The stability of intermediate B and C planes may be a result of a ridging effect in the 

surface upon the removal of planar crusts.  

➢ STM image analysis techniques removed much of the statistical errors encountered at 

the nanoscale level thanks to plane averaging and histogram height selection. 
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5.5. CLUSTER SPACING 

The model predicts that cluster cores are periodically separated by a distance of 15.42Å in the 

(100) plane upon a square lattice. From analysis of the terrace coverage in the previous 

chapter it is apparent that different terraces are not going to exhibit the same atomic structure 

as each other: a quick check of the Shimoda model reveals different atomic arrangements for 

planes A’ B C and A.  

5.5.1. MEASURING X AND Y LATTICE COMPONENTS:  

It was originally planned to choose images by criteria that gave preference to the highest 

resolution images with evidence of steps between terraces alongside cluster or atomic 

structure. However out of the entire collection of images none met these criteria – only one 

image reached cluster resolution with step height information. The next preferable type of 

image would also have atomic resolution and would be located inside proximity groups so 

that the atomic decoration could be compared against terraces: thus planes could be 

identified. Again, this criterion went unfulfilled as very few images could achieve atomic 

resolution. Those that did are discussed in detail. Finally, images that obtained cluster 

resolution and were locatable within a variety of proximity groups were the last desirable 

form of data that could measure the lattice constant a. Twelve images made up this last group 

and were all filtered using FFT and self-correlation. Measurements of the horizontal lattice 

components ax and ay were made using both averaged and single measurement line profiles. 

Measurement of the reciprocal space vectors in FFT patterns was also taken from several 

STM images (although due to a departure from the Shimoda model, only line profile data is 

presented to highlight the repeatability of the found result).  
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Image 

number 

X 1 Y 1 X 2 Y 2 X 3 Y 3 X 4 Y 4 

52 1.518 1.49 1.637 1.347 1.597 1.406 1.478 1.394 

52 1.496 1.419 1.564 1.303 1.507 1.28 1.567 1.396 

55 1.64 1.375 1.443 1.387 1.561 1.281 1.482 1.328 

55 1.573 1.274 1.592 1.38 1.514 1.309 1.632 1.321 

60 1.553 1.306 1.671 1.353 1.474 1.341 1.592 1.282 

60 1.526 1.341 1.506 1.322 1.605 1.303 1.605 1.341 

60 1.455 1.367 1.552 1.386 1.63 1.31 1.455 1.462 

67 1.578 1.348 1.512 1.367 1.534 1.291 1.489 1.386 

67 1.563 1.357 1.518 1.28 1.674 1.338 1.518 1.319 

67 1.594 1.331 1.616 1.312 1.483 1.369 1.616 1.35 

71 1.418 1.383 1.616 1.305 1.573 1.344 1.506 1.422 

… … … … … … … … … 

 

Table 4a) and 4b): examples of data set for unit cell vector data collection 

 

… Average X Average Y 

52 1.5524 1.36375 

52 1.5637 1.341 

55 1.5376 1.346125 

55 1.542 1.338875 

60 1.5523 1.3475 

60 1.5348 1.338625 

60 1.542 1.366625 

67 1.5294 1.345625 

67 1.5581 1.342625 

67 1.5616 1.34525 

71 1.5339 1.35625 

… … … 

 

5.5.2. RESULTS  

Despite the model’s predictions of square lattice features, y lattice components of many of the 

terraces imaged were less than a = 15.42Å. An average factor of 0.882 scaled the component 

ax to ay and this behaviour was observed across ten of the twelve images selected for analysis. 

This revelation required a new appraisal of the Shimoda model. Here it is identified that a 

rectangle in the A/A’ plane with sides ax , ay approximately 13.23Å and 15.42Å exist in 

between cluster cores. (see Figure 34) The ratio between these two lengths matched the 

average scale factor measured from the STM data. Similar rectangles can be found in the B 

and C planes possessing a length ratio of 0.832.  

