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Abstract. Let S be a Noetherian scheme, and let X be a scheme over S,
such that all relative symmetric powers of X over S exist. Assume that ei-
ther S is of pure characteristic 0 or X is flat over S. Assume also that the
structural morphism from X to S admits a section, and use it to construct
the connected infinite symmetric power Sym∞(X/S) of the scheme X over S.
This is a commutative monoid whose group completion Sym∞(X/S)+ is an
abelian group object in the category of set valued sheaves on the Nisnevich
site over S, which is known to be isomorphic, as a Nisnevich sheaf, to the
sheaf of relative 0-cycles in Rydh’s sense. Being restricted on seminormal
schemes over Q, it is also isomorphic to the sheaf of relative 0-cycles in the
sense of Suslin-Voevodsky and Kollár. In the paper we construct a locally
ringed Nisnevich-étale site of 0-cycles Sym∞(X/S)+Nis-ét, such that the cate-
gory of étale neighbourhoods, at each point P on it, is cofiltered. This yields
the sheaf of Kähler differentials Ω1

Sym∞(X/S)+ and its dual, the tangent sheaf

TSym∞(X/S)+ on the space Sym∞(X/S)+. Applying the stalk functor, we ob-
tain the stalk TSym∞(X/S)+,P of the tangent sheaf at P , whose tensor product
with the residue field κ(P ) is our tangent space to the space of 0-cycles at P .
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1. Introduction

The aim of this paper is to make it precise the intuitive feeling that rational
equivalence of 0-cycles on an algebraic variety is the same as rational connect-
edness of the corresponding points on the group completed infinite symmetric
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power of that variety. To be more precise, let X be a smooth projective variety
over a field k, and assume for simplicity that k is algebraically closed of zero
characteristic. Fix a point on X and use it to embed the d-th symmetric power
in to the (d + 1)-th symmetric power of X. Passing to colimit, we obtain the
infinite connective symmetric power Sym∞(X) of the variety X over k. Looking
at this infinite symmetric power as a commutative monoid, we can consider its
group completion Sym∞(X)+ in the category of groups. If now P and Q are
closed points on X, they can be also considered as elements of the group com-
pleted symmetric power Sym∞(X)+. Then P is rationally equivalent to Q on X
if and only if one can draw a rational curve through P and Q on Sym∞(X)+.

This philosophy tracks back through the cult paper by Mumford, [15], to
Francesco Severi and possibly earlier, but it does not give us too much, as the
object Sym∞(X)+ is not a variety, and it is not clear what could be a rational
curve on it and, more importantly, an appropriate deformation theory of rational
curves on the object Sym∞(X)+ in the style of Kollár’s book [14]. Though
Roitman had managed working with the group Sym∞(X)+ as a geometrical
object replacing it by the products Symd(X) × Symd(X), see [16] and [17], his
approach seems to be a compromise, which is not amazing as the necessary
technique to deform weird objects was not developed in the early seventies.

So, this is our aim in this paper to develop a technical foundation of deforma-
tion theory of rational curves on Sym∞(X)+, as we see it, and now we are going
to explain and justify the concepts promoted in the paper. First of all, we should
ask ourselves what is the broadest notion of a geometrical object nowadays? One
possible answer might be that a geometrical object is a locally ringed site whose
Grothendieck topology is of some geometric nature. On the other hand, whereas
the monoid Sym∞(X) is an ind-scheme, so can be managed in terms of schemes,
the group completion Sym∞(X)+ clearly requires a spacewalk in the category
of sheaves on schemes with an appropriate topology, such as étale topology or
maybe the better Nisnevich one. Therefore, we choose that our initial envi-
ronment is the category of set valued Nisnevich sheaves on locally Noetherian
schemes over a base scheme S, and the latter will be always Noetherian.

But sheaves on a site are still not geometrical enough. To produce geometry
on a sheaf X we suggest to use the notion of an atlas, which roughly means
that we have a collection of schemes Xi and morphisms of sheaves Xi → X ,
such that the induced morphism from the coproduct

⨿
iXi to X is an effective

epimorphism (see nLab). Sheaves with atlases will be called spaces. The idea of
an atlas gives us a possibility to speak about whether a morphism from a scheme
to a Nisnevich sheaf X is étale with regard to a given atlas on X . A Nisnevich-
étale site XNis-ét is then the site whose underlying category is the category of
morphisms from schemes to X , which are étale with regard to the atlas on X ,
and whose topology is the restriction of the Nisnevich topology on schemes.

For the local study, let P be a point on X , i.e. a morphism from the spectrum
of a field to X , and let NP be the category of étale neighbourhoods of the point
P on the site XNis-ét. If the category NP is cofiltered, we obtain an honest stalk
functor at P , which yields the corresponding point of the topos of sheaves on the
site XNis-ét. If now OX is the sheaf of rings on the site XNis-ét, inherited from
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the regular functions on schemes, its stalk OX, P is a local ring, for each point P
on X . Then (XNis-ét,OX ) is a locally ringed site. The standard procedure then
gives us the sheaf of Kähler differentials Ω1

X /S and its dual, the tangent sheaf
TX /S to the space X . Applying the stalk at P functor to the latter, we obtain
the stalk TX, P , and tensoring by the residue field κ(P ) of the local ring OX, P

we obtain the tangent space

TX (P ) = TX, P ⊗ κ(P )

to the space X at P , with regard to the atlas on X . Thus, a geometrical object
to us is a sheaf X with an atlas, such that NP is cofiltered for each point P on
X , and hence the site XNis-ét is locally ringed by the ring OX .

This approach works very well when we want to geometrize groups of 0-cycles.
Indeed, let X be a locally Noetherian scheme over S, such that the relative sym-
metric power Symd(X/S) exists for each d (this is always the case if, say, X is
quasi-affine or quasi-projective over S). Assume, moreover, that the structural
morphism fromX to S admits a section. Use this section to construct the monoid
Sym∞(X/S), which is and ind-scheme over S. Then we look at the group com-
pletion Sym∞(X/S)+ in the category of Nisnevich sheaves on locally Noetherian
schemes over S. The point here is that if S is either of pure characteristic 0 or
flat over S, then Sym∞(X/S)+ is isomorphic to the sheaf of relative 0-cycles in
the sense of Rydh, see [18]. If, moreover, S is seminormal over Spec(Q), then
the restriction of the sheaf Sym∞(X/S)+ on schemes seminormal over S gives
us a sheaf isomorphic to the sheaves of relative 0-cycles constructed by Suslin
and Voevodsky, [21], and by Kollár, [14]. This is why the sheaf Sym∞(X/S)+ is
really the best reincarnation of a sheaf of relative 0-cycles on X over S.

Now, the fibred squares Symd(X/S)×S Sym
d(X/S) yield a natural atlas, the

Chow atlas, on the sheaf Sym∞(X/S)+. The problem, however, is that we do
not know a priori whether the category NP of étale neigbourhoods of a point P
on Sym∞(X/S)+, constructed with regard to the Chow atlas, is cofiltered. This
is our main technical result in the paper (Theorem 6) which asserts that NP is
cofiltered indeed, for every point P on Sym∞(X/S)+. It follows that we obtain
the locally ringed site Sym∞(X/S)+Nis-ét with the structural sheaf OSym∞(X/S)+

on it. As a consequence of that, we also obtain the sheaf of Kähler differentials
Ω1

Sym∞(X/S)+ and the tangent sheaf TSym∞(X/S)+ on Sym∞(X/S)+, as well as the
tangent space

TSym∞(X/S)+(P )

to the space Sym∞(X/S)+ at a point P .
Assume now for simplicity that S is the spectrum of an algebraically closed

field k of zero characteristic, such as C or Q̄, for example. Any k-rational point
P on Sym∞(X/S)+ corresponds to a 0-cycle on X, which we denote by the same
symbol P . Two points P and Q are rationally equivalent, as two 0-cycles on X,
if and only if there exists a rational curve

f : P1 → Sym∞(X/S)+

on the space of 0-cycles passing through P and Q. Suppose, for example, that
X is a smooth projective surface of general type with trivial transcendental
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part in the second étale l-adic cohomology group H2
ét(X). Bloch’s conjecture

predicts that any two closed points on X are rationally equivalent to each other.
Reformulating, the space of 0-cycles Sym∞(X)+ is rationally connected. The
usual way of proving that a variety is rationally connected is that we first find a
rational curve on it, and then prove that this curve is sufficiently free. As we have
now Kähler differentials and the tangent sheaf with tangent spaces at points on
the space of 0-cycles, one can try to do the same on Sym∞(X)+. The pullback
of the tangent sheaf on 0-cycles to P1 by f is a coherent sheaf. Therefore,

f ∗TSym∞(X)+ = OP1(a1)⊕ . . .⊕ OP1(an)⊕ T ,

where T is a torsion sheaf, and O(ai) are Serre’s twists. If the deformation
theory of rational curves on Sym∞(X/S)+ would be properly developed, we
could apply the “same” arguments as in deforming curves on varieties, to prove
that Sym∞(X)+ is rationally connected, in case when X is a surface of general
type with no transcendental part in the second cohomology group.

Another approach to the same subject had been developed by Green and
Griffiths in the book [7], which contains a lot of new deep ideas, supported
by masterly computations, towards infinitesimal study of 0-cycles on algebraic
varieties. The problem to us with Green-Griffiths’ approach is, however, that
their tangent space is the stalk of a sheaf on the variety itself, but not on a
space of 0-cycles, see, for example, the definition on page 90, or formula (8.1)
on page 105 in [7], and, moreover, the space of 0-cycles, as a geometrical object,
is missing in the book. Our standpoint here is that the concept of a space of
0-cycles should be taken seriously, and we believe that many of our constructions
are implicitly there, in the Green-Griffiths’ book. In a sense, the present paper
can be also considered as an attempt to prepare a technical basis to rethink the
approach by Green and Griffiths, and then try to put a “functorial order” upon
the heuristic discoveries in [7].

Acknowledgements. The main ideas of this manuscript were thought out
in Grumbinenty village in Belarus in the summer 2017, and I am grateful to
its inhabitants for the meditative environment and hospitality. I am also grate-
ful to Lucas das Dores who spotted a few omissions in the first version of the
manuscript.

2. Kähler differentials on spaces with atlases

Throughout the paper we will systematically choose and fix Grothendieck uni-
verses, and then working with categories small with regard to these universes,
but not mentioning this in the text explicitly. A discussion of the foundational
aspects of category theory can be found, for example, in [19] or [22].

Let S be a topos, and let C be a full subcategory in S, which is closed under
finite fibred products. For the purposes which will be clear later, objects in the
smaller category C will be denoted by Latin letters X, Y , Z etc, whereas objects
in the topos S will be denoted by the calligraphic letters, such as X , Y , Z etc.

Let τ be a topology on C, and let O be a sheaf of commutative rings on the
site Cτ , which will be considered as the structural sheaf of the ringed site Cτ .
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Then O is an object of the topos Shv(Cτ ) of set valued sheaves on Cτ , so that
the latter is a ringed topos with the structural sheaf O.

Given an object X in S consider the category C/X whose objects are mor-
phisms X → X in S, where X are objects of C, and morphisms are morphism
f : X → Y in C over the object X . Let (C/X )τ be the big site whose underlying
category is C/X and the topology on C/X is induced by the topology τ on C.
For short of notation, we denote this site by Xτ .

Let also OX be the restriction of the structural sheaf O on the site Xτ . We
shall look at OX as the structural sheaf of the site Xτ . Naturally, OX is an
object of the topos Shv(Xτ ).

The following definitions are slightly extended versions of the definitions in
stack theory. An atlas A on X is a collection of morphisms

A = {Xi → X }i∈I ,

indexed by a set I, such that all the objects Xi are objects of the category C,
the induced morphism

eA :
⨿
i∈I

Xi → X

is an epimorphism in S, and if

X → X

is in A and

X ′ → X

is a morphism in C, the composition

X ′ → X → X

is again in A. The epimorphism eA will be called the atlas epimorphism of the
atlas A.

Notice that since the category S is a topos, and in a topos every epimorphism
is regular, for any atlas A on an object X in S the atlas epimorphism eA is a
regular epimorphism. Moreover, since every topos is a regular category, and in a
regular category regular epimorphisms are preserved by pullbacks, every pullback
of eA is again an epimorphism.

If A is an atlas on X and B is a sunset in A, such that B is an atlas on X ,
then we will say that B is a subatlas on X . If A0 is a collection of morphisms
from objects of C whose coproduct gives an epimorphism onto X , the set A of
all possible precompositions of morphisms from A0 with morphisms from C is an
atlas on X . We will say that A is generated by the collection A0, and write

A = ⟨A0⟩ .

If A consists of all morphisms from objects of C to X , then we will say that the
atlas A is complete. In contrast, if A is generated by A0 and the latter collection
consists of one morphism only, then we will be saying that A is a monoatlas on
the object X .

Let

f : X → Y
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be a morphism in S, and assume that the object Y has an atlas B on it. We will
be saying that f is representable, with regard to the atlas B, if for any morphism

Y → Y

from B the fibred product

X ×Y Y

is an object in C.
Let P be a property of morphisms in C which is τ -local on the source and

target, with regard to the topology τ and in the sense of Definitions 34.19.1
and 34.23.1 in [23]. We will say that the morphism f : X → Y possesses the
property P, with regard to the atlas B on Y , if (i) f is representable with regard
to B, and (ii) for any morphism Y → Y from B the base change

X ×Y Y → Y

possesses P. The stability of P under base change and compositions is then
straightforward.

Let X and Y be objects in S and assume that X is endowed with an atlas A
and Y with an atlas B on them. In such a case the product X ×Y also admits
an atlas A×B which consists of products of morphisms from the atlases on X
and Y . We will say the A×B is the product atlas on X × Y .

For example, if X admits an atlas A, the product X ×X admits the square
A× A of the atlas A, which is an atlas on X × X . For short, we will write A2

instead of A× A. The diagonal morphism

∆ : X → X × X

is representable with regard to A2 if and only if for any two morphisms

X → X and Y → X

from A the fibred product

X ×X Y

is an object in C. In other words, ∆ is representable with regard to A2 if and only
if any morphism from A is representable with regard to A. If ∆ is representable
with regard to A2 then, for short, we will say that X is ∆-representable with
regard to A.

Let X be an object in S with an atlas A on it. Let (C/X )P be the subcategory
in C/X generated by morphisms X → X which are representable and possess
the property P with regard to the atlas A on X . Since the property P is τ -
local on the source and target, the subcategory (C/X )P is closed under fibred
products, and therefore we can restrict the topology τ from C/X to (C/X )P to
obtain a small site Xτ -P. This site depends on the atlas on X .

The site Xτ -P can be further tuned as follows. Let T be a type of objects
in C, and let CT be the corresponding full subcategory in C. Assume that T
is closed under fibred products in C, i.e. for any two morphisms X → Z and
Y → Z in CT the fibred product X ×Z Y in C is again an object of type T.
Let (CT/X )P be the full subcategory in the category (C/X )P generated by
morphisms X → X possessing the property P and such that X is of type T.
Since P is τ -local on source and target and type T is closed under fibred products
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in C, the category (CT/X )P is closed under fibred products. Then we restrict
the topology τ from the category (C/X )P to the category (CT/X )P and obtain
a smaller site Xτ -P-T.

