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Abstract

Aside from their fascinating structure with aperiodic long range order and conventionally for-

bidden rotational symmetries, quasicrystals possess outstanding surface properties. It is of great

interest to learn whether or not surface phenomena observed in periodic crystals are relevant

in these new class of material. To investigate this, high symmetry surfaces of two distinct

types of quasicrystals were examined by various surface sensitive techniques capable of provid-

ing information in both real and reciprocal space. The investigated surfaces are the 10-fold

and two inequivalent 2-fold surfaces of decagonal (d) Al71:8Ni14:8Co13:4 and the 5-fold surface of

icosahedral (i) Al71:5Pd21Mn8:5. The techniques employed are highly surface sensitive He atom

scattering (both elastic and inelastic), high resolution spot pro�le analyzing low energy electron

di�raction, and low temperature (6 K) scanning tunneling microscopy. The investigations focus

on structure, morphology, and dynamics (phonons).

It is found that the surfaces can be prepared with high structural quality suitable for He

di�raction. Both He and electron di�raction show that the topmost surface layer of the surfaces

retains the full symmetry extrapolated from their respective bulk. The di�raction spots are

very sharp and their positions are related by the golden mean revealing a perfect long range,

quasicrystalline order. The observed di�raction patterns can be fully explained by the respective

bulk reciprocal basis vectors.

Helium di�raction from the 10-fold d-Al-Ni-Co surface reveals an average terrace width on

the order of 100 �A and a predominant step height of 2 �A. Scanning tunneling microscopy con�rms

this step morphology by showing a high density of rough 2 �A-steps. Terraces are found to be

atomically 
at, having a variety of 5-fold symmetric motives, and possessing a quasiperiodic long

range order. In agreement with the bulk structure model, a rhombic tiling of a large surface

region is identi�ed.

The 2-fold surfaces of the d-Al-Ni-Co show a weak 16 �A periodicity in addition to the

main 8 �A periodicity. The 2-fold (001�10) surface is found to develop facets of (10000)-equivalent

orientation due to a lower surface energy of the (10000)- compared to the as-cut (001�10)-surface.

The �rst result of surface phonons on quasicrystals is presented. The 10-fold d-Al-Ni-Co

and 5-fold i-Al-Pd-Mn surfaces are found to possess well-de�ned Rayleigh modes with isotropic

sound velocity of about 3750 m/s and 3250 m/s, respectively. The observed sound velocities are

in good agreement with calculations based on the respective bulk data.





Introduction

Since their discovery in 1984 [1], quasicrystals (QCs) have become an interesting topic for the-

oretical and experimental investigations because of their intriguing structure and fascinating

properties. Quasicrystals possess long range order without translational symmetry and often

show conventionally forbidden rotational symmetries such as 5-fold, 8-fold, 10-fold, and 12-

fold, distinguishing them from other known forms of solid matter. In addition to their unique

structural features, QCs exhibit many unusual physical properties compared with their metal-

lic constituents and alloys such as a very low electrical conductivity and negative temperature

coeÆcient of electrical resistivity [2].

Although the quasicrystalline structure �rst observed in a rapidly solidi�ed Al-Mn alloy was

metastable, there has been a rapid success to grow many di�erent types of QCs in thermodynam-

ically stable phases [3, and �nd references therein]. Many binary and ternary alloys of metals

possess quasicrystalline phases in very narrow regions of their phase diagram. The polygonal

and icosahedral are the two main types of quasicrystals discovered so far. The polygonal QCs are

two-dimensional QCs exhibiting a periodicity only along the third dimension, while icosahedral

QCs show quasicrystalline structure in all three dimensions. In addition, a few 1D QCs have

been found which exhibit a quasiperiodic arrangement of di�raction spots along one direction

and periodic arrangements of spots on the planes perpendicular to the quasiperiodic direction

[4].

While signi�cant progress has been made in the determination of physical properties of

QCs [2], the problem of determining their atomic structure has not been completely solved yet.

Questions regarding the physical origin of quasicrystalline structure and the cause behind the

unusual physical properties are also still under debate. Atomic clusters are believed to be the

main structural building blocks of the QCs [5] and many physical properties have been described
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8 Introduction

in terms of this cluster approach.

There are several reasons motivating the study of QC surfaces. First of all, it is important

to determine how the surface features observed on QC will di�er from those of periodic crystals.

Secondly, it would be interesting to learn whether or not the aperiodic long range order of the

bulk is extended up to the surface preserving bulk structural properties. Thirdly, QC surfaces

possess interesting properties like a low coeÆcient of friction and a non-sticking behavior [6]

and the potential applications of quasicrystals as coating materials, thin �lms etc., are related

to these surface phenomena.

With the availability of mm-size single-grain samples, surface investigations by various ex-

perimental techniques have become possible. There is an increasing number of studies on the

structure and physical properties of the surfaces. So far, the clean surface of decagonal (d)

Al-Ni-Co and icosahedral (i) Al-Pd-Mn has been studied intensively by employing di�erent ex-

perimental techniques, mainly low energy electron di�raction (LEED) [7-10], scanning tunneling

microscopy (STM) [11-20], and X-ray photoelectron di�raction (XPD) [21].

Almost all investigations reported so far show that surfaces prepared by sputtering and an-

nealing are bulk terminated. However, the surface termination is extremely sensitive to the

preparation conditions due to the preferential sputtering of light atoms and di�erent di�usion

rates of the atomic constituents [6, 22-27]. Nevertheless, sputter-annealing is the most estab-

lished method to clean the surface as in the case of normal metal surfaces. Surfaces obtained by

UHV (ultra high vacuum) cleavage were found not to be suÆciently smooth for most studies.

STM measurements on the cleaved 5-fold and 2-fold surfaces of i-Al-Pd-Mn show a very rough

termination with an aggregation of atomic clusters in agreement with the bulk structure [14, 15].

In addition to these clean surface studies, there has been a great e�ort to grow a single

element quasicrystalline thin �lm [28-33], which may be helpful to separate the in
uence of alloy

composition and quasicrystalline structure on their intriguing characteristics.

The present work involves experimental investigations on the structure, morphology, and

dynamics of high symmetry surface(s) of d-Al71:8Ni14:8Co13:4 and i-Al71:5Pd21Mn8:5 with the

application of highly surface-sensitive He atom scattering (HAS), high resolution spot pro�le low

energy electron di�raction (SPA-LEED), and low temperature scanning tunneling microscopy

(LT-STM). The main focus of the investigation is on the high symmetry surfaces of d-Al-Ni-Co,

while only a few measurements on i-Al-Pd-Mn are included.
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He di�raction from the surfaces prepared by sputtering and annealing has been successfully

measured. Due to the extreme sensitivity of He di�raction to all kinds of defects (adatoms,

vacancies, steps, etc), the fact that di�raction is observed at all from the quasicrystals is evidence

that their surfaces have high structural quality and contain only a modest amount of defects.

The observed di�raction patterns reveal that the topmost surface layer maintains a long range,

quasicrystalline order compatible with bulk terminated surfaces. In agreement with bulk models,

a rhombic tiling has been identi�ed in STM images of the 10-fold d-Al-Ni-Co surface.

In addition to these structural investigations, surface phonons (Rayleigh mode) of the 10-fold

surface of d-Al-Ni-Co and the 5-fold surface of i-Al-Pd-Mn have been measured and constitute

the �rst surface phonon dispersions measured on quasicrystal surfaces. The sound velocities of

the Rayleigh modes are found to be in excellent agreement with bulk phonons data.

This dissertation is organized as follows: Basic concepts of QCs as well as a theoretical

structure model of d-Al-Ni-Co are discussed in Chapter 1. Chapter 2 reports details about

experimental techniques. Experimental results on the structure and morphology of the 10-fold

and 2-fold surfaces of d-Al-Ni-Co are presented in Chapter 3 and 4, respectively, while surface

phonons of the 10-fold d-Al-Ni-Co are described in Chapter 5. Chapter 6 contains results from

the 5-fold i-Al-Pd-Mn surface. Finally, a summary and conclusions of the present investigation

are given.





Chapter 1

Quasicrystals

The discovery of a quasicrystalline phase in a rapidly cooled Al-Mn alloy [1] broke the funda-

mental concept of crystallography because the di�raction of the alloy had a sharp di�raction

pattern with a rotational symmetry incompatible with periodicity. This new �nding forced a

reconsideration of the traditional de�nition of a crystal as a periodic arrangement of identical

unit cells. In 1992, the International Union of Crystallography rede�ned crystals as any solid

having an essentially discrete di�raction diagram [34].

Periodic crystals are formed by a periodic repetition of a single building block the so-called

unit cell exhibiting a long range translational and orientational symmetry. Only 2-, 3-, 4-, and

6-fold non-trivial rotational symmetries are allowed in the periodic crystals and their di�raction

patterns give sharp Bragg peaks re
ecting the symmetry and long range order.

In contrast to periodic crystals, quasicrystals exhibit a long range order in spite of their lack

of translational symmetry and often possess n-fold (n = 5 and > 6) rotational symmetries. Most

of the quasicrystalline structures can be described by using quasiperiodic tiling models [35, 36],

where two or more di�erent `unit cells' (tiles) are used as the building blocks of the structure.

An alternative model is a covering model, where a single, overlapping tile acts as unit cell [37].

The di�raction pattern of quasicrystals shows a dense set of Bragg peaks with their positions

related by the irrational number � = 1:618 : : : = 2 cos �
5 , the so-called golden mean, which is

related to the geometry of pentagonal and decagonal symmetries. In contrast to periodic crystals,

where three integer indices are suÆcient to characterize the di�raction of a 3D structure, n

integer indices (n > 3) are required to generate the di�raction vectors of aperiodic crystals
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12 Chapter 1. Quasicrystals

indicating that the spots could be related to a nD periodic lattice. In fact, quasicrystals of all

kinds can be explained by periodic lattices in higher dimensional space.

This chapter includes a discussion about the basic concepts, stability and structure models

of quasicrystals followed by structural details of d-Al-Ni-Co.

1.1 Basic Concepts

1.1.1 Basic Types of Quasicrystalline Lattices

Fibonacci Sequence

The Fibonacci sequence is a fundamental and a well-known example of a 1D quasiperiodic

structure exhibiting aperiodic long range order. Although it does not feature orientational

symmetry, the Fibonacci sequence illustrates many important properties of quasicrystals, which

can be generalized to 2D and 3D quasicrystals. The Fibonacci sequence is built from two

elements `L' (large) and `S' (small). The sequence can be generated by a substitution rule L !

LS and S ! L. The resulting sequence is as follows:

Generation Fibonacci Sequence Fibonacci Number

1st L 1

2nd LS 2

3rd LSL 3

4th LSLLS 5

5th LSLLSLSL 8

6th LSLLSLSLLSLLS 13

: : : so on

The frequencies of `L' and `S' in each sequence and the ratio of successive Fibonacci number

(number of line segments in each generation) is � (the golden mean) in the limit of in�nite se-

quence length. The sequence is self-similar. This implies that in
ation or de
ation of a Fibonacci

sequence yields another Fibonacci sequences with di�erent length segment. The sequences can

be generated by taking a single line segment and applying the de
ation rule (L
n
!L

n+1Sn+1

and S
n
!L

n+1, n denotes number of generations) with an additional constraint that the ratio

of line segments in each generation is equal to the golden mean i.e. Ln

Sn
= � . Furthermore, the
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Figure 1.1: A rhombic Penrose pattern (right panel) generated by two rhombi (left upper panel).

The lower left panel shows the de
ating scheme.

di�raction of the Fibonacci sequence gives sharp Bragg peaks with many interesting features,

which will be discussed in the next section.

Penrose Tiling: A 2D Quasicrystalline Lattice

In 1974 the British mathematician Roger Penrose found that the 2D plane can be covered in

a non-periodic fashion with two types of rhombi with equal edge length [38]. The importance

of the Penrose tiling in solid state physics was realized only after the discovery of quasicrystals

in 1984. Indeed, the Penrose pattern gives a di�raction pattern very similar to the di�raction

observed from decagonal QCs [39].

Figure 1.1 shows a 2D rhombic Penrose pattern generated by two types of rhombi, one with

an angle of 36Æ (skinny rhombus) and another with an angle of 72Æ (fat rhombus) (also see

Figure 1.9). A perfect quasiperiodic pattern can be obtained only if the tiles are packed with a

speci�c matching rule. The rule is simple, two rhombi are allowed to join if the arrows in their

common edge match [38].

The Penrose pattern possesses many interesting features. Both areas and frequencies of

skinny and fat rhombi in the pattern are of a ratio 1 : � . The pattern consists of �ve sets
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of tile-edges each parallel to the sides of a regular pentagon. The edges belonging to each

set are orientated along a Fibonacci grid (a Fibonacci grid is a set of parallel lines separated

by distances forming a Fibonacci sequence). This gives evidence of the long range order of

the Penrose pattern. Furthermore, the local 5-fold and 10-fold rotational symmetries can be

observed in the pattern. Some of decagonal and pentagonal features are highlighted in Figure

1.9.

Another important feature of the tiling is its self-similarity. A Penrose pattern can be

transformed to another Penrose pattern by de
ating/in
ating the skinny and fat rhombi. Figure

1.1 (left lower panel) shows the de
ating scheme, where the fat and skinny rhombi are divided

into smaller fat and skinny rhombi. The fat rhombus is divided into two fat and one skinny

rhombus, while the skinny rhombus is divided into one fat and one skinny rhombus. The area

of the new fat and skinny rhombi is smaller than the respective old rhombi by a factor of �2.

Starting from a single rhombus, an arbitrarily large section of a Penrose tiling can be produced

by continuously applying the de
ation rule. There are some other 2D quasicrystalline tilings

such as the pentagonal Penrose tiling (Figure 1.9) and the octagonal Penrose tiling, which

explain the di�raction pattern of other polygonal QCs [40]. The idea of space �lling is extended

to 3D space, where two kinds of rhombohedrons are needed to �ll the 3D space aperiodically

[41]. The Fourier transform of the 3D Penrose tiling explains the di�raction pattern observed

in icosahedral QCs [42, 43].

1.1.2 Higher Dimensional Concept

Higher dimensional crystallography was �rst introduced by deWol� in 1974 [44]. Many quasiperi-

odic structures can be considered as a physical space projection or irrational cut of a higher

dimensional periodic lattice. For instance, 2D and 3D Penrose tilings can be obtained from 4D

and 6D periodic space, respectively [45]. Rotational symmetries incompatible with 3D period-

icity are allowed in suitable nD (n > 3) periodic space. The body diagonal of a hypercubic

lattice in nD space, for example is an n-fold rotational axis.

In this section, a method to generate 1D and 2D quasicrystalline lattices is presented. There

are two procedures to derive quasicrystalline lattices from higher dimension: (a) the projection

method, and (b) the section or embedding method, also called the cut method. The section

method is dealt in the following because it provides a convenient way to obtain the di�rac-
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tion pattern and the quasicrystalline structure can be explained in term of symmetry, lattice

parameter and unit cell distributions in higher dimensional periodic space.

Fibonacci Sequence Generated from the 2D Square Lattice by the Section Method

Let us consider a 2D square lattice (lattice constant a) with a set of axes X? and Xk rotated

by an angle � with respect to the axes of the square lattice (Figure 1.2(a)). The lattice is

decorated with line segments A? of length � = a(cos� + sin�) with the orientation along the

X?-axis. The point of intersection of the A? with the Xk-axis yields a Fibonacci lattice if the

slope of Xk-axis is the reciprocal of the golden mean, i.e., cot� = � . This process of getting

quasicrystalline structures from higher dimension periodic decorated lattices is called the section

method. The line segment used to decorate the higher dimensional lattice is called the atomic

surface or occupation domain or hyperatom. The Xk-axis locating the quasicrystalline lattice

is called parallel space or physical space or external space, while its perpendicular counterpart

along which the atomic surface is situated is called internal or perpendicular space.

The di�raction pattern of the Fibonacci sequence is calculated now. The distribution of

lattice points in a 2D square lattice can be expressed by,

�(r) =
X
m;n

Æ(r�mae
x
� nae

y
): (1.1)

The Fourier transform of �(r) is a square lattice with lattice spacing of 2�
a

. It can be written as,

F (Q) =
1

a2

X
hh

0

Æ(Q�Qhh

0

); (1.2)

where Qhh

0

are vectors of the reciprocal lattice, which have two components 2�
a
h and 2�

a
h
0

along

X�- and Y�-axes (X� and Y� are the reciprocal space axes associated with the real space axes

X and Y, respectively). The Qhh

0

can be decomposed into the parallel and perpendicular space

components, i.e. Qhh

0

= (Qhh

0

k
; Qhh

0

?
) with,

Qhh

0

k
=

2�

a

s
�2

�2 + 1
(h+

h
0

�
); (1.3)

and

Qhh

0

? =
2�

a

s
�2

�2 + 1
(h

0 � h

�
): (1.4)
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Figure 1.2: (a) The sec-

tion method generating a

Fibonacci sequence from

a 2D square lattice deco-

rated with line segments.

The density distribution of the decorated periodic lattice �
0

(r) is the convolution product of �(r)

with A?, i.e.,

�
0

= � �A?: (1.5)

The Fourier transform of �
0

(r) is given by the product of the Fourier transforms of � and A?,

F
0

(Q) = [
1

a2

X
hh

0

Æ(Q�Qhh

0

)]G(Q?); (1.6)

where G(Q?) is the Fourier transform of A? and given by,

G(Q?) = �
sin(Q?�=2)

(Q?�=2)
: (1.7)

The main idea of the section method is that the cut operation is performed in real space,

while the projection is carried out in the reciprocal space. This method uses the fact that the

Fourier transform of a projection is a cut and vice versa. Thus, the density distribution of the

Fibonacci lattice �(rk) is obtained by the cut of �
0

(r) by Xk, while its Fourier components are

evaluated by the projection F
0

(Q) on X�

k
. The Fourier components of the Fibonacci lattice thus

can be written as,

F
0

(Qk) =
1

a2

X
hh

0

[Æ(Qk �Qhh

0

k
)G(Qhh

0

? )]; (1.8)

The presence of the Æ-term implies that the di�raction pattern of the Fibonacci lattice exhibits

sharp Bragg peaks. The intensity of the di�raction peaks associated with (h; h
0

) is given by,

I
hh

0 = jG(Qhh

0

? )j2 = �2 sin
2(Qhh

0

?
�=2)

(Qhh
0

?
�=2)2

; (1.9)
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The intensity is maximized when h

h

0 ! � (ratio of successive Fibonacci number). The strong

di�raction peaks thus take indices having the ratio approximately equal to � .

Many features important for quasicrystals can be extracted from the di�raction vector Qhh

0

k

of the Fibonacci lattice (Equation 1.3). Firstly, the di�raction peaks are indexable with two

indices h and h
0

(which are the Miller indices of the 2D square lattice) even though the structure

is 1D. Secondly, the di�raction vector produces an aperiodic reciprocal lattice because of an

irrational coeÆcient of h
0

. Thirdly, since Qhh

0

k
is invariant under multiplication of �n, there

is no restriction of minimum separation between the di�raction spots. (The invariance can

be illustrated by taking an arbitrary value of n, say n = 1 for simplicity, then Qhh

0

k
� � =

2�
a

q
�
2

�
2+1

(h+ h

0

�
) � � = 2�

a

q
�
2

�
2+1

(h� + h
0

) = 2�
a

q
�
2

�
2+1

(h( 1
�
+ 1) + h

0

) = 2�
a

q
�
2

�
2+1

(h+ h
0

+ h

�
)

= 2�
a

q
�
2

�
2+1

(~h+ h

�

) = Qh
~
h

k
with ~h = h+ h

0

).

Penrose Tiling Generated from 4D Space

A 2D rhombic Penrose tiling can be obtained from 4D periodic space, which can be decomposed

into a 2D physical space V k and a 2D perpendicular space V ?. The unit cell of the 4D lattice is

decorated with �ve types of pentagonal atomic surfaces [39, 45] orientated parallel to V ?. The

atomic surfaces intersect V k at points generating the vertices of the rhombic Penrose tiling. The

Penrose patterns of other variants are obtained by taking di�erent types of atomic surfaces. For

example, a pentagonal Penrose pattern is obtained by a single decagonal atomic surface. The

section method to generate a periodic stacking of the pentagonal and rhombic Penrose tilings

from a 5D space will be discussed later in Section 1.3.3.

1.1.3 Phasons and Approximants

The higher dimensional description of the quasicrystals introduces additional degrees of freedom

related to perpendicular space. The ordinary elastic excitation in quasicrystals is characterized

by phonons, which involves the translation of atoms in physical space. In contrast, the elastic

excitation associated with the new degrees of freedom corresponds to the translation of the

atomic surfaces along the perpendicular space. The associated elementary excitations are called

phasons. Since the perpendicular space does not exist in reality, only the e�ects of phason

excitation in the physical space are relevant in practice. The phason excitations cause atomic

jumps in the physical space in contrast to the phonon excitations which result in a collective
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Figure 1.3: An illustration of phason-disorder (a) and approximants of a Fibonacci sequence

generated by employing uniform phason strain rotating the physical space Xk.

continuous motion of atoms. A very simple example illustrating how phasons in
uence the

structure in the physical space is presented below.

Consider once again the section method generating a Fibonacci sequence (Figure 1.3(a)).

Assume the atomic surfaces are displaced along X? due to the phasonic excitations and the

displacement is de�ned by a sinusoidal function (for the sake of simplicity, the physical space is

sliced by a curve represented by the sinusoidal function in the �gure). The displacement of atomic

surfaces results in a new sequence LLSLSLLSLLSLS. . . , where some of the tiles (written in

bold characters) have been rearranged as compared to the original sequence LLSLLSLSLLS. . . .

The rearrangement of tiles in real quasicrystals corresponds to atomic jumps between di�erent

positions, which are normally referred to as phason-
ips. Indeed, the atomic jumps has been

experimentally observed by transmission electron microscopy [46]. At low temperatures, the

phason-
ips are trapped as defects (phason disorder).

Both phonon and phason disorder in
uence the di�raction pattern. While the presence of

phonons decreases the di�raction intensities via the conventional Debye-Waller factor yielding

background intensity, the phasons decrease the intensities via a phasonic Debye-Waller factor

[47]. The phonon and phason Debye-Waller factors are dependent on Qk and Q?, respectively.

The phonons constitute small displacements of the atoms from their equilibrium position and
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the average structure maintains a long range order. In contrast, phasons may break down the

long range order and thus result not only in decreased intensities but also broaden the peaks, or

even shift the peak position depending upon the nature of phason disorders (see Ref. [48, 49]).

Phasons are believed to play an important role in the formation of quasicrystals and in

the phase transition between crystalline and quasicrystalline phases of an alloy. Let us present

a simple example illustrating a transformation of a quasicrystalline structure into a periodic

structure via a special phason strain. Consider the physical space rotated due to a phason

strain such that the new slope is a rational number, which approximates the initial slope 1/�

(Figure 1.3 (b)). The new slope may be 1/1, 1/2, 2/3, 3/5, or 5/8 . . . (ratio of successive

Fibonacci numbers). The intersection of the rotated physical space with the atomic surfaces

results in a periodic sequence. For example, an Xk-axis with a slope of 2/3 cuts the atomic

surfaces yielding the sequence LSLLSLSLLSLSLLSL. . . , which has a periodic repetition of

LSLLS. The resulting sequence is known as the 3/2 rational approximant of the Fibonacci

sequence. Similarly, 1/1, 2/1, 5/3, and 8/5 rational approximants of the Fibonacci sequence

are LSLSLSLSLSLSLSLSLS. . . , LLSLLSLLSLLSL. . . , and LSLLSLSLLSLLSLSL . . . with

repeating unit cells LS, LSL, and LSLLSLSL, respectively, revealing that the higher the order

of the approximant the more similar it is to the corresponding quasicrystalline structure. The

approximants are useful to model the local structure and to determine the physical properties

of quasicrystals (see Ref. [50] for a review).