4b)  An extract from a 
complete data table 

highlighting the 
rectangular lattice 

components previously 
unseen in the model 

4a) 
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It can be proven geometrically however that any attempt to tile with a rectangle in such a 2-

fold system arranged on a square lattice cannot be achieved without a change in the atomic 

structure.  I.e. Figure 34 shows consecutive tilings of the 0.882 scale rectangle: newly added 

tiles will never intersect with the model, for the averaged scaling factor is irrational. This can 

be confirmed through calculation of how many times the difference between the periodic 

lattice constant a and the rectangular width ay can fit into a: 

𝑎

𝑎 − 𝑎𝑦
∈ 𝑍 

where Z is any irrational number. In the x direction the tiles can repeat periodically along the 

model surface. 

One interpretation of this conundrum is that the surface undergoes extensive reconstruction 

so that the whole surface lattice is shifted. This however does not correlate with the LEED 

data obtained from the two separate approximant samples and has little credibility when 

stacked up against corresponding literature. The possibility of thermal drift or miscalibration 

unlikely due to the recurring phenomena being observed in the majority of STM images all at 

13.23Å 

15.42Å 

Figure 34: On the A/A’ plane a 
rectangle with the lengths shown in 
the diagram can fit in between 
cluster cores. However its shortest 
length (13.23Å) makes it impossible 
for it to tile in the Y axis: note that 
the red circles never land directly on 
atomic positions when translating in 
Y after the first tile. When 
translating in X however they do 
tessellate. 

 

Y 
X 
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different image tilts (including those not included in the data set). The observed rectangular 

structures could be explainable within the pending ridged model adaptation currently being 

researched by Krajčí et al, but only if the B/C planes are involved.  

Not all of the cluster-resolution STM images showed rectangular lattice symmetry. Two of 

the twelve selected images possessed an average square lattice cluster spacing of a = 15.1Å. 

The Shimoda model infers that we’d expect to find square symmetries from both the A/A’ 

and B/C planes, but in the absence of high-quality proximity groups the possibility of either 

A/A’ or B/C possessing rectangular symmetry as well as a square lattice cannot be 

determined with certainty. 

Observing steps and cluster resolution within the same image is the only other way of 

distinguishing terraces from each other so that A and A’ are known and B and C are known. 

5.5.3. CLUSTER RESOLUTION OF TERRACE STEPS 

Of all the data, only one image caught a glimpse of the terrace step heights and the atomic 

clusters situated in the terraces.  

 

Figure 35: a) The line profile for the only image to show cluster 
resolution and stepped terraces (b). Measurements were made for 
the step height and unit cell lattice constant of the up-most 
terrace. Both the upper plane and the lowest plane in the dip 
shown in (c) had lattice spacing of 15.42Å. The step heights 
however were much smaller than expected.  
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Figure 35.b) isn’t convincing to look at, at first. However, the top right hand corner of the 

image revealed step heights as seen in Figure 35.a) and c). The difficulty in measuring the 

step-height was overcome with the use of heavy filtering, which appears to have distorted the 

step height values. The square lattice structure contained unit cell vectors close to a = 15.42Å, 

however it is not known which of top and bottom terraces resemble the A/A’ planes.  

The step heights measured suggest that the intermediate planes are not present and are 

replaced by lesser planes. The search for better resolution images and a greater proportion of 

the step in the scope of the STM tip by the STM experimenter was fruitless. Confirmation of 

square lattice parameters in the A/A’ terraces would have deducted that the rectangular unit 

cells are almost certainly embedded in the intermediate (or perhaps lesser) planes.  

5.5.4. ATOMIC RESOLUTION  

Attaining good atomic resolution is often reserved for low temperature STMs, where thermal 

fluctuations and mechanical vibrations are dampened to near-nothingness. It was with some 

surprise that areas of some of the images contain bands of what at first looked like noise, but 

turned out to be glimpses of atoms. Internal atomic structures rarely appeared, but in Figure 

36 the atoms show up as rectangles of dots nestled in the dark pit regions. (highlighted blue) 

Heavy filtering of FFT produced a phase pattern (black and white) which was laid over the 

filtered data (green) and the contrasting ‘atoms’ were discovered.   

