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Abstract

The main objects of study in this thesis are schemes parametrizing morphisms
from the projective line to projective varieties.

The local properties of these schemes are well understood and a thorough
treatment can be found in [Kol96]. Moreover, they behave nicely with respect
to morphisms, i.e., if X → Y is a morphism, then there is a natural morphism
Mor(P1

k, X) → Mor(P1
k, Y ). The first part of this thesis is dedicated to under-

stand properties obtained by this behaviour, for instance we see this association
preserves open an closed immersions of schemes.

Furthermore, if X is a projective variety, then there is a natural partition of
Mor(P1

k, X) on closed subschemes in terms of the degrees of the morphisms. In the
second part of this thesis, we use these properties of the schemes of morphisms
to find a natural partition of Mor(P1

k, X) when X is the blow-up of projective
spaces at finitely many points. This reflects the intersection of rational curves
on X with the exceptional divisors of the blow-up, and it is different from the
former partition in terms of degrees. In particular, we can use it to refine the
usual partition. We fully characterize this refinement on the case that X is a
Del Pezzo surface obtained by blowing up P2

k at up to eight points in general
position. For a Del Pezzo surface obtained by the blow-up σ : X → P2

k, we
use this to characterize irreducible components of Mor(P1

k, X) that parametrizes
rational curves which are resolutions of singularities of plane curves which are
singular at the blown-up points of σ. We also compute their dimension. When
X is the classical example of a cubic surface in P3

k, we provide a complete list of
them.



ii



Acknowledgements

Firstly, I would like to thank my supervisor Vladimir Guletskĭı for introducing
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Introduction

Historical Background

The idea of a parameter space has been present in algebraic geometry for a
very long time. In projective geometry, even the most basic definition, that of
a projective space, is an example of this, i.e, the points of a projective space Pn

k

over a field k are the lines through the origin of a vector space of dimension n+1

over k.
Other classical examples are given by the set of all linear spaces of dimension

m in the projective space Pn
k , which have the structure of varieties. These varieties

are known as Grassmannians and by definition, they parametrize all linear spaces
of dimension m in Pn

k .
Yet another example is the group PGLn+1(k) of (n + 1) × (n + 1) invertible

matrices with entries in the field k. Elements of this group correspond to the
automorphisms of the projective space Pn

k and it also has a natural structure of
a variety i.e., it parametrizes automorphisms of Pn

k .
Parameter spaces arise very naturally, as shown in the examples above, which

appear by considering basic definitions on the projective space. They are also
very useful: the idea of using a space parametrizing objects to solve concrete
geometrical questions was already used by the end of the nineteenth century. For
instance, Schubert [Sch79] describes many enumerative problems on algebraic ge-
ometry in terms of subspaces of Grassmannians. However, even if the existence
and usefulness of spaces parametrizing objects was widely known, their construc-
tion would be ad hoc and there could be more than one way of constructing a
space parametrizing the same objects. It was not until much later that parameter
spaces were canonically defined. As a consequence, any two constructions of a
given parameter space need to yield spaces which are isomorphic.

This was achieved by the work of Grothendieck and his students in the six-
ties by heavily using the language of categories and functors as a foundational
approach to algebraic geometry. According to Grothendieck, one of the key ideas
of this approach is that “the functor of points should be taken as the most funda-
mental definition of a scheme” (cf. [Law03]). Using this idea to define a parameter
space, the starting point is a functor F from the category of varieties (or schemes)
to sets. Then X will be a parameter space (parametrizing the sets on the essential
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viii Introduction

image of the functor F) if its functor of points is isomorphic to F . The precise
way to state this is to say that F is representable by the scheme X. Grothendieck
[Gro60] succeeded in proving the representability of very general functors, such as
the Hilbert functor, which would encompass the construction of many parameter
spaces.

The main space studied in this thesis parametrizes morphisms from the pro-
jective line to a given variety X over an algebraically closed field k. However,
these spaces exist in more generality: Grothendieck [Gro60, §4.c] proved that
there is a scheme parametrizing morphisms of schemes, say from Y to X over
a base scheme S, under natural assumptions on Y , X and S. We denote this
scheme by MorS(Y,X).

In general, the schemes MorS(Y,X) have infinitely many components and
can have many singularities, which makes understanding their global behaviour
challenging. However, much is known about their local behaviour. In fact,
Grothendieck [Gro60, §5] has also characterized their tangent spaces. Moreover,
Mori [Mor79] gives a lower bound for the local dimension of this scheme at a
point.

As remarked before, parameter spaces are useful to solve many kinds of differ-
ent problems. For instance, when Y is a curve over S = Spec k, Mori [Mor79] uses
the schemes MorS(Y,X) to introduce a technique of deforming curves on a variety
to produce rational curves on it (which is known today as “bend-and-break”). He
used this to prove his famous characterization of the projective spaces: a non-
singular projective variety with ample tangent bundle is isomorphic to a projective
space. This was known then as Hartshorne’s conjecture.

After Mori’s breakthrough, the schemes MorS(Y,X) have been a prolific tool
for understanding the geometry of curves on X and in addition to that were also
essential on birational classification of varieties. In particular, they are used in
[KMM92] to prove that Fano varieties are rationally connected. An overview of
some of the methods used in the aforementioned papers can be found the books
[Kol96] and [Deb13].

When S = Spec k, where k is a field, and Y = P1
k, the scheme Mor(P1

k, X) ..=

MorSpec k(P1
k, X) parametrizes morphisms whose images are rational curves on X.