1.2 Stability and Structural Models

One and a half decades have passed since the discovery of quasicrystals with a tremendous e�ort

to �nd a cause behind the physical origin of quasicrystals. There are two distinct approaches

proposed so far to explain the stability of quasicrystals. The �rst approach is based on an

energetic stabilization, the second on an entropic stabilization [49]. Depending on the speci�c

quasicrystalline phase, one of these approaches re
ects the dominant mechanism of stability.

Similarly, di�erent structural models have been proposed to explain the unique properties of

quasicrystals.
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Energetic and Entropic Stabilization

The energetic stabilization of quasicrystals can be interpreted in terms of a perfect Penrose tiling

picture. The key idea is that the edge-matching rules of the Penrose tiling could re
ect local

rules to attain a minimal binding energy. However, many quasicrystals are stable only at high

temperature and convert into crystalline phases at low temperature [51, 52]. One should thus

expect that entropy may be responsible for stabilizing the quasicrystalline phases. The entropic

stabilization can be described in terms of random tilings. The basic idea of the random tilings

is that the edge-matching rules of the Penrose tiling are completely discarded and the tiles are

allowed to join randomly to �ll the space without gaps. The randomness induces topological

disorder (topological entropy) in the system. The randomization of tilings may not be the

only source of entropy. The entropy can be induced by chemical disorder (chemical entropy).

If the chemical entropy is dominant, the structure can be topologically ordered even at high

temperature. Joseph et al. have shown theoretically that Ni-rich d-Al-Ni-Co with a perfect

tiling is stable only above 800 ÆC [53], which is also con�rmed experimentally [54, 55].

Electronic Stabilization

An alternative possibility to explain the energetic stability of quasicrystals may be electronic

stabilization. Electronic properties and stoichiometry observed in many quasicrystals indicate

that a Hume-Rothery type mechanism of intermetallic compounds may play an important role

in the stability of quasicrystals [3, 56]. The Hume-Rothery mechanism states that a speci�c

structure of alloy is formed for a �xed e�ective density of valence electrons (e=a, electron-per-

atom ratio) in such a way that the Fermi surface matches the Brillouin zone boundary opening

a pseudo gap [57, 58], which lowers the energy of the system.

In fact, almost all stable icosahedral quasicrystals are found to have a speci�c value of e=a

(� 2.1 for the Zn-Mg-Al class and � 1.75 for the Al-TM class, where TM refers to transition

metals) [3] satisfying the condition of gap opening at Fermi level, i.e., Q = 2k
F
(where Q is

the magnitude of reciprocal lattice vector and k
F
the radius of the Fermi sphere) [3, and �nd

references therein]. In many quasicrystals, a pseudogap at the Fermi level has been observed

theoretically and experimentally [2, and �nd references therein] supporting the Hume-Rothery

type mechanism for many icosahedral phases. Although the value of e=a is �xed for icosahedral
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quasicrystals, it varies in a signi�cant wide range for decagonal quasicrystals [3].

Perfect Quasiperiodic Tiling Model

Geometrically constructed quasiperiodic tilings show many features similar to those observed in

quasicrystals such as non-crystallographic orientational symmetry and perfect long range. The

tiling is a suitable starting point in modeling the structure of quasicrystals. In a structural

model based on a rhombic Penrose tiling, atoms are organized into two distinct clusters or tiles,

the skinny and fat rhombi. The edge-matching rules of the Penrose tiling could be enforced by

the energetic preference of parts of clusters to properly match across tiling edges.

Random Tiling Model

In the random tiling model, two di�erent types of tiles are considered as basic building blocks as

in the perfect tiling model. But unlike in the perfect tiling model, where a strict edge-matching

rule is followed, the random tiling model allows the tiles to join their edges randomly, keeping

the occurrence frequencies �xed due to �xed concentration of elements in the alloy. Obviously,

randomness allows to form several degenerate states (con�gurations) including ones that are

periodic and disordered. Henley has shown that the state (con�guration) having maximum

entropy has an average decagonal symmetry and a long range quasiperiodic order [59].

Most quasicrystals exhibit some degrees of disorder. Extremely few quasicrystals, in particu-

lar the Ni-rich phase of d-Al-Ni-Co, are known to reveal almost a perfect quasiperiodic ordering

[54, 60, 61]. Therefore, the random tiling model is appropriate for the majority of quasicrys-

talline phases. This model also accounts for the experimentally observed di�use scattering, as

the di�raction pattern of the random tilings have sharp Bragg peaks in addition to some di�use

background [47].

Cluster Model

An alternative picture of quasicrystals is the covering picture. A single repeating cluster can

be used to cover the space in quasiperiodic order, provided that the clusters can overlap or

neighboring clusters can share the atoms (�rst introduced by Burkov in 1991) [62]. In the cluster

model, the formation of quasicrystals can be explained in a similar fashion as the periodic crystal



22 Chapter 1. Quasicrystals

in the sense that only a single type of low energy cluster is used to close-pack a macroscopic

structure. The cluster is analogous to the unit cell in a periodic crystal, hence termed `quasi-unit

cell' and the cluster model is sometimes called quasi-unit cell model.

Indeed, clusters of decagonal shape have been observed in high-resolution transmission elec-

tron microscopy (HRTEM) in many decagonal phases [63, and �nd references therein], and

most of the theoretical structural models of the decagonal quasicrystals are also based on a

single decagonal overlapping cluster [55, 62, 64-69]. Similarly, icosahedral quasicrystals are be-

lieved to be made up of Mackay clusters [63]. Scanning tunneling microscopy of 2-fold and 5-fold

surfaces of i-Al-Pd-Mn shows the aggregation of Mackay-type clusters [14, 15]. Furthermore,

the cluster approach is suitable to interpret some physical properties of quasicrystals, especially

the dynamical properties of i-Al-Pd-Mn and d-Al-Ni-Co measured by Neutron scattering [70-72]

and electrical and thermal properties [73, and �nd references therein].

The cluster picture of decagonal quasicrystals is very closely related to the Penrose tiling

picture. It has been shown that a rhombic Penrose tiling can be equivalently produced by using a

single decagonal tile with an overlapping rule, instead of edge-matching rule [37, 74, 75]. Further

developments have been made by H. C. Jeong and P. J. Steinhardt in this respect [37, 75]. They

have shown that a perfect Penrose tiling can be uniquely produced by maximizing the density

of some suitably chosen atomic clusters having minimum energy con�guration, discarding the

overlapping rules. These clusters are in a one-to-one correspondence with the decagonal cluster.

This new approach is physically relevant to explain the formation of quasicrystals because the

constraint of cluster overlapping rules or the constraint of atomic decoration of the clusters does

not have to be considered.

The concept of random tiling can be introduced also in the cluster approach. Some con-

straints of the cluster overlapping rules of the perfect quasiperiodic covering are abandoned

to yield a randomly ordered quasiperiodic structure (refer to [76] for details). The resulting

structure is entropically stabilized similarly as the random tilings.

1.3 Decagonal Quasicrystals

Soon after the discovery of icosahedral quasicrystals, varieties of 2D quasicrystals were found

(see [3, 77] for review). The 2D quasicrystals have periodic ordering along one direction and qua-
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Figure 1.4: A macroscopic

view of decagonal quasicrys-

tal, which is formed by a pe-

riodic staking of quasiperi-

odic planes along the 10-

fold axis. Two inequiva-

lent 2-fold planes perpendic-

ular to the 10-fold planes are

shaded.

sicrystalline ordering in the plane perpendicular to the periodic direction. The quasicrystalline

plane can possess pentagonal, octagonal, decagonal, or dodecagonal symmetry. The in
uence of

both quasicrystalline and crystalline ordering on the physical properties of quasicrystals can be

investigated in a single sample of the 2D quasicrystals, which is not possible in case of icosahedral

quasicrystals exhibiting quasicrystalline ordering in all directions. In fact, some physical proper-

ties of decagonal quasicrystals show a strong anisotropy along the periodic and quasicrystalline

directions [73].

Decagonal quasicrystals, which possess a unique 10-fold rotational axis along the periodic

direction and two inequivalent sets of 2-fold axis perpendicular to the 10-fold axis (see Figure

1.4), are the most studied 2D quasicrystals because of the availability of thermodynamically

stable, large, and high quality samples. A variety of periodicities has been observed along

the 10-fold axis. Mainly, three groups of decagonal quasicrystals with a basic periodicity of

4 �A (Al-Co-Cu type), 12 �A (Al-Mn type), and 16 �A (Al-Fe-Pd type) have been found [77].

Decagonal Al-Ni-Co, the structure of which is discussed in this thesis, consists of two sets of

quasicrystalline planes stacked alternatingly along the 10-fold axis. The distance between the

planes is approximately 2 �A yielding a basic 4 �A periodicity [40, 64].

Al-Ni-Co alloys have attracted much attention due to the existence of various types of qua-

sicrystalline and approximant structures observed in a wide composition range. They possess

at least eight di�erent types of quasicrystalline phases, namely basic Ni-rich (bNi), type I su-

perstructure (I), S1 superstructure (S1), type II superstructure (II), basic Co-rich (bCo), one

dimensional quasicrystal (1D), pentagonal (5f), and pentagonal with superstructure (5f
HT

) (ab-

breviation after Ref. [78]). A cut through the phase diagram is shown in Figure 1.5. A brief
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States Periodicity Tiling Tiling Type

Basic Ni-rich 4 �A pentagonal perfect

S1 superstructure 8 �A pentagonal random

Type I superstructure 8 �A rhombic random

Type II superstructure 8 �A pentagonal and rhombic random

Basic Co-rich 8 �A pentagonal random

One dimensional 8 �A pentagonal and rhombic random

Pentagonal 8 �A pentagonal random

Pentagonal with superstructure 8 �A rhombic random

Table 1.1: Di�erent phases of Al-Ni-Co with their periodicities and tiling.

explanation of some of these phases is presented here (refer to Ref. [78] for details).

Among the eight states listed, the �rst �ve show a di�raction pattern of 10-fold symmetry

perpendicular to the periodic direction, while the pentagonal states possess a 5-fold symmetric

di�raction pattern. The quasicrystalline ordering along one direction within the 10-fold plane

transforms to crystalline ordering, forming a one dimensional quasicrystal state. As such, the

1D state is an intermediate state between the quasicrystalline and approximant phases. Both

pentagonal and one dimensional states are closely related to the decagonal phases.

The HRTEM of the Ni-rich basic structure reveals that clusters of 20 �A diameter are located

at the vertices of a perfect pentagonal Penrose tiling [54, 60, 61], while the clusters show some

chemical disorder. In contrast, the cluster centers of the other phases form a random rhombic

(Penrose) tiling of di�erent variants and the clusters are chemically ordered.

Di�raction patterns of all phases except the basic Ni-rich structure show di�use layers un-

derneath the Bragg planes perpendicular to the periodic direction as well as half-way in between

these planes, corresponding to an 8 �A periodicity [52, 79-84]. These di�use layers are due to posi-

tional and orientational disorder of the columnar clusters [80, 85]. Other decagonal quasicrystals

also exhibit such di�use scattering [81, 86]. The intensity of the 8 �A periodic layers increases

with increasing Co content and �nally converts into sharp spots with quasicrystalline ordering.

Di�erent phases with their periodicities and tiling for the cluster centers are summarized in

Table 1.1.
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Figure 1.5: Phase di-

agram of Al-Ni-Co alloy

from Ritsch et al. [78].

1.3.1 Indexing of the Di�raction Pattern

Five basis vectors are needed to generate a reciprocal lattice of decagonal quasicrystals. The

di�raction vector Hk can be obtained by,

Hk =
5X

j=1

h
j
b
j
; (1.10)

where h
j
are integers, b

j
= b(cos 2�j

5
; sin 2�j

5
; 0) for j = 1, . . . , 4 and b5 = b5(0; 0; 1) with b = jb

j
j

(j = 1, . . . , 4 ) and b5 = jb5j. The vectors bj (j = 1, . . . , 4) are the in-plane vectors pointing

from the center to four vertices of a regular pentagon, while b5 is along the periodic direction

(Figure 1.6).

A set of �ve indices (h1h2h3h4h5) is assigned to each di�raction spot. The set (h1h2h3h4h5)

is called generalized Miller indices, which are used to label the orientation of lattice planes as in
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Figure 1.6: The projection of the 5D reciprocal basis vectors into the physical space (left) and

perpendicular space (right).

Figure 1.7: The indexing scheme of a decagonal quasicrystal. The circles denote the position

of di�raction spots generated by Hk =
P

5

j=1 hjbj . The four of the �ve independent vectors

bj = b(cos 2�j

5
; sin 2�j

5
; 0) (j = 1, . . . , 4) shown by solid lines with arrow head are the in-plane

basic vectors, while the �fth vector (00001) is along the periodic direction (here, perpendicular to

the plane of the paper). The vector (�1�1�1�10) is sum of the four vectors bj (j = 1, . . . , 4) and not

an independent basis vector.
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the case of periodic crystals. The plane perpendicular to the vector [00001] has 10-fold symmetry

and is referred as the (00001) plane. Similarly, the two inequivalent 2-fold planes perpendicular

the vectors [10000] and [10110] are referred as (10000) and (10110) planes, respectively (see

Figure 1.7). The vectors b
j
(j = 1, . . . , 5) can be regarded as the physical space projections of

the reciprocal basis vectors d�
j
(j = 1, . . . , 5) of a 5D periodic lattice given by,

d�
j
= b

0
BBBBBBBBB@

cos 2�j
5

sin 2�j
5

0

cos 6�j
5

sin 6�j
5

1
CCCCCCCCCA
; j = 1; : : :; 4; d�5 = b5

0
BBBBBBBBB@

0

0

1

0

0

1
CCCCCCCCCA
; (1.11)

where b and b5 are the lattice constants of the 5D space. The physical and perpendicular space

projections of d�
j
= (b

j
;b

0

j
) are shown in Figure 1.6.

1.3.2 Superstructure in d-Al-Ni-Co

As in periodic crystals, superstructure re
ections in quasicrystals appear with weak intensity

as compared to the intensity of main re
ection. They are not indexable with integer indices

with respect to the basis vectors of the main re
ections. Several types of superstructures have

been identi�ed in both decagonal [87-89] and icosahedral quasicrystals [90]. Decagonal Al-Ni-

Co phases exhibit three di�erent types of superstructures: S1, type I, and type II. Decagonal

Al71:8Ni14:8Co13:4, which was investigated in this study, possesses the type I superstructure at

room temperature.

For the type I superstructure, the physical space components s
j
of the reciprocal basis vectors

of the 5D superlattice are rotated by �

10
and contracted by a factor 2 cos �

10
with respect to the

physical space components of the normal basis vectors. They can be related by b
j
=
P

i
S
ij
s
i

with,

S =

2
6666666664

1 0 �1 0 0

0 1 0 �1 0

1 1 2 1 0

�1 0 0 1 0

0 0 0 0 1

3
7777777775
: (1.12)

Since the determinant of the matrix S is 5, the reciprocal lattice spanned by s
j
,Hk =

P
j
hs
j
s
j
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Figure 1.8: The physical space compo-

nents of the normal and superstructure

basis vectors of d-Al-Ni-Co.

can be divided into �ve sublattices satisfying the conditions
P

j
hs
j
= 0,

P
j
hs
j
= �1, and P

j
hs
j

= �2. The sublattice with
P

j
hs
j
= 0 corresponds to the main re
ections, while

P
j
hs
j
= �1

and
P

j
hs
j
= �2 represent superlattice re
ections named S1 (�rst order) and S2 (second order)

spots, respectively.

The type I superstructure phase exhibits both S1 and S2 spots, while the S1 superstructure

state shows S1 spots and possibly much weaker S2 spots. The S1 spots appear around all strong

re
ections forming a decagon. Both S1 and S2 superstructure spots take 1
5 -integer indices with

respect to the basis vectors of the normal phase. At high temperature, the type I superstructure

state undergoes a phase transition to the S1 superstructure state (see Figure 1.5).

Another type of superstructure observed in d-Al-Ni-Co is the so-called type II superstructure

[89]. In this type, strong re
ections are surrounded by a ring of pentagons. The pentagon is

formed by �ve superstructure spots (new type, neither S1 nor S2) at the corners and a S1 spot

at the center. The new spots are indexable with 1
2
-integer indices with respect to the normal

basis vectors.

1.3.3 Atomic Structure of d-Al-Ni-Co

The main building blocks of the d-Al-Ni-Co quasicrystals are columnar clusters. The cluster

centers are located at the vertices of a periodic stacking of Penrose tilings. These cluster centers

can be generated by decorating the unit cell of the 5D periodic lattice by atomic surfaces and

taking the appropriate 3D cut.
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Figure 1.9: Penrose pattern generated by the section method, (a) Rhombic Penrose pattern and

(b) Pentagonal Penrose pattern. Atomic surfaces of corresponding Penrose pattern are shown on

the top of each pattern. Among the four pentagonal atomic surfaces, the smaller 1st and 4th have

an equal radius of �1;4 =
2

5�2b
. The radius of large pentagons (2nd and 3rd) is � times larger than

�1;4, i.e. �2;3 =
2

5�b
. The 1st and 3rd pentagons have similar orientation and are related to the 2nd

and 4th by inversion symmetry.

A model determining the structure of d-Al-Ni-Co proposed by Yamamoto et al. [66] is

presented here, what successfully explains the observed superstructure (Type I). The model is

based on the fact that clusters of 20 �A diameter are located at the vertices of a rhombic Penrose

pattern of 20 �A edge length [66].

A rhombic Penrose pattern of edge length 20 �A can be generated by four types of pentagonal

atomic surfaces (see Figure 1.9) located at the points �(i,i,i,i,1.25)/5 (i = 1, 2) of the 5D unit

cell. The 5D basis vectors are given by,

d
j
=

2

5b

0
BBBBBBBBB@

cos 2�j
5 � 1

sin 2�j
5

0

cos 6�j
5
� 1

sin 6�j
5

1
CCCCCCCCCA
; j = 1; : : : ; 4; d5 =

1

b5

0
BBBBBBBBB@

0

0

1

0

0

1
CCCCCCCCCA
; (1.13)
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Figure 1.10: Atomic structure of d-Al-Ni-Co projected along the periodic direction obtained by

the 5D superstructure model [66]. The clusters of 20 �A diameter are located at the vertices of

a rhombic Penrose pattern of edge length 20 �A (solid lines). Dark and gray solid circles denote

transition metals and Al, receptively. The large circles represent the atoms in the layer at z = 0

and the small circles at z = c/2.

where b�1 (= 11.67 �A) and b�1
5 (= 4.081 �A) are the lattice constants of the 5D lattice. The

corresponding reciprocal basis vectors of d
j
are d�

j
given by Equation 1.11.

The atom positions around the vertices of the Penrose tiling are generated by placing two

independent occupation domains at 20 di�erent points of the 5D unit cell (see Ref. [66] for details

about occupation domains and their coordinates). The resulting atomic structure projected

along the 10-fold axis is shown in Figure 1.10.

The structure is made up of two types of atomic layers with stacking sequences AB (A

represents the layer at z = 0 and B the layer at c/2, with c = 4 �A (lattice constant along the

periodic direction). The cluster in each layer has pentagonal symmetry. The cluster in the
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layer A is rotated by 36Æ with respect to the cluster in the layer B yielding an overall decagonal

symmetry.

One of the columnar clusters projected along the 10-fold axis is marked by full circles in

Figure 1.10. It consists of ten rings surrounding the inner wheel-like atomic arrangement. The

neighboring two clusters overlap in two ways. First, they share the outer two rings (C and D)

if the center-to-center distance is equal to the edge length of the Penrose pattern (L = 20 �A).

Secondly, they share some of the atoms of the inner wheel (E and F) if the center-to-center

distance is equal to the shorter diagonal of the skinny rhombus (S = L/� = 12.36 �A)

In the normal phase of d-Al-Ni-Co, the clusters are located at the vertices of a pentagonal

Penrose tiling of 20 �A edge length [66, and �nd references therein], while the atomic distribution

in the cluster is the same for both phases. The pentagonal Penrose tiling can be generated from

the 5D space decorated with a single decagonal atomic surface per unit cell as opposed to four

pentagons for the case of the rhombic tiling [40]. The atomic positions of the normal phase are

generated by two independent occupation domains, placed at 20 points of the 5D unit cell (refer

to [66] for details).

The Di�raction Pattern

To calculate the di�raction patterns of the structures presented in the preceding section, a

starting point is to evaluate the di�raction of the rhombic (and pentagonal) Penrose pattern.

It can be obtained via the Fourier transform of the density distribution �(r) of the 5D lattice

decorated with pentagonal (and decagonal) atomic surfaces. The Fourier components of the 5D

lattice can be separated into the product terms depending on the 3D physical space components

and 2D perpendicular space components of the 5D reciprocal lattice vector. The physical space

component contains the information of the usual atomic scattering factor and the temperature

factor, while the perpendicular space components involve the Fourier transform of the atomic

surfaces and the term describing the phason 
uctuation.

The structure factor F (H) is the Fourier transform of �(r) and is expressed as [5],

F (H) =

Z
UC

�(r)e2�iHrdr =
nX

k=1

T
k
(H)f

k
(kHk)e2�iHrk ; (1.14)

where the factor f
k
(kHk) can be decomposed into the atomic scattering factor f

k
(kHkk) and the

Fourier transform of the atomic surface g
k
(H?) (k denotes the atomic surface and runs from 1 to
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Figure 1.11: Fourier amplitude

versus kH?k. The dotted- and

dashed-curves represent the Fourier

amplitudes along the high sym-

metry directions of the decagonal

atomic surface, the solid curve is

the envelop function. kH?k is nor-

malized by a lattice parameter b.

4 corresponding to the four pentagons for the rhombic Penrose pattern, while for the pentagonal

Penrose pattern it has only one value k = 1 corresponding to the decagon). Similarly, the factor

T
k
(H) can also be decomposed into the temperature and phason factor. Then Equation 1.14

can be rewritten as,

F (H) =
nX

k=1

T
k
(Hk;H?)f

k
(kHkk)g

k
(H?)e2�iHrk ; (1.15)

with

T
k
(Hk;H?) = e�2�2HkTBkHk � e�2�2H?TB?H?

; (1.16)

(B is the mean-square-displacement matrix), and

g
k
(H?) =

1

A?

UC

Z
Ak

e2�H
?r?dr?; (1.17)

(A
k
is the area of kth atomic surface and A?

UC
is the area of the 5D unit cell projected onto

perpendicular space). A?

UC
is calculated by,

A?

UC
=

4

25b2
[(7 + �) sin

2�

5
+ (2 + �) sin

4�

5
]: (1.18)

The Fourier transform of the pentagonal (or decagonal) atomic surface can be obtained by

summing the Fourier transform of �ve (or ten) triangles forming the pentagon (or decagon).
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Using the standard formula of the Fourier transform of a triangle, g
k
(H?) can be obtained by,

g
k
(H?) =

1

A?

UC

sin
2�

5

mX
j=0

A
j
(eiAj+1�k � 1)�A

j+1(e
iAj�k � 1)

A
j
A
j+1(Aj

�A
j+1)

(1.19)

where j runs over 5 (and 10) triangles of the pentagon (and decagon) and A
j
= 2�H?e

j
with,

H? = b
mX
j

h
j

0
BBBBBBBBB@

0

0

0

cos 6�i
5

sin 6�i
5

1
CCCCCCCCCA

(1.20)

In the simpli�ed case which excludes the e�ect of temperature and considers the identical atomic

scattering factor, f
k
(kHkk)=1, the intensity (I) depends only upon the Fourier transform of the

atomic surfaces,

I / jg
k
(H?)j2 (1.21)

The Fourier amplitudes of the decagonal atomic surface along the two high symmetry di-

rections are shown in Figure 1.11. The envelope function of the Fourier amplitudes gives the

average damping with H?. In principle, Fourier amplitudes corresponding to all H? contribute

to the di�raction intensities and �ll the reciprocal space in�nitely densely. But the di�raction

intensities for largerH? are extremely weak and are not experimentally detectable, which makes

it possible to distinguish individual spots.