The average distance between the blue dots (green arrows) in the relative x direction was 

measured as 13.22Å, while in the relative y direction it was measured as 15.40Å. This is very 

close to the small length of the rectangles found in A/A’; planes as suggested in the cluster 

spacing results. Experimentally the atomic resolution images provides just enough 

information to predict that the terrace is of A/A’ origin. However the atomic resolution data 

has no step height information to compare to: this would be the next stage of analysis had a  

  

 

 

Figure 37: the green arrows highlight contrasting bumps in the FFT 
overlaid pattern: the size and occurrence of these dots seems likely to 
suggest atomic formation of rectangles. 

 

 

8.7nm 

 

Figure 36: Off centre rectangular 
unit cell of the A/A’ planes: possibly 
discovered in the atomic resolution 
data. 

A 
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functioning STM system been available. 

 

Figure 38: a) FFT phase pattern of a cropped region in b) where b) is the same image as used in Fig.36.  

Figure 38 shows the operation of another FFT filter that extracts a different phase pattern 

from the same image. This pattern appears more angled, and the small holes between the 

more intense ‘boxes’ appear to represent gaps in the terrace where fewer atoms are present. 

The high density A/A’ planes have many atoms spread across them, however in the cross 

over regions between cluster cores there are less, forming a doughnut shape. (see Figure 37) 

The A/A’ planes could offer the necessary rectangular unit cell with some change to the 

inherently 2-fold structure of the planes. What should be noted is that the start and end points 

of the rectangular unit cell in A/A’ lie on the inner most shell of the Tsai cluster. The 

tetrahedron used in the model is actually an under-populated icosahedron, and the exact 

positions of the atoms in this shell are unknown: it is expected that herein lays an explanation 

for the repeating rectangular unit cell. 

If it were more likely that the B/C plane was being imaged, then perhaps the ridged terrace 

could explain the existence of intense boxes – exposed Yb icosahedral clusters forming the 

peaks in the ridges – however the B/C plane does not have the correct sized rectangular 

geometries in the model to match the data. The length of the rectangular unit cell in B/A is ay 

= 12.83Å, and this has not occurred in the data set.  

  

a) b) 
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5.5.5. SUMMARY  

➢ STM images with scan areas smaller than 200 x 200nm provided cluster separation 

distances which were measured by line profiling.   

➢ Deviations from the predicted (100) square lattice of a = 15.42Å were observed in the 

majority of measurements made on the data set of twelve images.  

➢ The lattice vectors measured were found to be related by ratio of ax:ay which was 

found in the Shimoda model in an off-centre rectangle in the A/A’ planes. 

➢ Model rectangle ratio in A/A’ planes ax:ay = 13.60Å : 15.42Å = 0.882 

➢ Measured (average) ratio in A/A’ planes ax:ay = 13.23Å : 15.41Å = 0.858 

➢ Model rectangle ratio in B/C’ planes ax:ay = 12.83Å : 15.41Å = 0.832 

➢ The A/A’ ratio was consistently closer than the B/C ratio to the measured ratio.  

➢ With the high frequency of the A/A’ plane ratio occurring in the data set, an 

assumption was made that the majority of planes imaged were stable A/A’ planes. 

(assumption made in the absence of good quality proximity groups to test theory) 

➢ Drift and other systematic errors are ruled out due to the consistency of results... 

➢ ...although the presence of some square lattice separations presents a challenge in 

defining what tilings are allowed on different density planes.   

➢ An unknown influence from the Indium-decorated tetrahedra (at the centre of the Tsai 

clusters) on the creation of the rectangular unit cell is proposed as a solution to the 

geometric problem of tiling rectangles in the A/A’ y-axis.  

➢ Atomic positions on the corners of a rectangle of aspect ratio ax:ay = 0.858 are 

observed, a strong indication of A/A’ plane presence.  