Let X and Y be two objects in S with atlases A and B respectively, and let

f : X → Y

be a morphism in S. For any morphism

X → X

from Xτ -P-T consider the category

X/(CT/Y )P

of morphisms

X → Y → Y

such that the square

(1) X //

��

Y

��
X

f // Y

commutes, and the morphism Y → Y is in Yτ -P-T. If the category X/(CT/Y )P
is nonempty, for any morphism X → X from Xτ -P-T, the morphism f creates
a functor

f−1 : Shv(Yτ -P-T) → Shv(Xτ -P-T)

which associates, to any sheaf F on Yτ -P-T, the sheaf f−1F on Xτ -P-T, such
that, by definition

f−1G (X → X ) = colimF (Y → Y ) ,

where the colimit is taken over the category X/(CT/Y )P.
If F is a sheaf of rings1 on Yτ , it is not true in general that f−1F is a sheaf of

rings on Xτ . The reason for that is that the forgetful functor from rings to sets
commutes with only filtered colimits, whereas the category X/(CT/Y )P might
be well not filtered. But whenever the category X/(CT/Y )P is nonempty and
filtered, the set f−1F (X → X ) inherits the structure of a ring, and if, moreover,
this category is nonempty and filtered for any morphism X → X from Xτ -P-T

the sheaf f−1F is a sheaf of rings on the site Xτ -P-T.
Let us apply the pullback functor f−1 to the structural sheaf of rings OY . For

each pair of two morphisms

X
g−→ Y → Y ,

such that the square (1) commutes and the second morphism possesses P, we
have a homomorphism of rings

OY (Y → Y ) = O(Y )
O(g)−→ O(X) = OX (X → X ) .

1in the paper all rings are commutative rings, if otherwise is not mentioned explicitly
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Such homomorphisms induce a morphism

f−1OY (X → X ) → OX (X → X ) ,

for all morphisms X → X , and hence a morphism of set valued sheaves

(2) f−1OY → OX

If we assume that the category X/(CT/Y )P is nonempty and filtered for every
X → X from Xτ -P-T, the morphism (2) is a morphism of ring valued sheaves on
the site Xτ -P-T. In such a case, though f does not in general give us a morphism
of ring topoi, still we can define the sheaf of Kähler differentials on Xτ -P-T of the
morphism f as

Ω1
X /Y = Ω1

OX /f−1OY
,

in terms of page 115 in the first part of [13] (see also the earlier book [10]).
Any Gothendieck topos is a cartesian closed category. In particular, the topos

Shv(Xτ -P-T) is a cartesian closed category, for each object X in S. The internal
Hom-objects are given by the following formula. For any two set valued sheaves
F and G on the site Xτ -P-T,

Hom(F ,G )(X → X ) = HomShv(Xτ-P-T)(F ×X,G ) ,

where X is considered as a sheaf on Xτ -P-T via the Yoneda embedding. Notice
also that, if

HomX(F ×X,G ×X)

is a subset of morphisms from F to G over X, i.e. the set of morphisms in the
slice category Shv(Xτ -P-T)/X, then

HomX(F ×X,G ×X) = HomShv(Xτ-P-T)(F ×X,G )

for elementary categorical reasons. Then the internal Hom can be equivalently
defined by setting

Hom(F ,G )(X → X ) = HomX(F ×X,G ×X) .

Now, if the category X/(CT/Y )P is nonempty and filtered, for every X → X
in Xτ -P-T, so that we have the sheaf of Kähler differentials Ω1

X /Y , then we can
also define the tangent sheaf on Xτ -P-T to be the dual sheaf

TX /Y = Hom(Ω1
X /Y ,OX ) .

If

Y = Z ∈ Ob(CT) ,

the category X/(CT/Y )P has a terminal object

X //

��

Z

id

��
X

f // Z
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And since every category with a terminal object is nonempty and filtered, the
morphism (2) is a morphism of ring valued sheaves, and we obtain the sheaf of
Kähler differentials

Ω1
X /Z ∈ Ob(Shv(Xτ -P-T))

and the tangent sheaf

TX /Z ∈ Ob(Shv(Xτ -P-T))

The above constructions of Kähler differentials and tangent sheaves apply to
all kinds of geometric setups, embracing smooth and complex-analytic manifolds
in terms of synthetic differential geometry, algebraic varieties, schemes, algebraic
spaces, stacks, etc. All we need is to choose an appropriate category C, a topology
τ on C, a sheaf of rings O and then take S to be the category PShv(C) of set
valued presheaves on C or, when the topology τ is subcanonical, the category
Shv(Cτ ) of sheaves on the site Cτ . If a set valued sheaf X on Cτ is endowed with
an atlas A of morphisms from objects of the category C to X , then we will say
that X is a space, with regard to the atlas A. In other words, a space to us is a
sheaf with a fixed atlas on it.

For the purposes of the present paper we need to work in terms of schemes.
All schemes in this paper will be separated by default. If X is a scheme and P
is a point of X then κ(P ) will be the residue field of the scheme X at P .

Let Sch be the category of schemes. If S is a scheme, let Sch/S be the category
of schemes over S. We will always assume that the base scheme S is Noetherian.
Let Noe/S be the full subcategory in Sch/S generated by locally Noetherian
schemes over S. We will also need the full subcategory Nor/S in Noe/S gener-
ated by locally Noetherian schemes which are locally of finite type over S whose
structural morphism is normal in the sense of Definition 36.18.1 in [23], the full
subcategory Reg/S in Nor/S generated by locally Noetherian schemes locally of
finite type over S whose structural morphism is regular, in the sense of Definition
36.19.1 in [23] (since every regular local ring is integrally closed, every regular
scheme is normal). Finally, let Sm/S be the full subcategory in Reg/S generated
by locally Noetherian schemes locally of finite type over S whose structural mor-
phism is smooth. Recall that every smooth scheme over a field is regular, this
is why Sm/S is indeed a full subcategory in Reg/S. Since every regular scheme
over a perfect field is smooth, if the residue fields of points on the base scheme
S are perfect, the categories Sm/S and Reg/S coincide. Thus, we obtain the
following chain of full embeddings

(3) Sm/S ⊂ Reg/S ⊂ Nor/S ⊂ Noe/S ⊂ Sch/S .

The category Sch possesses the following well-known topologies: the Zariski
topology Zar, h-topology, the étale topology ét, the Nisnevich topology Nis and
the completely decomposed h-topology denoted by cdh. Notice that only the
topologies Zar, Nis and ét are subcanonical, the topologies cdh and h are not
subcanonical. The relation between these topologies is given by the chains of
inclusions

(4) Zar ⊂ Nis ⊂ ét ⊂ h
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and

(5) Nis ⊂ cdh ⊂ h .

The categories Sch/S and Noe/S are obviously closed under fibred products.
Moreover, the categories Nor/S, Reg/S and Sm/S are also closed under fibred
products by Propositions 6.8.2 and 6.8.3 in [8]. For simplicity of notation, the
restrictions of all five topologies from (4) and (5) on the categories from (3) will
be denoted by the same symbols.

For our purposes the most convenient setup is this:

C = Noe/S , τ = Nis , P = ét

and

T ∈ {sm , reg , nor , Noe} ,

i.e.

CT ∈ {Sm/S , Reg/S , Nor/S , Noe/S} .

Since the Nisnevich topology is subcanonical, we can choose

S = Shv((Noe/S)Nis)

to be the category of set valued sheaves on the Nisnevich site (Noe/S)Nis. If a
Nisnevich sheaf X is endowed with an atlas A on it, then we will say that X
is a Nisnevich space, with regard to the atlas A. Accordingly, for any Nisnevich
space X we have the site

XNis-ét-T

of morphisms from locally Noetherian schemes of type T over S to X , étale with
regard to the atlas on X , endowed with the induced Nisnevich topology on it.

If

T = Noe ,

i.e.

CT = Noe/S ,

then, for short of notation, we will write

XNis-ét

for instead of XNis-ét-Noe.
Notice also that S is a terminal object in the category Noe/S, and, since

any sheaf in Shv((Noe/S)ét) is the colimit of representable sheaves, S is also a
terminal object in the category Shv((Noe/S)ét).

Let X be a Nisnevich sheaf on Noe/S. A point P on X is an equivalence
class of morphisms

Spec(K) → X

from spectra of fields to X in the category ShvNis(Noe/S). Two morphisms

Spec(K) → X and Spec(K ′) → X
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are said to be equivalent if there exists a third field K ′′, containing the fields K
and K ′, such that the diagram

Spec(K ′′)

��

// Spec(K ′)

��
Spec(K) // X

commutes. If a morphism from Spec(K) to X represents P then, by abuse of
notation, we will write

P : Spec(K) → X .

The set of points on X will be denoted by |X |. Certainly, if X is represented
by a locally Noetherian scheme X over S, then |X | is the set of points of the
scheme X. A geometric point on X is a morphism from Spec(K) to X , where
K is algebraically closed. Any geometric point on X represents a point on X ,
and any point on X is represented by a geometric point.

Fix an atlas A on the sheaf X . If a point P on X has a representative

Spec(K) → X ,

and the latter factors through a morphism from A, then we will say that P
factors through A.

Let P be a point of X which factors through A. Choose a representative

Spec(K) → X

of the point P with K being algebraically closed. Define a functor

uP : XNis-ét-T → Set

sending an étale morphism

X → X ,

where X is of type T over S, to the set

uP (X → X ) = |XP |

of points on the fibre

XP = X ×X Spec(K)

of the morphism X → X at P . Notice that since the morphism X → X is
étale, it is representable with regard to the atlas A on the sheaf X . And since
P factorizes through A, the fibre XP is a locally Noetherian scheme over S.

If X and X ′ are two schemes of type T over S and endowed with two étale
morphisms X → X and X ′ → X , and if

f : X → X ′

is a morphism of schemes over S and over X , i.e. a morphism in XNis-ét-T, then

uP (f) : uP (X) → uP (X
′)

is the map of sets

|XP | → |X ′
P |
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induced by the scheme-theoretical morphism

XP → X ′
P ,

which is, in turn, induced by the morphism X → X ′.
Let X be a locally Noetherian scheme of type T over S, let

{Xi → X}i∈I

be a Nisnevich covering in Noe/S, and let

X → X

be a morphism in Shv((Noe/S)ét), étale with regard to the atlas A on X . Since
every morphism Xi → X is smooth, and therefore of type T over X, the cover
{Xi → X} is also a Nisnevich cover of the site XNis-ét-T. Applying the functor
uP we obtain the morphism ⨿

i∈I

uP (Xi) → uP (X) ,

which is nothing else but the set-theoretical map⨿
i∈I

|(Xi)P | → |XP | .

Since P factors through A, the latter map is surjective.
If X ′ is another locally Noetherian scheme of type T over S and

X ′ → X

is a morphism of schemes over S, such that the composition

X ′ → X → X

is étale with regard to A, then we look at the morphism

uP (Xi ×X X
′) → uP (Xi)×uP (X) uP (X

′) ,

that is the map

|(Xi ×X X
′)P | → |(Xi)P | ×|XP | |X ′

P | .

Now again, since P factors through A, the latter map is bijective.
In other words, the functor uP satisfies the items (1) and (2) of Definition

7.31.2 in [23]. The last item (3) of the same definition is satisfied when, for
example, the category of neighbourhoods of the point P is cofiltered. Let us
discuss item (3) in some more detail.

An étale neighbourhood of P , in the sense of the site XNis-ét-T, is a pair

N = (X → X , T ∈ uP = |XP |) ,

where X is of type T over S, X → X is a morphism over S, étale with regard
to the atlas A on X , and T is a point of the scheme XP , represented by, say,
the morphism

Spec(κ(T )) → XP .
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Equivalently, an étale neighbourhood of P is just a commutative diagram of
type

Spec(K)

�� ""F
FF

FF
FF

FF
FF

FF
FF

FF
F

X // X
where the morphism X → X is étale with regard to the atlas A on X , the
morphism Spec(K) → X represents the point P , and all morphisms are over
the base scheme S.

If
N ′ = (X ′ → X , T ′ ∈ |XP |)

is another neighbourhood of P , a morphism

N → N ′

is a morphism
X → X ′

over X , and hence over S, such that, if

XP → XP ′

is the morphism induced on fibres, the composition

Spec(κ(T )) → XP → XP ′

represents the point T ′.
Equivalently, if

Spec(K ′)

��

P

""F
FF

FF
FF

FF
FF

FF
FF

FF
F

X ′ // X
is another neighbourhood of P , a morphism of neighbourhoods is a morphism

X → X ′

over X , and hence over S, such that, there is a common field extension K ′′ of
K and K ′, such that Spec(K ′′) → X represents P , and the diagram

Spec(K ′′)

��

// X ′

��
X

;;xxxxxxxxxxxxxxxxxxxx
// X

commutes.
Notice that the above definition of a neighbourhood of a point P on X depends

on the functor uP , sending X → X to |XP |. If we change the functor uP , the
notion of neighbourhood will be different, see Section 7.31 in [23].
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Let NP be the category of neighbourhoods of the point P on X , in the sense
of the site XNis-ét-T. If F is a set valued sheaf on XNis-ét-T, it is, in particular, a
set valued presheaf on the same category, and, as such, it induces a functor

F |N op
P

: N op
P → Set

sending N = (X → X , T ∈ |XP |) to F (X) and a morphism N → N ′ to the
obvious map

F (X ′) → F (X) .

The stalk functor

stP : Shv(XNis-ét-T) → Set

sends a sheaf F on XNis-ét-T to the colimit

colim (F |N op
P
)

of the functor F |N op
P
.

Once again, we should not forget here that the stack functor stP depends on
the definition of a neighbourhood, and the latter depends on the choice of the
functor uP , see Section 7.31 in [23].

Now, as finite limits commute with filtered colimits, if the category NP is
cofiltered, the stalk functor stP is left exact, and item (3) of Definition 7.31.2
in [23] holds true as well, and the stalk functor stP gives rise to a point of the
topos Shv(XNis-ét-T), see Lemma 7.31.7 in [23]. If this is the case, it gives us the
well-behaved stalks

OX , P = stP (OX ) ,

Ω1
X /S, P = stP (Ω

1
X /S)

and

TX /S, P = stP (TX /S)

at the point P .
The latter stalk is not, however, a tangent space to X at P . To achieve an

honest tangent space we need to observe that, whenever NP is cofiltered for each
P , the site XNis-ét-T is locally ringed in the sense of the definition appearing in
Exercise 13.9 on page 512 in [1] (see page 313 in the newly typeset version), as
well as in the sense of a sightly different Definition 18.39.4 in [23]. Indeed, any
scheme U is a locally ring site with enough points. Applying Lemma 18.39.2
in loc.cit we see that for any Zariski open subset V in U and for any function
OU(V ) there exists an open covering V = ∪Vi of the set V such that for each
index i either f |Vi is invertible or (1 − f)|Vi is invertible. If now U → X is an
étale morphism from a scheme U to X over S, with regard to the atlas on X ,
since

Γ(U,OX ) = Γ(U,OU) ,

we obtain item (1) of Lemma 18.39.1 in [23], and the condition (18.39.2.1) in
loc.cit. is obvious.