As mentioned before, in most cases Mor(P1
k, X) has countably many irreducible

components. However, if X is projective, then there exists a natural partition of
Mor(P1

k, X) by degrees of the polynomials defining the morphisms from P1
k to X,

and we define More(P1
k, X) to be the subscheme parametrizing morphisms whose

defining polynomials have degree e.
There has been considerable progress in finding irreducible components of

schemes parametrizing curves of a given degree e and computing their dimension



ix

for certain varieties X, especially for hypersurfaces in the projective space, see
for instance [JS04; HRS04; HRS05; HS05]. These papers focus on the spaces
parametrizing smooth rational curves of degree e. However, these spaces are
not exactly the same as the schemes More(P1

k, X). The latter ones parametrize
morphisms, and in particular, they also parametrize morphisms whose images
are singular curves. Moreover, in the aforementioned papers varieties are defined
over the field of complex numbers C and their results are often deduced from
compactifications of the parameter spaces which hold only over characteristic
zero.

On the other hand, each More(P1
k, X) can also have subschemes parametrizing

rational curves with specific properties. Other authors have focused their atten-
tion on determining the dimension of subschemes parametrizing rational curves
with a specified splitting type of their normal bundles, see for example [EV82;
CR18; CR19].

The first results of this thesis follow a different strategy than all of the afore-
mentioned papers. We do not use compactifications of the schemes More(P1

k, X)

and do not use directly computations of the normal bundles of curves. Instead
we were motivated by the following: let Y → X be a morphism and suppose we
know the dimensions of components Mor(P1

k, X), can we use the induced mor-
phism Mor(P1

k, Y ) → Mor(P1
k, X) to find components of Mor(P1

k, Y ) and deduce
their dimension?

Of course, when the morphism Y → X is arbitrary, there is little chance we
can find reasonable geometric interpretation for the induced morphism. However,
this motivates a follow-up question: under which conditions on Y → X can we
obtain meaningful geometric properties of Mor(P1

k, Y ) → Mor(P1
k, X)? To the

best of the author’s knowledge these questions have not been explored in the
literature.

Our first investigation along these lines is with respect to open and closed
immersions of schemes. We find that when W is an open (resp. closed) subscheme
of Y , then Mor(P1

k,W ) is an open (resp. closed) subscheme of Mor(P1
k, Y ).

We also apply this idea to the the blow-up of finitely many points in Pn
k

denoted σ : X → Pn
k . We already find interesting geometric behaviour for

Mor(P1
k, X) in this case. We then specialize to n = 2 and when σ is the blow-up

of up to eight points in general position. We find that the previous behaviour
connects naturally with many results on rational curves on Del Pezzo surfaces,
linear systems and resolutions of singularities of rational curves on the projective
plane and allows us to find a collection of irreducible components in Mor(P1

k, X)

and compute their dimension.
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Main results and strategies

We present the main results contained in this thesis and give brief descriptions
of the strategies for their proofs. Most material of Chapter 1 is known. However,
we prove a proposition that, to the best of the author’s knowledge, has no proof
in the literature:

1.5.5 Proposition. Let S be a noetherian scheme and suppose the scheme MorS(X,Y )

exists. Let i : Z ↪→ Y and j : U ↪→ Y be a closed and an open immersion of
schemes over S respectively. Then the canonical morphisms

MorS(X, i) :MorS(X,Z)→ MorS(X,Y ),

MorS(X, j) :MorS(X,U)→ MorS(X,Y )

are also a closed and an open immersion respectively.

Strategy of proof. First of all, we notice that MorS(X,Y ) is an open subscheme
of HilbS(X × Y ). Then we prove that for any open or closed immersion W ↪→ Y

we have a morphism

HilbS(X ×S W )→ HilbS(X ×S Y )

and that the scheme MorS(X,W ) is isomorphic to the fibered product

MorS(X,Y )×HilbS(X×SY ) HilbS(X ×S W ).

It suffices then to prove that Hilb(X ×S W ) → Hilb(X ×S Y ) is an open (resp.
closed) immersion. �

On Chapter 2, we explore the behaviour of schemes of morphisms on blow-ups
and the first result on this direction is the following.

2.2.4 Proposition. Let X be a projective scheme over an algebraically closed
field k, Z be a closed subscheme of X and σ : BlZ(X)→ X be the blow-up of X
along Z. Let

σM : Mor(P1
k,BlZ(X))→ Mor(P1

k, X)

be the induced morphism and let N ..= Mor(P1
k, X) r Mor(P1

k, Z) be the open
subscheme parametrizing rational curves intersecting X r Z and N ′ ..= σ−1

M (N).
Then the restriction

σM |N ′ : N ′ → N

is locally quasi-finite. More specifically, it is a bijection on k-points.
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Strategy of proof. We notice that any morphism f : P1
k → X corresponding to a

point in N gives rise to a rational map g : P1
k 99K BlZ(X) such that the diagram

BlZ(X)

P1
k X

σ

f

g

is commutative. We notice that it g is actually a morphism and is unique, yielding
the desired bijection. �

Next, we define for each morphism f : P1
k → P2

k and point p ∈ Pn
k the para-

metric multiplicity mp(f). This parametric multiplicity coincides with the mul-
tiplicity of the scheme theoretic image of f when it is birational to its image,
see Definition 2.2.9. We use this definition and we combine the functorial be-
haviour given in Proposition 1.5.5, the description of the schemes Mor(P1

k,Pn
k)

and properties of blow-ups to prove the following.

2.2.11 Theorem. Let k be an algebraically closed field, {p1, . . . , pr} ⊂ Pn
k be a

finite collection of points in a projective space. Let σ : X → Pn
k be the blow-

up of Pn
k along {p1, . . . , pr} with exceptional divisor E. Let m ..= (m1, . . . ,mr)

denote an r-tuple of non-negative integers. Then we have the partition in closed
subschemes

Mor(P1
k, X) ∼= Mor0(P1

k, X)q

(∐
d>0

∐
mi≤d

Md,m

)
qMor>0(P1

k, E),

where

• Mor0(P1
k, X) parametrizes constant morphisms;

• a k-point [g] belongs to Md,m if and only if

deg(σ ◦ g) = d and

mpi(σ ◦ g) = mi for 1 ≤ i ≤ r;

• Mor>0(P1
k, E) ∼=

∐r
i=1

∐
e>0More(P1

k,P
n−1
k ).