Until now, the di�raction pattern of the cluster centers is discussed without taking account

of individual atoms in the cluster. To include the contribution of individual atoms, Fourier

amplitudes of 20 occupation domains have to be considered, which modulate the intensity of

di�raction spots but do not change their position.

The di�raction pattern obtained by the 5D superstructure model includes main, S1 and S2

spots (one can refer to Ref. [66] for the di�raction pattern). The intensity of the S2 spots is

weaker than that of the S1 spots [91]. X-ray di�raction also shows that S2 spots are relatively

weak [88].

Summary

Fundamental examples of quasiperiodic structure, the Fibonacci sequence and the Penrose pat-

tern, were presented. The Fibonacci sequence illustrates quasiperiodic structure in 1D, the
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Penrose tiling in 2D. These basic structures show discrete di�ractions pattern without having

periodicity demonstrating a long range order. The di�raction pattern of the Penrose pattern

is very similar to the di�raction pattern observed in 2D quasicrystals. The section method to

derive a quasicrystalline structure in physical space from higher dimensional periodic lattice

was discussed. A simple example illustrating the generation of a Fibonacci sequence from a 2D

periodic lattice was given. In addition, di�erent models for the structure and the stability of

quasicrystals were brie
y discussed.

The phase diagram of Al-Ni-Co alloys was illustrated. Depending on temperature and exact

alloy composition, Al-Ni-Co exhibits several di�erent decagonal phases. Decagonal phases are

2D quasicrystals consisting of a periodic staking of quasicrystalline planes along the 10-fold

axis. The samples used in this work belong to the type I superstructure phase. As revealed

by transmission electron microscopy, the structure of this phase can be explained in terms

of a random tiling. Its di�raction pattern shows S1 and S2 superstructure spots. The atomic

structure can be derived from a 5D decorated lattice and exhibits 20 �A diameter clusters located

at the vertices of a rhombic Penrose tiling of 20 �A edge length.

The presented indexing scheme and other properties of the di�raction pattern of decagonal

quasicrystals play an important role in the discussion of the experimental results of electron and

He di�raction of the 10-fold d-Al-Ni-Co surface in Chapter 3. The tilings and clusters will be

illustrated in scanning tunneling microscopy images of the same surface. The discussed features

of the di�raction pattern of the Fibonacci lattice are re
ected in the di�raction of the 2-fold

d-Al-Ni-Co(10000) surface given in Chapter 4.



Chapter 2

Experimental Methods

In this chapter, theoretical aspects and the experimental set up of He atom scattering (HAS), low

energy electron di�raction (LEED), and scanning tunneling microscopy (STM) are discussed.

All three techniques are capable of determining the structure of single crystal surfaces. The

di�raction experiments determine the symmetry and dimension of unit cell as well as the scat-

tering centers in the unit cell via the angular and intensity distributions of di�raction beams.

Tunneling microscopy, on the other hand, directly probes the surface in real space and provides

information on local morphology in atomic scale in contrast to di�raction, which relies on long

range order of the surface.

Helium atom scattering is a powerful tool to investigate exclusively the topmost surface layer.

In this technique, the surface is probed by neutral He atoms with a very low kinetic energy (10-

65 meV). Helium atoms in this energy range have a de Broglie wave length comparable to the

lattice spacing. Scattered He atoms thus exhibit interference e�ects. Due to the very low kinetic

energy of the He atoms, the surface is probed nondestructively. Furthermore, HAS is a useful

technique to investigate imperfections on the surfaces. Because of the large He atom scattering

cross section of all kinds of defects like adatoms, vacancies, etc., their presence on the surface

causes a signi�cant decrease in the intensity of the re
ected He atom beam. This technique

is also capable of providing information on step heights and terrace widths. Apart from these

investigations by elastic He scattering, low energy surface vibrations can be studied by inelastic

He scattering.

Low energy electron di�raction is the most common technique used in single crystal surface

35
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Figure 2.1: A schematic diagram elucidating the di�erent nature of He atoms and electron

scattering from the crystal surfaces. Electrons penetrate several Angstroms into the surface and

undergo multiple scattering, whereas He atoms are re
ected well above the surface [93].

investigations. In LEED electrons of energy 50-200 eV are used as a probe. In contrast to the

He atoms re
ecting well above the surface (2-3 �A) [92] due to the repulsive force of the electron

cloud of the surface atoms, electrons penetrate a few atomic layers into the sample before being

scattered from the atom potentials (see Figure 2.1), therefore yielding information about a few

topmost monolayers.

Scanning tunneling microscopy was developed by G. Binnig, H. Rohrer, Ch. Gerber, and

E. Weibel [94] in the eighties. This technique is based on the principle of quantum mechanical

tunneling of electrons between a sharp tip and a surface, where the tunneling starts at a tip-

surface separation of a few Angstroms. While scanning the tip across the sample surface, the

tunneling current is measured, mapping the local electron density of the surface. STM and HAS

can be considered as complementary techniques in the sense that the former gives information

of the topmost layer in real space and the latter in reciprocal space.

There are many books and review articles published on all three techniques. References

[95-97] deal with theoretical and experimental aspects of He atom scattering, while the recent

article by Far��as et al. [92] gives a review of the di�ractive phenomena on surfaces studied by He

di�raction. One can refer to Ref. [98, 99] for details about low energy electron di�raction. The

fundamental principle and application of scanning tunneling microscopy is cited in Ref. [100].
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2.1 Helium Atom Scattering

2.1.1 Theoretical Aspects of Elastic Scattering

Atom-Surface Potential

In describing atom scattering from surfaces, an atom-surface potential has to be established. The

atom-surface potential can be divided into two parts, a long range attractive potential due to

Van der Waals forces dominating at large separation and a short range repulsive potential arising

from the exchange force (the Pauli principle), when the electron cloud of the atom overlaps with

the valence electron density extending out of the solid. A qualitative picture of the atom-solid

potential can be obtained by summing over the binary interaction potential between the incoming

atom and individual atoms of the solid. Figure 2.2 shows the resulting atom-surface potential

for a monoatomic solid [101] elucidating some important features of the atom-surface potential.

The classical turning points of atoms impinging on a surface atom (B) are farther out compared

to that of atoms coming in between them (A). This is re
ected in a periodic modulation of the

repulsive potential. The classical turning points form an equipotential surface described by the

corrugation function �(R), where R denotes the vector in the surface plane.

The periodic modulation of the repulsive potential re
ects the density of valence electrons

Figure 2.2: A schematic diagram illustrating the interaction of neutral atoms with a solid surface.

The left shows the equipotential lines in term of depth of potential well (D) and the right displays

the potential versus z, the direction perpendicular to the surface plane [101].
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Figure 2.3: De�nition of scattering ge-

ometry. For the in-plane scattering con-

�guration, �i = �f .

of the surface atoms. For He atoms with energies less than 100 meV, a good approximation to

the repulsive potential (V
rep

) is [102]

V
rep

= ��(r); (2.1)

with �(r) the electron density and � constant. In fact, alkali halides surfaces, which have

highly localized valence electrons are experimentally found to have a high corrugation, while

the metallic surfaces, where the valence electrons are smeared out parallel to the surface, have

a very low corrugation (see for example [92]).

Di�raction Conditions

Consider a beam of He atoms with mass m and energy E
i
impinging on a surface at an angle �

i

with surface normal. The de Broglie wavelength (�
i
) of atoms with energy E

i
is given by,

�
i
=

hp
2mE

i

; �
i
=�A =

4:57p
E
i
=meV

; (2.2)

h being Planck's constant. In di�raction experiments, He atoms with energy 10-65 meV are

used so that �
i
ranges from 1.4 �A to 0.6 �A, which is comparable to the lattice spacing. The

wave vector k
i
of the impinging atoms relates to the wavelength �

i
by,

k
i
= jk

i
j = 2�

�
i

: (2.3)

For in-plane scattering (�
i
= �

f
, see scattering geometry in Figure 2.3), the incident wave

vector k
i
can be decomposed into parallel and perpendicular components as,

k
i
= (K

i
; k

iz
) with jK

i
j = k

i
sin �

i
; k

iz
= �k

i
cos �

i
; (2.4)
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Figure 2.4: Ewald construction for elastic scattering from the 2D surface lattice. The point of

intersection of the Ewald sphere (here circle) with the vertical rods determines the �nal wave vector

kf . (a) for the scattering geometry with �xed �i and variable �f and (b) for �xed �i + �f , where

both �i and �f are varied (see text in Section 2.2 for details).

z being perpendicular to the surface plane.

Two conditions have to be ful�lled for elastic scattering, the energy conservation,

k2
i
= k2

f
= K2

f
+ k2

fz
; (2.5)

and the parallel momentum conservation,

K
i
+G = K

f
; (2.6)

where k
f
= (K

f
; k

fz
), with jK

f
j = k

f
sin �

f
, k

fz
= �k

f
cos �

f
, is the wave vector of outgoing

atom and G = n1b1 + n2b2 (n1, n2 are integers) is a surface reciprocal lattice vector, which is

related to the unit cell vectors a1 and a2 by

a
i
:b

j
= 2�Æ

ij
; (i; j = 1; 2): (2.7)

Equation 2.6 is the Bragg condition in two dimensions. The conditions given by Equations 2.5

and 2.6 can be represented graphically by the Ewald construction as shown in Figure 2.4.
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Experimentally, the parallel momentum transfer (�kk) is probed either by varying �f keeping

�
i
�xed or by varying both �

f
and �

i
keeping �

f
+ �

i
�xed. For either case,

�kk = k
i
(sin �

f
� sin �

i
): (2.8)

The value of the lattice constant a is determined from the nth order di�raction peak by

�kk = k
i
(sin �

f
� sin �

i
) =

2�

a
n: (2.9)

Calculation of Di�raction Intensity

Once the atom-surface model potential V (r) is established, the scattering amplitudes or inten-

sities can be evaluated by solving the Schr�odinger equation,

� �h2

2m
r2 (r) + V (r) (r) = E (r): (2.10)

The exact solution of the Schr�odinger equation for a rigid periodic potential can be obtained

by various methods (refer to [103] for a review). Here, some approximation methods, which are

relevant to determining a corrugation function from di�raction data, are presented.

Hard Corrugated Wall (HCW) Method

The most convenient and physically plausible approximation method is the Hard Corrugated

Wall (HCW), which was �rst introduced by Garibaldi et al. [104] in 1975. This method assumes

the surface is an in�nitely hard corrugated wall with the atom-surface potential expressed as,

V (R; z) =

(
0 for z > �(R)

1 for z � �(R)
: (2.11)

The following assumptions about the atom-surface interaction potential are made in this method:

(a) The attractive part of the potential is neglected. This assumption is reasonable if the

energy of the incoming atoms is much larger than the attractive well depth (E
i
� D). For

He surface potentials, the value of D is normally between 5-10 meV [92], which is much less

than the energy of He atoms in a room temperature (� 60 meV). Hence, a room temperature

He atoms beam satis�es the condition. For E
i
� D, the attractive part can no longer be

neglected because this case leads to the resonant scattering or selective adsorption (see Ref. [96]

for selective adsorption), which will strongly in
uence the di�raction intensities. However, if
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selective adsorption does not play a major role, the HCW method can be still used to calculate

the di�raction intensities by employing a simple correction in �
i
and k

i
[92, and �nd references

therein],

sin �
0

i
=
jk

i
j

jk0
i
j sin �i =

sin �
iq

1 + D

Ei

: (2.12)

Further assumptions are:

(b) The slope of the steeply rising part of the potential is assumed to be in�nite.

(c) Lattice vibrations are neglected i.e. surface atoms are considered to be at rest.

Based on the HCW approach, several methods have been developed to calculate the di�rac-

tion intensities (for review see [96]).

Rayleigh Approximation

Consider a wave function  (r) as proposed by Rayleigh [105], which assumes the incoming and

outgoing waves are plane waves up to the surface. The total wave function is the wave function

of incoming atoms plus the sum of plane waves of di�racted atoms,

 (R; z) = ei[Ki:R+kizz] +
X
G

AGe
i[(Ki+G):R+kfz(G)z]; (2.13)

where AG is the scattering amplitude and the summation extends over a �nite set of G vectors

corresponding to a �nite number of propagating waves (for which k
fz

is real, i.e., k2
fz

= k2
i
�

jK + Gj2 > 0) and a in�nite number of exponentially decaying waves (for imaginary k
fz

i.e.

k2
fz

= k2
i
� jK +Gj2 < 0). The intensity PG of the propagating waves is calculated from the

scattering amplitude by,

PG =
jk
fz
j

jk
iz
j jAGj

2: (2.14)

The intensities satisfy the unitary condition,

X
G

PG = 1: (2.15)

To determine AG, the boundary condition  (R; z = �(R)) = 0 is used in Equation 2.13, which

gives,

0 = eikiz�(R) +
X
G

AGe
i[G:R+kfz(G)�(R)]: (2.16)
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Multiplication of Equation 2.16 by e�ikiz�(R) leads to,

X
G

AGMG;R = �1; (2.17)

with

MG;R = ei[G:R+(kfz(G)�kiz)�(R)]: (2.18)

AG can be obtained by solving Equation 2.17. Di�erent methods can be employed to solve the

equation. Among them the GR method and the eikonal approximation are widely used.

The GR Method: The GR method was �rst proposed by Garc��a [106]. The idea of the GR

method is that Equation 2.17 can be solved numerically by taking certain discrete values of

R distributed uniformly in the surface unit cell and the same number of G vectors uniformly

distributed in reciprocal space so that the equation converts into a �nite number of linear

equations, which can be solved by matrix inversion. This method gives convergent solutions only

for certain conditions. For instance, it is convergent for a 1D sinusoidal corrugation function of

period a, �(x) = �m

2
sin 2�x

a

, (�
m
is the maximum corrugation amplitude) if �

m
� 0:14 a.

Eikonal Approximation: An alternative method to solve Equation 2.16 is the eikonal approx-

imation, which is based on the assumption that for small G (G < k
i
), the term eikfz(G)�(R) is a

slowly varying function of G and can be taken out from the summation. Under this assumption,

Equation 2.16 takes the form

X
G

AGe
iG:R = �e[(kiz�kfz)�(R)]; (2.19)

and AG can be evaluated,

AG = � 1

S

Z
u:c:

e�iG:Rei[(kiz�kfz)�(R)]dR; (2.20)

(S denotes the area of unit cell). AG is simply the Fourier transform of a phase factor whose

argument is the product of the known corrugation function and the perpendicular momentum

transfer. For simple corrugation pro�les Equation 2.20 can be solved analytically.

The eikonal approximation excludes multiple scattering and does not satisfy the unitary

condition (Equation 2.15). However, the intensities calculated by this method can be very close

to the exact calculation for suitable systems. Reasonable results can be obtained for �
m
< 0:1 a

and �
i
< 45Æ [96].
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The methods to calculate di�raction intensities explained so far consider the atoms at rest. In

reality, thermal vibrations and the quantum mechanical zero-point motion of surface atoms leads

to inelastic scattering reducing the di�raction intensities without changing the peak pro�les. The

in
uence of inelastic scattering is accounted for by multiplying the intensity (Equation 2.14) by

a Debye-Waller factor,

F
DW

= e�2W with W =
1

2
h(u ��k)2i; (2.21)

where �k = k
f
� k

i
, u is the displacement of atoms from their equilibrium position, and h: : :i

denotes thermal averaging.

The GR and eikonal approximation methods give procedures to get di�raction intensities

from a given corrugation function. In practice, the corrugation has to be determined from the

experimental di�raction intensities. The direct inversion of experimental data is not possible

because the phase information is lost in the measured intensities. Therefore, one has to follow

a trial and error method. The Fourier amplitudes of �(R), which best �t the calculated and

experimental data can be searched by monitoring the reliability factor,

R =
1

N

sX
G

(PCal

G
� P

Exp

G
)2: (2.22)

2.1.2 Theoretical Aspects of Inelastic Scattering

Kinematics

During the phonon inelastic scattering of atoms from a periodic surface, the parallel momen-

tum and the energy exchange takes place between the system and the incoming atoms due to

phonon creation and annihilation. The dynamical theory requires the conservations of parallel

momentum and the energy of the entire system. With energy and parallel momentum transfers

�E and �K, respectively, energy and the momentum conservation can be expressed as,

�E = E
f
�E

i
=

�h2k2
f

2m
� �h2k2

i

2m
= �h!(Q); (2.23)

and

�K = K
f
�K

i
= Q+G; with jK

f
j = k

f
sin �

f
; jK

i
j = k

i
sin �

i
; (2.24)

where !(Q) is the phonon frequency and Q is the phonon momentum. A negative value of

�h!(Q) (�E < 0 ) corresponds to phonon creation and a positive value (�E > 0) to phonon
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Figure 2.5: A set of scan curves for He scattering with �xed �i + �f = 90Æ (dashed curves) and

a possible Rayleigh mode dispersion curve (solid curve) in an extended zone plot.

annihilation. Similarly, a negative value of �K is referred to \backward-directed phonons" and

a positive value to \forward-directed" phonons. Combination of Equations 2.23 and 2.24 yields

�E

E
i

= (
sin �

i
+�K=k

i

sin �
f

)2 � 1: (2.25)

The plot of �E versus �K is a parabola with origin at (-E
i
;�K

i
) and the curvature of the

parabola depends on k
i
, �

i
and �

f
(see Figure 2.5). The plot is called scan curve, which is very

useful to explain some important features of phonon excitations.

The intersections of the scan curve with the dispersion curves determine the values of �E

at which the maxima are expected in the energy loss (or gain) spectra. As can be seen from

Figure 2.5, a single scan curve in general intersects the dispersion curve in more than one

point. This implies that it is possible to observe phonon creation/annihilation with backward-

directed/forward-directed peaks in a single spectrum. The width of the phonon peak depends

on the angle of intersection of the scan curve and the dispersion curve in addition to intrinsic

width and broadening due to other experimental parameters. The spectra taken at particular

angles �
i
have phonon peaks with optimum resolution if the scan curves corresponding to those

�
i
intersect the dispersion curve at a right angle. The peaks are very broad at critical angles

(�c
i
) at which the two curves intersect tangentially (indicated by arrows in the �gure). A small
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change in �
i
from �c

i
either causes the disappearance of peaks or generates two overlapping peaks.

This mechanism is called kinematical focusing (�rst introduced in Ref. [107]). Furthermore, the

scan curves passing through the �rst Brillouin zone cut the dispersion curves more steeply in the

annihilation-backward or creation-forward quadrants, therefore probing the dispersion curve in

these regions normally gives more pronounced phonon peaks.

Di�raction Intensity

Experimentally observed inelastic intensities due to single phonon scattering can be compared

with the di�erential re
ection coeÆcient d2R/dE
f
d


f
, which is de�ned as the probability that

a particle impinging on the surface is scattered with �nal energy E
f
into the solid angle 


f
. The

di�erential re
ection coeÆcient calculated with a potential obtained by a summation of pairwise

interaction between the impinging particle and the surface atoms is given by [103, 108, 109],

d2R

dE
f
d


f

=
L4

(2��h)3
m2jk

f
j

k
iz

2�S
u:c:

�h
jv0hkfz je��zjkizij2e

�
Q
2

Q
2
c e�2W

:
3X

��

0

q
�
q�
�

0 [��;�
0

(�Q; !)n+(Q; !) + ��;�
0

(Q; !)n�(Q; !)]; (2.26)

where ��;�0 (�Q; !) is the phonon spectral density, v0e
��z is the repulsive part of the atomic

pair potential (Born-Mayer potential), and q = (iQ; �).

The term e
�
Q
2

Q
2
c represents the \cut-o� factor". Single phonon excitation by He atoms is

limited to certain values of frequencies and momentums (\cut-o�" e�ect) because He atoms,

which are rather heavy and slow as compared to other probes like electrons, cannot excite

phonons with high energy and short wavelength. Quantum mechanically, the cut-o� is not

absolute but characterized by a rapid decay of single phonon intensity. The cut-o� frequency

Q
c
and the cut-o� momentum �h!

c
for He scattering are typically Q

c
= 2 �A and �h!

c
= 30� 50

meV [110]. The term !
c
is accounted for in the spectral density term ��;�0 (�Q; !).

The temperature dependence of inelastic intensity is re
ected by two terms, the Bose factor

[93],

n�(Q; !) =
1

2
[coth

�h!

2k
B
T
� 1]; (2.27)

(+ and - denote phonon creation and annihilation, k
B

is the Boltzmann constant), and the

Debye-Waller factor,

2W = 24
m

M

E
iz

k
B
�
D

T

�
D

; (2.28)
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where �
D
is the surface Debye-temperature, E

iz
the energy corresponding to the z-component

of the incident wavevector, T the surface temperature, andM the mass of surface atoms. Single

phonon scattering is dominant over multiple phonons if 2W < 1 [111].

2.1.3 Surface Phonons and Time-of-
ight Technique

Since surface atoms have fewer neighbors than the bulk atoms, the restoring forces of surface

atoms are di�erent from those of bulk atoms. One should thus normally expect the vibration of

surface atoms to have di�erent frequencies than those of bulk atoms. The surface vibration states

lie either in the surface-projected bulk band-gap or are degenerate with the bulk states. Di�erent

vibration modes have been identi�ed on crystal surfaces (see [112] for review). One of them is

the Rayleigh mode. The Rayleigh waves propagate along the surface with the polarization

vector (direction of displacement of atoms) lying in the sagittal plane (the plane de�ned by the

surface normal and propagation direction of the wave). In the Rayleigh mode, the displacement

of atoms decays exponentially with distance from the surface into the bulk. At the long wave

length limit, the frequency of Rayleigh waves propagating along a given direction is proportional

to the length of its 2D wave vector in the surface plane. The Rayleigh mode was �rst predicted

Figure 2.6: A

schematic diagram

of a surface phonon mea-

surement using inelastic

He scattering with time

of 
ight analysis.
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by Lord Rayleigh in 1887 on a semi-in�nite, isotropic, elastic medium [113].

Since the Rayleigh modes are well separated from the bulk modes and the energy and mo-

mentum of these modes match those of He atoms, study of these modes by inelastic He scattering

is possible. The time-of-
ight (TOF) technique is used to measure the surface phonon disper-

sion. A schematic diagram of the TOF setup is shown in Figure 2.6. A highly monochromatic

He beam is pulsed by a mechanical chopper and scattered from the sample surface. The inelas-

tically scattered He atoms gain (or lose) energy due to phonon annihilation (or creation) and

cause time-shifted peaks at the detector. The energy and parallel momentum exchanges (�E

and �K) corresponding to inelastic phonon peaks is calculated from the time shift �t = t� t
e

(t
e
being the chopper-to-detector elastic 
ight time) and other experimental parameters. �E

and �K can be expressed as,

�E = E
i
[(1 +

d
cd
�t

d
td
t
e

)�2 � 1]; (2.29)

and

�K = k
i
[(1 +

d
cd
�t

d
td
t
e

)�1 sin �
f
� sin �

i
]; (2.30)

where d
cd

is the chopper-to-detector distance and d
td
is the target-to-detector distance. A full

set of points in (�E;�K) space (a dispersion curve) is obtained by taking a set of spectra at

di�erent scattering angles �
i
and/or di�erent He energies E

i
.