Now, since the site XNis-ét-T is locally ringed, we consider the maximal ideal

mX, P ⊂ OX, P

and let

κ(P ) = OX, P/mX, P
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be the residue field of the locally ring site at the point P . Then we also have two
vector spaces

Ω1
X /S(P ) = Ω1

X /S, P ⊗OP
κ(P )

and
TX /S(P ) = TX /S, P ⊗OP

κ(P )

over the residue field κ(P ). The latter is our tangent space to the space X at
the point P .

3. Categorical monoids and group completions

Let S be a cartesian monoidal category, so that the terminal object ∗ is the
monoidal unit in S. Denote by Mon(S) the full subcategory of monoids2, and by
Ab(S) the full subcategory of abelian group objects in the category S. Assume
that S is closed under finite colimits and countable coproducts which are dis-
tributive with regard to the cartesian product in S. Then the forgetful functor
from Mon(S) to S has left adjoint which can be constructed as follows.

For any object X in S and for any natural number d let X d be the d-fold
monoidal product of X . Consider the d-th symmetric power

Symd(X ) ,

i.e. the quotient of the object X d by the natural action of the d-th symmetric
group Σd in the category S. In particular,

Sym0(X ) = ∗ and Sym1(X ) = X .

The coproduct
∞⨿
d=0

Symd(X )

is a monoid, whose concatenation product
∞⨿
d=0

Symd(X )×
∞⨿
d=0

Symd(X ) →
∞⨿
d=0

Symd(X )

is induced by the obvious morphism
∞⨿
d=0

X d ×
∞⨿
d=0

X d →
∞⨿
d=0

X d

and the embeddings of Σi × Σj in to Σi+j. The unit

∗ →
∞⨿
d=0

Symd(X )

identifies ∗ with X (0). This monoid will be called the free monoid generated by
X and denoted by N(X ). Thus,

N(X ) =
∞⨿
d=0

Symd(X ) .

For example,
N(∗) = N .

2all monoids in this paper will be commutative by default
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It is easy to verify that the functor

N : S → Mon(S)

is left adjoint to the forgetful functor from Mon(S) to S.
The full embedding of Ab(S) in to Mon(S) admits left adjoint, if we impose

some extra assumption on the category S. Namely, let X be a monoid in S, and
look at the obvious diagonal morphism

(6) ∆ : X → X × X

in the category S, which is also a morphism in the categoryMon(S). The terminal
object ∗ in the category S is a trivial monoid, i.e. a terminal object in the category
Mon(S).

Assume there exists a co-Cartesian square

(7)

X
∆ //

��

X × X

��
∗ // X +

in the category of monoids Mon(S). Then X + is an abelian group object in the
category S.

Let

ιX : X → X +

be the composition of the canonical embedding

ι1 : X → X × X ,

x 7→ (x, 0)

with the projection

πX : X × X → X + .

If

f : X → Y

is a morphism of monoids and Y is an abelian group object in S, the precompo-
sition of the homomorphism

(f,−f) : X × X → Y ,

sending (x1, x2) to f(x1)−f(x2) with the diagonal embedding is 0, whence there
exists a unique group homomorphism h making the diagram

X
ιX //

f

!!C
CC

CC
CC

CC
CC

CC
CC

CC
X +

∃!h

��
Y

commutative.
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This all shows that X + is nothing else but the the group completion of the
monoid X , and the group completion functor

−+ : Mon(S) → Ab(S)

is left adjoint to the forgetful functor from Ab(S) to Mon(S).
For example,

Z = N+

is the group completion of the free monoid N, generated by the terminal object
∗ in the category S.

Notice that, as the categories Mon(S) and Ab(S) are pointed, one can show
the existence of the canonical isomorphism of monoids

(X × X )+
∼→ X + × X + .

In other words, the group completion functor is monoidal.
It is useful to understand how all these constructions work for set-theoretical

monoids. Since monoids are not groups, some care is in place here.
Let M be a monoid in the category of sets Set, written additively, and assume

first that we are given with a submonoid N in M . To understand what would
be the quotient monoid of M by N , we define a relation

R ⊂M ×M

saying that, for any two elements m,m′ ∈M ,

(8) mRm′ ⇔ ∃n, n′ ∈ N with m+ n = m′ + n′ .

Then R is a congruence relation on M , i.e. an equivalence relation compatible
with the operation in M . Indeed, the reflexivity and symmetry are obvious.
Suppose that we have three elements

m,m′,m′′ ∈M ,

and

∃n, n′ ∈ N, such that m+ n = m′ + n′ .

and

∃l′, l′′ ∈ N, such that m′ + l′ = m′′ + l′′ .

Then

m+ n+ l′ = m′ + n′ + l′ = m′′ + l′′ + n′ .

Clearly,

n+ l′, l′′ + n′ ∈ N ,

and we get transitivity. Thus, R is an equivalence relation.
Let M/N be the corresponding quotient set, and let

π :M →M/N

m 7→ [m]

be the quotient map. The structure of a monoid on M/N is obvious,

[m] + [m̃] = [m+ m̃] ,
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and since M is a commutative monoid3, it follows easily that the map π is a
homomorphism of monoids. In other terms, the above relation R on M is a
congruence relation.

Moreover, the quotient homomorphism

M →M/N

enjoys the standard universal property, loc.cit. To be more precise, for any
homomorphism of monoids

f :M → T ,

such that

N ⊂ ker(f) = {m ∈M | f(m) = 0} ,

there exists a commutative diagram of type

M //

!!C
CC

CC
CC

CC
CC

CC
CC

CC
C M/N

∃!

��
T

Now, let M ×M be the product monoid, let

∆ :M →M ×M

be the diagonal homomorphism, and let

∆(M)

be the set-theoretical image of the homomorphism ∆. Trivially, ∆(M) is a
submonoid in the product monoid M ×M , and we can construct the quotient
monoid

M+ = (M ×M)/∆(M) ,

using the procedure explained above. The universal property of the quotient
monoid gives us that the diagram

(9)

M
∆ //

��

M ×M

��
∗ // M+

is pushout in the category Mon(Set). It follows that M+ is the group completion
of M in the sense of our definition given for the general category S.

3recall that, within this paper, all monids are commutative by defaul
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Clearly, the composition

M
m7→(m,0)

//

ιM

""E
EE

EE
EE

EE
EE

EE
EE

EE
E M ×M

��
M+

is a homomorphism of monoids. If

f :M → A

is a homomorphism from the monoid M to an abelian group A, then we define
a homomorphism of monoids

M ×M → A

sending

(m1,m2) 7→ f(m1)− f(m2) ,

and the universal property of the diagram (9) gives us the needed commutative
diagram

M
ιM //

!!B
BB

BB
BB

BB
BB

BB
BB

BB
B M+

∃!

��
A

Moreover, if M is cancellative, the diagram (9) is not only a pushout square
in Mon(Set) but also a pullback square in Set.

Indeed, if

(m1,m2), (m
′
1,m

′
2) ∈M ×M ,

then, according to (8),

∃n, n′ ∈M

such that

(m1,m2) + (n, n) = (m′
1,m

′
2) + (n′, n′)

in M ×M , or, equivalently,

(10) m1 + n = m′
1 + n′ and m2 + n = m′

2 + n′ .

Now, suppose we want to find h completing a commutative diagram of type

(11) T

��

f

((

∃!h

  
M

��

// M ×M

π

��
∗ // M+
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in the category Set. If (m1,m2) is an element of M ×M , the equivalence class
[m1,m2] is 0 in M+, i.e. the ordered pair (m1,m2) is equivalent to (0, 0) in
M ×M modulo the subtractive submonoid ∆(M), if and only if, by (10),

m1 + n = n′ and m2 + n = n′ ,

whence

m1 + n = m2 + n .

Since M is a cancellation monoid, the latter equality gives us that m1 = m2, i.e.
(m1,m2) is in ∆(M). In other words, [m1,m2] = 0 in M+ if and only if (m1,m2)
is in ∆(M). And as the diagram (11) is commutative without h, it follows that
the set-theoretical image of the map f is in ∆(M). It follows that f factorizes
through ∆, i.e. the needed map h exists.

Thus, we see that the abstract constructions relevant to group completions are
generalizations of the standard constructions in terms of set-theoretical monoids.

All the same arguments apply when S is the category PShv(C) of set valued
presheaves on a category C, as all limits and colimits in PShv(C) are sectionwise.
Thus, for any monoid X in PShv(C) the group completion X + exists and it is
a section wise group completion. If X is cancellative, and this is equivalent to
saying that X is section wise cancellative, then the diagram (7) is Cartesian in
PShv(C).

Now let us come back to the general setting. Let again X be a monoid in S.
The notion of a cancellative monoid can be categorified as follows. A morphism

ι : N → X

in the category Mon(S), that is a homomorphism of monoids from N to X , is
uniquely defined by the restriction

ι(1) : ∗ → X

of α on to the subobject ∗ = Sym1(∗) of the object N =
⨿∞

d=0 Sym
d(∗) in

S. Vice versa, as soon as we have a morphism ∗ → X in the category S, it
uniquely defines the obvious morphism ι : N → X in the category Mon(S). The
homomorphism of monoids ι will be said to be cancellative if the composition

adι(1) : X ≃ X × ∗ id×ι(1)−→ X × X → X ,

that is the addition of ι(1) on X , is a monomorphism in S. The monoid X is
a cancellation monoiod if any homomorphism ι : N → X is cancellative.

Clearly, if X is a monoid in PShv(C), then X is cancellative if and only if it
is section wise cancellative.

A pointed monoid in S is a pair (X , ι), where X is a monoid in S and ι
is a morphism of monoids from N to X . A graded pointed monoid is a triple
(X , ι, σ), where (X , ι) is a pointed monoid and σ is a morphism of monoids
from X to N, such that

σ ◦ ι = idN .
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If X is a pointed graded monoid in S, for any natural number d ∈ N one can
consider the cartesian square

Xd
//

��

∗

d

��
X

σ // N

in the category S. The addition of ι(1) in X induces morphisms

Xd → Xd+1

for all d ≥ 0. Let X∞ be the colimit

X∞ = colim (X0 → X1 → X2 → . . . )

in S. Equivalently, X∞ is the coequalizer of the addition of ι(1) in X and
the identity automorphism of X . Since filtered colimits commute with finite
products, there is a canonical isomorphism between the colimit of the obvious
diagram composed by the objects Xd × Xd′ , for all d, d′ ≥ 0, and the product
X∞ × X∞. Since the colimit of that diagram is the colimit of its diagonal, this
gives the canonical morphism from X∞ × X∞ to X∞. The latter defines the
structure of a monoid on X∞, such that the canonical morphism

π : X =
⨿
d≥0

Xd → X∞

is a homomorphism of monoids in S. We call X∞ the connective monoid associ-
ated to the pointed graded monoid X .

Notice that if the category S is exhaustive4, monomorphicity of the morphisms
Xd → Xd+1 yields that the transfinite compositions Xd → X∞ are monomor-
phisms too. The morphisms Xd → Xd+1 are monomorphic, for example, if X
is a cancelation monoid.

Now assume that the colimit X +
∞ exists in the category Mon(S). Since X∞ is

the coequalizer of adι(1) and idX , the group completion X +
∞ is the coequalizer

of the corresponding homomorphism ad+
ι(1) : X + → X + and idX + . It follows

that the sequence

0 → Z ι+−→ X + → X +
∞ → 0

is short exact. Moreover, this sequens splits by the morphism σ+. This gives us
that

X + = Z⊕ X +
∞

in the abelian category Ab(S).
A typical example of a pointed graded monoid in S is the free monoid

N(X ) =
∞⨿
d=0

Symd(X ) ,

4see https://ncatlab.org/nlab/show/exhaustive+category
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where X is a pointed object in S, i.e. the morphism from X to the terminal
object ∗ has a section. For this pointed graded monoid we have that

N(X )d = Symd(X ) ,

for all natural numbers d, and the pointing of each symmetric power Symd(X ) is
induced by the pointing of X in the obvious way. The section gives embeddings

Symd(X ) → Symd+1(X ) ,

and the corresponding connective monoid

N(X )∞ = colim d Sym
d(X )

will be denoted by Sym∞(X ) and called the free connective monoid of the object
X . Then, of course,

Sym∞(X )+ = N(X )+∞ .

Moreover, both free monoids N(X ) and N(X )∞ are cancellative monoids in S.
Now, let C be a cartesian monoidal category with a terminal object ∗ , closed

under finite fibred products and equipped with a subcanonical topology τ . Let
PShv(C) be the category of set valued presheaves on C, and let Shv(Cτ ) be the full
subcategory in PShv(C) of sheaves on C with regard to the topology τ . Since the
category C is cartesian, so are the categories PShv(C) and Shv(Cτ ), and therefore
we can consider the monoids in the categories of sheaves and pre-sheaves. Our
aim is now to apply the constructions above in the case when

S = PShv(C) or S = Shv(Cτ ) .

The Yoneda embedding

h : C → PShv(C)

is a continuous functor, i.e. it preserves limits. It follows that, if X is a monoid
in PShv(C), then it is equivalent to saying that X is a section wise monoid, and
the two diagrams

Mon(C)

h

��

// C

h

��
Mon(PShv(C)) // PShv(C)

and

Ab(C)

��

// Mon(C)

��
Ab(PShv(C)) // Mon(PShv(C))

are commutative. Moreover, the diagonal morphism (6) for a presheaf X is diag-
onal section-wise. It follows that the colimit diagram (7) exists in Mon(PShv(C))
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and, accordingly, the group completion X + is then the section wise group com-
pletion of X . In particular, the group completion X + of the presheaf monoid
X is topology free.

Let PShv(C)s be the full subcategory of separated presheaves in PShv(C), and
let

−s : PShv(C) → PShv(C)s

F 7→ F s

be the left adjoint to the forgetful functor from PShv(C)s to PShv(C), as con-
structed on page 40 in [5]. Let also

−g : PShv(C)s → Shv(Cτ )

F 7→ F g

be the second stage of sheafification, i.e. the gluing of sections as described on the
same page of the same book, or, in other words, the left adjoint to the forgetful
functor from Shv(Cτ ) to PShv(C)s. The composition

−a : PShv(Sch/S) → Shv(Cτ )

of these two functors −s and −g is the left adjoint to the forgetful functor from
Shv(Cτ ) to PShv(C), i.e. the functor which associates to any presheaf the corre-
sponding associated sheaf in the topology τ , see pp 39 - 40 in [5].

Now, since the sheafification functor −a is left adjoint to the forgetful functor
from sheaves to presheaves, the latter is right adjoint, and hence it commutes with
limits. In particular, the forgetful functor from sheaves to presheaves commutes
with products. It follows that the diagrams

Mon(PShv(C)) // PShv(C)

Mon(Shv(Cτ )) //

OO

Shv(Cτ )

OO

and

Ab(PShv(C)) // Mon(PShv(C))

Ab(Shv(Cτ )) //

OO

Mon(Shv(Cτ ))

OO

are commutative.
Next, it is well-known that the functor −a is exact too, and hence it commutes

with products. It follows that −a takes monoids to monoids, and abelian groups
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to abelian groups, and therefore we have the commutative diagrams

Mon(PShv(C)) //

−a

��

PShv(C)

−a

��
Mon(Shv(Cτ )) // Shv(Cτ )

and

Ab(PShv(C)) //

−a

��

Mon(PShv(C))

−a

��
Ab(Shv(Cτ )) // Mon(Shv(Cτ ))

Now, the functor N exists for set valued presheave monoids and it is given
section wise. Moreover, as we mentioned above, the group completion functor
exists for set valued presheaf monoids, and it is also given section wise. It follows
that the functors N and −+ exist also for sheaves on the site Cτ , and can be
constructed by means of composing of the corresponding functors for presheaves
with the sheafification functor.