In particular, for 0 ..= (0, . . . , 0) and each positive integer d, the subschemes Md,0

are nonsingular of dimension nd + d + n and parametrize curves which do not
intersect E.
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Strategy of proof. We recall that σ induces a morphism

σM : Mor(P1
k, X)→ Mor(P1

k,Pn
k).

We use an embedding

ι : X ↪→ Blp1(Pn
k)×Pn

k
· · · ×Pn

k
Blpr(Pn

k)

to construct an auxiliary morphism

ιM : Mor(P1
k, X)→ Mor(P1

k,Blp1(Pn
k)×Pn

k
· · · ×Pn

k
Blpr(Pn

k)).

We find suitable partitions on the targets of σM and ιM to define the partition
above by intersecting preimages of irreducible components of the targets. �

Recall that if we have an embedding ι : X ↪→ PN
k , then there is a natural

partition
Mor(P1

k, X) =
∐
e≥N

More(P1
k, X),

where More(P1
k, X) is the closed subscheme of Mor(P1

k, X) parametrizing mor-
phisms of degree e. Thus, once we fix the embedding ι, Theorem 2.2.11 yields a
refinement of this partition. In particular, when n = 2 and σ is the blow-up of
at most eight points in general position, then X is a Del Pezzo surface and we
prove the following.

2.4.1 Corollary. Let k be an algebraically closed field and let r ≤ 8 be a positive
integer. Let σ : X → P2

k be the blow-up of P2
k in r points in general position. Let

Md,m denote the closed subschemes defined in Theorem 2.2.11 and More(P1
k, Ei)

denote the scheme parametrizing morphisms of degree e to the exceptional line
Ei. Let a be a positive integer such that −aKX is very ample and let

ι−aKX
: X ↪→ PN

k

be the corresponding embedding. Then for each integer e > 0, the scheme parametriz-
ing morphisms of degree e from P1

k to X with respect to ι−aKX
is given by

More(P1
k, X) =

 ∐
e=a(3d−|m|)

Md,m

q( r∐
i=1

More(P1
k, Ei)

)
.

Strategy of proof. Once we fix the embedding ι−aKX
: X ↪→ PN

k , we notice that
for each pair d and m and each point in Md,m we will have a corresponding plane
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curve. We can compute the degree of the strict transform of this plane curve under
σ by computing the intersection number with very ample line bundle −aKX . This
degree will correspond to a unique e such that Md,m ⊂ More(P1

k, X). �

Finally, we provide further characterization of the closed subschemes Md,m in
Corollary 2.4.1. We prove that if they contain points [f ] ∈ Md,m corresponding
to rational curves that are resolutions of singularities of rational plane curves,
then we can compute the dimension of the irreducible components M0

d,m ⊂Md,m

containing [f ]. In order to do so, we define in Section 2.3 a morphism

Ξd : Mord(P1
k,P2

k)→ P(H0(P2
k,OP2

k
(d)))

for each d. We prove the following.

2.4.8 Theorem. Let k be an algebraically closed field of characteristic 0. Let

σ : X → P2
k

be the blow-up of P2
k at r points. Suppose there exists a rational curve C of

degree d in P2
k passing through these points with multiplicities m = (m1, . . . ,mr)

such that its strict transform under σ is nonsingular. Consider Md,m to be the
closed subscheme of Mor(P1

k, X) defined in Theorem 2.2.11. Then, there exists
an irreducible component M0

d,m ⊂Md,m such that

dimM0
d,m = max

{
d2 + 1−

∑r
i=1 m

2
i , 0
}
+ 3.

Moreover, a general point of M0
d,m corresponds to a generically one-to-one mor-

phism.

Strategy of proof. We prove that the image of the composition σM |Md,m
◦ Ξd is a

locally closed subscheme of dimension

max
{
d2 + 1−

∑r
i=1m

2
i , 0
}
.

We use a variant of the theorem of dimension of fibers on this composition to find
the desired irreducible component with the aforementioned properties. �

Structure of the thesis

Chapter 1: Hilbert schemes and schemes of morphisms. This chapter is
meant to be an introduction to the parameter spaces MorS(X,Y ) and to close
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a gap in the literature concerning the properties that can be deduced from its
functor of points.

First we recall the definition of Hilbert schemes as schemes representing the
Hilbert functor. We will review some literature about them and also highlight
properties that can be deduced from its functor of points.

We then recall the definition of schemes parametrizing morphisms between
two schemes over a base. We prove that it is an open subscheme on a Hilbert
scheme and deduce the aforementioned properties, in particular, we prove Lemma
1.5.5.

Chapter 2: Schemes of rational curves. We start the chapter by giving a
well known heuristic description of the scheme Mor(P1

k,Pn
k) including its partition

in terms of the degrees of the morphisms it parametrizes. We use this partition
to prove Theorem 2.2.11. We specialize to n = 2 and fix the classical embeddings
of Del Pezzo surfaces in PN to obtain the refined partition of Corollary 2.4.1.
Finally, we define the regular morphisms Ξd used in the proof of Theorem 2.4.8
and use the results of [DM12] on rational linear systems to describe the image of
the composition

Md,m → Mord(P1
k,P2

k)→ P(H0(P2
k,OP2

k
(d))).

We also prove that Ξd is Aut(P1
k)-invariant and that all its fibers are irreducible

and have dimension 3.
To conclude the chapter, we compare Theorem 2.4.8 with the classification of

Gimigliano, Harbourne and Idà [GHI13] of rational curves whose singularities are
resolved by blowing-up points in general position. This classification allows us to
find all the possible components M0

d,m given in Theorem 2.4.8 when r ≤ 7. As
an example, we provide a complete list of these components on a smooth cubic
surface in Example 2.4.10.

Appendix A: Categorical remarks. We summarise some basic notions in
category theory that are used throughout the thesis and in particular in Chapter
1. We recall the definitions of representability, base change of functors and open
and closed subfuntors. We also recall a useful criterion to determine when a
subfunctor is open or closed.