The measured TOF spectra (intensity versus 
ight time) sometimes have to be converted

into energy spectra (intensity versus energy exchange). The conversion always distorts the shape

of the spectra because of the nonlinear relation of t and �E (see Equation 2.29). The creation

peaks are more pronounced than annihilation peaks in the energy spectra (see [93, 114] for the

derivation of scaling factors).

2.1.4 Experimental Setup

A schematic view of the experimental chamber used for the present work is shown in Figure 2.7

and important parameters of the apparatus are listed in Table 2.1. A He beam generated in the

source chamber is directed towards the scattering chamber (SC) and the beam scattered from

the surface of the sample is detected by a mass spectrometer. The angle between the incoming

and outgoing beam is �xed at 90Æ and the parallel momentum transfer is probed by rotating the

sample normal to the scattering plane. A brief description of the three main parts, the source
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Figure 2.7: A

schematic drawing

of experimental chamber

for He di�raction (B1

: expansion chamber,

BII: chopper chamber,

SC : scattering cham-

ber, DI-DII : detector

chambers).

chamber, the scattering chamber, and the detector chamber is presented below.

Source Chamber: A highly monochromatic He beam is produced by supersonic free jet ex-

pansion from a high pressure (10-100 bar) He gas through a tiny nozzle with a diameter 5 �m.

During expansion, the randomly distributed velocities of atoms are converted into a uniform

velocity v
s
directed radially outward from the nozzle. The energy of the beam is determined by

the nozzle temperature T0,

1

2
mv2

s
=

5

2
k
B
T0: (2.31)

The typical experimental range of T0 is 30-300 K (v
s
= 600-1800 m/s, �

i
= 1.4-0.6 �A). The

lower temperature is achieved by a He refrigerator attached to the source. The full-width at

half-maxima (FWHM) of the velocity distribution centered at v
s
is determined by a characteristic

speed ratio S de�ned by,

S =
1
2
mv2

s

k
B
T

=

s
5T0

2T
; (2.32)

where T is the temperature of thermal motion of the atoms in the beam, which ideally turns to

zero due to the supersonic expansion. The FWHM (�v) is related to S by [115],

�v

v
s

� 1:65

S
: (2.33)
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Figure 2.8: A schematic drawing of the vacuum system used in the He di�raction chamber shown

in Figure 2.7. (T : turbo pump, D : di�usion pump, S : sublimation pump, RT : root pump, and

R : rotary pump).

The value of S depends on the stagnation pressure P0 and nozzle diameter d. Therefore, for

an optimal velocity resolution, a system with a suitable combination of pressure, nozzle diameter

and pumping speed is needed. The value of �v/v
s
with the experimental parameters listed in

Table 2.1 is � 2%.

The monochromatic beam is collimated by a skimmer and then passed though an aperture

(normally 0.6 mm) to achieve the angular resolution. The beam is then passed though the

di�erential pumping units, which further reduces the undesired components of helium. For the

time of 
ight measurements, the collimated beam is pulsed by a chopper before entering into

the scattering chamber (chopper chamber: BII in Figure 2.7).

The He beam produced by this method has a disadvantage. Its velocity distribution contains

a broad [93, 114], very low intensity tail with Maxwellian distribution, which creates a problem

in the phonon measurements. The He atoms from the tail yield elastic di�raction peaks which

appear in the TOF spectra as additional peaks. These peaks are called deceptons [93, 114]. Since
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the intensity of these peaks is often comparable to that of the phonon peaks, it is diÆcult to

distinguish them from the true phonon peaks without calculation. With the known experimental

parameters, these peaks can be explicitly evaluated (see [93, 114]).

Scattering Chamber: The scattering chamber is equipped with the devices necessary to

prepare and characterize the surface, such as LEED and a sputter gun. An ultra high vacuum

is maintained (base pressure 2 � 10�10 mbar) in the chamber with high speed pumps and the

residual gas is monitored by a mass spectrometer. The chamber is �tted with a manipulator

which has three rotational degrees of freedom (�, �, and tilt) and three translation degrees of

freedom (x, y, and z). The sample can be mounted on the manipulator through a load lock.

The use of the load lock avoids the need to bake the chamber each time after mounting a new

sample.

Detector Chamber: The detector chamber consists of three di�erential pumping stages. The

di�erential pumping stages are used to reduce the He partial pressure. The detector chamber

provides a longer 
ight path for the scattered atoms yielding a better energy resolution of the

time of 
ight spectra. The scattered He atoms are ionized by an electron bombardment ionizer

prior to entering into the mass spectrometer. The mass spectrometer signal is ampli�ed by an

electron multiplier and is fed to the computer.

Transfer Width and Time-of-
ight Resolution

In di�raction experiments, the width of di�raction peaks is limited by the transfer width (W )

of the apparatus. For the scattering geometry shown in Figure 2.3, W can be expressed as

[95, 116],

W =
�q

(�
�
� �

f
)2 cos2 �

f
+ (sin �

i
� sin �

f
)2

(�E)2

E
2

; (2.34)

where �
�
is the angular spread due to the source and the detector and (�E)2 is the energy

spread. For the specular beam (�
i
= �

f
), the energy spread term vanishes such that it does not

contribute in the broadening of the specular peak. With the experimental parameters listed in

Table 2.1, the transfer width of our instrument is � 100 �A.

In a time-of-
ight measurement, the total 
ight time t
tof

is the sum of the contributions

coming from four di�erent parts of the apparatus,

t
tof

= t
chop

+ t
ct
+ t

td
+ t

ion
; (2.35)
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Source Nozzle diameter 5 �m

Nozzle pressure � 100 bar

Nozzle temperature 30-300 K

He beam energy 10-65 meV

He beam velocity 600-1800 m/s

Relative velocity spread (�v=v
s
) � 2%

Chopper Slit diameter 15-17 cm

Slit width 0.5 mm

Disk rotational frequency � 80 Hz

Shutter function � 12 �s

Number of slits 8

Dimensions Source-target distance � 50 cm

Target-detector distance 79.8 cm

Chopper-target distance 35.8�0.2

Source-target-detector angle (�xed) 90�0.25Æ

Detector Ionization volume 15�7.5�11 mm3

Channel width MCA 1�s

Dynamic range � 5 � 105

Resolution Polar angle � 0.25Æ

Energy resolution � � 0.2 meV

Transfer width � 100 �A

Pressure Source (expansion) chamber (BI) 10�7 mbar (without helium)

10�4 mbar (with helium)

Chopper chamber (BII) 10�8 mbar (without helium)

10�6 mbar (with helium)

Scattering chamber (PC) 10�10 mbar (without helium)

10�9 mbar (with helium)

Detector chamber (DI-DIII) 10�10 mbar (without helium)

10�10 mbar (with helium)

Table 2.1: A list of important experimental parameters.
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where the �rst term is a �nite opening time of the chopper slit, t
CT

the 
ight time from chopper

to target, t
td
the 
ight time from target to detector, and the last term is the time lapses by He

atoms in the ionizer before detection. All four terms contribute in the broadening of phonon

peaks. The overall spread in time can be calculated by [93],

�t
tof

=
q
�t2

chop
+�t2

ct
+�t2

td
+�t2

ion
: (2.36)

All terms except the third one can be simply calculated from the dimensions of the apparatus.

The third term is associated with energy and angular spread (refer to [93, 110, 117] for detail).

From the total time spread �t
tof

, the total energy width can be obtained by,

Æ(�E) =
@�E

@t
tof

�t
tof

= �2E
i
(1 +

�E

E
i

)3=2
�t

tof

te
cd

: (2.37)

This implies that the energy width of phonon peaks in a spectrum is narrower for the creation

peaks (�E < 0) than the annihilation peaks (�E > 0) provided that �t
tof

is similar for �E < 0

and �E < 0.

2.2 Spot Pro�le Analyzing Low Energy Electron Di�raction

Kinematics Approximation of Low Energy Electron Di�raction

The de Broglie wave length of electrons is related to the incident energy E
i
by

�
i
=�A =

s
150:4

E
i
=eV

: (2.38)

In di�raction experiments, normally electrons with energies of 50-200 eV (�
i
= 1:7� 0:8 �A) are

used. The mean free path of the electrons in this energy range is a few Angstroms, such that

the electrons penetrate a few atomic layers into the solid and undergo multiple scattering (see

Figure 2.1). Therefore, one has to consider these multiple scattering events explicitly to evaluate

the di�raction intensities. The kinematic approximation, which considers only single scattering,

yields part of the information of the LEED pattern, namely the size and symmetry of the unit

cell [118, 119].

Consider electrons with initial wave vector k
i
scattered from the surface with �nal wave

vector k
f
. Assuming the incoming and outgoing electrons as plane waves, the di�raction from
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the surface is normally described by a sum of scattered wave functions by all surface atoms at

position r
n
[120],

 (k;k
i
) =

X
n

f
n
(k;k

i
)eikrn ; (2.39)

where k = k
i
� k

f
is the scattering vector and f

n
(k;k

i
) is the structure factor, which combines

the electron waves coming from the surface atom at r
n
and all atoms of the underlying column.

The di�raction intensity is calculated by,

I(k;k
i
) = j (k;k

i
)j2 =

X
n;m

f
m
(k;k

i
)f�

n
(k;k

i
)eik(rn�rm): (2.40)

Within the kinematic approximation, all structure factors f
n
(k;k

i
) are replaced by an identical

structure factor f(k;k
i
) so that these factors can be taken out of the summation. Then, the

intensity I(k;k
i
) simply splits up into two factors

I(k;k
i
) = F (k;k

i
)G(k); (2.41)

with the dynamical form factor

F (k;k
i
) = jf(k;k

i
)j2; (2.42)

and the lattice factor or interference factor,

G(k) =
X
n;m

eik(rn�rm): (2.43)

The dynamical form factor F (k;k
i
) contains the information of the arrangement of atoms within

the unit cell and multiple scattering events of all kinds, whereas the lattice factor G(k) includes

the information on arrangement of unit cells. Since the lattice factor G(k) depends only on the

scattering vectors k and the position vectors r
n
, it can be easily calculated. Thus, the kinematic

approximation is suÆcient to determine the arrangement of scattering units.

Experimental Details of Spot Pro�le Analyzing Low Energy Electron Di�raction

An instrument for quantitative spot pro�le analysis of low energy electron di�raction (SPA-

LEED) was developed by Scheithauer et al. in 1986 [121]. A schematic view of a SPA-LEED

is shown in Figure 2.9. An electron beam generated by an electron gun is scattered from the

sample surface and detected by a Channeltron single electron detector. The incident angle of

the electron beam is varied by using an electrostatic de
ection unit, as opposed to rotating the
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Figure 2.9: A schematic drawing of spot pro�le analyzing low electron di�raction instrument.

sample or detector. The geometrical angle between the electron gun and the detector is �xed

at 4Æ. The instrument is also equipped with a 
orescent screen as in the case of conventional

LEED apparatus.

The SPA-LEED instrument has many advantages over conventional LEED. A dynamic range

of 106 is achieved by the use of a Channeltron. Employing an electrostatic �eld, the angle of

incidence can be varied more smoothly than in the case of mechanical rotation of the sample

or detector. A determination of the lattice parameter with an accuracy of up to 0.02 �A is

possible. Because of the large transfer width of the instrument, morphological features can be

determined up to a scale of 2000 �A [120]. Since the scattering geometry �xes the angle between

incident and �nal wave vectors, variation of the incident angle rotates the Ewald sphere around

the origin of the reciprocal space. The radius of the modi�ed Ewald sphere (sphere with solid

boundary line in Figure 2.4(b)) is twice the radius of the Ewald sphere. The larger diameter of

the modi�ed Ewald sphere, in principle, o�ers a larger area of reciprocal space accessible to the

measurements.

For the present work, a commercial Omicron SPA-LEED (transfer width larger than 1000

�A, angular spread at 95 eV of 0:08Æ and energy resolution of 0.1 eV) was used.
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2.3 Scanning Tunneling Microscopy

Technical Basic

The scanning tunneling microscope uses an atomically sharp, normally metallic tip. The tip

is mounted on a system of piezoelectric drives, which allows controlled movements in three

directions with an accuracy on an atomic scale and is brought very close to the surface under

investigation. At a separation of a few Angstroms, the electronic states close to the Fermi level

of the sample and of the tip overlap. Upon application of a small bias voltage (V ) between the

tip and the sample, electrons start to tunnel though the vacuum barrier due to the quantum

mechanical tunneling e�ect. The tunneling current I
T
depends exponentially on the tip-surface

separation d. For a small bias voltage and low temperature, I
T
is

I
T
/ V

d
e�2kd; (2.44)

where 2k=�A
�1

= 1:025
p
�=eV , with � the average work function of sample and tip [100]. The ex-

ponential dependence implies that the tunneling current is extremely sensitive to the tip-sample

separation, which provides a high resolution perpendicular to the surface (up to hundredths of

an �Angstrom).

The scanning tunneling microscope can be operated in two modes, the constant current

mode and the constant height mode. In constant current mode, the tip is scanned across the

surface with constant tunneling current. The constant current is maintained during scanning by

using an electronic feedback loop, which adjusts the vertical distance between the tip and the

surface with a feedback voltage. The feedback voltages is plotted as a function of the lateral

scan position in a computer, mapping the surface morphology. In constant height mode, the

tip is moved in a horizontal plane above the surface and the tunneling current is recorded.

This mode of scan is faster than the constant current mode providing an opportunity to study

dynamical processes on the surface. However, this mode is only applicable for atomically 
at

surfaces because scanning with constant height on rough surfaces crashes the tip.

Theoretical Basis

The tunneling current can be evaluated within Bardeen's formalism [100],

I
T
=

2�e

�h

X
��

[f(E
�
)f1 � f(E

�
+ eV )g � f(E

�
+ eV )f1� f(E

�
)g]jM

��
j2Æ(E

�
�E

�
); (2.45)
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where f(E) is the Fermi function, V sample bias voltage, M
��

the tunneling matrix element

between the unperturbed electronic states of the tip  
�
and those of the sample  

�
, and E

�

(E
�
) the energy of the state  

�
( 

�
). The matrix element M

��
can be obtained as

M
��

=
�h2

2m

Z
( �

�
� 

�
�  

�
� �

�
) � dS: (2.46)

The matrix element can be derived explicitly if the wave functions of tip and the surface are

known. But, the shape of the tip is unknown in practice. Therefore, a model wave function

of the tip has to be assumed. Further explanations of the model tip wave functions and the

derivation of the tunneling current are given in Ref. [100].



Chapter 3

The 10-fold d-Al-Ni-Co Surface

This chapter begins with a short review on investigations of clean surfaces. Then, the results

of our experiments on the 10-fold d-Al71:8Ni14:8Co13:4 surface by three di�erent techniques, spot

pro�le analyzing low energy electron di�raction (SPA-LEED), He atom scattering (HAS), and

Scanning tunneling microscopy (STM) are discussed.

Early work in the �eld of quasicrystal surfaces mainly focused on surface preparation, deter-

mination of surface composition, and characterization of clean surfaces of i-Al-Pd-Mn (see [6, 20]

for a review). Recently, there have been several reports on decagonal quasicrystal surfaces, espe-

cially on the 10-fold surface of d-Al-Ni-Co. These investigations reveal that the surfaces obtained

strongly depend on the speci�c preparation methods. As in periodic crystals, sputter-annealing

and cleaving in UHV have been employed to prepare quasicrystal surfaces. Sputter-annealing

can produce high quality surfaces suitable for various surface sensitive techniques including the

extremely surface sensitive He atom scattering [19, 33, 122]. The surfaces prepared by this

method often show terrace-step structures. Scanning tunneling microscopy of these surfaces

reveals a typical corrugation of several tenths of an Angstrom and terrace widths up to several

hundred Angstroms [6, and �nd references therein]. Di�raction techniques like X-ray photo-

electron di�raction (XPD), low energy electron di�raction, and He atom scattering show that

terraces possess a perfect long range, quasicrystalline order. The terraces closely re
ect the

structure of underlying bulk [6, also see Sections 3.1, 3.2, and Chapter 4].

There has been a great e�ort to resolve atomic structures of sputter-annealed surfaces by

scanning tunneling microscopy. The �rst experiments were reported by Kortan et al. in 1990.

57



58 Chapter 3. The 10-fold d-Al-Ni-Co Surface

They investigated the 10-fold surface of d-Al-Cu-Co [16, 17] and observed atomically 
at, wide

terraces separated by steps of bulk expected height. The observed structure within the terraces

was explained in terms of tiling models. Schaub et al. reported the �rst STM study of icosahedral

quasicrystals. They found that the 5-fold surface of i-Al-Pd-Mn exhibits 
at terraces with some

pentagonal holes and stars. The steps are of two di�erent heights forming a part of a Fibonacci

sequence.

Recent reports on the 5-fold surface of i-Al-Pd-Mn by Barbier et al. [19], on the 5-fold

surface of i-Al-Cu-Fe by Cai et al. [123], the 10-fold surface of d-Al-Ni-Co by McGrath et al.

[20] and the 10-fold and 2-fold surfaces of d-Al-Ni-Co by Kishida et al. [18] also show very 
at

surfaces with 5-fold and/or 10-fold motives. However, atomic resolution of the images of these

surfaces is not far better than previous results. Barbier et al. [19] found three di�erent step

heights scaled with each others by � in contrast to the previous observation of two di�erent

heights. Kishida et al. [18] have detected a very low density of interlayer phason defects on

the 2-fold d-Al-Ni-Co surface. In the present investigations of the 10-fold d-Al-Ni-Co surface by

low temperature STM, a random (Penrose) tiling is identi�ed on a large area of the surface (see

Section 3.3).

3.1 Spot Pro�le Analyzing Low Energy Electron Di�raction

Surface Preparation and Measurement Conditions

A large grain d-Al71:8Ni14:8Co13:4 sample grown by the Czochralski method [124] was cut per-

pendicular to the 10-fold axis. After polishing the surface by diamond paste, the sample was

attached directly on a resistive heater by using tantalum foil and mounted in the experimental

chamber (base pressure 1 � 10�10 mbar after bake out). The surface was prepared by several

cycles of sputtering and annealing. The sample was sputtered (Ne+, 1.5 kV and 6 �A) for 30

minutes and subsequently annealed for 15-25 minutes at 600-650 ÆC. The sample was cooled to

95 K during measurements to reduce inelastic scattering (Debye Waller attenuation).

SPA-LEED images of the clean surface were taken at di�erent electron energies. Sharp

electron di�raction patterns at the above described sputter-annealing conditions were obtained

in a energy range of 40-80 eV. As-measured SPA-LEED images are distorted at large k-values

due to non-linearities of the de
ection unit used in the SPA-LEED apparatus [120]. The as-
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measured images are re-scaled using the known k-values of the di�raction spots obtained in He

di�raction. All SPA-LEED images presented here are after re-scaling.

Results and Discussion

A SPA-LEED image recorded at 65 eV electron energy is shown in Figure 3.1, top. The spatial

and intensity distribution of the di�raction spots reveals a perfect 10-fold symmetry. The spots

which are equidistant from the specular spot (the central brightest spot) have an equal intensity

and lie on the corners of a regular decagon. Thus the rotation of the di�raction pattern by

2�/10 around the axis perpendicular to the plane of paper and passing through the specular

spot (i.e., the 10-fold axis) transforms it into itself revealing a 10-fold symmetry. The di�raction

pattern contains two sets of inequivalent 2-fold axes perpendicular to the 10-fold axis, which

appear alternatingly at every 18Æ. Detailed studies of the surfaces perpendicular to these two

inequivalent 2-fold axes will be presented in the next chapter.

Apart from these 10-fold and 2-fold symmetries, the SPA-LEED image exhibits self-similar

patterns. For example, distributions of spots forming pentagons A-A
0

, B-B
0

, and C-C
0

are self-

similar (Figure 3.2). Proper scaling of each pattern produces another. The scaling factor is

related by the golden mean � , which is related to the pentagonal symmetry (the ratio between

the center-to-vertex-distance and center-to-midedge-distance of a regular pentagon is equal to

�/2). The areas of the pentagons A, B, C, A
0

, B
0

, and C
0

have the ratio �4 : �3 : �2 : �2 : �1 : �0.

The SPA-LEED images (Figures 3.1 and 3.2) display densely distributed spots. The appear-

ance of dense spots is a special feature of quasicrystals. More than 500 di�raction spots have

been observed in the range of kjj < 3 �A�1. Di�raction patterns of non-reconstructed surfaces of

periodic crystals would show much fewer spots (only around 20 ) in this range.

An additional sharp spot is observed very close to the specular (marked by a black square in

Figure 3.4). This is the specular spot of a secondary grain present in the sample and not related

to the di�raction from the main grain. Few di�raction spots associated with the secondary grain

have been observed close to the strong di�raction spots of the main grain.

The di�raction patterns display very sharp spots. The spots are as sharp as those observed

in the di�raction patterns of periodic crystal surfaces. The full-width at half-maxima (FWHM)

of the specular spot is � 0:02 �A�1. The corresponding real space dimension of the FWHM is

around 300 �A, which is in the same order of magnitude of the transfer width of the SPA-LEED
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Figure 3.1: A SPA-LEED image (logarithmic gray scale of electron intensity) of the 10-fold

surface of d-Al71:8Ni14:8Co13:4 recorded at 65 eV electron energy (top). The position of strong

spots are shown by circles (bottom). The bulk reciprocal basis vectors bj = b (cos 2�j

5
; sin 2�j

5
; 0)

(j = 1; : : : ; 4 and b = 1:02 �A�1) are used to index the di�raction pattern. The �fth vector (�1�1�1�10)

is sum of the four vectors bj (j = 1, . . . , 4) and not an independent basis vector.
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Figure 3.2: A SPA-LEED image (gray scale) of the 10-fold surface of d-Al71:8Ni14:8Co13:4 recorded

at 75 eV electron energy (left) and the calculated di�raction pattern (right). The pentagons

demonstrate self-similar patterns.

instrument. The sharpness of the di�raction spots is evidence of a long range order in the surface

region.

Positions of di�raction spots are related by the golden mean, revealing a perfect quasicrys-

talline ordering. The di�raction vectors of individual spots will be presented later. For the

moment, consider the positions of the strong spots marked by circles in Figure 3.1, bottom. The

strong spots are on the circles with radii of 0.63 �A�1, 1.02 �A�1, 1.65 �A�1, 1.95 �A�1, 2.67 �A�1,

and 3.15 �A�1. The radii are related to each other by ��1 : �0 : �1 : �� : �2 : �2�, where � is

an irrational number and given by � = 2 sin �

5
=
p
3� � = 1:1755 : : :. As the golden mean, the

constant � is related to the pentagonal geometry. It is equal to edge-to-radius ratio of a regular

pentagon.

Five independent vectors b
j
(j = 1, . . . , 5) are needed to index the bulk di�raction pattern

[40, 64]. Among these �ve, the four vectors b
j
= b (cos 2�j

5 ; sin 2�j
5 ; 0) (j = 1, . . . , 4 and b =

1.02 �A�1) are within the quasiperiodic plane and form the basis vector of the reciprocal lattice

of the surface. The �fth vector b5 = b5(0; 0; 1) (b5 = 0.78 �A�1) is along the periodic direction

(here perpendicular to the plane of paper in the �gures) and can be neglected in the discussion

of di�raction from the 10-fold surface.
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Spots 1 2 3 4 5 6

(h1h2h3h4) (1001) (�1�1�1�1) (0�1�10) (�1�2�2�1) (100�1) (11�1�1)

Hx

k
=b ��1 1 � �2 0 0

H
y

k
=b� 0 0 0 0 � �2

Hk=b ��1 1 � �2 �� �2�

Hk 0.63 1.02 1.65 2.67 1.94 3.14

Hx

?
=b � 1 ���1 ��2 0 0

H
y

?
=b� 0 0 0 0 -1 ��1

H?=b � 1 ��1 ��2 � ��1�

H? 1.65 1.02 0.63 0.39 1.2 0.74

Table 3.1: A list of di�raction vectors and Miller indices (h1h2h3h4) of some strong spots. Spot

numbers (S. N.) are given in Figure 3.1. The Hk and H? are decomposed as Hk = (Hx
k ; H

y

k ; 0)

and H? = (Hx
?; H

y

?).