To be more precise, since the sheafification −a is left adjoint, it also commutes
with all colimits. And as the functors N and −+ are constructed merely by means
of products and colimits, we conclude that that these two functors are preserved
by sheafification. In other words, the diagrams

Mon(PShv(C))

−a

��

PShv(C)
Noo

−a

��
Mon(Shv(Cτ )) Shv(Cτ )

Noo

and

Ab(PShv(C))

−a

��

Mon(PShv(C))
−+

oo

−a

��
Ab(Shv(Cτ )) Mon(Shv(Cτ ))

−+
oo



TANGENT SPACES TO ZERO-CYCLES 25

both commute. As a consequence of that, the diagrams

Mon(PShv(C))

−a

��

PShv(C)
Noo

Mon(Shv(Cτ )) Shv(Cτ )
Noo

OO

and

Ab(PShv(C))

−a

��

Mon(PShv(C))
−+

oo

Ab(Shv(Cτ )) Mon(Shv(Cτ ))
−+

oo

OO

are also both commutative.
The latter two commutative diagrams mean the following. If X is a set valued

sheaf on Cτ , then, in order to construct the free monoid N(X ) in the category
Mon(Shv(Cτ )) we first forget the sheaf property on X and construct N(X ) in
the category Mon(PShv(C)), looking at X as a presheaf, and then sheafify to
get an object in Mon(Shv(Cτ )). Similarly, if X is a set valued sheaf monoid, i.e.
an object of the category Mon(Shv(Cτ )), then, in order to construct its group
completion in the category Ab(Shv(Cτ )) we forget the sheaf property on X and
construct X + in the category Ab(PShv(C)), looking at X as a presheaf monoid,
and then sheafify to get an object in Ab(Shv(Cτ )).

Similarly, if X is a pointed graded monoid in presheaves, then it is a pointed
graded monoid section wise. The construction of the connective monoid X∞, as
an object in the category Mon(PShv(C)), is then section wise and topology free.
But if X is a pointed graded monoid in sheaves, the construction of X∞ follows
the rule above. Namely, we first forget the sheaf property of X and construct
X∞ section wise, i.e. in the category Mon(PShv(C)), and then sheafify to get the
object X∞ in the category Ab(PShv(C)).

As in the previous section, for simplicity of notation, we will write X instead of
the sheaf hX , for any object X in C, and denote objects in PShv(C) and Shv(Cτ )
by calligraphic letters X , Y , etc.

Notice also that if X is a pointed object of C and for any d the d-th symmetric
power Symd(X) exists already in C, then N(X)∞ is an ind-object of C. Recall
that an ind-object in C is the colimit of the composition of a functor

I → C

with the embedding of C in to PShv(C), taken in the category PShv(C), such that
the category I is filtered. Such a colimit is section-wise. Since C is equipped with
a topology, one can also give the definition of a sheaf-theoretical ind-object. An
ind-object in Cτ is the colimit of the same composition, but now taken in the cate-
gory Shv(Cτ ). The latter is obviously the sheafification of the previous ind-object,
and therefore it depends on the topology τ . Let Ind(C) be the full subcategory in
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PShv(C) of ind-objects in C, and let Ind(Cτ ) be the full subcategory in Shv(Cτ )
of ind-objects of Cτ .

Our aim will be to apply these abstract constructions to the case when

C = Noe/S

and

τ = Nis .

The choice of the topology will be explained in the next section. Now we need
to recall relative symmetric powers of locally Noetherian schemes X over S.

Assume that the structural morphism

X → S

satisfies the following property:

(AF) for any point s ∈ S and for any finite collection {x1, . . . , xl} of points in
the fibre Xs of the structural morphism X → S at s there exists a Zariski
open subset U in X, such that

{x1, . . . , xl} ⊂ U

and the composition

U → X → S

is a quasi-affine morphism of schemes.

Quasi-affine morphisms possess various nice properties, see Section 28.12 in
[23], which can be used to prove that if U → S is a morphism of locally Noe-
therian schemes and X is AF over S then X ×S U is AF over U . If, moreover,
U is AF over S the X ×S U is AF over S.

The property AF is satisfied if, for example, X → S is a quasi-affine or quasi-
projective morphism of schemes, see Prop. (A.1.3) in Paper I in [18].

As we now assume that AF holds true for X over S, the d-th symmetric group
Σd acts admissibly on the d-th fibred product

(X/S)d = X ×S . . .×S X

over S in the sense of [9], Exposé V, and the relative symmetric power

Symd(X/S)

exists in the category Noe/S.
Then, according to the abstract constructions above, we obtain the free monoid

N(X/S) generated by the scheme X over S in the category Shv((Noe/S)Nis). For
every integer d ≥ 0 the object N(X/S)d is the relative d-th symmetric power
Symd(X/S) of X over S, and as such it is an object of the category Noe/S. The
free monoid of the scheme X over S is nothing else but the coproduct

N(X/S) =
∞⨿
i=0

Symd(X/S)

taken in the category Shv((Noe/S)Nis).
Assume, in addition, that the structural morphism X → S has a section

S → X .



TANGENT SPACES TO ZERO-CYCLES 27

Notice that the terminal object ∗ in the category Noe/S is the identity morphism
of the scheme S, and therefore the splitting of the structural morphism X → S
by the section S → X induces the splitting

N(X/S)

σ

��8
88

88
88

88
88

88
8

N

ι

CC��������������
id // N

in the category Shv((Noe/S)Nis). The corresponding connective monoid

Sym∞(X/S) = N(X/S)∞ = colim d Sym
d(X/S)

is an ind-scheme over S. As such it can be considered as an object of the category
Ind((Noe/S)Nis).

The colimit
Sym∞(X/S)+

in the category Mon(Shv((Noe/S)Nis)) is the group completion of the monoid
Sym∞(X/S), and, according to what we discussed above, this colimit is nothing
else but the Nisnevich sheafification of the corresponding section wise colimit.

4. Nisnevich spaces of 0-cycles over locally Noetherian schemes

The purpose of this section is define what exactly do we mean when we speak
about spaces of 0-cycles. First we will discuss the latest approach presented in
[18]. Rydh’s construction of a sheaf of relative 0-cycles is compatible with the
earlier approaches due to Suslin-Voevodsky, [21], and Kollár, [14], if we restrict
all the sheaves on seminormal schemes. We think it is important to understand
these two earlier approaches, but for the purpose of not enraging the manuscript
unreasonably, we will discuss the necessary definitions and results from Suslin-
Voevodsky’s paper [21] only.

Rydh’s approach

So let again X be AF over S, and for any nonnegative integer d let Γd(X/S) be
the d-divided power of X over S, as explained in Paper I in [18]. The infinite
coproduct

∞⨿
d=0

Γd(X/S)

is a monoid in Shv((Noe/S)Nis).
The canonical morphism

(X/S)d → Γd(X/S)

is Σd-equivariant on the source, see Prop. 4.1.5 in loc.cit, so that there exists
also a canonical morphism

Symd(X/S) → Γd(X/S) .

If the base scheme S is of pure characteristic 0, or if X is flat over S, the latter
morphism is an isomorphism of schemes by Corollary 4.2.5 in Paper I in [18].
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In other words, the divided power Γd(X/S) differs from the symmetric power
Symd(X/S) only if the residue fields κ(s) can have positive characteristic for
points s ∈ S and, at the same time, X is not flat over S. From the point of
view of the applications which we have in mind, this is quite a bizarre situations,
so that the difference between divided and symmetric powers can be ignored in
practice, and we introduce it merely for completeness of the theory.

Now, let U be a locally Noetherian scheme over S. According to Paper IV in
[18], a relative 0-cycle of degree d on X ×S U over U is the equivalence class of
ordered pairs (Z, α), where Z is a closed subscheme in X ×S U , such that the
composition

Z → X ×S U → U

is a finite, and

α : U → Γd(Z/U)

is a morphism of schemes over U . Notice that since the morphism Z → U is finite,
it is AF, and therefore the scheme Γd(Z/U) does exist. Two such pairs (Z1, α1)
and (Z2, α2) are said to be equivalent if there is a scheme Z and two closed
embeddings Z → Z1 and Z → Z2, and a morphism of schemes α : U → Γd(Z/U)
over U , such that the obvious composition

U
α−→ Γd(Z/U) → Γd(Zi/U)

is αi for i = 1, 2, see page 9 in Paper IV in [18]. If a relative cycle is represented
by a pair (Z, α), we will denote it by [Z, α].

An important property of divided powers is that if

g : U ′ → U

is a morphism of locally Noetherian schemes over S, the natural map

(12) HomU ′(U ′,Γd(X ×S U/U)×U U
′) → HomU ′(U ′,Γd(X ×S U

′/U ′))

is a bijection, see page 12 in paper I in [18]. This allows us to define pullbacks of
relative 0-cycles. Indeed, let [Z, α] be a relative cycle on X ×S U over U . Define
Z ′ and a closed embedding of Z ′ in to X ×S U

′ by the Cartesian square

Z ′

��

// X ×S U
′

��
Z // X ×S U

The composition

U ′ → U → Γd(Z/U)

induces the unique morphism

(13) U ′ → Γd(Z/U)×U U
′

over U ′ whose composition with the projection onto Γd(Z/U) is the initial com-
position. A particular case of the bijection (12) is the bijection

(14) HomU ′(U ′,Γd(Z/U)×U U
′)

∼→ HomU ′(U ′,Γd(Z ′/U ′))
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Applying (14) to (13) we obtain the uniquely defined morphism

α′ : U ′ → Γd(Z ′/U ′) .

Then

g∗[Z, α] = [Z ′, α′]

is, by definition, the pullback of the relative 0-cycle [Z, α] along the morphism g.
It is easy to verify that such defined pullback is functorial, and we obtain the

corresponding set valued presheaf

Y0,d(X/S) : (Noe/S)
op → Set

sending any locally Noetherian scheme U over S to the set of all relative 0-cycles
of degree d on X ×S U over U . Let also

Y0(X/S) =
∞⨿
d=0

Y0,d(X/S)

be the total presheaf of relative 0-cycles of all degrees.
An important thing here is that the presheaf Y0,d(X/S) is represented by the

scheme Γd(X/S), see Paper I and Paper II in [18]. And as the Nisnevich topology
is subcanonical, it follows that Y0,d(X/S) is a sheaf in Nisnevich topology, i.e.
an object of the category Shv((Noe/S)Nis), and the same is true with regard to
the presheaf Y0(X/S).

Since each sheaf Y0,d(X/S) is represented by the divided power Γd(X/S), the
sheaf Y0(X/S) is represented by the infinite coproduct

⨿∞
d=0 Γ

d(X/S), the sheaf
Y0(X/S) is a graded monoid in Shv((Noe/S)Nis), and hence we also have its
group completion

Z0(X/S) = Y0(X/S)
+ .

Moreover, if the structural morphism X → S admits a section, the graded
monoid Y0(X/S) is pointed, and we can also construct the connective monoid

Y ∞
0 (X/S) = colim d Y0,d(X/S)

and its group completion

Z ∞
0 (X/S) = Y ∞

0 (X/S)+ .

Suslin-Voevodsky’s approach

For any scheme X let t(X) be the topological space of the scheme X, and let
c(X) be the set of closed subschemes in X. Then we have a map

t(X) → c(X)

sending any point ζ ∈ X to its closure {ζ} with the induced reduced structure
of a closed subscheme on it. Let

Cycl eff(X) = N(t(X))

be the free monoid generated by points on X. Elements of Cycl eff(X) are the
effective algebraic cycles, or simply effective cycles on the scheme X. Let also

Ceff(X) = N(c(X))
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free monoid generated by closed subschemes of X. For any closed subscheme

Z → X ∈ c(X)

let ζ1, . . . , ζn be the generic points of the irreducible components of the scheme
Z, let

mi = length(Oζi,Z)

be the multiplicity of the component Zi = ζi in Z, and let

cyclX(Z) =
∑
i

miZi

be the fundamental class of the closed subscheme Z of the scheme X. Then we
obtain the standard map

cyclX : c(X) → Cycl eff(X) ,

Z 7→ cyclX(Z) .

The map cyclX extends to the homomorphism of monoids

cyclX : Ceff(X) → Cycl eff(X) ,

If

C(X) = Ceff(X)+

and

Cycl(X) = Cycl eff(X)+

then we also have the corresponding homomorphism of abelian groups

cyclX : C(X) → Cycl(X) .

Elements of the free abelian group Cycl(X) will be called algebraic cycles, or
simply cycles on the scheme X. Points

ζ ∈ t(X) ,

or, equivalently, their closures

Z = {ζ} ,
considered as closed subschemes in X with the induced reduced closed subscheme
structure, can be also considered as prime cycles on X. If

Z =
∑
i

miZi ∈ Cycl(X)

is a cycle on X, where Zi are prime cycles, define its support Supp(Z) to be the
union

Supp(Z) = ∪iZi ∈ c(X)

with the induced reduced structure of a closed subscheme of X.
Let S be a Noetherian scheme. A point on S can be understood as a morphism

P : Spec(k) → S

from the spectrum of a field k to S. A fat point of S over P is then two morphisms
of schemes

P0 : Spec(k) → Spec(R) and P1 : Spec(R) → S ,
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where R is a DVR whose residue field is k, such that

P1 ◦ P0 = P ,

the image of P0 is the closed point of Spec(R), and P1 sends the generic point
Spec(R(0)) to the generic point of the scheme S.

Let now
f : X → S

be a scheme of finite type over S, and let

Z → X

be a closed subscheme in X. Let R be a discrete valuation ring,

D = Spec(R) ,

and let
g : D → S

be a morphism of schemes from D to S. Let also

η = Spec(R(0))

be the generic point of D,

XD = X ×S D , ZD = Z ×S D and Zη = Z ×S η .

Then there exists a unique closed embedding

Z ′
D → ZD ,

such that its pull-back
Z ′
η → Zη

along the morphism Zη → ZD, is an isomorphism, and the composition

Z ′
D → ZD → D

is a flat morphism of schemes, see Proposition 2.8.5 in [8].
In particular, one can apply this “platification” process to a fat point (P0, P1)

over a point P ∈ S with g = P1. Let XP be the fibre of the morphism XD → D
over the point P0,

ZP = ZD ×XD
XP and Z ′

P = Z ′
D ×ZD

ZP .

Since the closed subscheme Z ′
D of XD is flat over D, we define the pull-back

(P0, P1)
∗(Z) of the closed subscheme Z to the fibre XP by the formula

(P0, P1)
∗(Z) = cyclXP

(Z ′
P ) .

This gives the definition of a pullback along (P0, P1) for primes cycles and, by
linearity, extends to a homomorphism

(P0, P1)
∗ : Cycl(X) → Cycl(XP ) .

The following definition of Suslin and Voevodsky is of crucial importance, see
pp 23 - 24 in [21].