Appendix B: Linear systems on surfaces. We recall some basic definitions
and language of linear systems on projective surfaces over an algebraically closed
field. This is mainly used to define the morphism Ξd appearing in Chapter 2. In
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particular, we recall that for each invertible sheaf L on a projective surface, the
complete linear system corresponding to L is the scheme representing a functor
LinSysL. This functor takes each algebraic scheme S over k to the base change
of L tensored with the base change of an invertible sheaf of S.

A note on the required background

Our intention was to make the thesis followable by a graduate student in
algebraic geometry with some familiarity with three topics:

• some theory of schemes: sheaves of modules, existence of fibered product
of schemes, generic points, reduced schemes. This material is covered, for
instance, in Chapter II of [Har77] or Chapters 3-6 of [Vak17];

• classical geometric constructions: for instance, regular morphisms to pro-
jective spaces, blow-ups, linear systems on surfaces and geometry of Del
Pezzo surfaces. This material can be found in the first chapters of [Sha13a]
and Chapter V of [Har77];

• basic definitions on category theory: such as functors, natural transforma-
tions, limits and colimits. This material is covered, for instance, in Chapter
1 of [Vak17].

We try our best to provide references in the books by Hartshorne [Har77], Vakil
[Vak17] or the Stacks project [Stacks] to well known results in algebraic geometry
that cannot be deduced directly from our exposition.

Conventions

Ground field. We use k to denote the ground field which is assumed to be
algebraically closed unless explicitly stated otherwise.

Schemes and functors over the ground field. Throughout the text we em-
ploy notation which usually emphasizes the dependency on a base scheme S such
as HilbS(X), MorS(X,Y ) and X ×S Y . When S = Spec k is the spectrum of
the ground field we will simplify this notation by omitting S. For instance, in
the examples just mentioned we will use the notation Hilb(X), Mor(X,Y ) and
X × Y .
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Immersions. An open immersion or open embedding is a morphism of schemes
j : U → X if it is a homeomorphism between U and an open subset of X and
the maps of sheaves j−1OX → OU is an isomorphism. A morphism of schemes
i : Z → X is a closed immersion or closed embedding if i is a homeomorphism
between a closed subset of X and the induced morphism of sheaves OX → i∗OZ is
surjective. We say a morphism ι : W → X is an immersion if it is a composition
of open or closed immersions (cf. [Stacks, 01IO]).

Projective and quasi-projective morphisms. There are many notions of
projectivity. For this thesis we fix the following one: for any morphism of schemes
f : X → Y over a base S, f is said to be projective if there exists a non-negative
integer n and a closed immersion ι : X ↪→ Pn

S. The morphism f is said to
be quasi-projective if ι is a quasi-compact immersion instead. These are the
notions of H-projective and H-quasi-projective morphisms in [Stacks, 01W8] and
[Stacks, 01VW] respectively. We denote the categories of projective (resp. quasi-
projective) schemes over S, that is projective (resp. quasi-porjective) morphisms
of schemes with target S, as PrSch/S (resp. QPrSch/S).

Images and scheme theoretic images. The set theoretic image of a morphism
of schemes f : X → Y is denoted by im(f) and the scheme theoretic image of
f is denoted im (f), which is defined to be the smallest closed subscheme of
Y such that f factors through im (f). In most situations of the text the scheme
theoretic image im (f) and the closure of im(f) equipped with the induced reduced
subscheme structure on Y will coincide.

Scheme theoretic intersection. Suppose X is a scheme and W and Z are
open or closed subschemes of X, then the scheme theoretic intersection of W and
Z, denoted W ∩ Z, is the fibered product W ×X Z.

https://stacks.math.columbia.edu/tag/01IO
https://stacks.math.columbia.edu/tag/01W8
https://stacks.math.columbia.edu/tag/01VW


Chapter 1
Hilbert schemes and schemes of
morphisms

Hilbert schemes are important parameter spaces in algebraic geometry. In
this chapter we introduce them and point out some directions on how useful they
can actually be. Roughly speaking, if X is a projective flat scheme over a locally
noetherian scheme S, the Hilbert scheme HilbS(X) is the scheme parametrizing
proper and flat subschemes of X.

This heuristic description already tells us that HilbS(X) is a very large scheme
in general. Therefore, it is very natural to expect that we should be able to restrict
our attention to subschemes of HilbS(X) parametrizing a more restricted family
of subschemes. In fact, the Hilbert scheme of points and Hilbert schemes of curves
are examples of these subschemes which received the attention of many authors
over the years due to their applications. We highlight some aspects of those.

We also prove properties of HilbS(X) that can be deduced from the functor
of points. In a nutshell, we prove that Hilbert schemes behave well under base
change, and if W ↪→ X is an open (resp. closed) immersion of schemes, then
HilbS(W ) exists and we have a natural immersion

HilbS(W ) ↪→ HilbS(X)

which is open (resp. closed).
The second part of this chapter recalls the definition of schemes parametrizing

morphisms between two schemes over a base: if X is a projective flat scheme over
S and Y is quasi-projective over S, then the scheme MorS(X,Y ) parametrizes
morphisms X → Y over S. We will recall that MorS(X,Y ) is an open subscheme
of a Hilbert scheme HilbS(X ×S Y ).

We also recall that MorS(X,Y ) behaves well under base change. Moreover, if
X is flat and projective over S we have a functor

MorS(X,−) : QPrSch/S → Sch/S.

1



2 Hilbert schemes and schemes of morphisms

We prove that this functor preserves open and closed immersions. These prop-
erties will be useful to provide examples of schemes of morphisms from the pro-
jective line to blow-ups of schemes on Chapter 2. These schemes parametrize
morphisms whose images are rational curves on a given variety and we will see
they differ slightly from a Hilbert scheme of curves.

Many of the proofs in this chapter depend on the functor of points of the
schemes above. We naturally use some jargon coming from category theory such
as “universal section”, “representability” and “open subfunctor”. The precise
definitions of these terms and the needed statements for the proofs on this chapter
(which depend exclusively of category theory) have been gathered in Appendix
A for the convenience of the reader.