Almost all di�raction spots can be indexed by using the four basis vectors b
j
(j = 1; : : : ; 4).

The four basis vectors are pointing from the center to four of the �ve corners of a regular

pentagon. Since the pentagonal geometry involves the golden mean, the di�raction vectors

obtained by linear combination of these basis vectors are related by the golden mean. The

di�raction vectors Hk = �4
j=1hjbj and the Miller indices (h1h2h3h4) of some strong spots are

given in Table 3.1. The table demonstrates the � -relation of di�raction vectors.

In a higher dimension description of decagonal quasicrystals, the basis vectors b
j
(j = 1,

. . . , 5) are considered as physical space projection of the 5D reciprocal basis vectors. The

perpendicular space components of the 5D basis are given by b
0

j
= b (cos 6�j

5
; sin 6�j

5
) (j =

1; : : : ; 4). The di�raction vectors associated with b
0

j
can be calculated by H? = �4

j=1hjb
0

j
.

Values of H? of some strong spots are shown in Table 3.1. The relation of di�raction intensity

with H? (= jH?j) can be realized from these values. One can see that spots having larger H?

are weaker or vice versa. For example, the brightest among the observed spots (say the (10�1�1)

spot numbered `4' in Figure 3.1, bottom) have the lowest value of H?. This is a very important

feature of quasicrystal di�raction patterns, which makes it possible to observe distinct spots as

the intensity of spots having very large H? are experimentally undetectable.

It is worthwhile to note that there exist other spots brighter than the (10�1�1) at larger Hk.
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The position of these spots can be obtained by adding the di�raction vectors of the observed

brightest spots. For example, addition of the di�raction vectors of the spots (0�1�2�1) (spot `9')

and (�1�2�10) (spot `11') gives the position of the spot (�1�3�3�1), which has H? = b ��3 = 0.245 �A�1

and Hk = = b �3 = 4.32 �A�1. The H? value is lower than than that of (110�1) or (0�1�2�1), and

hence should have higher intensity. The Hk value is � times larger than that of (110�1) or (0�1�2�1).

In principle, a continuous addition of di�raction vectors of brighter spots yields the positions of

the maximum possible brightest spots with H? ! 0 and very large Hk.

Discussed in Section 1.3, clusters of 20 �A diameter are located at the vertices of a pentagonal

Penrose pattern pattern of 20 �A edge length in the normal phase of the d-Al-Ni-Co, while in

the superstructure phase the clusters are located at the vertices of a rhombic Penrose of the

same edge length [40, 64, 66]. The di�raction pattern of the pentagonal (or rhombic) tiling can

be calculated via Fourier transform of the decagonal (or pentagonal) atomic surfaces [5]. The

normal phase di�raction pattern is calculated by using the Fourier transform of the decagonal

atomic surfaces. The Fourier amplitude versus H? is an oscillating function (see Figure 1.11).

An envelope function is used to calculate the di�raction pattern in order to avoid the extinction

of selected di�raction spots, as the present interest is to �nd the distribution of all possible

di�raction peaks in a general decagonal structure. The resulting di�raction pattern is shown in

Figure 3.2, right. A quantitative comparison between the calculated and experimental intensities

would not be meaningful because the calculation excludes many factors such as the contribution

of individual atoms, multiple scattering, and temperature. However, the calculated di�raction

pattern re
ects the symmetry of the measured di�raction pattern and provides spot positions.

The calculated di�raction pattern superposed on the experimental SPA-LEED data is shown in

Figure 3.3. It reveals that almost all di�raction spots are at positions expected from the bulk.

Representative of those peaks that cannot be obtained by using the basis b
j
are marked by

white circles.

The weak spots marked by white circles in Figure 3.3, 3.5, and 3.6 are identi�ed as super-

structure spots. These spots appear around strong di�raction spots forming a decagon (Figure

3.5). The superstructure basis vectors s
j
(j = 1, . . . , 4) are rotated by �

10 with respect to the

normal basis vectors b
j
(Figure 3.4). The length s of the superstructure basis vectors is 0.53

�A�1, which is smaller than b by a factor of 2 cos �

10
= ��.

The di�raction pattern can be indexed by using the superstructure basis vectors. The
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Figure 3.3: A comparison between the calculated and experimental data. SPA-LEED images

recorded at 65 eV (left) and 75 eV (right) electron energy. Black circles re
ect calculated normal

intensities. The area of the circles is proportional to the log of the calculated di�raction intensity.

Superstructure spots are encircled by large white circles and the area of the circles is not scaled

with intensity.

Figure 3.4: SPA-LEED images with magni�ed scale (left at electron energy of 65 eV and right

at 75 eV ). The normal structure and the superstructure basis vectors bj and sj of length 1.02

�A�1 and 0.53 �A�1 are shown as solid and dotted arrows, respectively. The superstructure basis is

rotated by �
10

with respect to the normal basis. The spot very close to the specular (marked by a

square) is the specular spot of the secondary grain present in the sample.
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Figure 3.5: Superstruc-

ture spots (marked by

white circles) appearing

around the 10�1�1 spot,

one of the strong spots of

the normal phase, form-

ing a decagon.

di�raction vectors with respect to the superstructure basis vectors are Hk = �4
j=1h

s

j
s
j
with

s
j
= s(cos 2�j

5 ; sin 2�j
5 ; 0) and s = b=(��) = 0:53 �A�1. The perpendicular space compo-

nents corresponding to these di�raction vectors can be calculated by H? = �4
j=1h

s

j
s
0

j
with

s
j
= s

0

(cos 6�j
5
; sin 6�j

5
; 0) and s

0

= b=2 cos 3�
10

= b=� = s� [88]. Values of Hk, H?, and Miller

indices (hs1h
s

2h
s

3h
s

4) of some spots are presented in Table 3.2.

The type of a di�raction spot is given by the sum n = �
i
hs
i
. Spots with n a multiple of 5

are normal structure spots, while those with n = 5m � 1 and n = 5m � 2, with integer m are

referred to as S1 and S2, respectively. All detected superstructure spots satisfy �
i
hs
i
= 5m � 1

(see Table 3.2), and hence are identi�ed as S1 spots.

The bulk structure of d-Al71:8Ni14:8Co13:4 possesses type I superstructure at room temper-

ature. Thus, one should expect both S1 and S2 spots in the di�raction pattern of the bulk

terminated surface. However, only S1 spots were observed. This may not be so surprising. As

predicted by theoretical calculations [91] and also revealed by X-ray di�raction data [88], S2

spots are even weaker than the S1 spots. The observed S1 spots are already extremely weak.

Therefore, the intensities of S2 spots are likely below detection limit.

The position of the (0�2�3�2) spot, which is one of the S2 spots, is marked by white square in

Figure 3.6. No intensity has been observed at this position even though it is one of the brighter

S2 spots as expected from its H? value. The H? value of the spot is 0.20 �A�1, which is much

lower than that of the observed brightest normal spots.

The superstructure spots take fractional indices with respect to the normal basis vectors.
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Figure 3.6: Indexing of di�raction spots by using the superstructure basis. The spots with

n = �ih
s
i a multiple of 5 are normal structure spots, while those with n = 5m� 1, with integer m

are the S1 spots. Position of a S2 spot satisfying n = 5m� 2 is marked by a white square.

The superstructure basis can be obtained from the normal basis by s
j
=
P

i
S�1
ij
b
i
with,

S�1 =
1

5

2
6666664

2 �1 1 �2

2 4 1 3

�3 �1 1 �2

2 �1 1 3

3
7777775
: (3.1)

Because of the presence of the 1
5 fraction term in the matrix, the superstructure spots indexed

with respect to normal basis vectors take 1
5
-integer indices (see Table 3.2).

Line scans along the [10000] and [00110] directions at electron energies of 65 eV and 75 eV

are shown in Figure 3.7. For scans along the [10000]-azimuth, the peaks are at 0.39 �A�1, 0.63

�A�1, 1.02 �A�1, 1.26 �A�1, 1.40 �A�1, 1.65 �A�1, 2.04 �A�1, 2.28 �A�1, and 2.67 �A�1. The peak

positions can be obtained by �kk = k0(m+ n�), with k0 = 1:02 �A�1 and (m;n) = (2; �1), (�1; 1),

(1,0), (�2; 2), (3; �1), (0,1), (2,0), (�1; 2), and (1; 1), respectively. Similarly, for scans along the

[001�10]-azimuth, the peak positions are related by �kk = k0��(m + n�) = 1:94(m + n�) �A�1

with (m;n) = (�1; 1) and (1,0), respectively. The superstructure peaks are at 0.53 �A�1 and 1.7

�A�1 and related by �kk = (k0=��)(m + n�) = 0.53 (m + n�) �A�1 with (m;n) = (1,0) and
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Spots (h1h2h3h4) (hs1h
s

2h
s

3h
s

4) n = �
i
hs
i
� 5m Type jHkj/�A�1 jH?j/�A�1

7 (00�10) (�1�1�2�1) 0 N 1.02 1.02

8 (0�1�1�1) (0�2�2�1) 0 N 1.65 0.63

9 (0�1�2�1) (�1�3�4�2) 0 N 2.67 0.39

12 1
5
(31�12) (00�10) -1 S1 0.53 0.87

13 1
5 (
�2�4�6�6) (0�2�2�2) -1 S1 1.73 1.07

14 1
5
(�3�4�6�3) (0�2�3�1) -1 S1 2.16 0.71

15 1
5
(31�6�3) (0�1�3�2) -1 S1 2.16 0.71

16 1
5 (1

�3�7�6) (0�2�3�2) -2 S2 2.27 0.20

Table 3.2: List of di�raction vectors and Miller indices: (hs
1
hs
2
hs
3
hs
4
) are the Miller indices with

respect to the superstructure basis, while (h1h2h3h4) with respect to the normal basis. (N: normal

spots, S1: S1 superstructure spots, and S2: S2 superstructure spots. See Figure 3.6 for spot

numbering.)

Figure 3.7: Line scans along the [10000] (a) and [001�10] (b) azimuth. The position of strong

spots along [10000] show a ratio of ��2 : ��1 : �0 : �1 : �2. The peak numbers correspond to the

di�raction spots numbered in Figure 3.1. The superstructure peaks are indicated by arrows.
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(0,2). The fact that the positions of the superstructure peaks are related by the golden mean

indicates a quasicrystalline superlattice ordering in the surface region. The superstructure spots

are found to broaden. The FWHM of the spots is almost �ve times larger than that of the

specular peak and three times that of the higher order di�raction peaks. This indicates a short

range correlation of atoms associated with the superstructure ordering.

A comparison of line scans at 65 eV and 75 eV shows a strong variation in di�raction intensity

over a relatively small energy range. For example, clearly observed superstructure peaks at 0.53

�A�1 at 75 eV cannot be seen at 65 eV.

3.2 Helium Atom Scattering

Surface Preparation

Again, the surface was prepared by sputtering and annealing. A suitable sputter-annealing

condition was obtained after several trials. It was found that the surface prepared by two or

three cycles of sputtering (Ne+, 1 keV, 3 �A, for 30 minutes) and annealing (600-850 ÆC for

30 minutes) is clean enough for the �rst observation of LEED. However, further cleaning cycles

are needed to observe He di�raction with intense peaks because the extreme surface sensitivity

of He atom scattering necessitates a high perfection of the surface. The quality of the surface

was examined after each sputter-annealing cycle by monitoring the He specular intensity. The

cleaning processes were repeated until an optimum He specular intensity was obtained. The

clean surface was found to contaminate within a few hours at the prevailing UHV conditions

with a base pressure of 2� 1010 mbar. Annealing the contaminated surface at 600-850 ÆC for a

few minutes recovers the surface quality to within a few percent in the specular intensity.

Results and Discussion

The two inequivalent high symmetry directions of the 10-fold surface can be represented by

[10000] and [00110] (see Figure 3.3). Helium di�raction from the clean surface was measured

along these high symmetry directions at di�erent beam energies from 9 meV to 44 meV. The

spectra for selected beam energies are shown in Figure 3.8. The specular intensity is dominant

for all energies. Its intensity of 105 c/s is comparable to the specular intensity of high quality

cleaved surfaces of e.g., MgO(001) [125] and GaAs(110) [126]. Due to their high scattering cross
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Figure 3.8: He di�raction along [10000] (left) and [001�10] (right) at di�erent beam energies.

Superstructure peaks are indicated by arrows.

section, adsorbates and vacancies can be detected in the 0.001 monolayer range by a signi�cant

reduction of the specular He atom intensity [92]. The observation of such a high specular

intensity therefore indicates an extremely low density of defects.

The surface corrugation can be determined from the intensity distribution of the di�raction

spots [92]. A higher corrugation causes more He atoms to be scattered into di�raction peaks

at higher momentum transfer. As the specular peak in the observed spectra dominates the

di�raction pattern (other di�raction peaks have two orders of magnitude lower intensity) a very

low corrugation can be inferred.

HAS and SPA-LEED of the 10-fold surface are compared in Figure 3.9. HAS and SPA-

LEED have di�erent surface sensitivity. While HAS gives exclusive information of the topmost

surface layer as the electron density extending out of the solid re
ects the He atoms well above

the surface [92]. In contrast, electrons penetrate several Angstroms into the surface before

being scattered from the atom potential and hence provides information from a few topmost

layers (refer to Chapter 2 for a more detail explanation). The comparison shows identical peak
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Figure 3.9: A comparison between HAS and SPA-LEED along [10000] (left) and [00110] (right).

Spectrum `A' is He di�raction and `B' and `C' are SPA-LEED at 65 eV and 75 eV, respectively.

The indexing follows Section 3.1.

positions in He di�raction and SPA-LEED. As the spot positions of SPA-LEED can be explained

by the bulk reciprocal basis vectors (see previous section), the observation of the identical peak

positions in HAS and SPA-LEED reveals that the topmost surface layer has an identical order

as the bulk.

As observed in SPA-LEED, He di�raction also shows only S1 spots with very weak intensity

(see comparison in Figure 3.9, right). The appearance of these peaks is very sensitive to sample

alignment and the quality of the surface due to the extremely weak intensity.

Helium di�raction from the surface prepared under di�erent conditions is compared in Figure

3.10. The lower spectrum was from the surface annealed at 600-650 ÆC. The sample was mounted

on an Ohmic heater. In contrast, the upper spectrum was taken from the surface annealed

by using an electron beam (e-beam) heater. With this e-beam heater, the sample could be

annealed at higher temperatures. For the particular spectrum shown in the �gure, the sample
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Figure 3.10: A comparison of He di�rac-

tion along [10000] from di�erently prepared

surfaces. The upper and spectra were taken

from the surface annealed at 800-850 ÆC and

600-650 ÆC (sputtering: 5-20 �A, 30 minutes

in both case), respectively. The intensity of

the lower spectrum has been multiplied by a

factor of 1.5.

was annealed at 800-850 ÆC. A di�erence between the two heating systems is that the cooling

rate of the sample after annealing stopped is slower in the case of the Ohmic heater as compared

to the e-beam heater.

As seen in the �gure, the two spectra are qualitatively di�erent (note that the intensity of

the lower spectrum has been multiplied by a factor of 1.5 to equalize the background intensity

of the two spectra. The asymmetric distribution of the intensity to the left and right of the

specular is due to the sample alignment). In the case of higher annealing temperature, more

peaks are resolved (for example, peaks at 0.24 �A�1 and 1.26 �A�1, marked by arrows, are visible

only in the upper spectrum) and the observed peaks are more intense. Despite these di�er-

ences, the peak width is limited by the instrumental resolution in both cases. The width is a

measure of a correlation length of quasicrystalline order of the atoms. The sharp peaks imply

a long range order in the surface within the length scale of the instrumental transfer width.

These observations demonstrate that a quasiperiodic long range order is achieved even with the

lower annealing temperature. However, to get a highly ordered surface the higher annealing

temperature is needed.

With this superior high temperature preparation, surface phonons have been successfully

measured, which will be presented in Chapter 5. Attempts to measure phonons from the surface

prepared at lower annealing temperature with the Ohmic heater were unsuccessful. In addi-

tional to the structure, the surface morphology is also found to be di�erent for the two surface

preparations.

The surface morphology was studied by recording the specular intensity as a function of
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Figure 3.11: He specular intensity as a func-

tion of momentum transfer (top: surface pre-

pared with slow cooling; and bottom: surface

prepared with fast cooling). The right panel

shows a sketch of scattering from two adjacent

terraces.

beam energy. Since the parallel momentum transfer during scattering is zero for the specular

peak, changes in the beam energy varies only the perpendicular momentum transfer. Note

that the parallel momentum transfer �kk is given by �kk = k
i
(sin �

f
� sin �

i
) with k

i
/�A�1 =

1:39
p
E
i
=meV and E

i
the He beam kinetic energy. For the specular peak, �

i
is equal to �

f
which

yields �kk = 0. The specular intensity variation with beam energy thus re
ects the vertical

roughness of the surface.

Figure 3.11 shows the specular intensity as a function of wavevector k
i
. The upper spectrum

shows an oscillation due to constructive and destructive interference of the wave scattering from

adjacent terraces (see the right panel of the �gure). The oscillating period is Æk = 2.15�0.06
�A�1. From this period, the step height h is calculated to be h = 2:06�0.06 �A by applying a

simple formula 2h sin �
i
= 2�=Æk. The observed height corresponds to the distance between the

quasiperiodic planes [64, 66].

The ratio of in-phase and out-of-phase intensity is related to the ratio of the average terrace

width and the transfer width of the apparatus [127]. The strong oscillation of the specular inten-

sity is possible only when the terrace width is in the order of the transfer width of the apparatus

(about 100 �A) or less. This morphological information is con�rmed by low temperature STM

results given in the next section.

The upper and lower spectra in Figure 3.11 were taken from the surface prepared under



3.3. Scanning Tunneling Microscopy 73

di�erent conditions (the preparation condition is identical to that explained above). The lower

spectrum is from the surface obtained by higher temperature e-beam heating based preparation,

while the upper was annealed with the Ohmic heater. The lower spectrum shows much weaker

oscillations implying that the terrace widths are signi�cantly larger. STM investigation of d-

Al72Ni11Co17 also show wider terraces on the surface prepared at higher annealing temperature

than in the surface annealed at lower temperature [20].

3.3 Scanning Tunneling Microscopy

Experiment

With a better understanding of surface preparation and surface structure gained from the di�rac-

tion data, the surface was investigated by low temperature scanning tunneling microscopy (LT-

STM). Measurements were performed in a home-built LT-STM (see Ref. [128] for a description

of apparative details). Since the microscope is completely surrounded by a radiation shield at

4 K, the residual gases of the chamber are trapped on it providing an excellent low background

pressure reducing the rate of surface contamination by several orders of magnitude compared

to the HAS and SPA-LEED experiments. Once a clean surface was attained the experiments

could be continued for three weeks without any signi�cant degradation of surface quality.

All STM images presented here were taken in constant current mode at 6 K. The surface was

prepared by sputtering (1.5 kV, 4-10 �A, for 15-30 minutes) and annealing (650 ÆC, for 15-20

minutes followed by 700 ÆC for a few seconds, Ohmic heater).

Results and Discussion

A large scale STM image of the clean surface is shown in Figure 3.12 demonstrating a high density

of 2 �A high steps. From various scanned images, an average terrace width of about 100 �A is

determined. The terraces are atomically 
at with a corrugation of a few tenths of an Angstrom.

The steps height and terraces width are in good agreement with the previous observation by HAS.

Steps are found to be very rough and are not orientated along any preferential direction. Other

decagonal systems (for example, d-Al-Cu-Co [17] and d-Al-Ni-Co with di�erent composition

than our sample [18]) also show rough steps.

As shown in Figure 3.13 two types of surface terminations are apparent on a single terrace.
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Figure 3.12: A STM image

demonstrating a high density of

steps (A = 2110�2110�A2, V = 1.46

V and I = 0.55 nA). Terraces are of

approx. 100 �A and rough steps are

observed.

With the same tip and sample condition, some portions of the terrace display more resolved

structure (a �ne structure) than the other part of the terrace (a coarse structure). The �ne

structure is imaged slightly lower (0.2-0.3 �A) with respect to the coarse structure. The observa-

tion of the two types of structure in a single terrace gives further evidence for the dependence

of surface termination on preparation and annealing temperature. Since the coarse structure is

dominating the observed data, it will be analysed in more detail in the following.

As introduced in Section 1.3.3, d-Al-Ni-Co consists of an alternating stacking of two types of

quasiperiodic planes (A and B). The clusters, main building blocks of the system, in each layer

have 5-fold symmetry and have the same orientation in a single layer (details about the clusters

are discussed later in this section). The orientation of the clusters in layers `A' and `B' are related

by inversion symmetry. This is demonstrated by the STM image of two adjacent terraces in

Figure 3.13: A STM image

showing two di�erent surface

terminations within a single

terrace (A = 290�200 �A2, V

= 0.06 V and I = 1.4 nA).
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Figure 3.14: A STM image of two adjacent terraces (a) (A = 316�316 �A2, V = 0.73 V and I = 1.5

nA). High resolution images of the areas marked by frames (b and c) (A = 157�157 �A2, V = 0.73

V and I = 1.5 nA). The dotted and full circles marked the two di�erent types of pentagonal-shape

feature.

Figure 3.15: A gray scale image of

the Fourier transform of the STM

image shown in Figure 3.14(a) dis-

playing a 10-fold symmetry with

sharp spots. Some of the spots are

marked by white circles. Superim-

posed is a SPA-LEED image taken

at 65 eV electron energy.

Figure 3.14(a). High resolution images of the upper and lower terrace are also displayed in

Figure 3.14(b-c). The terraces shows two di�erent types of pentagonal-shape features indicated

by full and dashed circles. The pentagonal features have the same orientation in a single terrace,

but they are in opposite orientation with respect to those in the adjacent terrace.

Gray scale image of the Fourier transform of the image shown in Figure 3.14(a) have a 10-

fold symmetry (Figure 3.15). The spots are sharp and are on �ve rings of radii 1.02 �A�1, 1.2

�A�1, 1.35 �A�1, 1.65 �A�1, and 1.95 �A�1 within experimental errors. The radii have ratios of 1

: � : 3(� � �) : � : �� . The position of the spots reveals a long range, quasiperiodic order.

The real space value corresponding to the wavevector of the outermost spot (k = 1.95 �A�1) is

� 3 �A, which is larger than the length scale expected in an atomically resolved images. The
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Figure 3.16: A high resolution STM image (a) (A = 150�115 �A2, V = 0.025 V and I = 5 nA)

with a tiling overlaid (b).

observed resolution is similar to previous reports on the 10-fold surface of d-Al-Ni-Co [18] and

d-Al-Co-Cu [17]. A portion of a SPA-LEED image is superimposed on the the gray scale image

demonstrating that the Fourier transform of the STM image agrees with the SPA-LEED results.