Let
Z =

∑
miZi ∈ Cycl(X)

be a cycle on X, and let ζi be the generic point of the prime cycle Zi for each
index i. Then Z is said to be a relative cycle on X over S if:
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• for any generic point η of the scheme S there exists i, such that

f(ζi) = η ,

• for any point P on S, and for any two fat points (P0, P1) and (P ′
0, P

′
1)

over P ,

(P0, P1)
∗(Z) = (P ′

0, P
′
1)

∗(Z)

in Cycl(XP ).

The sum of relative cycles is a relative cycle again, and the same for taking
the opposite cycle in Cycl(X). The 0 in Cycl(X) is relative by convention. Then
we see that relative cycles form a subgroup

Cycl(X/S) = {Z ∈ Cycl(X) | Z is relative over S} .

in Cycl(X). Let also

Cycl eff(X/S) = {Z =
∑

miZi ∈ Cycl(X/S) | mi ≥ 0 ∀i }

be a monoid of effective relative cycles in X over S.
In general the monoid Cycl(X/S) is not a free monoid generated by prime

relative cycles, and the group Cycl(X/S) is not a free abelian group generated
by prime relative cycles.

If ζ ∈ t(X), the dimension of ζ in X,

dim(ζ,X) ,

is, by definition, the dimension of the closure

Z = {ζ}

inside X. A relative cycle

Z =
∑

miZi ∈ Cycl(X/S)

is said to be of relative dimension r if the generic point ζi of each prime cycle Zi
has dimension r in its fibre over S. In other words, if

ηi = f(ζi) ,

we look at the fibre Xηi of the morphism f at ηi. The cycle Z is of relative
dimension r over S if

dim(ζi, Xηi) = r

for each index i. If Z is a relative cycle of relative dimension r on X, then we
write

dimS(Z) = r .

Following [21], p 24, we define

Cycl(X/S, r) = {Z ∈ Cycl(X/S) | dimS(Z) = r}

to be the subset of relative algebraic cycles of relative dimension r on X, which
is obviously a subgroup in Cycl(X/S). The definition of

Cycl eff(X/S, r) = {Z =
∑

miZi ∈ Cycl(X/S, r) | mi ≥ 0 ∀i }

is straightforward.
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Notice that if Z is a relative cycle of relative dimension r, it does not mean that
all the components Zi are of the same dimension r. To pick up equidimensional
cycles, we need the following definition. For any point ζ ∈ t(X) let

dim(X/S)(x) = dimζ(f
−1(f(ζ)))

be the dimension of the fibre f−1(f(ζ)) of the morphism f at ζ. The morphism
f is said to be equidimensional of dimension r if every irreducible component of
X dominates an irreducible component of S and the function

dim(X/S) : t(X) → Z

is constant and equals r for every point ζ on the scheme X. A cycle Z ∈
Cycl(X/S) is equidimensional of dimension r over S if so is the composition

Supp(Z) → X → S .

Let then

Cycl equi(X/S, r) = {Z ∈ Cycl(X/S, r) | Z is equidim. of dim. r} .
Accordingly,

Cycl effequi(X/S, r) = {Z =
∑
i

miZi ∈ Cycl equi(X/S, r) | mi ≥ 0 ∀i } .

Next, let

U → S

be a locally Noetherian scheme over S (not necessarily of finite type over S). In
[21], for any cycle

Z ∈ Cycl(X/S, r)

Suslin and Voevodsky constructed a uniquely defined cycle

ZU ∈ Cycl(X ×S U/U, r)Q ,

a pullback of Z along U → S, such that it is compatible with pullbacks long fat
points. Here and below, for any abelian group A we denote by AQ the tensor
product A⊗Z Q.

Thus, following Suslin and Voevodsky, we obtain the obvious presheaf

Cycl(X/S, r)Q

on the category Noe/S, such that for any morphism

U → S

in Noe/S,

Cycl(X/S, r)Q(U) = Cycl(X ×S U/U, r)Q ,

and the restriction morphisms are induced by the Suslin-Voevodsky’s pullbacks
of relative cycles.

Following [21], we will say that the pullback ZU of a cycle Z ∈ Cycl(X/S, r)
is integral if it lies in the image of the canonical homomorphism

Cycl(X ×S U/U, r) → Cycl(X ×S U/U, r)Q

for all schemes U in Noe/S, and define the subgroup

z(X/S, r) = {Z ∈ Cycl(X/S, r) | ZU is integral} .
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Then z(X/S, r) is an abelian subpresheaf in the presheaf Cycl(X/S, r)Q on the
category Noe/S.

Let also

zeff(X/S, r) = {Z =
∑

miZi ∈ z(X/S, r) | mi ≥ 0 ∀i}

and

zequi(X/S, r) = {Z ∈ z(X/S, r) | Z is equidim. of dim. r over S} .
Clearly, zeff(X/S, r) is a subpresheaf of monoids and zequi(X/S, r) is a presheaf
of abelian groups in z(X/S, r).

For any morphism
U → S ,

which is an object of Noe/S, set

PrimeCycl(X ×S U/U, r) = {Z ∈ Cycl(X ×S U/U, r) | Z is prime}
and

PrimeCycl equi(X ×S U/U, r) = {Z ∈ PrimeCycl(X ×S U/U, r) | Z is equidim.}
If S is regular, and if the morphism U → S is an object of Reg/S, then

zeff(X/S, r) = N(PrimeCycl equi(X ×S U/U, r)) ,

and
zequi(X/S, r) = N(PrimeCycl equi(X ×S U/U, r))

+ ,

see Corollary 3.4.5 in [21].
It does not mean, however, that zeff(X/S, r) is a free monoid in the category

of set valued presheaves freely generated by a set valued “presheaf of relative
prime cycles of dimension r” on the category Reg/S, as the Suslin-Voevodsky
pullback of a relative prime cycle is not necessarily a prime cycle, so that the
needed set valued presheaf does not exist. But zequi(X/S, r) is certainly the group
completion of zeff(X/S, r) as a presheaf on Reg/S.

Theorem 1. Let S be a Noetherian scheme, and let X be a scheme of finite
type over S. Then the presheaves z(X/S, r) and zeff(X/S, r) are sheaves in cdh-
topology and, as a consequence, in the Nisnevich topology on the category Noe/S.

Proof. See Theorem 4.2.9(1) on page 65 in [21].

Relative cycles can be classified by their degrees, provided there exists a pro-
jective embedding of X over S. Indeed, assume that X is projective over S, i.e.
there is a closed embedding

i : X → PnS
over S. For each cycle

Z =
∑

mjZj ∈ Cycl(X/S)

one can define its degree

deg(Z, i) =
∑

deg(i(Zj))

with regard to the embedding i. Let also

zeffd ((X, i)/S, r) = {Z ∈ zequi(X/S, r) | deg(Z, i) = d} .
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The set valued presheaf

zeffd ((X, i)/S, r) : Noe/S → Set

is given by the formula

zeffd ((X, i)/S, r)(U) = {Z ∈ zequi(X ×S U/U, r) | deg(Z, i×S idU) = d} ,

for any locally Noetherian scheme U over S.

Now recall that if F is a set-valued presheaf on Noe/S then F is said to be
h-representable if there is a scheme Y over S, such that the h-sheafification Fh of
the sheaf F is isomorphic to the h-sheafification HomS(−X)h of the representable
presheaf HomS(−X), see Definition 4.4.1 in [21].

Theorem 2. Let X be a projective scheme of finite type over S and fix a pro-
jective embedding i : X → PnS over S. Then, for any two nonnegative integers r
and d, the presheaf zeffd ((X, i)/S, r) is h-representable by a scheme Cr,d(X/S, i)
projective over S, i.e. there is an isomorphism

zeffd ((X, i)/S, r)h ≃ HomS(−, Cr,d(X/S, i))h
of set valued sheaves in h-topology on Noe/S. Moreover,

zeff(X/S, r) =
∞⨿
d=0

zeffd ((X, i)/S, r) ,

and then zeff(X/S, r) is h-representable by the scheme

Cr(X/S) =
∞⨿
d=0

Cr,d(X/S, i) .

Proof. See Section 4.2 in [21].

A disadvantage of Theorem 2 is in the presence of h-sheafification. The latter is
a retribution for the generality of the representability result. For relative 0-cycles
this obstacle can be avoided as follows.

Recall that we have already defined the category Nor/S, a full subcategory
in Sch/S generated by schemes over S whose structural morphism is normal,
i.e. the fibre at every point is a normal scheme, see Definition 36.18.1 in [23].
Similarly, one can define the notion of a seminormal morphism and introduce a
full subcategory sNor/S generated by locally Noetherian schemes over S whose
structural morphisms are seminormal, so that we have a chain of subcategories

Nor/S ⊂ sNor/S ⊂ Noe/S .

For any presheaf F on Noe/S let F |sNor/S be the restriction of F on the sub-
category sNor/S.

To avoid divided powers, suppose that either the base scheme S is of pure
characteristic 0 or X is flat over S. Recall that it follows that

Γd(X/S) = Symd(X/S)

by Corollary 4.2.5 in Paper I in [18], and hence one can work with symmetric
powers instead of divided ones. By Theorem 3.1.11 on page 30 of the same paper,
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we have the canonical identifications

(15) Y0,d(X/S) = Symd(X/S) ,

Y0(X/S) =

(
∞⨿
d=0

Symd(X/S)

)
,

Y ∞
0 (X/S) = Sym∞(X/S) ,

Z0(X/S) =

(
∞⨿
d=0

Symd(X/S)

)+

and

Z ∞
0 (X/S) = Sym∞(X/S)+ .

In other words, we do not need h-sheafification to prove representability of
sheaves of 0-cycles in Rydh’s terms.

The point here is that, assuming that S is semi-normal over Spec(Q), after
restricting of these five sheaves on the category sNor/S, we also have the corre-
sponding canonical isomorphisms

(16) Y0,d(X/S)|sNor/S ≃ zeffd ((X, i)/S, 0)|sNor/S ,

(17) Y0(X/S)|sNor/S ≃ zeff(X/S, 0)|sNor/S ,

(18) Y ∞
0 (X/S)|sNor/S ≃ zeff(X/S, 0)∞|sNor/S ,

(19) Z0(X/S)|sNor/S ≃ z(X/S, 0)|sNor/S

and

(20) Z ∞
0 (X/S)|sNor/S ≃ z(X/S, 0)∞|sNor/S .

Moreover, the same result holds true when we compare Rydh’s sheaves of 0-cycles
with Kollár’s sheaves constructed in Chapter I of the book [14]. These important
comparison results are proven in Section 10 of Paper IV in [18].

Thus, since now we will always assume that either the base scheme S is of
pure characteristic 0 or X is flat over S, to work with symmetric powers, and in
all cases when S will be semi-normal over Q, we will systematically identify the
restrictions of Suslin-Voevodsky’s and Rydh’s sheaves of 0-cycles on semi-normal
schemes via the isomorphisms (16), (17), (18), (19) and (20).

The Nisnevich sheaf Sym∞(X/S)+ will be now used to construct what then
will be the most preferable reincarnation of the space of 0-cycles on X over the
base scheme S.

5. Chow atlases on the Nisnevich spaces of 0-cycles

To consider the sheaf Sym∞(X/S)+ as a geometrical object, we need to endow
it with an atlas, in the line of the definitions in Section 2. The aim of this
section is to present a natural atlas, the Chow atlas, on the sheaf of 0-cycles
Sym∞(X/S)+.

First of all, the sheaf of 0-cycles possesses a natural inductive structure on it.
For each non-negative integer d let

ιd : Sym
d(X/S) → Sym∞(X/S)
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be the canonical morphism in to the colimit. For short of notation, let also

Symd,d(X/S) = Symd(X/S)×S Sym
d(X/S) ,

Sym∞,∞(X/S) = Sym∞(X/S)×S Sym
∞(X/S)

and let

ιd,d : Sym
d,d(X/S) → Sym∞,∞(X/S)

be the fibred product of ιd with itself over S. Recall that Sym∞(X/S)+ is the
group completion of the monoid Sym∞(X/S) in the category Shv((Noe/S)Nis).
It means that the we have a pushout square

Sym∞(X/S)
∆ //

��

Sym∞,∞(X/S)

σ∞

��
S // Sym(X/S)+

in the category Mon(Shv((Noe/S)Nis)). In particular, the quotient morphism σ∞
is a morphism of monoids, i.e. it respects the monoidal operations in the source
and target. Let

σd : Sym
d,d(X/S) → Sym∞(X/S)+

be the composition of the morphisms ιd,d and σ∞ in the category Shv((Noe/S)Nis),
and let

Symd(X/S)+

be the sheaf-theoretical image of the morphism σd, i.e. the image of σd in the
category Shv((Noe/S)Nis).

Some explanation is in place here. A priori, for any nonnegative integer d, one
can compute the d-th symmetric power

Sd(X/S)

in the category of presheaves PShv(Noe/S), and the d-th symmetric power

Symd(X/S) ,

computed in the category of sheaves Shv((Noe/S)Nis), is the Nisnevich sheafifi-
cation of the presheaf Sd(X/S). But since the symmetric power Sd(X/S) exists
already as a scheme in the category Noe/S, and since the Nisnevich topology is
subcanonical, we have that

Sd(X/S) = Symd(X/S) ,

for any d ≥ 0.
Let

∞⨿
d=0

Sd(X/S)

be the free monoid N(X/S) of X over S computed in the category of presheaves
PShv(Noe/S). Since the category Noe/S is a Noetherian category, one can show
that this infinite coproduct is a Nisnevich sheaf, and hence it coincides with
the free monoid N(X/S) of X over S computed in the category of sheaves
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Shv((Noe/S)Nis). In other words, there is no difference between N(X/S) in
PShv(Noe/S) and N(X/S) in Shv((Noe/S)Nis), and we write

N(X/S) =
∞⨿
d=0

Symd(X/S) =
∞⨿
d=0

Sd(X/S) .

Similarly, let

S∞(X/S)

be the free connective monoid N(X/S)∞ of X over S computed in the category
of presheaves PShv(Noe/S), so that the free connective monoid Sym∞(X/S) of
X over S, computed in the category of sheaves Shv((Noe/S)Nis), is nothing else
but the Nisnevich sheafification of S∞(X/S). Again, as the category Noe/S
is a Noetherian category, one can show that S∞(X/S) is a sheaf in Nisnevich
topology, and hence

S∞(X/S) = Sym∞(X/S) .

This gives us that, if

S∞(X/S)+

is the group completion of the presheaf free monoid S∞(X/S) in the category
Mon(PShv(Noe/S)), i.e. the square

(21)

S∞(X/S)
∆ //

��

S∞,∞(X/S)

σ∞

��
S // S(X/S)+

is co-Cartesian, the sheaf group completion Sym∞(X/S)+ of Sym∞(X/S) in the
category Mon(Shv((Noe/S)Nis)) is the sheafification of S∞(X/S)+, i.e.

Sym∞(X/S)+ = S∞(X/S)+a .

Lemma 3. The presheaf S∞(X/S)+ is separated. Equivalently, the canonical
morphism

S∞(X/S)+ → Sym∞(X/S)+

is a monomorphism in PShv(Noe/S).