1.1 Hilbert polynomials

1.1.1 Let X be a proper scheme over a field k and F a coherent sheaf on X.
The Euler characteristic of F is defined as

χ(X,F) =
∑
i≥0

(−1)i dimk H
i(X,F),

where H i(X,F) is the i-th cohomology group of F over X. Recall that since X is
proper, each H i(X,F) is a finite dimensional k-vector space ([Stacks, 02O6]) and
by Grothendieck’s Vanishing Theorem [Har77, Theorem III.2.7] only finitely many
H i(X,F) are positive dimensional. It follows that this sum is finite. Moreover, if
L is a line bundle on X, we define the Hilbert function of F with respect to L as

HL,F : Z −→ Z

t 7−→ χ(X,F ⊗OX
L⊗t).

(1.1)

1.1.2 Theorem-Definition. ([FGI+05, p. 109]) Let F be a coherent sheaf on a
finite type scheme X over Spec k. If t� 0, then the function HL,F is a polynomial
in Q[t] (see Snapper’s Lemma ([FGI+05, Part 5, B.7]). This polynomial is said
to be the Hilbert polynomial of F with respect to L and is denoted by PL,F(t).
We will be interested in a few particular cases:

• If F = OX we denote PL,X(t) ..= PL,OX
(t) and say it is the Hilbert polynomial

of X with respect to L;

• if X is projective, let L be a very ample line bundle inducing an immersion

https://stacks.math.columbia.edu/tag/02O6
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ι : X ↪→ Pn
k , that is, L = OX(1) = ι∗OPn

k
(1). Then for any coherent sheaf

F we say that
PF(t) ..= POX(1),F(t)

is the Hilbert polynomial of F . By [Vak17, Theorem 18.6.1], we have that

PF(t) = dimk H
0(X,F(t))

for t� 0, where F(t) ..= F ⊗OX
OX(t).

• if X is projective, we say

PX(t) ..= POX(1),OX
(t)

is the Hilbert polynomial of X. By the previous item we have that

PX(t) = dimk H
0(X,OX(t))

for t� 0.

1.1.3 Example. The example of a Hilbert polynomial that is the simplest to
compute is that of the projective space. Indeed, we have that

dimk H
0(Pn

k ,OPn
k
(t)) ∼= dimk k[x0, . . . , xn]t,

where k[x0, . . . , xn]t is just the k-vector space of polynomials of degree t generated
by the monomials

{
xt0
0 · · ·xtn

n

}
t0+···+tn=t

. Therefore PPn
k
(t) =

(
n+t
n

)
for t� 0.

1.1.4 Hilbert polynomials and invariants. For any projective variety X of
dimension m, its Hilbert polynomial PX(t) is known to be a source of many
invariants. The main ones we will point out are the following.

1. The dimension m coincides with the degree of PX(t);

2. the degree of X is defined to be the leading coefficient of PX(t) multiplied
by m!. This notion coincides with the number of points of intersection of
X with a general linear subspace of dimension n −m in Pn

k counted with
appropriate multiplicities, see [Vak17, Exercise 18.6.N];

3. the virtual arithmetic genus of X is defined by

pa(X) ..= (−1)m(PX(0)− 1).
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This is an invariant proposed by Severi for any projective variety (not neces-
sarily non-singular) and coincides with the usual accepted notion of arith-
metic genus when X is an irreducible nonsingular curve or surface, see
discussion in [Pop16, Chapter 37] and [Bal56, Chapter V].

1.1.5 Remark. Notice that, from 1.1.4, if C is an irreducible projective curve
over k, then its Hilbert polynomial is linear given by

PC(t) = dt− pa(C) + 1

for some d > 0. If C is non-singular, the arithmetic genus pa(C) coincides with
the geometric genus pg(C) ..= dimk H

0(C,ΩC/k). If C is arbitrary, the arithmetic
genus is a non-negative integer.

1.1.6 In the next few paragraphs we will compute the Hilbert polynomial of
a curve which is the image of a morphism f : P1

k → Pn
k . These curves will be

the main curves studied on Chapter 2. Before that we recall a few important
definitions.

1.1.7 Definition. A projective curve C over k is said to be rational if it is
birational to P1

k, that is, there is an open subset of C isomorphic to an open
subset of P1

k.

1.1.8 Definition. A scheme X is said to be normal if for any point p ∈ X

the local ring OX,p is integrally closed on its field of fractions. For any integral
scheme X, its normalization consists of a normal scheme Xν and a dominant
integral morphism ν : Xν → X inducing an isomorphism on the function fields
of X and Xν (see [GW10, Proposition 12.44]).

1.1.9 Remark. We highlight three important properties of normalization:

• for any scheme integral scheme X, its normalization satisfies the following
universal property: for any normal scheme X ′ and morphism f : X ′ → X

there exists a unique morphism g : X ′ → Xν such that

Xν

X ′ X

ν

f

g

is commutative, see [GW10, Proposition 12.44];

• the morphism ν : Xν → X is a birational, see [Stacks, 0BXC];

https://stacks.math.columbia.edu/tag/0BXC
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• if dimX ≤ 1, X is normal if and only if X is nonsingular, see [Stacks, 0569]
and [Stacks, 0BX2].

1.1.10 Lemma. A projective curve C ↪→ Pn
k is rational if and only if it is the

scheme theoretic image of a morphism f : P1
k → Pn

k .

Proof. Clearly if C ↪→ Pn is rational there is a birational map g : P1
k 99K C,

since P1
k is non-singular, by [Sil09, Chapter II, Proposition 2.1.], we have that g

is regular, therefore C is the scheme theoretic image of f : P1
k

g−→ C ↪→ Pn
k .