➢ Doughnut shaped holes in the FFT phase pattern suggest atomically vacant zones that 

could belong to either the A/A’ or B/C planes. 

➢ Ultimately, higher resolution images of terrace stepping with cluster-level or greater 

detail are required to confidently characterise the terraces.   
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6. CONCLUSION AND FURTHER RESEARCH 

The approximant Ag-In-Yb project presented its fair share of challenges to overcome. 

Without the use of a suitable sample to calibrate the LEED apparatus, a compensation 

method was used with Cu(111): a scaling factor of the sine of the angle of diffraction was 

found to behave as 1/√𝐸 , which meant halving E would change the angle by sin-1(√2). The 

angle at which the Cu LEED pattern for 65eV was found was θ f = 45.9˚. This was scaled to 

θf = 76.6˚ when the energy was halved. To acquire these values, knowledge of the (111) 

surface and the diffraction directions was imperative. This allowed for the measurement of 

the Ag-In-Yb reciprocal lattice vectors which turned out to be 13% smaller than the predicted 

value of a = 15.42 Å. This was consistent with the simplicity of the approach, and served to 

illustrate the effect of electron beam energy on the diffraction angle. Taking LEED analysis 

further, detailed structural analysis using I-V LEED to examine the intensity and phase of 

diffraction spots should be considered to complement future STM investigations.  

The problems with the STM vibrational isolation valve had a huge impact on the whole 

project, resulting in the use of STM images of Ag-In-Yb taken using a similar system but 

with very few indicators of the process by which they were taken. Of the 115 images, very 

few were suitable, however indexing the data using proximity groups made it very easy to 

return to groups of images and explore relative images in a pan/zoom fashion similar to the 

process of obtaining the STM data. This resulted in many more suitable images being found 

and atomic resolution being hinted at in the best case scenario. Measurement of step heights 

was accomplished with relative ease thanks to the set of tools provided by Gwyddion and 

WSxM. After suitable filtering, the implementation of the height-histogram method saved 

enormous amounts of time and energy: it could be applied to whole images or cropped areas 

instead of having to be manually positioned over terrace steps. Graph 1 indicated that stable 

planes exist not just in the high density A/A’ planes, but also in the intermediate B/C planes, 

and the qualitative assessment of the small data set made it clear that future experiments need 

to focus on acquiring data from large terraces as they will be the most stable and will relate to 

A/A’/B/C planes.  

Line profiling and FFT filtering were specially used to investigate the separation of Tsai 

clusters: the results of the STM analysis were very thought provoking. Rectangular tiling in 

the A/A’ planes cannot exist in the Shimoda model, however this very geometry is observed 

at atomic resolutions. The rectangular ratio of lengths was measured as: The rectangle unit is 
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based upon Indium atoms in the very centre of the Tsai cluster. This under-populated region 

differs in density between different approximants (1/1, 2/1 etc) and further study into the 

affect of exposing the A/A’ planes will most likely include a reappraisal of the Tsai cluster 

structure. 

It is hoped that the most recent proposal for model modification (Krajčí et al) will provide an 

insight into predicted ridged B/C planes. It is believed that no quantifiable examples of the 

ridged structures were observable in the data set, but this does not mean they were not 

present. Chance determined that atomic resolution was obtained for the A/A’ terrace instead 

of the B/C planes, so experimenters will have a vested interest in pioneering the first 

observation of this ridged structure.  

Very few other improvements could have been made to the project when accounting for time 

restrictions. A study of epitaxial growth of Pb / Bi to compare with layer growth on the i-Ag-

In-Yb QC will ultimately be of the most benefit to the Surface Science Department: as the 

international surface science community continues to search enthusiastically for clues as to 

the affect of quasiperiodicity on metal properties, such surface studies will be vital in the race 

to discover new quasicrystal related phenomena.   
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Figure 39: Photograph of 1/1 Ag-In-
Yb approximant sample on sample 
plate: the flat shiny side facing up is 
the (100) plane. 