Proof. Since S∞(X/S)+ is an abelian group object in the category PShv(Noe/S),
to prove the lemma it is enough to show that, if

F ∈ S∞(X/S)+(U)

is a section of the presheaf S∞(X/S)+ on some locally Noetherian scheme U over
S, and if there exists a Nisnevich covering

{fi : Ui → U}i∈I ,

such that the pullback Fi of the section F to Ui along each morphism Ui →
U is 0 in the abelian group S∞(X/S)+(Ui), then F is 0 in the abelian group
S∞(X/S)+(U).
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The section F can be interpreted as a morphism

F : U → S∞(X/S)+ .

For short of notation, let

S∞,∞(X/S) = S∞(X/S)×S S
∞(X/S) ,

and, for any nonnegative integer d let

Sd,d(X/S) = Sd(X/S)×S S
d(X/S) .

In these terms, the morphism F is the composition of a certain morphism

(f1, f2) : U → S∞,∞(X/S) ,

induced by two morphisms of presheaves

f1 : U → S∞(X/S) and f1 : U → S∞(X/S) ,

and the quotient morphism

σ∞ : S∞,∞(X/S) → S∞(X/S)+ .

Moreover, there exists d, such that both morphisms f1 and f2 factorize through
Sd(X/S), and then F is the composition

(22) U
(f1,f2)−→ Sd,d(X/S)

ιd,d−→ S∞,∞(X/S)
σ∞−→ S∞(X/S)+ .

and the morphisms f1 and f2 are morphisms of locally Noetherian schemes over
the base scheme S.

Now, since S∞(X/S) is a cancellative monoid in PShv(Noe/S), the commu-
tative square (21) is a Cartesian square in PShv(Noe/S). It follows that, since
Fi = 0 for all i ∈ I, the images of the compositions

Ui → U
(f1,f2)−→ Sd,d(X/S)

ιd,d−→ S∞,∞(X/S)
σ∞−→ S∞(X/S)+

are all in the image of the diagonal morphism

∆ : S∞(X/S) → S∞,∞(X/S) .

And since the morphism ⨿
i∈I

Ui → U

is a scheme-theoretical epimorphism, we see that the image of the morphism
(22) is also in the image of the diagonal morphism ∆. The latter means that the
section F equals 0.

Let

σd : S
d,d(X/S) → S∞(X/S)+

be the composition of the morphisms ιd,d and σ∞ in the category PShv(Noe/S),
and let

Sd(X/S)+

be the image of the morphism σd in the category PShv(Noe/S). Then Sd(X/S)+

is a sub-presheaf in Sym∞(X/S)+. As the sheafification functor is exact, it
preserves monomorphisms. It follows that

Symd(X/S)+ = (Sd(X/S)+)a ,
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i.e. Symd(X/S)+ is the Nisnevich sheafification of the preshaef Sd(X/S)+. And,
once again, the sheaf-theoretical image Symd(X/S)+ of the morphism σd comes
together with the epimorphism

(23) σd : Sym
d,d(X/S) → Symd(X/S)+

in the category Shv((Noe/S)Nis).
Next, the section S → X of the structural morphism X → S induces the

closed embeddings
Symd(X/S) → Symd+1(X/S) ,

which, in turn, induce the closed embeddings

Symd,d(X/S) → Symd+1,d+1(X/S) .

The latter morphisms induce the corresponding morphisms

Symd(X/S)+ → Symd+1(X/S)+

in the category Shv((Noe/S)Nis). Then

(24) Symd(X/S)+ = colim d Sym
d(X/S)+ ,

i.e. the space Symd(X/S)+ is naturally the colimit of the spaces Symd(X/S)+.

Remark 4. The sheaf Symd(X/S)+ is not a group completion of any monoid.

The constructions above allow us to consider a natural atlas for the

CA0(X/S, 0) = {σd | d ∈ Z , d ≥ 0}
be the set of all morphisms σd, and let

CA(X/S, 0) = ⟨CA0(X/S, 0)⟩
be the Chow atlas on the Nisnevich connective space Sym∞(X/S)+. According to
Section 2, the sheaf Sym∞(X/S)+ is now the Nisnevich space of relative 0-cycles
on X over S, with regard to the Chow atlas

CA = CA(X/S, 0) .

For short, we will say that Sym∞(X/S)+ is the space of 0-cycles on X over S
Hilbert schemes allow us to consider a natural subatlas in the Chow atlas CA.

Indeed, let U be a locally Noetherian scheme over S, and let

Z → X ×S U

be a closed subscheme in X ×S U . Suppose the composition

g : Z → U

of the closed embedding of Z into X ×S U with the projection onto U is flat.
Then, if V is an irreducible component of Z, the closure g(V ) is an irreducible

component of U . Therefore, if U is irreducible, g(V ) = U . If, moreover, g is

proper, then g(V ) = g(V ), and hence g is a surjection.
Since X is embedded in to PnS over S via the closed embedding i, the scheme

X ×S U embeds into PmU over U , and the morphism g : Z → U factorizes
through the embedding of Z into PmU followed by the projection from PmU onto U .
Therefore, if u ∈ U and Zu is the fibre of g at u, the Hilbert polynomial of the
structural sheaf OZu does not depend on u, see Theorem 9.9 on page 261 in [12].
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This fact allows us to consider, for every polynomial

P ∈ Q[x]

the standard Hilbert set valued presheaf

HilbP (X/S) : Noe/S → Set

sending a locally Noetherian S-scheme U to the set of closed subschemes Z in
the product X×S U , which are flat and proper over U , and such that the Hilbert
polynomial of OZu is P . Let also

Hilb(X/S) =
⨿

P∈Q[x]

HilbP (X/S) : Noe/S → Set

be the total Hilbert functor on locally Noetherian schemes over S.
Since X is projective over S, the Hilbert functors HilbP (X/S) are repre-

sentable. This result is due to Grothendieck, see Chapter 5 in [5] or Chapter
I.1 in [14]. For each polynomial P in Q[x] there exists a scheme, called the
Hilbert scheme,

HilbP (X/S)

over S representing the functor HilbP (X/S). Moreover, this scheme is projective
over S.

Within this paper we are interested in the case when P = d is a non-negative
integer. In that case the Hilbert scheme

Hilbd(X/S) = HilbP (X/S)|P=d

is a scheme over the d-th relative symmetric power, and we have the so-called
Hilbert-Chow morphism of schemes

(25) hcd : Hilb
d(X/S) → Symd(X/S) .

For any nonnegative integer d let

Hilbd,d(X/S) = Hilbd(X/S)×S Hilb
d(X/S) ,

and let

HA0(X/S, 0) = {ad ◦ (hcd,d) | d ∈ Z , d ≥ 0} ,
where

hcd,d : Hilb
d,d(X/S) → Symd,d(X/S)

is the fibred self-product over S of the d-th Hilbert-Chow morphism hcd. Let
also

HA(X/S, 0) = ⟨HA0(X/S, 0)⟩
be the Hilbert atlas on the space Sym∞(X/S)+. Obviously, the Hilbert atlas is
a subatlas of the Chow atlas on Sym∞(X/S)+.

Now, let

OSym∞(X/S)+

be the sheaf of regular functions on the site Sym∞(X/S)+Nis-ét, constructed with
regard to the Chow atlas CA on the sheaf Sym∞(X/S)+, as explained in Sec-
tion 2. In particular, if U → Sym∞(X/S)+ is a morphism from a scheme
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U to Sym∞(X/S)+ over S, which is étale with regard to the Chow atlas on
Sym∞(X/S)+, then since

Γ(U → Sym∞(X/S)+,OSym∞(X/S)+) = Γ(U,OU) .

As soon as the sheaf OSym∞(X/S)+ is defined, we can also define the sheaf of
Kähler differentials

Ω1
Sym∞(X/S)+ = Ω1

Sym∞(X/S)+/S

on the site Sym∞(X/S)+Nis-ét, see Section 2. Let also

TSym∞(X/S)+ = TSym∞(X/S)+/S

be the tangent sheaf, i.e. the dual to the sheaf of Kähler differentials on the site
Sym∞(X/S)+Nis-ét.

Since now the sheaf of Kähler differentials and the tangent sheaf on the site
Sym∞(X/S)+Nis-ét will be considered as the sheaf of Kähler differentials and the
tangent sheaf on the space of 0-cycles Sym∞(X/S)+.

Notice that both sheaves are given in terms of the Chow atlas on Sym∞(X/S)+.
Similar sheaves can be also defined in terms of the Hilbert atlas on the same space,
and the connection between two types is an interesting question, also considered
in [7], but in different terms.

Next, recall that a point P on Sym∞(X/S)+ is an equivalence class of mor-
phisms from spectra of fields to Sym∞(X/S)+, as explained in Section 2. By
abuse of notation, we write

P : Spec(K) → Sym∞(X/S)+ .

We will always assume that P factorizes through the Chow atlas CA on the
space Sym∞(X/S)+.

As in Section 2, consider the functor

uP : Sym∞(X/S)+Nis-ét → Set

sending an étale morphism

U → Sym∞(X/S)+ ,

where U is a locally Noetherian scheme over S, to the set

uP (U) = |UP |
of points on the fibre

UP = U ×Sym∞(X/S)+ Spec(K)

of the morphism U → Sym∞(X/S)+ at P .
As soon as the functor uP is introduced, we also define the notion of a neigh-

bourhood of P , with regard to the functor uP , as we did it in Section 2. Namely,
an étale neighbourhood of P on Sym∞(X/S)+ is a pair

N = (U → Sym∞(X/S)+, T ∈ uP = |UP |) ,
where the morphism U → Sym∞(X/S)+ is over S and étale with regard to
the Chow atlas CA on Sym∞(X/S)+, and T is a point of the fibre UP . Or,
equivalently, an étale neighbourhood of P is an étale morphism

U → Sym∞(X/S)+
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over S such that the point

P : Spec(K) → Sym∞(X/S)+

factorizes through U .
As in Section 2, all étale neighbourhoods form the category of étale neighbour-

hoods of P on Sym∞(X/S)+ denoted by NP .
Now, Lemma 7.31.7 [23] gives us that in order to show that the corresponding

stalk functor
stP : Shv(Sym∞(X/S)+Nis-ét) → Set

induces a point of the topos Shv(Sym∞(X/S)+Nis-ét), we need to show that the
functor uP satisfies all the three items of Definition 7.31.2 in loc.cit. The items
(1) and (2) are satisfied in general, see Section 2. The last item (3) of Definition
7.31.2 in [23] is satisfied when the category NP is cofiltered. Therefore, our aim
is now to show that, in case of the space of 0-cycles Sym∞(X/S)+ the category
NP is cofiltered.

6. Étale neigbourhoods of a point on Sym∞(X/S)+

We start with the following representability lemma, which will be necessary
for the study of the category NP .

Lemma 5. For any nonnegative integer d and for any two morphisms

U → S∞(X/S)+ and V → S∞(X/S)+ ,

where U and V are locally Noetherian schemes over S, the fibred product

U ×S∞(F/S)+ V ,

in the category of presheaves PShv(X/S), is represented by a locally Noetherian
scheme over S.

Proof. We need to find a locally Noetherian scheme over S representing the
fibred product

U ×S∞(X/S)+ V

in the category PShv(Noe/S).
Denote the morphism from U to S∞(X/S)+ by F , and the morphism from

V to S∞(X/S)+ by G. Clearly, the object U ×S∞(F/S)+ V is the coequalizer
of the compositions of the projections from U ×S V on to U and V with the
morphisms F and G respectively. Since S∞(X/S)+ is an abelian group object,
one can consider the difference

H = F ◦ prU −G ◦ prV : U ×S V → S∞(X/S)+

between these two compositions in the category PShv(Noe/S). Then the co-
equalizer U ×Sym∞(F/S)+ V fits in to the Cartesian square

U ×Sym∞(F/S)+ V

��

// U ×S V

H

��
S // S∞(X/S)+
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and the lemma reduces to the case when U = S, and F is a section of the
structural morphism from S∞(X/S)+ to S.

Next, the morphism of presheaves

G : V → S∞(X/S)+

is uniquely determined by sending the identity morphism idV to some element
in the abelian group S∞(X/S)+(V ), which is the equivalence class

[(g1, g2)]

of two morphisms

g1 : V → S∞(X/S) and g2 : V → S∞(X/S)

of presheaves over S. In particular, the morphism G factorized through the
product

S∞,∞(X/S) = S∞(X/S)×S S
∞(X/S) .

As we mentioned already, since S∞(X/S) is a cancellation monoid, the commu-
tative square (21) is a Cartesian square in PShv(Noe/S). Let

VS = S∞(X/S)×S∞,∞(X/S) V

be the fibred product of S∞(X/S) and V over S∞,∞(X/S). The composition of
the two Cartesian squares

VS

��

// V

��
S∞(X/S)

∆ // S∞,∞(X/S)

and

S∞(X/S) //

��

S∞,∞(X/S)

��
S // S∞(X/S)+

shows that the object VS fits in to the Cartesian square

VS

��

// V

G

��
S // S∞(X/S)+

In other words,

VS = S ×S∞(X/S)+ V

is, at the same time, the fibred product of S and V over S∞(X/S)+.
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Choose d such that the image of the morphism

V → S∞,∞(X/S)

is in

Sd,d(X/S) = Sd(X/S)×S S
d(X/S) .

Since the morphism

Sd,d(X/S) → S∞,∞(X/S)

is a monomorphism in PShv(Noe/S), it follows that the object VS fits also in to
the Cartesian square

VS

��

// V

��
Sd(X/S) // Sd,d(X/S)

In other words, VS is the fibred product of the schemes Sd(X/S) and V over the
scheme Sd,d(X/S). In particular, VS is a scheme itself.

We need one easy but useful technical notion. Suppose we are given with a
locally Noetherian scheme U over S and a morphism

F : U → Sym∞(X/S)+

in the category of sheaves Shv((Noe/S)Nis). Any such a morphism is uniquely
determined by sending idU : U → U to a section

sF ∈ Sym∞(X/S)+(U) .

Since Sym∞(X/S)+ is the Nisnevich sheafification of the presheaf S∞(X/S)+

and the morphism

S∞(X/S)+ → Sym∞(X/S)+

is a monomorphism in PShv(Noe/S) by Lemma 3, we obtain that the section sF
is the equivalence class of pairs, each of which consists of a Nisnevich cover

{Ui → U}i∈I
and a collection of sections

si ∈ S∞(X/S)+(Ui) ,

such that the restrictions of si and sj on Ui ×U Uj coincide for all indices i and
j in I. Therefore, if

Û =
⨿
i∈I

Ui ,

we obtain two morphisms

Û → U

and

F̂ : Û → S∞(X/S)+
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such that the square

Û

��

F̂ // S∞(X/S)+

��
U

F // Sym∞(X/S)+

is commutative. For short, we will say that Û (respectively, F̂ ) is an extension
of U (resp., F ) by the pair ({Ui → U}i∈I , {si}i∈I) representing the section sF .

Theorem 6. Let P be a point of the space Sym∞(X/S)+, and let NP be the
category of étale neighbourhoods of the point P on Sym∞(X/S)+. Then NP is
cofiltered.

Proof. The proof follows a pretty standard way of argumentation, see, for ex-
ample, Lemma 57.18.3. First of all, Lemma 5 gives us that the category NP is
nonempty, so that the first axiom of a cofiltered category is satisfied.