In addition to information about the steps and terraces, more insight of the atomic structure

of the surface has been gained. Theoretical structure models of d-Al-Ni-Co are based on 20 �A

diameter clusters located at the vertices of a rhombic tiling [64, 66]. In agreement with these bulk

structural models, a high resolution image of a portion of a terrace can be overlaid by a rhombic

tiling of 20 �A edge length (Figure 3.16(b)). The vertices of the tiling are located at the centers

of cluster indicated by circles in the �gure. It should be mentioned that to identify the vertices

of the tiling in STM images is not as easy as in the case of transmission electron microscopy

(TEM) giving an image of projected structure. In TEM images, the 10-fold symmetric contrast

of the columnar clusters are apparent while the STM images (where only the topmost layer is

imaged) lack these clear features (see Figure 3.17 for the atoms in the topmost layer of bulk

terminated surface and compare it to the projected structure in Figure 1.10). By a careful and

intensive search, a tiling was found in one selected high resolution STM image.

Magni�ed sections of this image are shown in Figure 3.18, left, displaying the two di�erent

tiles observed. These are the skinny (with an angle of 36Æ) and fat (with an angle of 72Æ) rhombi
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Figure 3.17: The atomic structure on

the topmost layer of the bulk terminated

surface perpendicular to the 10-fold axis

[66]. The dark and gray circles repre-

sent transition metals and Al, respec-

tively. For the stacking of the �rst and

second layer of the same area see Figure

1.10.

of a Penrose pattern (Section 1.1.1). The neighboring two clusters are packed in two ways in

these rhombi. In one case, they overlap with each other such that the center-to-center distance

S is equal to the shorter diagonal of the skinny rhombus. In the second case, they touch head-

to-head with center-to-center distance equal to the edge length of the rhombi (L = S � � 20

�A).

The overlaid tiling of Figure 3.16(b) is illustrated in Figure 3.18, right. The tiling does not

Figure 3.18: Selected magni�ed sections of the image showing the two di�erent tiles (a) and the

observed tiling (b).
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Figure 3.19: A comparison between the observed and theoretical cluster. The observed cluster

(left) (the displayed is the magni�ed cluster marked by bold circle in Figure 3.16(b) and slightly

rotated with respect to the original position) and the cluster of theoretical model proposed by

Yamamoto et al. [66] (middle). Transition metals of the topmost layer in inner �rst and second

rings are indicated by pentagons with the atomic distance of the theoretical model (right).

re
ect a section of a perfect rhombic Penrose tiling but is randomized. (Note that the tiling is

slightly distorted to accommodate the slight distortion in the STM imaging). A few examples of

local arrangements of tiles which are not allowed in a perfect rhombic Penrose tiling are indicated

by bold edges in Figure 3.16(d). As outlined in Section 1.3, transmission electron microscopy

(TEM) shows that the atomic structure of the type I superstructure phase of Al-Ni-Co can be

explained in terms of a random tiling. Since our sample belongs to this phase, the observed

tiling thus agrees with the TEM results. A random tiling is believed to be responsible for an

entropic stabilization of quasicrystal (Section 1.2). The randomness can be viewed as phason

disorder.

The atomic distribution in a cluster of the bulk terminated surface is shown in Figure 3.19.

The large and small solid circles represent atoms of the topmost and the second layer, while the

dark and gray circles denote transition metals and Al, respectively. The atoms in each layer are

arranged in a pentagonal symmetry and the whole atomic arrangement of the �rst layer is rotated

by 36Æ with respect to that of second layer giving an overall 10-fold symmetry. Agreeing with

the bulk terminated surface, the observed clusters show pentagonal symmetry (see an individual

cluster in Figure 3.19, left). The dark areas in the cluster (where the tip approaches the sample
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to keep the tunneling current constant) seem to be correlated to transition metal sites in the

top layer (marked by large dark circles in the cluster), while brighter parts are related to Al.

However, the center part of the cluster does not agree with the theoretical model. The observed

cluster suggests extra Al atoms to be at the cluster center.

Summary

To summarize this chapter, SPA-LEED images of the surface show very sharp di�raction spots

revealing a perfect long range order in the surface region. With the high resolution and high

dynamic range of the SPA-LEED apparatus, the observation of nearly 500 di�raction spots

in the k-vector range up to 3 �A�1 is possible. The di�raction spots can be indexed by using

the bulk decagonal reciprocal basis vectors which implies that the surface preserves the perfect

quasicrystalline order of the bulk.

The He specular intensity is comparable to the specular intensity of high quality cleaved

surfaces of crystalline systems revealing an extremely low density of defects. He di�raction

shows a very low corrugation as the specular intensity dominates the di�raction peaks. A

comparison of He di�raction with electron di�raction shows the di�raction peaks are equally

observed in both cases giving evidence that the topmost surface layer also retains the perfect

quasicrystalline order of the bulk.

Aside from the bulk derived symmetry and order, the surface shows the superstructure of

the bulk. The d-Al71:8Ni14:8Co13:4 is a type I superstructure phase possessing bulk S1 and S2

superstructure spots. Both He and electron di�raction show very weak S1 spots. The S2 spots

are not detected most likely due to their extremely low intensity.

In addition to the structural information, insights into the surface morphology were gained.

The specular intensity as a function of momentum transfer shows an oscillation with a period

corresponding to a 2 �A step height. This step height corresponds to the interlayer distance of

d-Al-Ni-Co. The average terrace width is estimated to be on the order of 100 �A.

Low temperature STM (6 K) shows a high density of steps with monoatomic 2 �A height

con�rming the morphological features observed in He di�raction. The steps are found to be

very rough. Terraces are atomically 
at with an average width of 100 �A. The terraces show

5-fold symmetric motives, which have identical orientation in a single terrace but are oppositely

oriented in successive terraces con�rming the alternating stacking of two types of quasiperiodic
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planes. Fourier transforms of the structure on single terraces yield sharp spots with a 10-fold

symmetry demonstrating the long range quasiperiodic order. The Fourier transform is in good

agreement with the SPA-LEED images of the same surface.

Clusters of 20 �A diameter located at the vertices of a rhombic tiling have been identi�ed.

The tiling deviates from a perfect rhombic Penrose tiling in agreement with the transmission

electron microscopy of the type I superstructure phase, which found the structure of this phase

characterized by a random rhombic tiling.

Comparing di�erent surface preparations, a dependence of surface termination and morphol-

ogy on the annealing temperature was observed. Helium di�raction from the surface prepared

at higher annealing temperature shows more intense peaks as compared to the surface prepared

at lower annealing temperature. This demonstrates that annealing at higher temperature yields

a more ordered structure. This observation is con�rmed by low temperature STM. The STM

images of the surface prepared at lower annealing temperature show two types of terminations

(the �ne and coarse structures) on a single terrace. Since the tip condition is unchanged during

imaging of the surface, observation of two types of terminations reveal that the surface has not

fully equilibrated at lower annealing temperature.



Chapter 4

The 2-fold d-Al-Ni-Co Surfaces

The high symmetry surfaces of a decagonal quasicrystal include the 10-fold and two inequivalent

2-fold surfaces. The 10-fold axis is along the periodic direction, while two inequivalent sets of

2-fold axes exist perpendicular to the 10-fold axis. These 2-fold axes appear alternatingly at 18Æ

yielding a decagonal symmetry.

To introduce the surfaces, the bulk decagonal basis vectors shown in Figure 1.7 are reil-

lustrated in Figure 4.1. The 10-fold axis runs along [00001], which is perpendicular to the

plane of paper. The two inequivalent sets of 2-fold axes can be represented by [10000] and

[001�10]. The high symmetry directions of the (10000) surface are thus the periodic [00001]

and the quasiperiodic [001�10]. Similarly, the high symmetry directions of the (001�10) sur-

face are the periodic [00001] and the quasiperiodic [10000] ones. In this chapter investiga-

tions of the 2-fold d-Al71:8Ni14:8Co13:4(10000) surface by SPA-LEED and HAS and the 2-fold

d-Al71:8Ni14:8Co13:4(001�10) surface by HAS are presented.

4.1 The 2-fold d-Al-Ni-Co(10000) Surface

4.1.1 Spot Pro�le Analyzing Low Energy Electron Di�raction

A large single grain d-Al71:8Ni14:8Co13:4 sample was cut along the (10000) plane. The surface was

mechanically polished and transferred into the UHV chamber (base pressure 1�10�10 mbar).

The surface was cleaned by repeated sputtering (Ne+ of 1-3 kV, 4-10 �A, for 20-30 minutes)

81
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Figure 4.1: Reillustration of bulk

decagonal basis vectors shown in

Figure 1.7. The two inequivalent

sets of 2-fold axes, represented by

[10000] and [001�10] appear alter-

natingly at 18Æ.

and annealing cycles (600-650 ÆC).

SPA-LEED images of the clean surface recorded at di�erent electron energies are shown in

Figure 4.2. The SPA-LEED images display sharp di�raction spots revealing a perfect long range

order of the surface. The sharpness of spots is comparable to that of di�raction spots observed

in the 10-fold d-Al71:8Ni14:8Co13:4 surface (Section 3.1).

The horizontal and vertical in the images are the periodic [00001] and the quasiperiodic

[001�10] direction, respectively. The density of spots along the quasiperiodic direction is very

high (average 5 spots per �A�1), which is not unusual for quasicrystals. The distribution of

the di�raction spots along the [001�10]-azimuth is shown by line scans in Figure 4.3. The peak

positions are related by the golden mean re
ecting a perfect quasicrystalline order in the surface

region. The peak positions can be obtained by �kk = k0(m + n�), with k0 = 0.60 �A�1 and

(m;n) integers. The values of �kk and (m;n) of each peak are listed in Table 4.1.

The observed peak positions are identical to the surface projection of the bulk reciprocal

lattice structure. As introduced in Section 3.1, the bulk reciprocal vectors of d-Al71:8Ni14:8Co13:4

are b
j
= 1:02(cos 2�j

5
; sin 2�j

5
; 0) �A�1 (j = 1, . . . , 4) and b5 = 0:78(0; 0; 1) �A�1 (Figure 3.1), where

b
j
(j = 1, . . . , 4) are within the quasiperiodic planes and b5 is along the periodic direction. The

projection of b
j
(j = 1, . . . , 4) onto the quasicrystalline [001�10]-direction yields P[001�10](b1) = 0,
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Figure 4.2: SPA-LEED images of the 2-fold d-Al71:8Ni14:8Co13:4(10000) surface taken at 160 eV

(a), 110 eV (b), and 80 eV (c) electron energy displaying a periodic ordering along [00001] and

quasiperiodic ordering along [001�10].

P[001�10](b2) = b sin 2�
5

= b� sin �

5
, P[001�10](b3) = b sin �

5
, and P[001�10](b4) = �b sin �

5
(refer to

Figure 4.4). The projection of any arbitrary vector in the quasicrystalline plane therefore results

in P[001�10](�
4
j=1njbj) = b sin(�

5
)(m+n�) = k0(m+n�), which agrees perfectly with the observed

di�raction pattern.

The k-vectors of the vertical columns of di�raction spots are nb5, with n = 0, �1, �2, �3,
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Figure 4.3: Line scans along the quasicrystalline [001�10] direction. (Intensity in logarithmic

scale).

and �4, and b5 = 0.78 �A�1. This corresponds to an 8 �A periodicity along the periodic [00001]

direction re
ecting a doubling of the minimum periodicity of the decagonal system given by two

layers with an interlayer distance of 2.04 �A. The observed 8 �A periodicity is in agreement with

the bulk reciprocal lattice structure [64, 80].

In addition to the 8 �A periodicity, very weak streaks (shown by arrows in Figure 4.2) cor-

responding to a 16 �A periodicity also appear in the SPA-LEED images (see also in line scan

in Figure 4.9). So far, no evidence of a 16 �A periodicity is reported in the d-Al-Ni-Co system.

As revealed by He di�raction, the topmost layer of the surface also preserves the weak 16 �A

periodicity (see Section 4.1.2). Furthermore, He di�raction of the other inequivalent 2-fold sur-

face of d-Al71:8Ni14:8Co13:4 also shows a weak 16 �A periodicity. Since the 16 �A periodicity is

observed in both inequivalent 2-fold surfaces and the intensity of the 16 �A peaks associated with

the topmost layer (HAS) does not signi�cantly di�er from that resulting from the few mono-
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Figure 4.4: The projection of the

in-plane bulk decagonal basis vec-

tors bj (j = 1, . . . , 4) onto [10000]

and [001�10], the two inequivalent 2-

fold axes.

layers (SPA-LEED), the new periodicity is most likely a bulk feature and not due to a surface

reconstruction.

The SPA-LEED images display an identical distribution of the spots (both position and

intensity) in all even columns. The width of the spots along the periodic and quasiperiodic

directions is isotropic within the error of SPA-LEED electron optics. The distribution of the

spots on the odd columns is qualitatively di�erent compared to that on the even columns. In

contrast to the isotropic width of the spots in the even columns, the spots in the odd columns are

broadened along the quasiperiodic direction, while they exhibit only instrumental broadening

along the periodic direction. The FWHM of the spots along the quasiperiodic direction is about

0.08 �A�1, which is 3-4 times larger than that along the periodic direction. This indicates a short

range lateral correlation of atoms in the layers corresponding to the 8 �A periodicity.

In addition to these structural investigations, the surface morphology was studied. Infor-

mation on vertical roughness of surfaces such as step distribution and orientation of facets can

be achieved by measuring LEED intensities as a function of vertical scattering vector k?. The

intensity pro�les of the measured di�raction spots re
ect the surface morphology [120].

Figure 4.5 shows the measured LEED intensity I(kk, k?) in gray scale representation with k?

along [10000] and kk along [001�10]. The vertical rods (m;n) present the intensity variations of

di�raction spots at �kk = k0(m+n�), with k0 = 0.60 �A�1 and (m;n) = (0,0), �(2; �1), �(�1; 1),
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Figure 4.5: A gray scale plot of LEED intensity I(kk, k?) with k? along [10000] (vertical) and

kk along [001�10] (horizontal). Left: 0
th order spots (spots on the 0th column of SPA-LEED image,

Figure 4.2) and right: 2nd order spots (spots on the 2nd column).

�(1; 0), �(2; �2), �(0; 1), �(2; 0), �(1; �2), �(1; 1), �(3,0), �(0,2), �(2,1), �(4,0), and �(1,2).

Hence, the rods are separated by distances forming a sequence LSLSLLSLLSLS. The di�raction

intensities are observable for a large electron energy range, revealing a highly ordered structure

up to a signi�cant depth from the topmost surface layer. The 0th order spots (spots on the 0th

column of the SPA-LEED image in Figure 4.2) are detectable with suÆcient intensity from 50
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eV to 330 eV (k? = 7.25 - 18.6 �A�1, where k?/�A
�1 =

p
E=0:95eV, while the 2nd order spots

(spots on the 2nd column) were measurable from 50 eV to 240 eV (k? = 7.25 - 15.9 �A�1). No

remarkable changes in spot pro�les such as splitting and broadening have been observed for any

energy.

The strong spots represented by �(1; 0), �(0; 1), �(1; 1), �(2,1), and �(1,2) are observed

for almost the entire energy range, while the remaining weaker spots are detected only up to

around 250 eV (k? � 16 �A�1). However, the intensity ratio of the strong and the weak spots

remains similar for all energies.

Some interesting features of a Fibonacci sequence can be realized in the observed di�raction

pattern. The separation between consecutive spots has one of two values, large L and short S

forming a sequence LSLSLLSLLSLSLLSLS, with L/S = � and L = 0.23 �A�1 = ��2k0 (refer to

the line scan at 100 eV (k? � 10.7 �A�1) in Figure 4.7). This sequence is a part of a Fibonacci

sequence LSLLSLSLLSLLSLSLLSLSLLSLLS . . . (bold: observed sequence). The de
ation of

the sequence by LS ! L2 and L ! S2 (L2 = L + S = 0.37 �A�1 and S3 = L = 0.23 �A�1 =

L2=�) produces another sequence L2S2L2S2L2L2S2L2L2S2L2 which describes the positions of the

strong spots. Similarly, the third generation L3S3L3L3S3. . . (LSL ! L2S2 ! L3 and SL ! L2

! S3 with L3 = L + S + L = 0.60 �A�1 and S3 = S + L = 0.37 �A�1 = L3=�) of the de
ation

corresponds to the positions of the stronger spots (the spots detected only at higher electron

energy, refer to Figure 4.5). The indexing of the di�raction spots also re
ects the symmetry of a

Fibonacci sequence. This fact will be illustrated in a discussion of He di�raction in the following

section.

4.1.2 Helium Atom Scattering

As in the SPA-LEED experiments, the surface was prepared by sputtering (Ne+, 1 keV, 3 �A,

for 30 minutes) and annealing (600-650 ÆC, for 30 minutes). In the usual manner, the surface

quality is monitored after each cycle by the He specular intensity. Helium di�raction from the

clean surface was recorded along the two high symmetry directions, the periodic [00001] and

quasiperiodic [001�10].

Helium di�raction along the quasiperiodic [001�10] direction at selected beam energies are

shown in Figure 4.6. The intensity distribution of the di�raction peaks is beam energy depen-

dent. With increasing He atom kinetic energy, the ratio of the specular intensity to the intensity
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Figure 4.6: He di�raction along the quasicrystalline [001�10] direction at di�erent beam energies

from 12 meV to 38 meV.

of the higher order di�raction peaks decreases. For the strongest di�raction peak at 2.54 �A�1,

the ratio varies from a factor of 5 to 1 for energy varying from 12 meV to 38 meV. The strong

beam energy dependence is attributed to the high corrugation of the surface.

A comparison of He di�raction with SPA-LEED (Figure 4.7) reveals identical peak positions.

The peaks which are strong in He di�raction also appear as stronger peaks in electron di�raction.

However, two of the weak peaks represented by �(2,1) and �(2,2) are stronger in electron

di�raction. The stronger spots of He di�raction thus break the Fibonacci sequence. They follow

a sequence L3S3L3S3L3S3L3, which has a repeating unit of L3S3.
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Peaks (m;n) �k
j

k
/�A�1 Æk Æk

0

Æk
00

(m;n)? (m;n)y (m;n)z

1 (2; �1) 0.23 0.23 L (�1; 1) (1,0) (0,1)

2 (�1; 1) 0.37 0.14 S (1,0) (0,1) (1,1)

3 (1; 0) 0.60 0.23 L 0.60 L3 0.60 L3 (0,1) (1,1) (1,2)

4 (2; �2) 0.74 0.14 S (2,0) (0,2) (2,2)

5 (0;1) 0.97 0.23 L 0.37 S3 0.37 S3 (1,1) (1,2) (2,3)

6 (2; 0) 1.21 0.24 L (0,2) (2,2) (2,4)

7 (1; �2) 1.34 0.13 S (2,1) (1,3) (3,4)

8 (1;1) 1.57 0.23 L 0.60 L3 0.60 L3 (1,2) (2,3) (3,5)

9 (3,0) 1.80 0.23 L (0,3) (3,3) (3,6)

10 (0,2) 1.94 0.14 S 0.37 S3 (2,2) (2,4) (4,6)

11b (2,1) 2.17 0.13 L 0.60 L3 (1,3) (3,4) (4,7)

12 (4,0) 2.40 0.13 S (0,4) (4,4) (4,8)

13 (1,2) 2.54 0.24 L 0.60 L3 0.37 S3 (2,3) (3,5) (5,8)

14 (3,1) 2.77 0.23 L (1,4) (4,5) (5,9)

15 (0,3) 2.91 0.14 S 0.37 S3 (3,3) (3,6) (6,9)

16b (2,2) 3.14 0.23 L 0.60 L3 (2,4) (4,6) (6,10)

17 (4,1) 3.37 0.23 S (1,5) (5,6) (6,11)

18 (1,3) 3.51 0.14 L 0.37 L3 (3,4) (4,7) (7,11)

19a (3,2) 3.74 0.23 L (2,5) (5,7) (7,12)

20a (0,4) 3.88 0.14 S (4,4) (4,8) (8,12)

21a (2,3) 4.11 0.23 L (3,5) (5,8) (8,13)

22a (4,2) 4.34 0.23 L (2,6) (6,8) so on

23a (1,4) 4.49 0.15 S (4,5) (5,9) . . .

Table 4.1: The di�raction vectors of 2-fold d-Al71:8Ni14:8Co13:4(10000) surface along the qua-

sicrystalline [001�10] direction. Æk: di�erence between the vectors of two successive peaks. Æk
0

(Æk
00

): di�erence between the vectors of two successive strong peaks of He di�raction (electron

di�raction). Di�raction vectors of strong peaks and the Fibonacci pairs are written in bold char-

acters. (adetected only in He di�raction, bappears as stronger spot only in electron di�raction.

(m;n)?, (m;n)y, and (m;n)z are values for i = -1, -2, and -3, respectively).
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Figure 4.7: A comparison between HAS and SPA-LEED along the quasicrystalline [001�10] direc-

tion (upper curve: HAS at 25 meV beam energy and lower curve: SPA-LEED at 110 eV electron

energy. The peak positions can be obtained by �kk = 0:60(m+n�) �A�1. The values of (m;n) are

shown next to the corresponding peaks.

As outlined in the previous section, di�raction exhibits many features already encountered in

the di�raction pattern of a 1D Fibonacci lattice. Two indices are needed to index the di�raction

spots of the Fibonacci lattice and stronger peaks take those indices, which are the two successive

Fibonacci numbers or the ratio of which is the two successive Fibonacci numbers (refer to Section

1.1.2). The Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, . . . , where the nth term is the sum of the

previous two terms. The di�raction peaks at 0.97 �A�1, 1.57 �A�1, and 2.54 �A�1 (peaks 5, 8, and

13 in Figure 4.7) are stronger and take the Fibonacci numbers (0,1), (1,1) and (1,2) with respect

to the basis vectors k0 = 0.60 �A�1 and k1 = �k0. Another strong peak at 1.94 �A�1 (peak 10)

takes the indices (0,2), which have the ratio (0,1), the �rst two Fibonacci numbers.
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Figure 4.8: He di�raction along the periodic [00001] direction at di�erent beam energies from 12

meV to 33 meV.

This property can be illustrated also by taking new basis vectors which are � i multiples of

k0 and k1, with i integers. The peak positions with respect to these new basis vectors can be

obtained by �kk = k0�
i(m+ n�). The values of (m;n) for i = -1, -2, and -3 are given in Table

4.1. One can see many stronger peaks take the two successive Fibonacci numbers with respect

to smaller basis vectors.

Helium di�raction along the periodic [00001] direction for di�erent beam energies from 12

meV to 33 meV are shown in Figure 4.8. Intensity of di�raction peaks strongly depends on

beam energy. With increasing beam energy, the intensity of the di�raction peaks increases with
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Figure 4.9: A comparison between HAS and SPA-LEED along the periodic [00001] direction

(upper: He di�raction at 20 meV beam energy and lower: Electron di�raction at 110 eV electron

energy). Weak peaks indicated by arrows correspond to a 16 �A periodicity.

respect to the specular intensity. The ratio of the specular intensity to the intensity of the peak

at 1.56 �A�1 varies from a factor of 5 to 0.25 for beam energy ranging from 12 meV to 33 meV.

A comparison of He di�raction with electron di�raction along the periodic [00001] direction

is shown in Figure 4.9. Peak positions are identical at � 0.39 �A�1, � 0.78 �A�1, � 1.16 �A�1,

and � 1.56 �A�1. The peaks at � 0.78 �A�1 correspond to the main 8 �A periodicity, while the

weak peaks at � 0.39 �A�1 (indicated by arrows) to a 16 �A periodicity. The 16 �A periodic peaks

are weak in both He and electron di�raction.

4.2 The 2-fold d-Al-Ni-Co(001�10) Surface

In this section, He di�raction from the 2-fold d-Al71:8Ni14:8Co13:4(001�10) surface along the qua-

sicrystalline [10000] direction is discussed. Di�raction along the periodic [00001] direction reveals

the 8 �A bulk periodicity. The di�raction data are very similar to those observed along the peri-

odic [00001] direction of the 2-fold d-Al71:8Ni14:8Co13:4(10000) surface (Section 4.1.2) including
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Figure 4.10: He di�raction spectrum from the 2-fold d-Al71:8Ni14:8Co13:4(001�10) surface along

the quasicrystalline [10000]-direction at 21 meV He atom kinetic energy. The peaks are at �kk =

0:51(m+ n�) �A�1, with m and n integers. Values of m and n are shown above the peaks.

the extremely weak peaks corresponding to the 16 �A periodicity.