APPENDIX I: SAMPLE PREPARATION 

POLISHING A CRYSTAL SAMPLE 

The sputtering and annealing cycle requires that the sample is already 

cut perpendicular to a desired axis and is subsequently polished. 

Before UHV treatment, the sample is polished using high-quality 

diamond-grain paste and rough/fine polishing paper. To reach the 

level of flatness required for diffraction investigation or STM, 

several grades of polish paste are used, progressively reducing in 

grain size from (first) 6µm-grade, then to 1µm, then finally 0.25µm. The highest grade (6µm 

paste) requires a roughened quality of polish paper to strip away the majority of scratches and 

defects. Later grades tidy up the surface through softening of hidden edges and use a finer 

quality paper. By rotating and/or tilting the sample using tweezers and training a lamp on the 

surface the light will be able to pick up on grooves or irregularities. However small these 

defects appear, a perfectly polished sample should have none visible to the naked eye: the 

closer to this standard, the more successful the experiment will be. In order to be confident in 

the surface’s conformity, an ordinary optical microscope can be used to examine the surface.  

As a rule of thumb the polish paper can be cut down to no wider than three fingers’ width. 

Once the paper is secured in some way to the stage, the paste is applied to the paper in an 

amount proportional to the size of the sample (usually no more than a deposition of 3mm 

diameter). Taking care to spread the paste evenly across the paper, the sample is then placed 

surface-down. Focus even pressure on the sample’s reverse side using either one finger, or by 

carefully pinching the reverse edges. Many different methods of polishing the sample by 

hand exist, all with the same intention of removing scratches and surface irregularities from 

the surface of interest through a uniform application of pressure and buffing. The technique 

used in the investigation of the Ag-In-Yb approximant, as recommended by Sharma et al of 

the UoL Surface Science Dept, was to guide the sample in a clockwise figure of eight for 50 

full laps, (or for 2 ½ minutes) and then repeat in the anticlockwise direction. This ‘buffing’ 

treatment of the sample will have to be repeated with the same polish until: 

a) (when using 6µm-grade polish) any deep surface indentations (on the order of mm) 

are removed and the sample is shiny.  

b) (1µm) the surface appears completely smooth and shiny under scrutiny by eye.  
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c) (0.25µm) the surface appears completely smooth and shiny under the scrutiny of an 

optical microscope.  

Note that the pressure exerted on the sample should be relaxed as nearing the end of a 

polishing cycle: polishing lightly guarantees that all the previous effort of polishing does not 

accidently cause new scratches to appear from contaminating particles. 

The polishing setup should observe standard anti-contamination procedures: throughout this 

project methanol and perforated blue tissue are used to sterilize an aluminium slab to use as a 

work stage, as well as the surrounding work area. After buffing, the sample should always be 

rinsed with methanol. Used polishing paper should immediately be discarded if the residue 

coming from the sample thickly coats the paper. Any residue remaining on gloves should be 

washed off using methanol. Very importantly, the sample should always be placed in a sonic 

water bath when changing from grade to vigorously remove unwanted particles deposited on 

the surface during polishing. A 15 minute bath in methanol is sufficient to keep the surface 

clean during polishing; however when the polishing and mounting process is finished it is 

advisable to bathe the sample with two 15 minute cycles, each in a fresh solution of 

methanol. 

MOUNTING THE SAMPLE 

There are many approaches to fix a sample to a plate for transfer into an UHV environment. 

Mounting epoxies have been developed that can withstand intense annealing temperatures 

(more than 600˚C, or a heat-resistant cage can be welded to the plate over the crystal sample. 

As the sample requires being able to be rotated in the chamber, the more proven and less 

risky method of cage mounting is used in this report. 

First, the sample plate should have its faces filed down using a fine-crosshatched) file, the 

aim being to erase abrasions or relics of previous mounting and to gently reveal un-oxidised 

layers of the plate. The surface is then rinsed with methanol, as is the sample, and placed in 

the centre of the plate 

Wire- or foil-cage mounting is much safer than using an epoxy, mainly because the epoxy’s 

integrity cannot be guaranteed until it has reached the temperature its manufacturer claims it 

can withstand. The upper boundary temperatures used in annealing copper, 675˚C and for the 

annealing of Ag-In-Yb (420˚C ~ an estimated value projected from the quasicrystal sample 
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optimum annealing temperature) rule out any easily acquirable / affordable epoxies. 