Conversely, let f : P1
k → Pn

k be a morphism and C ..= im (f). Let ν : Cν → C

be its normalization. By definition there exists a morphism g : P1 → Cν such that
f = ν ◦ g. In particular since P1

k and Cν are nonsingular, by [Har77, Theorem
II.6.8] the morphism is finite and by [Har77, Example IV.2.5.4] we have the
inequality

0 = pg(P1
k) ≥ pg(C

ν)

thus the geometric genus of Cν is zero. It follows from [HS00, Theorem A.4.3.1]
that Cν ∼= P1

k and since ν is birational, the curve C is rational. �

1.1.11 Example (Hilbert polynomial and finite morphisms). Let g : X → Z

be a finite flat surjective morphism between integral projective schemes over k.
Let OZ(1) be the very ample line bundle inducing a closed embedding Z ↪→ Pn

k .
We claim that the Hilbert polynomial of Z can be computed by the Hilbert
polynomial of OX with respect to g∗OZ(1).

Since g is finite and flat it is equivalent to say that g∗OX is locally free of
finite rank on X (see [Stacks, 02KB]). Let m0 be this rank, we claim that

g∗g
∗OZ(t) ∼= OZ(m0t).

Indeed, just notice that if OZ(t) corresponds to a Cartier divisor D in Z (see
[Har77, Proposition II.6.13]) then g∗g

∗OZ(t) corresponds to the divisor g∗g
∗D,

that is, the image of D under the flat pullback and proper pushforward. By
[Stacks, 02RH], we have that g∗g

∗D = m0D and therefore the claim follows.
Furthermore, recall that (g∗OZ(1))

⊗t ∼= g∗OZ(t) and that since g is a finite
morphism, it is affine. Then by [Har77, Chapter III, Ex.4.1] and the definition of
the Hilbert functions (1.1):

Hg∗OZ(1),OX
(t) = χ(X, g∗OZ(t)) = χ(Z, g∗g

∗(OZ(t)))

= χ(Z,OZ(m0t)) = HOZ(1),OZ
(m0t)

https://stacks.math.columbia.edu/tag/0569
https://stacks.math.columbia.edu/tag/0BX2
https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/02RH
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for all integers t. Therefore, we conclude

Pg∗(OZ(1)),X(t) = PZ(m0t). (1.2)

1.1.12 Remark. The rank m0 in Example 1.1.11 can also be understood in terms
of field extensions. By [GW10, Proposition 12.21], for any point q ∈ Z we have
that

m0 = dimκ(q) Γ (Xq,OXq)

where Xq denotes the fiber of X over the point q. Let ξ and ζ be the generic
points of X and Z respectively. Since we assumed g surjective (which implies in
particular g dominant) we have that Xζ

∼= Specκ(ξ) (see [Stacks, 0CC1]) and it
follows that

m0 = [κ(ξ) : κ(ζ)], (1.3)

where [κ(ξ) : κ(ζ)] denotes the degree of the field extension κ(ξ)/κ(ζ) induced by
g.

1.1.13 Example (Hilbert polynomials of rational curves). Let

f : P1
k → Pn

k

be a non-constant morphism. We want to compute the Hilbert polynomial of the
scheme theoretic image C ..= im (f). By [Har77, Theorem II.7.1] the morphism
f is uniquely determined by the line bundle f ∗OPn

k
(1) and n + 1 global sections

on Γ (P1
k, f

∗OPn
k
(1)) with no zeros in common. It is well known that the only line

bundles on the projective line are precisely the twisting sheaves, hence

f ∗OPn
k
(1) ∼= OP1

k
(d)

for some non-negative integer d ( if d was negative Γ (P1
k,OP1

k
(d)) = 0).

Notice that f factors as

f : P1
k

g−→ C
ι
↪−→ Pn

k ,

where g : P1
k → C is a surjective morphism of projective curves. By [Har77,

Theorem II.6.8], g is finite and by [Stacks, 0CCK] it is flat. Let ζ be the generic
point of C and m0 = [k(t) : κ(ζ)] be the degree of the field extension induced by
g. We denote OC(1) ..= ι∗OPn

k
(1). We have that

g∗OC(1) = f ∗OPn
k
(1) = OP1

k
(d).

https://stacks.math.columbia.edu/tag/0CC1
https://stacks.math.columbia.edu/tag/0CCK
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Therefore, by (1.2) we have

PC(m0t) = Pg∗(OC(1)),P1
k
(t) = POP1

k
(d),P1

k
(t) = PP1

k
(dt).

Since PP1
k
(t) = dimk k[u, v]t = t+ 1, we obtain

PC(t) = d0t+ 1,

where d0 = d/m0. In particular, notice that f is birational onto its image, i.e. g

is birational, if and only if k(t) ∼= κ(C). This is equivalent to say m0 = 1 and
degC = d.

1.1.14 Example (Hilbert polynomial of a graph of curves). Let f : P1
k → Pn

k be
a morphism.

We compute the Hilbert polynomial of the graph of f with respect to the
following line bundle

OP1
k×Pn

k
(1) ..= OP1

k
(1)�OPn

k
(1) = pr∗1OP1

k
(1)⊗OP1

k
×Pn

k

pr∗2OPn
k
(1).

By [Har77, Ex. II.5.11], the line bundle OP1
k×Pn

k
(1) induces the Segre embedding

α : P1
k × Pn

k −→ P2n+1
k

((u : v), (x0 : · · · : xn)) 7−→ (ux0 : ux1 : . . . : vxn−1 : vxn).