Figure 4.10 shows He di�raction from the surface after several cycles of Ne+ sputtering (3 kV,

15-20 minutes, 6 �A) and annealing at 600-650 ÆC. The surface was cleaned and its quality was

monitored by the same procedures employed for the (10000) surface (Section 4.1.2). As can be

seen in the spectrum, the intensity of the di�raction peaks is comparable to that of the specular

direction, revealing a high corrugation of the topmost surface layer. A similar corrugation is

observed on the 2-fold (10000) surface (Section 4.1.2). In contrast, the 10-fold surface has a very

low corrugation (Section 3.2).

The peaks at 0.19 �A�1, 0.31 �A�1, 0.51 �A�1, 0.63 �A�1, 0.83 �A�1, 1.14 �A�1, and 1.53 �A�1

correspond to �kk = (k0=�)(m + n�), k0=� = 0.51 �A�1, with (m,n) = (2; �1), (�1; 1), (1,0),

(�2; 2), (0,1), (�1; 2), and (3,0), respectively. These peak positions can be compared to the surface

projection of the bulk reciprocal lattice structure. Projection of the bulk reciprocal vectors b
j
(j

= 1, . . . , 4) onto the quasicrystalline [10000]-direction of the (001�10)-surface yields P[10000](b1) =

b; P[10000](b2) = b cos 2�
5 = b(� � 1)=2 and P[10000](b3) = P[10000](b4) = �b cos �5 = �b�=2 (refer
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Figure 4.11: Angular distribution of He di�raction along the quasicrystalline direction for dif-

ferent energies (A: 21.5 meV, B: 18.2 meV and C: 9.5 meV). The peaks at �i = 27Æ and 63Æ are

re
ections from the facets inclined by 18Æ.

to Figure 4.4). The projection of any arbitrary vector in the quasicrystalline plane therefore

results in P[10000](�
4
j=1njbj) = b(m + n�)=2 = (k0=�)(m + n�) in perfect agreement with the

observed di�raction pattern.

Figure 4.11 shows the angular distribution in He di�raction along the quasicrystalline di-

rection at di�erent beam energies. All di�raction peaks except those at �
i
= 27Æ and 63Æ shift

with incident beam energy as expected. The �xed peaks (marked by dotted lines) are 18Æ o�

from the specular peak of the original or cut surface and are identi�ed as the specular peaks of

facets inclined by 18Æ with respect to the original surface. These facets have (10000)-equivalent

surfaces, as (10000) and (001�10) form an angle of 90Æ, which is equal to 18Æ plus 72Æ, the rotation

angle of the 5-fold symmetry (see Figure 4.1).

Expected di�raction peak positions from the facets based on the bulk structure can be

obtained by a projection of the basis vectors onto the quasiperiodic [001�10]-direction of the
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Figure 4.12: Region around �i =

63Æ of the top spectrum in Fig-

ure 4.11. (m;n) and (m;n)� label

di�raction from the original surface

and facets, respectively. �kk is the

parallel momentum transfer in scat-

tering from the facets

(10000)-surface. The projections yield P[001�10](b1) = 0; P[001�10](b2) = b sin 2�
5 = b� sin �

5 , and

P[001�10](b3) = P[001�10](b4) = �b sin �

5
(refer to Figure 4.4). Therefore, the di�raction peaks from

the facets are expected at �k�
k
= P[001�10](�

4
j=1njbj) = b sin �

5 (m + n�) = k0(m + n�), with

k0 = 0:60 �A�1. The parallel momentum transfer in scattering from the facets can be calculated

by �k�
k
=
q
2mE

i
=�h2(cos ��

i
� sin ��

i
), where ��

i
is the angle of incident beam with respect to the

facet normal and given by ��
i
= �

i
� 18o. Figure 4.12 is a close up view of the top spectrum in

Figure 4.11 around the facet specular. The peaks labeled with (m;n)� are found at the positions

expected from the P[001�10]-projected basis vectors, hence identi�ed as di�raction peaks from the

facets.

In fact, the di�raction peaks from the facets appear at the identical position of peaks observed

in the 2-fold d-Al71:8Ni14:8Co13:4(10000) surface along the quasiperiodic [001�10] direction, which

is demonstrated by comparing the di�raction from the facets and the 2-fold (10000) surface in

Figure 4.13. In contrast to the spectra from the 2-fold (10000) surface, the intensities of facet

di�raction peaks are not symmetric on the left and the right of the specular. This arises from

the alignment of sample with respect to the surface normal, not to facet normal.

In addition to the comparison of angular distribution in di�raction from the facet planes
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Figure 4.13: A comparison of He di�raction from the 2-fold (10000) surface along [001�10] (upper)

and from the facets (lower).

and the 2-fold (10000) surface, their morphological features have been compared by measuring

the specular intensity as a function of beam energy or momentum transfer. The variation of

specular intensity with perpendicular momentum transfer re
ects the vertical roughness of the

surface (Section 3.2). Figure 4.14 shows the specular intensity variation for the facet plane

and the 2-fold (10000) surface. The specular intensity varies in a similar fashion for both cases

indicating the similar morphological feature of the facet planes and the 2-fold (10000) surface

within a length equal to the transfer width of the instrument.

As the facets develop during normal surface preparation and do not have to be induced by a

severe surface treatment, one likely explanation for the formation of the facets is a lower surface

energy of the (10000) facet surface compared to that of the as-cut (001�10) surface. The shape

of as-grown crystals supports the argument based on surface energy. The d-Al71:8Ni14:8Co13:4

single crystals grow as decagonal rods with growth faces of (10000)-orientation. Assuming the

cross section parallel to the quasicrystalline plane re
ects the equilibrium shape, this would

indicate that the (10000) surface has indeed a lower surface energy than the (001�10) surface.

The size of the facets can be estimated from the FWHM of the facet specular peak, which is

about 0:06 �A�1. It is limited by the instrumental resolution. Therefore, it is concluded that the
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Figure 4.14: He specular intensity as a function of momentum transfer from the 2-fold (10000)

surface (upper) and the facets (lower).

width of the facets along the quasiperiodic direction is in the order of 100 �A or larger. Similarly,

the area covered by the facets can be calculated from the intensity of the main and facet specular

peaks. The specular intensity of the as-cut surface is roughly twice the specular intensity of each

of the facets inclined at either of �18Æ. The total specular intensity of the facets inclined in

both directions is thus equal to the specular intensity of the as-cut surface. This shows that the

faceted total area is approximately equal to the remaining non-facetted surface area.

Faceting is frequently observed in periodic systems and faceted surfaces are found to be

technologically useful. They can be used to grow large-scale arrays of nanostructures, tilted

superlattices, etc., because faceted surfaces exhibit selective adsorption planes [129]. Faceting

in quasicrystals is very rarely observed. In fact, this is the �rst observation of faceting in

quasicrystals with the exception of development of facets near the edge of a sample observed in

2-fold surface of i-Al-Pd-Mn [26].

The surface prepared by di�erent sputtering and annealing conditions was investigated to

learn the in
uences of preparation conditions on the developments of facets. The surface was

sputtered at various temperatures varying from room temperature to around 800 ÆC (each step

10-30 minutes) and annealed up to 800 ÆC (10-30 minutes). Helium di�raction was recorded
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after each sputter-annealing cycle (not shown here). All spectra are found to possess di�raction

peaks related to facets. The pro�le of these peaks was not changed.

Summary

A very high corrugation of both 2-fold (10000) and (001�10) surfaces is inferred from the intensity

distribution of the He di�raction. The observed SPA-LEED and HAS data reveal that the

topmost surface layer retains a quasicrystalline order and the di�raction peaks are at positions

expected from the bulk. The (10000) surface shows a hierarchy of di�raction spots, which can

be explained on the basis of a 1D Fibonacci lattice.

As discussed, the (10000) and (001�10) surfaces have a common high symmetry direction

along the 10-fold axis. The di�raction from both surfaces along the 10-fold axis shows the bulk

expected 8 �A periodicity and a new periodicity of 16 �A. The intensity of the di�raction spots

corresponding to the 16 �A periodicity is very weak and not particularly surface sensitive. This

suggests that the 16 �A spots are related to the bulk and are not due to a surface reconstruction.

The (001�10) surface is found to develop facets of (10000)-equivalent orientation. The facet

planes are identical to those observed in crystal growth, suggesting that their formation is due

to a lower surface energy of the (10000)-compared to the as cut (001�10)-surface. The size of the

facets is estimated to be 100 �A or larger. The area covered by the faceted planes is approximately

50 % of the total surface area. These results represent the �rst observation of facet formation

in quasicrystals.



Chapter 5

Surface Phonons of the 10-fold

d-Al-Ni-Co

Before discussing the results of our investigations, a brief review on bulk phonons of quasicrystals

is presented. Phonons in periodic crystals have well-de�ned energy and wavevector due to the

lattice periodicity. A 3D periodic crystal having N atoms per unit cell has 3N modes with three

acoustic and 3(N-1) optical modes. All of these modes can be characterized by using wavevectors

con�ned to the �rst Brillouin zone [130].

Because of the lack of periodicity, and hence absence of a proper Brillouin zone, the wavevec-

tor cannot be a good quantum number to describe the phonon modes of quasicrystals and the

concepts of periodic crystals outlined above cannot be directly employed. It has been thus

of great interest to determine the vibrational properties of quasicrystals from the very begin-

ning of their discovery. Many theoretical and experimental studies of bulk phonons and elastic

properties have been carried out [73, and �nd references therein].

Like other properties, theoretical investigations of dynamical properties of quasicrystals be-

gan with the 1D Fibonacci sequence [131-133] and were followed by studies of Penrose tilings

[134]. Dynamics of 3D quasicrystals with realistic atomic models were determined by using their

higher order approximants (Refs. [135] for i-Al-Cu-Li, [136, 137] for i-Al-Zn-Mg, and [138] for

d-Al-Mn, and [139] for a review). All of these investigations show that quasicrystals, as periodic

crystals, exhibit well de�ned acoustic modes in the continuum limit (the long wavelength limit).

The dispersion curves originate from the Bragg peaks, follow a linear relation up to a certain

99
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wavevector, and �nally become dispersionless. Since the Bragg peaks �ll the reciprocal space

densely, the acoustic branches in principle originate almost everywhere in k-space. However,

only those phonons which are associated to the acoustic branches originating from the stronger

Bragg peaks have signi�cant intensities.

Although a Brillouin zone cannot be properly de�ned in quasicrystals, the positions of the

stronger Bragg peaks can be considered as quasi-Brillouin-zone (QBZ) centers [140, 141]. The

QBZ boundaries are packed hierarchically around the zone centers. Most of the theoretical work

predicts that the acoustic branches become dispersionless at the QBZ boundaries with gaps

opening. The width of the gap depends on the strength of the Bragg peaks. The calculations

also show a large number of dispersionless optical branches and their density increases at higher

frequencies [136].

Experimentally, the dynamics of di�erent icosahedral and decagonal quasicrystals have been

investigated by employing inelastic neutron scattering (Refs. [71, 142, 143] for i-Al-Pd-Mn,

[144, 145] for i-Al-Li-Cu, [146, 147] for i-Al-Fe-Cu, and [72] for d-Al-Ni-Co) and inelastic X-

ray scattering [148]. Almost all measurements con�rm the theoretically predicted linear and

isotropic dispersion relation. QBZ boundaries have been identi�ed in all systems. A unique

feature observed in all quasicrystals is that the phonon line width is limited by the instrumental

resolution up to a certain wavevector and increases rapidly for larger wavevectors. Phonon

peak broadening is thus considered as a signature of quasicrystaline ordering di�ering from the

periodic crystals. It is believed that the continuum of dispersionless modes present in (!; k)

space for larger energies is responsible for the peak broadening. The measured acoustic phonon

peaks beyond a certain energy are just then an accumulation of contributions coming from the

continuum of dispersionless modes.

The value of both k-vector and line width at which the phonon peaks start to broaden

correspond to a length scale which is on the order of the size of the cluster from which the

quasicrystals are made up. For example, peak broadening of transverse modes starts at around

0.40 �A�1 [71] and 0.30 �A�1 [72] in i-Al-Pd-Mn and d-Al-Ni-Co, respectively. The real space

values of these numbers (2� divided by wavevector) are roughly equal to the size of the Mackay

cluster (diameter = 12 �A) and the columnar cluster (diameter = 20 �A), the main building block

of i-Al-Pd-Mn and d-Al-Ni-Co, respectively.

Experimental attempts to detect the theoretically predicted band gaps have not been suc-
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cessful so for. Although two acoustic branches cross at the QBZ boundaries in some systems

(for example see Ref. [71] for i-Al-Pd-Mn) where the gap is expected, no gap opening has been

found. One likely reason of this may be that the gap, if present, is narrow compared to the

instrumental resolution. Optical modes have been experimentally detected, particularly in i-Al-

Pd-Mn [71, 142, 143]. The dispersionless optical modes have been observed at di�erent energies

from 8 meV to 23 meV [143].

Although the nature of the bulk phonons as discussed above have been determined, inves-

tigations of surface phonons have only just started. We have succeeded in measuring Rayleigh

modes on the 10-fold surface of d-Al71:8Ni14:8Co13:4 and the 5-fold surface of i-Al71:5Pd21Mn8:5

by inelastic He atom scattering. Detail investigations on the surface phonons of the 10-fold

d-Al-Ni-Co surface is carried out, which is presented in this chapter, while a brief study of the

surface phonons of the 5-fold i-Al-Pd-Mn surface is given in the next chapter.

5.1 Time-of-
ight Spectra

The surface phonons are measured by inelastic He atom scattering in a time-of-
ight (TOF)

setup. Details of the TOF technique and the experimental chamber are discussed in Chapter 2.

The key idea is that the He atom beam is scattered from the surface and the time-of-
ight of

inelastically scattered He atoms with respect to the elastically scattered He atoms is measured

(see Section 2.1.3 for details).

The surface was prepared by sputtering and annealing. The preparation conditions and qual-

ity monitoring procedures have been presented in Section 3.2. The TOF spectra were recorded

at an elevated sample temperature. This has a two-fold advantage: �rst one is somewhat tech-

nical. The surface at room temperature contaminates very fast due to the adsorption of residual

gases present in the experimental chamber. But, due to the low intensity of inelastically scat-

tered He atoms, the measurement time of each TOF spectrum has to be fairly long (at least an

hour) to observe pronounced phonon peaks. Keeping the sample at elevated temperature, the

quality of surface can be maintained for a longer time, which avoids the frequent surface cleaning

tasks. The second advantage is related to the thermal population of the surface phonons. At

higher temperature, the population of the phonons is higher. This results in a larger probabil-

ity of phonon annihilation during scattering, increasing the amplitudes of annihilation peaks.
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However, at very high temperature the multiphonons are dominant over single phonons. An

appropriate temperature is found at around 150-200 ÆC. TOF spectra were taken along the two

high symmetry directions of the surface at di�erent beam energies from 10 to 33 meV and for a

large set of angles of incidence �
i
.

Two representative TOF spectra recorded at �
i
= 46.5Æ and 42.7Æ are shown in Figures 5.1(a-

b). They consist of a central elastic peak, phonon annihilation and creation peaks, and a broad

background. The elastic peak is due to the di�use scattering from defects. The annihilation

peaks appear at lower 
ight time than the elastic peak due to the gain of energy during the

scattering (Figure 5.1(a)). Similarly, He atoms which loose energy appear as creation peaks at

higher 
ight time (Figure 5.1(b)). The energy and parallel momentum transfer of the phonons are

calculated from the 
ight time, beam energy, and angle of incidence including other experimental

parameters (see Section 2 for the formula).

The intensities as a function energy transfer are shown in Figures 5.1(c-d). The data were

�tted by a sum of Gaussian and Lorenzian line shape for all contributions (the phonon and

di�use elastic peak and the background). The �tting was carried out by minimizing the �2

value (�2 = 1
N

P
N
[
(X

Exp

N
�X

fit

N
)2

�
2
N

]). The total �t as well as the individual elastic, inelastic, and

background parts are shown in the �gure. The annihilation peak at 1.8 meV has a momentum

transfer �K = -0.05 �A�1, while the creation peak at -2.5 meV has �K = 0.1 �A�1. The full-

width at half-Maxima (FWHM) of these peaks is about 1.2 meV, which mainly re
ects the

instrumental broadening.

The presence of well-de�ned inelastic peaks indicates that the inelastic collisions have a

signi�cant single phonon contribution. However, a non-negligible contribution from multiphonon

scattering is also expected. Single phonon scattering is dominant over multiple phonons if 2W <

1, whereW is the surface Debye Waller factor and given by 2W = 24(m=M)(E
iz
=k

B
�
D
)(T=�

D
),

with �
D
the Debye-temperature, E

iz
the energy corresponding to the z-component of the incident

wave vector, and T the surface temperature (refer Section 2.1.2 for details). Since the surface is

bulk terminated (see discussion in Section 3.3), the major contribution is expected from Al (bulk

Debye temperature is 394 K [130]). In this case, the value of 2W for the parameter range of the

present measurements is always greater than 1, suggesting a strong contribution of multiphonon

scattering. For the particular spectra presented in Figure 5.1 (see �gure caption for experimental

parameters), the value of 2W is calculated to be approximately 3.5 (note that the surface Debye
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Figure 5.1: Representative TOF spectra from the 10-fold surface of d-Al71:8Ni14:8Co13:4 recorded

at �i = 46.5Æ (a) and 42.7Æ (b) for the [001�10] azimuth and the sample temperature of around 200

ÆC. (c) and (d): the intensity versus phonon energy transfer. (Solid gray curve: total �t, solid

curve: phonon peak, dotted curve: elastic peak, dashed curve: background.)

temperature is roughly equal to the bulk Debye temperature times 1/
p
2 [149]).

The inelastic intensities resulting from multiphonon scattering normally appear underneath

the single phonon peaks as background [114]. On the other hand, the contribution from the

bulk phonons is also expected in the measured TOF spectra because there exists a continuum

of surface projected bulk bands very close to the Rayleigh modes for a given wavevector, which

may also appear as a broad background in TOF spectra. The observed background intensity

in the measured TOF spectra could be the contribution from the both multiple surface phonon

and the continuum of bulk phonons.
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TOF Spectra at Di�erent Sample Temperatures

TOF spectra were recorded at di�erent sample temperatures ranging from room temperature

to 550 ÆC to investigate the temperature dependence of the di�erent contributions of the TOF

spectra. A set of spectra for selected temperatures (beam energy 22 meV and �
i
= 43Æ) is given

in Figure 5.2. The phonon peaks do not shift with temperature. This reveals that the sound

velocity does not change appreciably with temperature at least up to 550 ÆC.

The di�erent components of the TOF spectrum behave di�erently with temperature. As

expected the intensity of the di�use elastic peak decays exponentially (Figure 5.3, left) with

a decay constant of � � 0.006 K�1. The decay is identical to that for the specular peak (see

comparison in �gure). The surface Debye temperature is estimated about 335 K from the

decay constant considering only aluminum atoms on the topmost surface layer. The bulk Debye

temperature of 394 K yields a surface Debye temperature of around 280 K, which is smaller than

the value calculated from the experimental attenuation by almost 20 %. It should be mentioned

that the presented sample temperatures were extrapolated from a reference temperature at

Figure 5.2: TOF spectra at se-

lected sample temperatures. Sam-

ple temperatures are shown above

the spectra. The spectra are

recorded along the [001�10] azimuth

at �i = 43Æ with 22 meV beam en-

ergy.
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Figure 5.3: Left: the intensity as a function of sample temperature for the di�use elastic peak

(open circles) and for the specular peak (solid squares). The specular intensity has been multiplied

by a factor of 1/200. The solid curve represents a �t with an exponential decay. Right: the phonon

intensity as a function of temperature.

which the sample starts to glow and were not measured exactly. This may be one of the reasons

for the larger error.

The intensity of the phonon peaks increases �rst, reaches a maximum at around 150-200 ÆC,

and starts to fall o� (Figure 5.3, right). For temperature higher than 550 ÆC, the phonon peaks

completely merge into the background.

5.2 Dispersion Relation

A set of TOF spectra along the two inequivalent high symmetry directions (see Figure 5.5 for

the introduction of the high symmetry directions) for di�erent angles of incidence �
i
recorded at

22 meV beam energy and sample temperature of 200ÆC are shown in Figure 5.4. The positions

of single phonon peaks are marked by vertical lines.

An additional peak in the topmost spectrum of Figure 5.4, left (indicated by an arrow) is

not due to single phonon scattering. The angle at which the TOF spectrum is measured is

very close to a di�raction peak at 52.6Æ (�kk = 1.02 �A�1). The di�raction peak contains a

broad, low intensity tail derived from the velocity distribution of incident beam which causes

the appearance of the additional elastic peak, a so-called decepton (refer to Section 2.1 for a

description of decepton).
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Figure 5.4: A series of TOF spectra along the [10000] (left) and [001�10] (right) azimuth with

22 meV beam energy for di�erent angles of incidence and sample temperature of around 200 ÆC.

Angles are given above the spectra. The positions of single phonon peaks are marked by vertical

lines. The peak indicated by an arrow is a decepton.

Figure 5.5 presents the He di�raction pattern of the surface perpendicular to the 10-fold axis.

The position and intensity of the spots along the two high symmetry directions are determined

from the measured line scans at 22 meV beam energy (see line scans in Figure 3.8). The whole

2D pattern is obtained by symmetrization.

Along the [10000] azimuth, the peaks at 1.02 �A�1 (C) and 1.65 �A�1 (E) are strongest, while

the strongest peaks along [001�10] are at 1.2 �A�1 (G) and 1.94 �A�1 (I). The main QBZ boundaries

are thus expected at the midpoint of AC, CE, AG, and GI (marked by crosses) and the QBZ

centers at the positions of the strongest peaks.
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Figure 5.5: He di�raction of the

10-fold d-Al-Ni-Co surface repre-

sented by solid circles. The ra-

dius of circles is proportional to the

intensity (note the specular inten-

sity is not scaled). The high sym-

metry points of the QBZs are de-

noted by letters A, B, C,. . . and

the points marked by crosses are the

QBZ boundaries.

The resulting dispersion relations from the sets of measured TOF spectra at di�erent beam

energies from 10-33 meV are shown in Figure 5.6. Due to the lack of periodicity, the reduced

BZ scheme to express the dispersion relation is not meaningful in quasicrystals. The dispersion

curve folded in the �rst quadrant of (!; k) space is illustrated in Figure 5.7. The QBZ centers

and boundaries are marked by the letters given in Figure 5.5.

In the long wavelength limit, the low energy vibrations in solids are sound waves with a

linear dispersion relation !
l;t

= v
l;t
k, where v

l
and v

t
are the velocities corresponding to the

longitudinal and transverse sound waves. Thus, the slope of the linear dispersion yields the

sound velocity. The slope of the solid lines shown in Figures 5.6 and 5.7 is determined from the

velocity v
R
of the Rayleigh mode estimated from the bulk velocities of d-Al-Ni-Co by using a

relation v
R
=v

t
= (0:87 + 1:12�)=(1 + �) with � = (1 � 2v2

t
=v2

l
)=2(1 � v2

t
=v2

l
), which is obtained

by an approximation for an isotropic elastic medium [150]. Since d-Al-Ni-Co is found to be

elastically isotropic [151], the relation can be employed in our system. Neutron scattering from

the d-Al-Ni-Co yields v
l
= 7000 � 150 m/s and v

t
= 4100 � 150 m/s. Using these values, v

R

is estimated 3750 � 5% m/s. This isotropic sound velocity is used for the solid lines giving the

bulk derived linear dispersion along the [10000] and [001�10] directions in Figures 5.6 and 5.7.