Let

F : U → Sym∞(X/S)+ and G : V → Sym∞(X/S)+

be two étale neighbourhoods of the point P , and look at the fibred product

U ×Sym∞(X/S)+ V

��

// V

G

��
U

F // Sym∞(X/S)+

Let sF be the section of the sheaf Sym∞(X/S)+ on U which determines the
morphism F , and let

F̂ : Û → S∞(X/S)+

be the extension of the morphism F given by a pair ({Ui → U}i∈I , {si}i∈I)
representing sF . Similarly, one can construct an extension Ĝ of the morphism G
induced by a pair representing the section sG.

By Lemma 5, the fibred product Û×S∞(X/S)+ V̂ is a locally Noetherian scheme
over S. Consider the universal morphism

Û ×S∞(X/S)+ V̂ → U ×Sym∞(X/S)+ V ,

commuting with the extensions of U and V . Let us show that the composition

H : Û ×S∞(X/S)+ V̂ → U ×Sym∞(X/S)+ V → Sym∞(X/S)+

is étale, with regard to the Chow atlas on Sym∞(X/S)+.
Indeed, since the morphism

S∞(X/S)+ → Sym∞(X/S)+
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is a monomorphism in PShv(Noe/S) by Lemma 3, the square

Û ×S∞(X/S)+ V̂

id

��

// S∞(X/S)+

��
Û ×S∞(X/S)+ V̂ // Sym∞(X/S)+

is Cartesian, so that the obvious morphism

h : Û ×S∞(X/S)+ V̂ → S∞(X/S)+

is the pullback of the morphism H.
For short, let

Ûd,d = Û ×S∞(X/S)+ S
d,d(X/S) ,

and

V̂d,d = V̂ ×S∞(X/S)+ S
d,d(X/S) .

Then

h0 : Ûd,d ×Sd,d(X/S) V̂d,d → Sd,d(X/S)

is the pullback of the morphism h, and since h is the pullback of H, we obtain
the Cartesian square

Ûd,d ×Sd,d(X/S) V̂d,d

��

h0 // Sd,d(X/S)

��
Û ×S∞(X/S)+ V̂

H // Sym∞(X/S)+

Therefore, in order to prove that H is étale, we need only to show that h0 is
étale.
Now again, since the morphism from S∞(X/S)+ to Sym∞(X/S)+ is a monomor-

phism in PShv(Noe/S) by Lemma 3, we see that the commutative square

Û

id

��

// S∞(X/S)+

��
Û // Sym∞(X/S)+
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is Cartesian. Composing it with the Cartesian square

Ûd,d

��

// Sd,d(X/S)

��
Û // S∞(X/S)+

we obtain the Cartesian square

Ûd,d

��

// Sd,d(X/S)

��
Û // Sym∞(X/S)+

The bottom horizontal morphism is the composition of two étale morphisms,
and hence it is étale. Since étale morphisms are stable under pullbacks, the top
horizontal morphism

Ûd,d → Sd,d(X/S)

in the latter square is étale as well.
Similarly, the morphism

V̂d,d → Sd,d(X/S)

is étale.
Thus, the bottom horizontal and the right vertical morphisms in then Carte-

sian square

Ûd,d ×Sd,d(X/S) V̂d,d

��

// V̂d,d

��
Ûd,d // Sd,d(X/S)+

are étale. Since étale morphisms are stable under pullbacks and compositions,
the diagonal composition h0 of this square is étale as well.

As this is true for any d, we see that the morphism

Û ×S∞(X/S)+ V̂ → Sym∞(X/S)+

is étale.
The fact that the point P : Spec(K) → Sym∞(X/S)+ factorizes through

Û ×S∞(X/S)+ V̂ is obvious.
Now we need to prove the last axiom of a cofiltered category. Assume again

that we have two étale neighbourhoods U and V of P as above, and assume also
that we have two morphisms

a, b : U
//// V
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between these neighbourhoods.
Let

sG ∈ Sym∞(X/S)+(V )

be the section determined by the morphism G, and choose a representative in
sG. Such a representative consists of a Nisnevich covering

{Vi → V }i∈I
and a collection of sections

si ∈ S∞(X/S)+(Vi) ,

such that the restrictions of si and sj on Vi×V Vj coincide for all indices i and j
in I. Construct the corresponding extension

Ĝ : V̂ → S∞(X/S)+

of the morphism G getting the commutative square

V̂

��

Ĝ // S∞(X/S)

��
V

G // Sym∞(X/S)+

Pulling back the étale covering {Vi → V }i∈I along the morphisms a and b, and
taking the unification

{Uij → U}(i,j)∈I×I
of these two pullback coverings in to one, one can construct the extension

F̂ : Û → S∞(X/S)+ ,

such that the diagram

(26)

Spec(K)ˆ

��

// V̂

Ĝ

��
Û

â

::uuuuuuuuuuuuuuuuuuuuuuuu

b̂

::uuuuuuuuuuuuuuuuuuuuuuuu F̂ // S∞(X/S)+

is commutative, where Spec(K)ˆ is an extension over Spec(K). Moreover, the
squares

Û
â //

��

V̂

��

Û

��

b̂ // V̂

��
U

a // V U
b // V
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Spec(K)ˆ //

��

Spec(K)

��

Spec(K)ˆ

��

// Spec(K)

��
Û // U V̂ // V

are commutative.
Now, let W be the fibred product of U and V over V ×Sym∞(X/S)+ V , with

regard to the morphisms (a, b) and ∆, and let h be the corresponding universal
morphism, as it is shown in the commutative diagram

(27) Spec(K)

��

))

∃!h

$$
W

��

// V

∆

��
U

(a,b)
// V ×Sym∞(X/S)+ V

Notice that the external commutativity is guaranteed by the fact that a and b
are two morphisms from the neigbourhood U to the neigbourhood V of the same
point P . The diagram (27) can be also extended by the commutative diagram

(28)

V ×Sym∞(X/S)+ V

��

// V

G

��
V

G // Sym∞(X/S)+

Consider also the corresponding “underlying” commutative diagrams

(29) Spec(K)ˆ

��

))

∃!ĥ

$$
Ŵ

��

// V̂

∆

��

Û
(â,b̂)

// V̂ ×S∞(X/S)+ V̂
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and

(30)

V̂ ×S∞(X/S)+ V̂

��

// V̂

Ĝ

��
V̂

Ĝ // S∞(X/S)+

where ĥ exists and unique due to the commutativities coming from the commu-
tativities in the diagram (26).

Clearly, the commutative diagrams (27), (28), (29) and (30) can be joined in
to one large commutative diagram by means of the morphisms

Û → U , V̂ → V , etc

One of the subdiagrams of that join is the commutative square

V̂ ×S∞(X/S)+ V̂

��

// V

��
V̂ // Sym∞(X/S)+

As we know from the first part of the proof, applied to the case when U = V ,
the diagonal composition

V̂ ×S∞(X/S)+ V̂ → Sym∞(X/S)+

is an étale neighbourhood of the point P .
Since the diagrams

Û //

b̂

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
H V̂ ×S∞(X/S)+ V̂

��

V̂

and

Û

��

b̂ // V̂

��
U

b // V
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are commutative, we see that the square

Û

��

// V̂ ×S∞(X/S)+ V̂

��
U

F // Sym∞(X/S)+

is commutative.
The left vertical arrow in the latter square is étale, and the morphism F is

étale by assumption. Therefore, their composition is étale, and we obtain the
commutative diagram

(31) Û //

##H
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
V̂ ×S∞(X/S)+ V̂

��
Sym∞(X/S)+

in which the morphisms targeted at Sym∞(X/S)+ are étale.
Now, if f : Y → Y ′ is a morphism between locally Noetherian schemes over

a space Z , if the structural morphisms Y → Z and Y ′ → Z are étale, with
regard to the atlas on Z , then f is also étale. This is an obvious modification of
Lemma 57.15.6 in [23]. Applying this property to the diagram (31), we obtain
that the morphism

Û → V̂ ×S∞(X/S)+ V̂

is étale.
As étale morphisms are stable under base change, the Cartesian square from

the diagram (29) then shows that the morphism

Ŵ → V̂

is étale. And since the morphisms V̂ → V is étale, the composition

Ŵ → V̂ → V

is étale. Since G is étale by assumption, we see that the composition

(32) Ŵ → V̂ → V
G−→ Sym∞(X/S)+

is also étale.
Finally, analyzing the above join of the commutative diagrams (27), (28), (29)

and (30) by means of the extension morphisms, we see that the composition (32)
is the same as the composition

Ŵ → W → U
b−→ V

G−→ Sym∞(X/S)+ .
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Thus, we have obtained the commutative diagram

Ŵ

��

// V

��
U // Sym∞(X/S)+

whose diagonal composition

(33) Ŵ → Sym∞(X/S)+

is étale.
Analyzing the commutative diagrams above, it is easy to see that P factorizes

through (33), so that the latter morphism is an étale neighbourhood of P .

7. Rational curves on the locally ringed site of 0-cycles

Theorem 6 has the following important implication. Namely, since all the
items of Definition 7.31.2 in [23] are now satisfied, the stack functor

stP : Shv(Sym∞(X/S)+Nis-ét) → Set

induces a point of the topos Shv(Sym∞(X/S)+Nis-ét) by Lemma 7.31.7 in loc.cit.
In particular, we obtain the full-fledged stalk

OSym∞(X/S)+, P = stP (OSym∞(X/S)+)

Moreover, the ringed site Sym∞(X/S)+Nis-ét is a locally ringed site in the sense
of the definition appearing in Exercise 13.9 on page 512 in [1] (see page 313 in
the newly typeset version), as well as in the sense of a sightly different Definition
18.39.4 in [23]. This is explained in Section 2.

For short of notation, let us write

OP = OSym∞(X/S)+, P .

This should not lead to a confusion, as the point P is a point on Sym∞(X/S)+.
Since the site Sym∞(X/S)+Nis-ét is locally ringed, for each point P on this site the
stalk OP is a local ring by the same Lemma 18.39.2 in [23]. Then we also have
the maximal ideal

mP ⊂ OP

and the residue field

κ(P ) = OP/mP

at the point P .
The stalk functor also gives us the stalks

Ω1
Sym∞(X/S)+, P = stP (Ω1

Sym∞(X/S)+)

and

TSym∞(X/S)+, P = stP (TSym∞(X/S)+)

at P . Tensoring by κ(P ) we obtain the vector spaces

Ω1(P ) = Ω1
Sym∞(X/S)+(P ) = Ω1

Sym∞(X/S)+, P ⊗OP
κ(P )
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and

T (P ) = TSym∞(X/S)+(P ) = TSym∞(X/S)+, P ⊗OP
κ(P )

over the residue field κ(P ).
The second vector space T (P ) is then our tangent space to the space of 0-

cycles Sym∞(X/S)+ at the point P . Notice that, since Sym∞(X/S)+ is an
abelian group object in the category of Nisnevich sheaves on locally Noetherian
schemes over S, whenever S is the spectrum of a field k, all tangent spaces T (P )
at k-rational points P are uniquely determined by the tangent space T (0) at the
zero point 0 on Sym∞(X/S)+ provided by the section of the structural morphism
from X to S. In other words, one can develop a Lie theory on Sym∞(X/S)+.

Now we are fully equipped to promote the idea of understanding of rational
equivalence of 0-cycles as rational connectivity on the space Sym∞(X/S)+. First
of all, looking at any scheme U over S as a representable sheaf, we have the
corresponding locally ringed site UNis-ét. Then a regular morphism from U to
Sym∞(X/S)+Nis-ét is just a morphism of locally ringed sites

UNis-ét → Sym∞(X/S)+Nis-ét

in the sense of Definition 18.39.9 in [23]. Notice that since étale morphisms are
stable under base change, if U → Sym∞(X/S)+ is a morphism of sheaves, then
it induces the corresponding morphism of locally ringed sites.

A rational curve on Sym∞(X/S)+ is a morphism of sheaves

f : P1 → Sym∞(X/S)+ .

If

P : Spec(K) → Sym∞(X/S)+

is a point on the sheaf Sym∞(X/S)+, then we will be saying that f passes
through the point P if P , as a morphism to Sym∞(X/S)+, factorizes through
the morphism f : P1 → Sym∞(X/S)+.

Now, two points P andQ on Sym∞(X/S)+ are elementary rationally connected
if there exists a rational curve on Sym∞(X/S)+ passing through P and Q. The
points P and Q are said to be rationally connected if there exists a finite set
of points R1, . . . , Rn on Sym∞(X/S)+, such that R1 = P , Rn = Q and Ri is
elementary rationally connected to Ri+1 for each i ∈ {1, . . . , n − 1}. If any two
points on Sym∞(X/S)+ are rationally connected, then we will say that this space
is rationally connected.

Let

P : Spec(K) → Sym∞(X/S)+ and Q : Spec(L) → Sym∞(X/S)+

be two points on Sym∞(X/S)+, represented by morphisms from the spectra of
two fields K and L respectively. Suppose, in addition, that the fields K and L
are embedded in to a common field, in which case we can replace both K and
L by their composite KL. Then we can assume, without loss of generality, that
K = L. In such a case, the points P and Q, as morphisms from the scheme
Spec(K) to the sheaf Sym∞(X/S)+ induce two sections sP and sQ in

Sym∞(X/S)+(Spec(K)) = Z ∞
0 (X/S)(Spec(K)) =

z(X/S, 0)∞(Spec(K)) .
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Assume, in addition, that

S = Spec(K) .

Then sP and sQ, as elements of the group

z(X/Spec(K), 0)∞(Spec(K)) ,

are two 0-cycles on the scheme X over Spec(K). And since relative 0-cycles
are representable, see Section 4, rational connectivity of the points P and Q
on Sym∞(X/S)+ is equivalent to rational equivalence of the 0-cycles sP and sQ
on the scheme X. This all means that we can look at rational connectedness
between points on Sym∞(X/S)+ as the generalized rational equivalence in the
relative setting.

Let, for example, X be a smooth projective surface over an algebraically closed
field k, and assume that X is of general type, i.e. the Kodaira dimension is 2,
and that the transcendental part H2

tr(X) in the second étale l-adic cohomol-
ogy group H2

ét(X,Ql) is trivial, where l is different from the characteristic of k.
Bloch’s conjecture predicts that any two closed points P and Q on X are ratio-
nally equivalent as 0-cycles on X. This is equivalent to saying that the space
Sym∞(X/k)+ s rationally connected in the sense above.

Let V be an arbitrary smooth projective variety over k. According to Kollár,
[14], if we wish to show that V is rationally connected, we should to two steps.
The first one is that we need to find a rational curve

f : P1 → V

on V . If the first step is done, then we need to show that the rational curve f is
free on V , i.e that the numbers

a1 ≥ . . . ≥ an

in the decomposition

f ∗TV = OP1(a1)⊕ . . .⊕ OP1(an)

have appropriate positivity, where TV is the tangent sheaf on the variety V , see
Section II.3 in the canonical book [14], or many other sources about free curves
on varieties.