Let Γf : P1
k → P1

k × Pn
k be the graph morphism and Z = im (Γf ). Since

P1
k is separated, this morphism is a closed immersion. We have the following

commutative diagram

P1
k P1

k × Pn
k Pn

k

P1
k Spec k.

f

Γf

pr1

pr2

Notice that

Γ ∗
f (OP1

k×Pn
k
(t)) ∼= Γ ∗

f pr
∗
1OP1

k
(t)⊗OP1

k

Γ ∗
f pr

∗
2OPn

k
(t)

∼= OP1
k
(t)⊗OP1

k

f ∗(OPn
k
(t))

for any integer t. Now, we know that f ∗(OPn
k
(1)) is a line bundle on P1

k, therefore
f ∗(OPn

k
(1)) ∼= OP1

k
(d) for some non-negative integer d. Thus, Γ ∗

f (OP1
k×kPn

k
(t)) ∼=
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OPn
k
((d+ 1)t) and we obtain

PZ(t) = PΓ ∗
f (OP1

k
×kPn

k
(1)),P1

k
(t) = POP1

k
(d+1),P1

k
(t) = PP1

k
((d+ 1)t) = (d+ 1)t+ 1.

1.1.15 Comment. A first approach to parametrize rational curves on Pn
k in-

volves classifying them by their Hilbert polynomials. By Remark 1.1.5 this de-
pends on two invariants. Their degree and their arithmetic genus. However this
presents an inconvenience: the Hilbert polynomial of a rational curve could co-
incide with the Hilbert polynomial of a curve of higher geometric genus if this
rational curve is singular. If one is interested only in rational curves, one needs
to exclude this situation.

Another approach to the same problem consists in regarding a rational curve
in Pn

k as the image of a morphism f : P1
k → Pn

k , as we have seen in Lemma
1.1.10. From Example 1.1.13 we know that the Hilbert polynomial of the image
f depends on f ∗OPn

k
(1) and the degree m0 between the function fields of P1

k and
the scheme theoretic image of f .

On the other hand on Example 1.1.14 we have seen that the Hilbert polyno-
mial of the image graph Γf : P1

k → P1
k × Pn

k depends only on f ∗OPn
k
(1). In fact,

we will see later on this chapter that the graphs of morphisms provide a natural
way to parametrize morphisms and in Section 2.1 we will see that the line bun-
dles OP1

k
(d), with d ≥ 0, define a natural partition on the parameter spaces of

morphisms P1
k → Pn

k .
Notice also that trying to parametrizing rational curves from morphisms has a

downside which needs attention: if g : P1
k → P1

k is any automorphism of P1
k, then

im (f ◦ g) = im (f). An approach to get rid of this situation is to take a quotient
by algebraic group Aut(P1

k), however this comes at a cost as describing the result-
ing space becomes more technical. For many applications, for instance the ones
described on the introduction, spaces parametrizing morphisms are sufficient.

1.2 Hilbert functors and Hilbert schemes

In this section we recall the definition of the Hilbert functor, its stratification
via Hilbert polynomials and recall the result of its representability.

1.2.1 Remark. Recall that there is a difference between a closed immersion
ι : V ↪→ X and a closed subscheme of X. Namely, ι is a closed immersion if
the underlying topological subspace ι(V ) ⊂ X is isomorphic to a closed subset
and the induced morphism of sheaves ι# : OX → ι∗OV is surjective. A closed
subscheme of X is an equivalence class of closed immersions where ι : V ↪→ X is
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equivalent to ι′ : V ′ ↪→ X if there exists an isomorphism α : V
∼−→ V ′ such that

ι = ι′ ◦ α.

However, for every closed immersion ι in a given equivalence class we have
that the associated ideal sheaf is unique, see [Stacks, 01QP] for instance. If there
is no risk of confusion, we will simply refer to a closed immersion ι : V ↪→ X as
a closed subscheme.

1.2.2 Notation. Let S be a fixed base scheme and X and S ′ be S-schemes.
When there is no risk of confusion we denote the fiber product X ×S S ′ by XS′ .

1.2.3 Definition. Let X be a scheme over a noetherian scheme S and let Noe/S
be the category of locally noetherian schemes over S. We define the Hilbert
functor

HilbS(X) : (Noe/S)op → Set

on the objects by

S ′ 7→

{
V ↪→ XS′ closed subscheme

such that V → S ′ is flat and proper

}

In other words, for each section in HilbS(X)(S ′) there is an equivalence class of
flat and proper morphisms V → S ′ fitting in the following commutative diagram:

V

XS′ X

S ′ S.

where V → S ′ and V ′ → S ′ are equivalent if V and V ′ define the same subscheme
on XS′ , that is V ∼= V ′.

Moreover, to define the Hilbert functor on morphisms just notice that if
f : S ′′ → S ′ is a morphism over S and V → S ′ corresponds to a section of

https://stacks.math.columbia.edu/tag/01QP
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HilbS(X)(S ′) then we have a base change diagram

V ×S′ S ′′ V

XS′′ XS′ X

S ′′ S ′ S,
f

where all squares are cartesian. Since being a closed embedding, flatness and
properness are properties stable under base change this implies that V ×S′ S ′′ is
a section of HilbS(X)(S ′′). Hence, the Hilbert functor associates every morphism
f : S ′′ → S ′ in Sch/S to the morphism

HilbS(X)(f) : HilbS(X)(S ′) −→ HilbS(X)(S ′′)

V 7−→ V ×S′ S ′′.
(1.4)

1.2.4 Notation. Let X be a projective scheme over an integral noetherian
scheme S, i.e. X is embedded in a projective space Pn

S as a closed subscheme.
For every point p ∈ S let κ(p) denote the residue field of the point p and consider
the morphism

Specκ(p)→ S

whose image is the point p. This map induces the pullback diagram

Xp X

Pn
κ(p) Pn

S

Specκ(p) S,

where every square is cartesian.

1.2.5 Theorem. [Har77, Theorem III.9.9.] Let S be an irreducible locally noethe-
rian scheme and let X be a projective scheme over S. For each point p ∈ S, let
PXp(t) be the Hilbert polynomial of Xp considered as a closed subscheme of Pn

κ(p).
If X is flat over S then the Hilbert polynomial PXp(t) is independent of the point



1.2. Hilbert functors and Hilbert schemes 11

p. In other words, the map

Φ : S −→ Q[t]

p 7−→ PXp(t)

is constant.