Alternatively, a cage can be put under small tensile forces to test the welding strength. Also, 

multiple contact sites with the sample plate reduces the likelihood that the sample could fall 

off (a potential disaster for the experimenter who must then open up the chamber to air in 

order to retrieve the lost sample!). Oxidation of the plate or cage during welding can be a 

source of sample contamination; however as mentioned in the last section we can counteract 

this using the sonic bath. More thoroughly: 

a) A Tungsten Wire Cage – tungsten has the highest melting point of all non-alloy 

metals, making it an ideal candidate for the cage. It has a noticeably robust nature, yet 

tungsten wire of 0.25 mm diameter is flexible enough to conform to the shape of the 

sample when bent. Other pro qualities include: thin wire can be welded using a spot-

welder; thin wire obstructs very little of the sample, even when using more than two 

wires, allowing for greater sampling range in both LEED and STM experiments; thin 

wire can readily conform to irregular sample shapes; the cage can be reused multiple 

times with different samples of similar shape; easy to remove off of plate when 

finished with. Cons: the wire is difficult to return to a straight form; irregular samples 

require more pieces of wire.    

b) A Tantalum Cage – tantalum is a highly inert material that is adept at resisting heat, 

however in a wire form can be quite brittle when bent more than once in the same 

place. Its foil form is more ductile, and use of foil of thicknesses 0.25mm has been 

shown to secure samples in two different ways. The first is similar to that of the 

tungsten cage where we replace the wires with tantalum bands only a few mm wide. 

The other is to take the thinner dimension of tantalum, cut a cross into a foil square 

larger than the sample (keeping 5mm away from the edge of the plate) then carefully 

presses the sample through the vacancy in the foil. Spot-welding around the sample-

perimeter forces triangular walls up against the crystal, holding it successfully in 

place. Pros: tantalum can be readily used as a substitute for tungsten wire; foil is 

flexible enough to reshape; can form a very tight cut-cage with some careful design; 

band cage usually only needs two strips. Cons: welding has a tendency to take several 

attempts that can heavily oxidise the plate contact site; cut-cage not suitable for 

irregular shapes; when removing flimsy foil remnants, extra care and persistence is 

needed so not to scratch the plate. 
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The spotwelder used to welding the cage has several useful built-in features. The welder 

electrode contacts are designed to weld very small areas via the heat obtained from resistance 

to electrical current. The contacts have a vice-like grip that presses the wire against the plate 

and forms a conductive channel. Control over the current flow is overseen by a power supply, 

which can not only increase the welding heat but also vary the frequency of welding cycles 

when triggering the welder. Furthermore, there are two stages required to trigger the welder: 

an appropriate exertion of pressure when clamping the electrodes down (a click confirms the 

trigger is primed), and a floor-paddle. This allows the experimenter to alter the position of the 

wire / foil using the contacts themselves before triggering the flow of current (as opposed to 

requiring the user to get it right the first time). The weld time is of the order of milliseconds, 

though depending on power supply settings and shape of the wire several welds may be 

needed for a secure fix.  

A clean stage and clean equipment are essential, and moving the sample is best done with 

tweezers. Never use the contacts to move the sample, and don’t weld if the contacts are in 

direct contact with  for this can both contaminate and melt the crystal. The contacts and the 

cage material should be cleaned with methanol and blue tissue. The RT-STM chamber 

manipulator accepts plates of approximately 22mm x 18mm x 1.5mm dimensions. For the 

plate to be transferred into the manipulator there needs to be an area around the edge of the 

plate that is completely flat; be aware that the contour of the cage/sample will prevent the 

plate from slotting into the 

manipulator clips if it 

comes within 4mm of the 

edge.  

