Phys363 Condensed Matter Physics Lecture Notes 2016-2017

Dr. Hem Raj Sharma

H.R.Sharma@liv.ac.uk Department of Physics, The University of Liverpool

General Information about the Module

- Lectures: Semester 1, Weeks 7-12, Monday 9:00-11:00 (CHAD-BARK) and Tuesday 9:00-10:00 (CHEM-BRUN)
- Tutorials: W8 and W11
- Assessment: 1.5 hour written exam at the end of semester 2 50% 1 multi-part compulsory question covering broad aspects of the module 50% 1 detailed compulsory question (2 options)
- Past exam papers: Past exam papers are provided with this lecture note. As content of the module has been changed this year, the pattern of exam questions may be different.
- Exam preparation: The tutorial problems, previous exam papers and revision problems are a good guide to the type of problem that may be posed in the module examination.
- Prerequisite: Phys202
- Contact:

H.R.Sharma@liv.ac.uk Surface Science Research Centre, Room No 1.14

About Lecture Notes

- Lecture notes will be handed out at the beginning of the lecture and also uploaded to VITAL.
- Corrections on typos and minor errors, if any, will be given at the end of e-copy of the lecture note and be available in VITAL.
- Revision problems are given at the end of each chapter. Some of these problems will be solved in lectures or tutorials.
- Chapters are interlinked. So you do not want to miss any lecture.

Book recommendations

C. Kittel, Introduction to Solid State Physics

Solid state physics by C. Kittel

Other material:

- H. P. Myers, Introductory Solid State Physics
- H. Ibach and H. Luth, Solid State Physics

Preamble Condensed Matter Physics

- The branch of physics that studies the properties of large collections of atoms that compose both natural and synthetic materials.
- The properties of matter at everyday chemical and thermal energy scales, hence, a subfield of physics with the largest number of direct practical applications.
- Historically:

Transistor, high-T superconductivity, integrated circuits, MRI, solid-state lasers, light-emitting diodes, magnetic recording disks

• Today:

New capabilities in synchrotron and neutron research, atomic-scale visualisation, nanofabrication and computing

Aim of the Module

- To develop concepts introduced in Year 1 and Year 2 modules which relate to solids, especially Phys202.
- To consolidate concepts related to crystal structure.
- To extend the concept of reciprocal space and diffraction.
- To enable the students to apply these concepts to the description of crystals, transport properties and the electronic structure of condensed matter.
- To illustrate the use of these concepts in scientific research in condensed matter.

Contents

1	Crystallography				
	1.1	1 Crystal Structure			
		1.1.1	Crystallographic Definitions	2	
		1.1.2	Bravais Lattice	6	
		1.1.3	Miller Indices of Lattice Planes	14	
	1.2				
		1.2.1	Definition of the Reciprocal Lattice	19	
		1.2.2	Relationship to Planes of the Real Space Lattice	21	
		1.2.3	Reciprocal Lattice of Common Crystals	23	
		1.2.4	Brillouin Zones	27	
	1.3	Revisi	ion Problems: Crystallography	34	
2	Diff	raction	n: Determination of Crystal Structure	37	
	2.1		·	38	
		2.1.1		38	
		2.1.2		40	
		2.1.3		41	
		2.1.4	Laue Conditions and the Reciprocal Lattice	45	
		2.1.5	The Ewald Construction	46	
		2.1.6	Relationship between Bragg and Laue Theory	47	
		2.1.7	Diffraction Condition and Brillouin Zones	48	
	2.2 The Diffracted Intensity				
		2.2.1	The Atomic Form Factor	50	
		2.2.2	The Structure Factor	52	
		2.2.3		53	
		2.2.4	Extinction Rules: Diffraction Properties of Various Crys-		
			tals	54	
	2.3	Exper	imental X-ray Diffraction Methods	63	

CONTENTS

	2.4	Electron and Neutron Diffraction	67
	2.5	Revision Problems: Diffraction	69
3	Ban	nd Theory and Electronic Properties of Solids	73
	3.1	Band Theories: Introduction	75
	3.2	The Idea of Energy Bands	
	3.3	Free Electron Model (FEM)	81
	3.4	Nearly Free Electron Model (NFEM)	
	3.5	Brillouin Zones and Electrical Conductivity	90
	3.6	Fermi Surfaces	93
	3.7	Density of States in the NFEM	98
	3.8	Revision Problems: Nearly Free Electron Model and Fermi	
		Surfaces	105
4	Blo	ch Theorem and the Central Equation	109
	4.1	Bloch Theorem	110
	4.2	Illustration of Bloch Wavefunction	111
	4.3	Derivation of the Central Equation	
	4.4	Proof of Bloch's Theorem	
	4.5	Implication of Bloch Theorem	117
	4.6	Solution of the Central Equation at a Zone Boundary in the	
		NFEM	
	4.7	Revision Problems: Bloch Theorem and the Central Equation	123
5	The	Tight Binding Approximation	125
	5.1	Tight LCAO Approximation for the Wavefunctions	126
	5.2	Energies in the Tight Binding Method	127
	5.3	Dispersion Relation and Form of the Wavefunctions	129
	5.4	Revision Problems: The Tight Binding Approximation	135
6	Ene	ergy Bands in Real Solids	137
	6.1	Empty Lattice Approximation Band Structure	138
	6.2	Band Structure in Real 3-d Lattice	147
	6.3	Determination of Band Structure	155
	6.4	Revision Problems: Energy Bands in Real Solids	157
Τι	ıtori	al Problems	161
Pa	ast E	xam Papers	169