As seen, clearly the measured dispersion curves hold a linear relation following the bulk
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Figure 5.6: The phonon dispersion relation along [10000] (upper) and [001�10] azimuth (lower).

Di�erent symbols represent the data obtained for di�erent beam energy. The solid lines represent

the linear dispersion expected from the bulk (vR = 3750 m/s).

expected dispersion curves originating from the QBZ centers up to a certain wavevector. For

both high symmetry directions, the linearity holds up to around 0.30 �A�1 (energy 7.5 meV).

This observation is quite similar to bulk phonon dispersion which also shows a linear relation up

to this wavevector [72]. Strong phonon peaks are observed in the dispersion curves close to the

Bragg peaks. Although no phonons are detected near the QBZ boundaries, the acoustic mode

follows the expected dispersion leveling o� towards these points.

The opening of a gap were intensively searched for by varying all possible experimental

parameters. However, no indication of gaps were found. Phonon peaks are very broad for

higher energy such that it is very hard to separate them from the background. Finding the gaps

is almost impossible as the dispersion curves do not clearly extend up to the QBZ boundaries.
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Figure 5.7: The dispersion curves folded in the �rst quadrant of (!; k) space along [10000] (upper)

and [001�10] azimuth (lower). Symbols are as Figure 5.6.

5.3 Phonon Peak Width

As discussed in the beginning of this chapter, the investigations of the bulk phonons reveal that

the phonon peak width is limited by instrumental resolution up to a certain wavevector and

increases rapidly with larger wavevector. To determine whether the surface phonons show a

similar behavior, experimental TOF spectra are analyzed in detail, which is presented in this

section. For the analysis, the peaks attributed to phonon creation are chosen. As the energy

resolution strongly depends on energy transfer, an optimum energy resolution can be achieved

in the creation peaks (see Section 2.1.4 for details). The dispersion relation for the selected

peaks is shown in Figure 5.8, top (beam energy 22 meV, direction [001�10], �
i
= 38Æ � 43:7Æ).

Below �
i
= 38Æ (�K > 0.30 �A�1) the phonon peaks of this branch are very weak such that it is

impossible to determine their width reliably.

The peak height as a function of momentum transfer is shown in Figure 5.8, middle. The

height is determined by a �t of the TOF spectra as described in the previous section. Since the

TOF spectra to which the peaks under discussion belong were recorded under di�erent sample
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Figure 5.8: Top: The disper-

sion relation with scan curves (thick

solid line) for selected peaks. Mid-

dle: Phonon peak height as a func-

tion of phonon wavevector. Bot-

tom: the full-width at half-maxima

for selected peaks.

conditions, the peak heights are rescaled based on the intensity of the di�use elastic peak. The

plot of peak height versus wavevector shows a monotonic decrease in agreement with expected

behavior discussed in Section 2.1.2. The strong decrease in peak height results in a less accurate

peak width determination at larger wavevectors. The data can be �tted within a reasonable

statistical error for a fairly wide range of the peak width. Exemplary for the selected TOF

spectra, those with phonon peaks at �K = 0.12 �A�1 and 0.29 �A�1 (TOF spectra at �
i
= 42Æ

and 38Æ, respectively) are shown in Figure 5.9. At lower wavevector, the phonon peaks have

suÆciently high intensity to determine the width with a relatively small error. In contrast, for

larger wavevector the intensity of the peaks is very weak compared to the Gaussian background

and the peak shape cannot be determined exactly. For the particular spectrum at �
i
= 38Æ, the

full-width at half-maxima (FWHM) can be varied from 1.7 meV to 3.4 meV while maintaining

a reasonable agreement of �t and data. The FWHM of the entire data set is given in Figure

5.8, bottom, which demonstrates that average value of the widths increases with increasing
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Figure 5.9: Demonstration of data �tting to determine peak widths. The upper and lower are

the measured TOF spectra at �i = 42Æ and 38Æ with the results of �t (see previous section for the

description of �tting procedure). The normalized deviation of �tted curve from the measured data

is shown at the bottom of each spectrum. The left and right show the �tting for the lower and

upper limit of the width. The upper spectrum is �tted keeping the width of second phonon peak

at -4.9 meV the same for the left and right.

wavevector. However, the accuracy of the peak width becomes poor with increasing wavevector.

In addition to the intrinsic broadening, the peak width depends on instrumental broadening

as well as on the angle of intersection of the scan curve with the dispersion curve (kinematical

focusing, Section 2.1.2). The instrumental broadening is very similar for all peaks under dis-

cussion. To consider the e�ect of kinematical focusing, the scan curves for �
i
= 38Æ and 43:7Æ

are plotted in Figure 5.8, top (refer to Equation 2.37 for the functional dependence of the scan

curve on experimental parameters). The angle of intersection does not change appreciably for

the TOF spectra under consideration revealing that this contribution is similar for all data.
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Hence, the external factors in
uencing the peak width do not signi�cantly contribute to the

k-dependence of the broadening and the k-dependence of experimental widths shown in Figure

5.8, bottom re
ects changes in intrinsic width.

The bulk phonons (transverse modes) of d-Al-Ni-Co show instrumental resolution limited

peaks up to a wavevector of around 0.30 �A�1 and peak width rapidly increase for larger wavevec-

tor [72]. Since the phonon peaks are not separable from the background intensity in the measured

TOF spectra for �K > 0.29 �A�1, a discussion about the peak widths in the wavevector range

where the bulk phonons show peak broadening is not possible.

To conclude this section, with all possible experimental parameters and the available capa-

bility of the He scattering machine as well as the optimum structural quality of the surface, it is

not possible to determine whether the phonon peaks exhibit a strong increase of intrinsic width

beyond a speci�c momentum.

Summary

The surface is found to possess a well de�ned Rayleigh mode. The dispersion follows a linear

k-dependence up to a wavevector of 0.30 �A�1 giving a sound velocity of about 3750 m/s which

is isotropic and in good agreement with bulk measurements. Quasi-Brillouin zone centers are

identi�ed at the positions of the strong Bragg peaks. The extrapolation of the obtained dis-

persion relation indicates that the curve becomes dispersionless at the QBZ boundaries. With

available instrumental capabilities, the peak broadening as observed in the bulk phonons could

neither be con�rmed nor be ruled out.
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The 5-fold i-Al-Pd-Mn Surface

In this chapter, a brief introduction to icosahedral quasicrystals including the indexing scheme

of their di�raction patterns is presented �rst. The introduction is followed by the experimental

details and characterization of the clean surface of i-Al71:5Pd21Mn8:5 by He di�raction. Finally,

surface phonons measured from the same surface are presented and discussed.

Icosahedral Quasicrystals

Icosahedral quasicrystals are 3D quasicrystals possessing six 5-fold, ten 3-fold, and �fteen 2-fold

rotational axes. A macroscopic view of an icosahedral quasicrystal displaying planes of di�erent

symmetries is shown in Figure 6.1. Like 1D and 2D quasicrystals, 3D quasicrystals can be

described in terms of higher dimension periodic structures. Icosahedral quasicrystals can be

obtained by an appropriate 3D cut of a 6D periodic lattice [5].

Among the many examples of icosahedral quasicrystals, Al-Pd-Mn is the most widely inves-

tigated because the structure of this phase has a very high degree of perfection and large grain

samples have been available. From a point of view of surface researcher, i-Al-Pd-Mn, as other

icosahedral quasicrystals, provides an opportunity to study a variety of high symmetry surfaces

including the unique 5-fold surface.

Indexing of the Di�raction Pattern

The reciprocal basis vectors of an icosahedral quasicrystal are shown in Figure 6.2. The six

basis vectors point towards the corners of an icosahedra, and are de�ned by a1 = a(0; 0; 1)

113
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Figure 6.1: A macroscopic view of a 3D

quasicrystal of icosahedral symmetry. It

has six 5-fold, ten 3-fold, and �fteen 2-

fold axes.

and a
j
= a(sin � cos 2�j

5
; sin � sin 2�j

5
; cos �) for j = 2, . . . , 6, where � is the angle between two

adjacent 5-fold axes (tan � = 2) and 1=a is the lattice constant in 6D space [5]. These six basis

vectors can be considered as the physical space projections of a 6D reciprocal basis given by

d�1 = a

0
BBBBBBBBBBBB@

0

0

1

0

0

1

1
CCCCCCCCCCCCA
; d�

j
= a

0
BBBBBBBBBBBB@

sin � cos 2�j
5

sin � sin 2�j
5

cos �

� sin � cos 4�j
5

� sin � sin 4�j
5

� cos �

1
CCCCCCCCCCCCA
; j = 2; : : :; 6: (6.1)

The di�raction vectors can be expressed by Hk =
P6

j=1 hjaj with hj integers. Each di�raction

spot is characterized by six Miller indices (h1h2h3h4h5h6). The di�raction spots pointed to by

a
j
(j = 1, . . . , 6) are thus represented by (100000), (010000), (001000), (000100), (000010),

and (000001), respectively, and the directions along the six 5-fold axes are [100000], [010000],

[001000], [000100], [000010], and [000001].
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Figure 6.2: Illustration of the recipro-

cal basis vectors of an icosahedral qua-

sicrystal. The six basis vectors aj (j

= 1, . . . , 6) are pointing from the cen-

ter towards the corners of an icosahe-

dra. The directions along the aj (j =

1, . . . , 6) can be labeled by [100000],

[010000], [001000], [000100], [000010],

and [000001], respectively.

6.1 Characterization of the Clean Surface

A single grain Al71:5Pd21Mn8:5 quasicrystal was grown by the Czochralski method [152] and an-

nealed for three months at 820 ÆC. The sample was cut and mechanically polished perpendicular

to the 5-fold axis prior to the surface treatments inside the UHV chamber. The single crystal

surface was prepared by Ne+ ion bombardment (1-4 keV, for 30-60 minutes) and annealing at

600 ÆC for 30-60 minutes. Experiments were performed in the UHV chamber (base pressure

2� 10�10 mbar) discussed in Chapter 2.

A typical LEED pattern of the 5-fold i-Al71:5Pd21Mn8:5(100000) surface is shown in Figure

6.3. The high symmetry directions of the surface can be represented by [001�1�11] and [000�110].

Helium di�raction along these high symmetry directions recorded at 22 meV beam energy are

shown in Figure 6.4.

The ratio of specular intensity and higher order di�raction peaks in the observed spectra

is on the order of ten suggesting a higher corrugation. Compared to the 10-fold and 2-fold

surfaces of d-Al-Ni-Co, the surface has a moderate corrugation while the 10-fold surface has a

much lower corrugation and the 2-fold surfaces have signi�cantly higher corrugation. The result

is consistent with the bulk terminated surfaces as the 10-fold surface consists of atoms lying in

a single plane [66], while the possible termination of the 5-fold surface of i-Al-Pd-Mn [7] and

2-fold surfaces of d-Al-Ni-Co [66] are buckled surface layers [7].
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Figure 6.3: A typical LEED picture

of 5-fold i-Al71:5Pd21Mn8:5(100000) sur-

face at 63 eV electron energy. The high

symmetry directions are represented by

[001�1�11] and [000�110].

Figure 6.4: He di�raction along the [001�1�11] (left) and [000�110] (right) directions at 22 meV

beam energy.

The unique symmetry of the surface can be realized from the intensity distribution of di�rac-

tion peaks. As expected from the 5-fold LEED di�raction pattern, the intensity of peaks along

[001�1�11] at wavevector k is di�erent than that of their counterparts at -k (compare the intensity

of peaks at � 0.99 �A�1, marked by 3 and �3 or at � 1.6 �A�1, marked by 4 and �4). The 5-fold

symmetry is better illustrated in 2D di�raction pattern (Figure 6.5). The di�raction pattern

is formed by using the position and intensity of peaks from the line scans shown in Figure 6.4.

As the line scans along the two directions were measured from the surfaces under di�erent con-

ditions, the specular intensity of two directions is di�erent. The displayed intensity in the 2D

pattern is after normalization with respect to the background intensities.
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Figure 6.5: He di�raction of the 5-fold i-Al71:5Pd21Mn8:5(100000) surface represented by solid

circles. The radius of circles is proportional to the intensity (note the specular intensity is not

scaled). The bj (j = 2, . . . , 6) are the surface projected bulk reciprocal basis vectors (left). The

high symmetry points of the QBZs are denoted by letters A, B, . . . and the points marked by

crosses are the QBZ boundaries (right).

The position of selected di�raction peaks are listed in Table 6.1 demonstrating the � -scaling

relation. The di�raction vectors can be obtained by a linear combination of the surface projected

bulk reciprocal basis vectors. The bulk basis a
j
(j = 1, . . . , 6) can be decomposed into the

components parallel and perpendicular to the surface as a
j
= (b

j
; b
jz
). The surface projected

components are shown by solid arrows in Figure 6.5, left, and de�ned by b1 = (0; 0) and b
j
(j

= 2, . . . , 6) = a(sin � cos 2�j
5 ; sin � sin 2�j

5 ) = b(cos 2�j
5 ; sin 2�j

5 ) with b = a sin � = 0.99 �A�1.

6.2 Surface Phonons

Series of TOF spectra for di�erent angles of incidence along the [001�1�11] and [000�110] directions

recorded at a beam energy of 15 meV are shown in Figure 6.6, recorded at a sample temperature

of around 200 ÆC.

As in the 10-fold surface of d-Al-Ni-Co, the TOF spectra consist of a central elastic peak,

single phonon peaks, and background intensity. The single phonon peaks are sharp with the
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Peaks 1 2 3 4 5 6

�kk /�A
�1 0.38 0.60 0.99 1.60 1.98 2.23

�kk/b ��2 ��1 1 � 2 2� -1

Peaks 7 8 9 10 11 12

�kk /�A
�1 2.60 3.19 3.6 1.15 1.88 3.06

�kk/b �2 2� �2+1 � �� ��2

Table 6.1: A list of di�raction vectors of the 5-fold i-Al71:5Pd21Mn8:5(100000) surface for selected

peaks. The peak number follows Figure 6.4 or 6.5.

Figure 6.6: A series of TOF spectra along [001�1�11] (left) and [000�110] (right) with a beam energy

of 15 meV for di�erent angles of incidence. Angles are given above spectra. Single phonon peaks

are marked by vertical lines. The peak indicated by an arrow is a decepton.
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Figure 6.7: The phonon dispersion relation along the [001�1�11] (upper) and [000�110] (lower)

azimuth. Di�erent symbols represent the data obtained for di�erent beam energy. The solid lines

represent linear dispersion expected from the bulk (vR = 3250 m/s).

linewidth limited by the instrumental resolution for smaller wavevetors, while they are very

broad for larger wavevectors, such that it is very hard to identify their position. The TOF

spectrum at �
i
= 41Æ along [001�1�11] is found to possess a decepton resulting from the di�raction

peak at 40.4Æ (�kk = -0.60 �A�1).

The dispersion relation derived from the TOF spectra are shown in Figure 6.7. The solid

lines represent the linear dispersion, the slope of which is estimated from the Rayleigh mode

velocity v
R
expected from the bulk. The bulk velocities v

l
= 6300 � 300 m/s and v

t
= 3500 �

100 m/s [71] yields v
R
= 3250 � 5% m/s, which is slightly smaller than that of the d-Al-Ni-Co

surface. All observed data in the dispersion relation fall on the linear regime. One can clearly see

that the dispersion follows the linear relation expected from the bulk and that it is isotropic in

this linear regime. The linearity holds up to a larger wavevector than in the 10-fold d-Al-Ni-Co

surface. The bulk phonon dispersion (for transverse modes) of i-Al-Pd-Mn also holds a linear

relation up to a larger wavevector than the dispersion of the d-Al-Ni-Co.
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Summary

The 5-fold i-Al-Pd-Mn surface, similarly as the high symmetry surfaces of the d-Al-Ni-Co, shows

a long range, bulk derived quasiperiodic order in the topmost surface layer. Helium di�raction

reveals a moderate corrugation compared to the high symmetry surfaces of the d-Al-Ni-Co

agreeing with the bulk terminated surfaces.

The surface possesses a well-de�ned Rayleigh mode. An isotropic sound velocity of about

3250 m/s is observed. The observed velocity agrees with the experimental bulk phonon data.



Summary and Conclusion

Quasicrystals are a new class of material with long range order without periodicity, which often

show conventionally forbidden rotational symmetries. Apart from the fascinating structure

as well as the bulk-related physical properties, quasicrystals exhibit many interesting surface

properties. Although many aspects of bulk structure of quasicrystals are well understood, many

open questions regarding their surface structure remain.

The presented work focuses on surface studies of quasicrystals to get information about the

fundamental features of the surfaces in this new class of material. The investigation is motivated

by the following questions: Does the surface maintain a long range order? How is the surface

structure related to the bulk? Are the surface features observed in periodic crystals plausible for

quasicrystal surfaces? To investigate these, two di�erent quasicrystals were chosen. Speci�cally,

decagonal (d) Al71:8Ni14:8Co13:4 and icosahedral (i) Al71:5Pd21Mn8:5 were studied to determine

their structure, morphology, and surface phonon dispersions.

These two quasicrystals are the most common systems used for surface studies due to the

availability of large single grain samples. The decagonal quasicrystal belongs to the class of 2D

quasicrystals with quasicrystalline planes stacked periodically along one direction, thus providing

the possibility to study crystalline and quasicrystalline order in a single alloy. In contrast to

2D quasicrystals, the icosahedral quasicrystal has quasicrystalline order in all three dimensions.

Moreover, the two systems provide an opportunity to study various types of high symmetry

surfaces including the unusual 10-fold (in d-Al-Ni-Co) and 5-fold (in i-Al-Pd-Mn) surfaces.

The present works mainly focus on the surfaces of the d-Al-Ni-Co. All existing low index

surfaces, namely the 10-fold (00001), the 2-fold (10000), and the 2-fold (001�10) were studied.

The [10000] and [001�10] directions represent the two inequivalent sets of 2-fold axes appearing

alternatingly at 18Æ in the plane perpendicular to the [00001] (10-fold) axis. Both 2-fold (10000)

121
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and (001�10) surfaces thus have a common high symmetry direction along the 10-fold axis. The

investigation of all high symmetry surfaces provides an opportunity to learn about the relative

stability of di�erent surfaces.

Di�erent experimental techniques capable of providing information both in real and recip-

rocal space were used. To relate the structure of the topmost layer with that of the surface

region (up to several topmost layers), highly surface sensitive elastic He atom scattering (HAS)

and high resolution spot pro�le analyzing low energy electron di�raction (SPA-LEED) were

employed. In addition to providing information of average structure and limited morphological

insights of the topmost layer, HAS is appropriate to characterize the surface quality due to its

extremely high sensitivity to all types of defects such as vacancies, adatoms, and steps. To

determine other features which cannot be achieved by di�raction techniques such as details on

step morphology, local defects, and tiling, the 10-fold surface was imaged by low temperature (6

K) scanning tunneling microscopy (LT-STM) in real space at near atomic resolution. Surface

phonons were investigated by inelastic He atom scattering, which is a unique technique to study

low energy phonons (the Rayleigh mode).

Surfaces prepared by sputtering and annealing are found to possess a high structural quality

suitable for He di�raction. However, the surface termination is found to be dependent on

preparation conditions (particularly the 10-fold d-Al-Ni-Co surface). The surface prepared at

lower annealing temperature shows less intense peaks in He di�raction and its STM images

reveal two types of surface terminations (�ne and coarse structure) in a single terrace, very

rough steps, and narrow terraces. All of these demonstrate that the surface does not reach to

its equilibrium at low annealing temperatures. Annealing to higher temperature always yields

a more ordered structure.

The topmost layer of all surfaces maintains the rotational symmetry of their respective bulk.

Observed di�raction spots are very sharp with widths limited by the instrumental resolution

giving evidence of perfect long range order in the topmost surface layer. The correlation length

is as good as that normally observed in periodic crystal surfaces, where a long range order is

established due to the lattice periodicity.

The di�raction patterns are consistent with those of bulk terminated surfaces. In addition to

the peak positions matching the projections of the respective bulk reciprocal lattice structure,

He di�raction shows a surface corrugation expected for the bulk terminated surfaces. Other
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bulk features like the periodicity and the superstructure are also apparent in the di�raction of

the d-Al-Ni-Co surfaces. Aside from these known bulk features, the 2-fold surfaces exhibit a

new periodicity of 16 �A. Both HAS and SPA-LEED show equally weak peaks corresponding to

the 16 �A periodicity, demonstrating that it is a bulk feature.

As expected in the bulk derived structure, the di�raction vectors are related by the golden

mean (� = 1.618. . . , an irrational number related to the pentagonal and decagonal symmetry).

The di�raction spots are densely distributed in the reciprocal space. The dense spots can be

derived by an irrational projection of higher dimension reciprocal lattice structure into the

physical space. Furthermore, the di�raction pattern exhibits a hierarchy of spots (particularly

the 2-fold d-Al-Ni-Co(10000) surface), which can be explained on the basis of a Fibonacci lattice,

a well-known prototype of 1D quasiperiodic structures.

As normally seen in periodic crystal surfaces, step-terrace formation is observed in the 10-fold

d-Al-Ni-Co surface. STM images of the surface show atomically 
at terraces with a corrugation

of a few tenths of an Angstrom. The terraces are separated by steps of monoatomic height.

The terraces exhibit di�erent types of 5-fold symmetric features correlated by a long range

quasicrystalline order. In spite of a careful surface preparation and the application of a high

performance microscope, atomic resolution of the surface could not be achieved. The best

resolution obtained was � 3 �A. Even with this resolution, the STM image can be overlaid by a

rhombic tiling. The vertices of the tiling are located at the centers of 20 �A diameter clusters.

Determining the tiling is far from trivial. With an intensive search, only one image is found to

demonstrate the tiling on a large area of a terrace.

In additional to the above described structure and step terrace morphology of the surface, a

surface energy related phenomena observed in periodic crystals, the faceting, was also observed

in quasicrystals. The faceting is caused by the tendency of a crystal to lower its surface free

energy. The 2-fold (001�10) surface was found to develop facets of (10000)-equivalent orientation

due to a lower surface energy of the (10000)- compared to the original (001�10)-surface.

With the successful preparation of surfaces with high structural quality, it became possible

to measure surface phonons on the 10-fold surface of the d-Al-Ni-Co and the 5-fold surface of the

i-Al-Pd-Mn. Both surfaces show a well de�ned Rayleigh mode with isotropic sound velocities

agreeing with the respective bulk phonons measurements data. As expected for an acoustic

phonon branch, the dispersion relation holds a linear k-dependent up to a certain wavevector
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and starts to bend down with increasing k-value. From the observed dispersion relation, the

quasi-Brillouin zone (QBZ) centers are identi�ed at the strong Bragg peaks and QBZ boundaries

at half way between the two consecutive strong Bragg peaks.

To conclude, despite their very complex atomic structure and lacking periodicity, quasicrys-

tals yield high quality surfaces under suitable preparation that exhibit a very rich variety of

structural and morphological properties. The quality of surfaces is comparative to that of peri-

odic crystal surfaces. A long range correlation is maintained even on the topmost surface layer.

Phenomenon observed in periodic crystals surfaces such as step-terrace formation, faceting, bulk

termination, and surface phonons are also found in quasicrystals surfaces. However, other sur-

face features like reconstruction have yet to be observed. Structure and dynamics of the surface

very closely re
ect the underlying bulk properties. Finally, a better understanding of the clean

surfaces has opened a way to investigate a possible relationship of the unique structure to the

outstanding surface properties.
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