Both the tantalum and 

tungsten are welded by the 

same method; we refer 

from now on to ‘wire’ to 

denote that tungsten was 

the material chosen in this 

investigation.  

First the sample is 

orientated with its polished 

 

a) 

b) c) 

d) 

e) 

f) 

Figure 40: a) Diagram showing the spot welder, with floor pedal and dial control. b) 
Wire cage mounting. c) Tantalum band mounting. d) The preferred mounting, in which 
the cage applies as much force as possible by being stretched taut. e) In this picture, 
the sample is shown in a less desirable cage, and it may move or fall out during 
experimentation. f) Placing the thumb on the plate whilst welding. 
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surface facing up in the centre of the plate. Lengths of wire are made to manageable sizes that 

extend longer that the plate dimensions; the wire can be cut shorter after welding. The wires 

are then laid in a pattern suited to the shape and size of the sample, as shown in figure B. An 

easy way to begin is then to select just one of the wires, remove the others from the sample, 

and then (whilst holding the sample steady with tweezers) use the electrodes to clamp down 

on one end of the wire. Triggering the spot-welder will often produce sparks from the 

resistance heating and is a good sign that the welding is forming a metallic bond. Once the 

wire is fixed, it is bent over the sample and welded on the other side. With the sample now 

held in by one wire, the remaining wires can be added. Keeping the wire taut over the sample 

(case d) is preferable to bending the wire to a snug fit (case e) : this is because the crystal 

mustn’t be ‘supported’ by the cage, for this gives it too much freedom of movement. It must 

be restrained through the application of perpendicular force.  

An irregularly grown crystal can cause much misery to the experimenter (or postgraduate!) 

when mounting. More opportunities arise for displacement of the sample when its sides are 

multifaceted, especially when the crystal is not secured with taut wire (see next chapter for 

solutions to this problem). Prevention is better than the cure – especially when the prospect of 

removing the whole cage to start again looms overhead – so throughout spot-welding one 

should nudge the sample to see if is being kept from rotating or sliding about the plate.  
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SPUTTERING AND ANNEALING  

Once the sample is polished, mounted and cleaned using the sonic bath, the sample can 

finally enter the chamber and undergo sputtering and annealing. This stage of the preparation 

of a sample is crucial as polishing alone cannot obtain atomically smooth terraces. We can 

assume that the Ag-In-Yb approximant sample will behave similarly to its QC counterpart: 

the change in surface composition upon sputtering and annealing was previously analyzed for 

the fivefold surface. It was found that In and Yb are preferentially removed from the surface 

resulting in Ag enrichment in the surface region. Sputtering in the UHV chamber uses Ar+ at 

pressures of 3x10-5 mbar; ion pumps must be turned off to prevent damage of the ion 

filaments. Annealing at temperatures between 420-430˚C restores surface composition close 

to the bulk. This is done through diffusion towards the surface of the sample. After annealing, 

the surface displays terraces and steps of different heights which can be investigated by STM. 
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APPENDIX II: STUDENT FEEDBACK AND THANKS 

Surface science has always been the scientific field of the greatest interest to me, ever since 

being introduced to the “nano-age” through science fiction and then subsequently through 

studying Physics at university level. The experimental nature of this project appealed to me 

greatly, and a lot of the experience I gained was through a collaborative process involving 

many of the members of the department. I found it most encouraging that the group was well 

integrated and that progress on one research front always benefited another in some way; 

whether it was through the acquisition of new knowledge, or via the cooperation of a third 

party. 

During the last semester Joe Smerdon arrange a series of group meetings that I benefited 

greatly from. I was forced to turn down a chance to give a presentation at the group talks, 

which would have been very practical experience to obtain. I would recommend more of this 

kind of involvement between Masters students and the research group at large.  

My only complaint would be that the software used in image analysis required intuitive and 

experienced guidance to extract meaningful data, and I certainly would have preferred to 

have started using it at the very beginning of the dissertation in order to save time later on. 

Otherwise, my volunteer work over the summer of 2011 provided me with many of the skills 

I would need through the dissertation. 
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