Now, since we have the tangent sheaf TSym∞(X/k)+ for our surface X over k,
we can try to do the same on the space Sym∞(X/k)+. Namely, we should first
find a rational curve

f : P1 → Sym∞(X/k)+

on the space of 0-cycles. Of course, we do not know (at the moment) whether
the tangent sheaf TSym∞(X/k)+ is locally free on the site Sym∞(X/S)+Nis-ét, and,
accordingly, we do not know whether the pullback f ∗TSym∞(X/k)+ decomposes in
to the direct sum of Serre twists. But it is not hard to show that f ∗TSym∞(X/k)+

is a coherent sheaf on the projective line P1 over k. Being a coherent sheaf, it
decomposes uniquely in to a direct sum of a torsion sheaf and a locally free sheaf,
see, for example, Proposition 5.4.2. in [3]. Then

f ∗TSym∞(X/k)+ = OP1(a1)⊕ . . .⊕ OP1(an)⊕ T ,
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where T is a torsion sheaf on P1. Though the sheaf T is possibly non-zero, we
still can apply the same line of arguments as in the proof of Theorem 3.7 in [14]
or Proposition 4.8 in [4].

8. Appendix: representability of 0-cycles

It is important to understand the action of the isomorphism obtained by
composing the isomorphisms (15) and (16) after the restriction on semi-normal
schemes. The aim of the appendix is to describe this action in detail. Actually
all we need is to slightly extend the arguments from [20].

Recall that symmetric powers can be also defined for objects in an abitrary
symmetric monoidal category with finite colimits. Let, for example, R be a
commutative ring, and let M a module over R. The d-th symmetric power
Symd(M) of the module M in the category of modules over R can be defined as
the quotient of M⊗d by the submodule generated over R by the differences

m1 ⊗ · · · ⊗md −mσ(1) ⊗ · · · ⊗mσ(d) ,

where σ ∈ Σd. For any collection {m1, . . . ,md} inM let (m1, . . . ,md) be the same
collection as an element of the d-th symmetric power Symd(M) of the module
M , i.e. the image of the tensor m1⊗· · ·⊗md under the quotient homomorphism

M⊗d → Symd(M) .

The image of the injective homomorphism

Symd(M) →M⊗d ,

sending (m1, . . . ,md) to the sum∑
σ∈Σd

mσ(1) ⊗ · · · ⊗mσ(d) ,

coincides with submodule of invariants (M⊗d)Σd of the action of Σd on M⊗d.
Therefore, one can identify Symd(M) with submodule of invariants (M⊗d)Σd .

A similar but Koszul dual theory applies to wedge powers, where the wedge
power ∧dM can be initially constructed as the quotient ofM⊗d by the submodule
E(M⊗d) inM⊗d generated by the tensors v1⊗· · ·⊗vd in which at least two vectors
vi and vj are equal. This all is a folklore and can be found in, for example, §B.2
in [6].

In schematic terms, let B be an algebra over a ring A, i.e. one has a ring
homomorphism

ϕ : A→ B ,

and let

f : X = Spec(B) → Spec(A) = Y

be the affine morphism induced by the homomorphism ϕ. Then one has the
diagonal ring homomorphism

ϕd : A→ B⊗d ,
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where the d-fold tensor product B⊗d is taken over A. The homomorphism ϕd
gives the structural morphism

(X/Y )d → Y ,

where (X/Y )d is the d-fold product of X over Y . Let (B⊗d)Σd be the subring
of invariants of the action of the symmetric group. Since the image of ϕd is
obviously in (B⊗d)Σd , we obtain the surjective homomorphism

ϕ′
d : A→ (B⊗d)Σd

induced by ϕd. This gives us the decomposition

(X/Y )d → Symd(X/Y ) → Y ,

where the second morphism is Spec(ϕ′
d).

The multiplication in the A-algebra B induces the multiplication in B⊗d by
the formula

(b1 ⊗ · · · ⊗ bd) · (b′1 ⊗ · · · ⊗ b′d) = (b1b
′
1 ⊗ · · · ⊗ b1b

′
d) .

It is easy to see that if (b1⊗· · ·⊗bd) is in (B⊗d)Σd and (b′1⊗· · ·⊗b′d) is in E(B⊗d),
then the product (b1b

′
1 ⊗ · · · ⊗ b1b

′
d) is again in E(B⊗d). This is why the above

product induces the product

(B⊗d)Σd ⊗ ∧dB → ∧dB .

If B is, moreover, is freely generated of dimension d, as an A-module, then the
determinant

det : ∧dB ∼→ A

is an isomorphism, and we obtain a homomorphism

ψd : (B
⊗d)Σd −→ A ,

such that ϕd is the section for ψd, thus bringing the section

sX/Y,d : Y → Symd(X/Y )

of the above morphism Symd(X/Y ) → Y .

Let us now explore the same situation globally. Let

f : X → Y

be a morphism of schemes over a field k. Recall that f is said to be affine if and
only if Y can be covered by affine open subsets

Vi = Spec(Ai) ,

such that

Ui = f−1(Vi)

is affine for each i, so

Ui = Spec(Bi) ,

and

f |Ui
: Ui → Vi

is induced by the homomorphism

Ai → Bi ,
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see page 128 in [12]. If f is affine, then

B = f∗OX

is a quasi-coherent sheaf of OY -algebras on Y , and

X = Spec(B)

in the sense of loc.cit. The d-fold fibred product of X over Y is

Spec(B⊗d) ,

and the structural morphism from (X/Y )×d to Y is induced by the homomor-
phism

ϕd : OY → B⊗d ,

where the tensor product B⊗d is over OY . The image of ϕd is Σd-invariant, so
that we obtain the homomorphism

ϕd : OY → (B⊗d)Σd .

Then the relative d-th symmetric power Symd(X/Y ) exists and in fact

Symd(X/Y ) = Spec((B⊗d)Σd) .

The structural morphism

Symd(X/Y ) → Y

is induced by the homomorphism ϕd above.
Following [20], let us now show that there exists also a section of the structural

morphism Symd(X/Y ) → Y , provided X is finite surjective of degree d over Y .
Assume first that f is finite and flat. The finiteness of f means, by definition,

that f is affine and Bi is a finitely generated Ai-module for each i, see page 84
in [12]. Then B is a coherent flat OY -module, with respect to the morphism

OY → B = f∗OX ,

and so B is a locally free OY -module by Proposition 9.2 (e) on page 254 in [12].
Let W be an irreducible component of the scheme X, and let V be the closure

of f(W ) in Y . Since f is flat, V is an irreducible component of Y . Moreover, if
ξ is the generic point of W in X, then f(ξ) is the generic point of V in Y . Let
dξ be the degree [R(W ) : R(V )], where R(W ) and R(V ) stay for the fields of
rational functions on W and V respectively, endowed with the induced reduced
closed subscheme structures on them.

We will say that f : X → Y is of constant degree d if the degrees dξ are equal
to d for all irreducible components of the scheme X. If f is finite flat of constant
degree d, then B is a locally free sheaf of rank d on OY , so that one has the
determinantal isomorphism

det : ∧dB ∼−→ OY .

Applying the sheaf-theoretical version of the above local construction, we get the
morphism of OY -modules

(B⊗d)Σd ⊗OY
∧dB → ∧dB ,
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where the tensor power B⊗d is taken over OY . For one’s turn, this gives the
morphism

(B⊗d)Σd → EndOY
(∧dB) .

Composing it with the above determinantal isomorphism we get the homomor-
phism of OY -algebras

ψd : (B
⊗d)Σd → OY .

Since ψd ◦ ϕd = idOY
we see that ψd induces the canonical section

sX/Y,d : Y → Symd(X/Y )

of the structural morphism

Symd(X/Y ) → Y .

Following [20], assume now that f is a finite and surjective (but maybe not
flat) morphism of schemes over k. For our interests in this paper, it is sufficient to
assume that the scheme X is integral and the scheme Y is normal and connected.
Since X is integral, it is irreducible. As f is surjective, Y is irreducible too.
Moreover, since f is finite, it is affine. As f is surjective, locally f is a collection
of morphisms

ϕ∗ : Spec(B) → Spec(A) ,

such that ϕ : A → B is injective. Since X is integral, it is reduced, so that
there is no nilpotens in B. Then there is also no nilpotens in A. Therefore, Y
is reduced as well. Collecting these small observations we conclude that Y is
integral.

Now, take any affine open
V = Spec(A)

in Y with the preimage
f−1(V ) = Spec(B)

in X, so that A is a subring in B, as f |U is surjective and both A and B are
integral domains. Since B is a finitely generated A-module, it follows that B is
integral over A by Proposition 5.1 in [2]. Then, for any non-zero element b in B
there exists a monic polynomial

xn + an−1x
n−1 + · · ·+ a1x+ a0

with coefficients in A, such that b is a root of it. Without loss of generality one
can assume that a0 ̸= 0. Then

1/b = 1/a0 · (−bn−1 − an−1b
n−2 − · · · − a1) .

It means that the localization B(0) is a finitely generated A(0)-module, i.e. R(X)
is a finite field extension of R(Y ). Let d be the degree [R(X) : R(Y )].

Let U be the set of points x ∈ X, such that f is flat at x. Then U is open in
X, see 9.4 on page 266 in [12]. Since both X and Y are integral, f is flat at the
generic point of X. Therefore, the set U is non-empty.

Next, shrink U if necessary and assume that it is affine,

U = Spec(B) ,

which is surjectively mapped onto the affine set V = Spec(A) in Y . Then

f |U : U → V
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is a finite surjective flat morphism of schemes over the ground field k. Since
R(X) is a flat algebra over R(Y ), by the above local construction, we get the
homomorphism

ψd : (R(X)⊗d)Σd −→ R(Y ) .

Let now again B be the quasi-coherent sheaf f∗OX of OY -algebras on Y , so
that

X = Spec(B) .

Let y be a point on Y . Locally,

y ∈ V ⊂ Y ,

where

V = Spec(A)

and y is a prime ideal p in A. Let

U = f−1(V ) = Spec(B) .

By Propositions 5.1 and 5.2 on pages 110 - 111 in [12], we have that the stalk
By is

((f |U)∗OU)y = ((f |U)∗B)p = Bp

and

Bp ⊂ B(0) ,

i.e. By is canonically embedded into R(X). Respectively, B⊗d
y is canonically

embedded into R(X)⊗d. The homomorphism ψd is nothing but the homomor-
phism

ψ(0),d : (B
⊗d
(0))

Σd → A(0) ,

where the tensor product is taken over A(0). As above, ψ(0),d has the section

ϕ(0),d : A(0) → (B⊗d
(0))

Σd ,

induced by the canonical homomorphism A(0) → B⊗d
(0) .

Since Ap is embedded into A(0) and Bp is embedded into B(0), we have the
homomorphism from (B⊗d

p )Σd , where the tensor product is taken over Ap, to

(B⊗d
(0))

Σd . Certainly, the canonical homomorphism ϕp,d : Ap → B⊗d
p induces the

homomorphism ϕp,d : Ap → (B⊗d
p )Σd , so that we have the obvious commutative

diagram

(B⊗d
p )Σd

��

Ap

ϕp,doo

��
(B⊗d

(0))
Σd A(0)

ϕ(0),doo

The bottom horizontal homomorphism is the canonical section of the homomor-
phism ψ(0),d. One can construct a suitable homomorphism ψp,d from (B⊗d

p )Σd to
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Ap, such that ϕp,d would be a section for it, and the diagram

(B⊗d
p )Σd

ψp,d //

��

Ap

��
(B⊗d

(0))
Σd

ψ(0),d // A(0)

would be commutative. This is due to the normality of Y and the finiteness of
the morphism f .

Indeed, let α be an element in (B⊗d
p )Σd . Considering it as an element in

(B⊗d
(0))

Σd and applying ψ(0),d we get the element β = ψ(0),d(α) in A(0). Since f is

finite, so that B is a finitely generated module over A, the algebra B is integral
over A. Then Bp is integrals over Ap. Hence, (B⊗d

p )Σd is integral over Ap, see
Exercise 3 on page 67 in [2]. Then α is integral element over Ap. Since the bottom
horizontal homomorphism ϕ(0),d is the canonical section of the homomorphism
ψ(0),d, we see that the integrality of α implies integrality of β over Ap. Since Y is
a normal scheme, it means that Ap is integrally closed in the fraction field A(0).
Therefore, β belongs to Ap. Thus, we obtain the desired homomorphism ψp,d

from (B⊗d
p )Σd to Ap.

The local homomorphism ψp,d can be also denoted as

ψy,d : (B
⊗d
y )Σd → OY,y .

Using the fact that (B⊗d)Σd and OY are sheaves, we can patch all the local
homomorphisms ψy,d into the global one,

ψd : (B
⊗d)Σd → OY .

Since locally ϕy,d is a section of ψy,d, the same holds globally. Likewise in the
case of finite flat morphisms, since ϕd is a section of ψd globally, the homomor-
phism ψd gives the induced section

sX/Y,d : Y → Symd(X/Y )

of the structural morphism

Symd(X/Y ) → Y .

Remark 7. The section sX/Y,d has been achieved specifically for the d-th sym-
metric power of X over Y , where d is the degree of the morphism from X onto
Y . In other circumstances the existence of the section section sX/Y,d is not guar-
anteed at all.

Example 8. Let X be the affine plane A2 and Y be the cone. The morphism
from A2 onto Y is given by the embedding of the ring of symmetric polynomials

k[x2, xy, y2]

into the ring k[x, y]. In other words, the morphism X → Y glues any two
antipodal points into one. Then sX/Y,d doesn’t exists for d = 1, as there is no
way to send the vertex of the cone to the plane. But sX/Y,2 does exist as we can
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send the vertex to the doubled origin of coordinates as a point of the symmetric
square.

Now, let S be a scheme of finite type over a field k, letX be a scheme projective
over S, and fix a closed embedding

i : X → PnS
over S. In particular,X is AF over S and all relative symmetric powers Symd(X/S)
exist in Noe/S. Notice that since X is projective over S, so is the scheme
Symd(X/S), for every nonnegative integer d.

Let U be a noetherian scheme of finite type over S and let Z be a prime cycle in
zeffd (X/S, 0)(U), considered with the induced reduced close subscheme structure
on it. Let

fZ : Z → X ×S U → U

be the composition of the closed embedding of Z in to X×SU with the projection
onto U .

Since the morphism fZ is finite, fZ is affine, and hence the relative symmetric
powers of Z/U exist. Then, as above, we have the canonical section

sZ/U,d : U → Symd(Z/U)

of the structural morphism

Symd(Z/U) → U .

The closed embedding

Z → X ×S U

induces the morphism

Symd(Z/U) → Symd(X ×S U/U) ,

and we also have the obvious morphism

Symd(X ×S U/U) → Symd(X/S) .

Composing all these morphisms, we obtain the morphism

θX/S(U,Z) : U → Symd(X/S)

over S.
The morphisms θX/S(U,Z) for degrees d

′ ≤ d extend by linearity and induce
a map

θX/S,d(U) : z
eff
d ((X, i)/S, 0)(U) → HomS(U, Sym

d(X/S)) .

The latter maps for all schemes U yield a morphism of set valued presheaves

θX/S,d : z
eff
d ((X, i)/S, 0) → HomS(−, Symd(X/S))

on Noe/S.
Assume now that S is semi-normal over Q. We claim that the restriction of

the morphism θX/S,d on seminormal schemes is exactly the isomorphism obtained
by composing the isomorphisms (15) and (16) considered in Section 4.
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