1.2.6 Remark. The original statement of theorem above in [Har77] assumes that
S is an integral noetherian scheme. However, the reducedness hypothesis is used
only to prove a converse statement about the morphism X → S: if the function
Φ is constant then X is flat over S.

When the local rings of S are reduced this statement follows from [Eis95,
Exercise 20.14.b] or [Har77, Lemma II.8.9].

1.2.7 Remark. Let S be locally noetherian scheme, let f : X → S be a flat
morphism. Theorem 1.2.5 implies that p 7→ PXp(t) is a locally constant function,
that is, it is constant on each irreducible component of S. Thus we can write

X =
∐

P∈Q[t]

XP ,

where XP = {q ∈ X | PXf(q)
(t) = P (t)}.

1.2.8 Definition. Let X be a projective scheme of finite type over S, P (t) ∈ Q[t]

be a polynomial and let Noe/S be the category of locally noetherian schemes
over S. We define the Hilbert functor

HilbPS (X) : (Noe/S)op → Set

on objects by

S ′ 7→


V ⊂ XS′ closed subscheme

such that f : V → S ′ is flat and proper
and PVf(q)

(t) = P (t) for all q ∈ V.


and via pullbacks on S-morphisms S ′′ → S ′ just as in (1.4).

Notice that for any polynomial P ∈ Q[t] there is an injective map of functors

HilbPS (X) ↪→ HilbS(X),

and moreover, by Remark 1.2.7 we have the equality of functors

HilbS(X) =
∐

P∈Q[t]

HilbPS (X). (1.5)
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1.2.9 Theorem. Let S be a noetherian scheme and X be a flat projective scheme
over S. The functor HilbPS (X) is representable by a proper scheme over S denoted
HilbP

S (X). Therefore, HilbS(X) is representable by a scheme

HilbS(X) =
∐

P∈Q[t]

HilbP
S (X)

which is locally of finite type over S. This scheme is called the Hilbert scheme of
X over S.

Proof. See [Kol96, Section I.1] or [FGI+05, Chapter 5]. �

1.2.10 It is clear that in general the Hilbert schemes of a projective scheme
over a base have infinitely many components. There has been extensive work in
trying to find the components and dimension of HilbP

S (X), in particular when
S = Spec k.

Furthermore, even if the schemes X and S are particularly nice, the schemes
HilbP

S (X) can be very pathological. Mumford was the first to show the existence
of a component in Hilb(P3

k) which is nowhere reduced in [Mum62]. Even more so,
Vakil provides examples for which HilbP

S (X) have arbitrarily bad singularities in
[Vak06]. Below we provide a few examples of Hilbert schemes and some progress
on their description.

1.2.11 Hilbert schemes of connected components. As remarked before, it
is not a simple task to describe all the components of a Hilbert scheme as it is
an incredibly rich parameter space. To illustrate this, let us consider S to be
an arbitrary scheme and let us look for the components of the seemingly trivial
example of HilbS(S). This scheme parametrizes arbitrary unions of connected
components of S.

Recall that for any scheme S there is a bijective correspondence{
V ↪→ S closed subscheme
such that V ↪→ S is flat.

}
←→

{
Unions of connected

components of S

}
,

see [Stacks, 04PW] and [Stacks, 04PX]. For any scheme S, let

S =
∐
i∈IS

Si

be its decomposition on connected components. Notice that if V is a union of

https://stacks.math.columbia.edu/tag/04PW
https://stacks.math.columbia.edu/tag/04PX
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connected components of X, then there exists a unique subset J ⊂ IS such that

V =
∐
i∈J

Si.

Therefore, the set of unions of connected components of S is in bijective corre-
spondence with

CS
..= 2IS r {∅},

where 2IS stands for the power set of IS, that is, the set of all subsets of IS. It
follows that, for any morphism S ′ → S, the Hilbert functor is given by

HilbS(S)(S ′) =

{
V ↪→ S ′ closed subscheme
such that V ↪→ S ′ is flat

}
∼= CS′

We claim that
HilbS(S) ∼=

∐
J∈CS

S

and that its universal section is isomorphic to S. For simplicity denote

S =
∐
J∈CS

S.

Recall that for each J ∈ CS there is a canonical inclusion ιJ : S ↪→ S. We
warn that the embedding of the universal section ι : S ↪→ S is obtained from the
ιJ but it is not any of them. Roughly speaking the embedding ι is obtained by
taking each connected component Si of S to the component in the partition of
S indexed by the singleton subset {i}. Rigorously, it is obtained in the following
way: let S =

∐
i∈IS Si be the decomposition of S in connected components, then

ι =
∐
i∈IS

ι{i}|Si
,

that is, ι fits the following commutative diagrams

Si S S

S S

ι{i}

ι

for all i ∈ IS.

Now it suffices to prove that ι is actually a universal section. In other words,
it suffices to check that for each morphism f : S ′ → S and each V ′ ∈ HilbS(S)(S

′)
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there exists a unique morphism g : S ′ → S such that V ′ ∼= S ′×SS, see Corollary
A.1.6.

Once again, the morphism g is intuitively simple. For each connected com-
ponent S ′

i ⊂ V ′ we have that f(S ′
i) ⊂ Sj for some connected component Sj ⊂ S.

Then g is just the morphism coinciding with the restriction f |S′
i

mapped on the
copy of S on S labelled by the singleton {j}. Rigorously, we have the following:
we can write S ′ =

∐
i∈IS′ S

′
i to be the decomposition of S ′ in connected compo-

nents. For each morphism f : S ′ → S we have f(S ′
i) = Sf♯(i) for some f ♯(i) ∈ IS

that is we have a map of sets

f ♯ : IS′ −→ IS.

Moreover, for any V ′ ∈ HilbS(S)(S
′) there is a unique subset J ⊂ IS′ such that

V ′ =
∐

i∈J S
′
i. Then we can define

g =
∐
i∈J

ι{f♯(i)} ◦ f |S′
i
.

That is g fits the commutative diagrams

S ′
i S ′ S S

S ′ S

S ′ S

f ι{f♯(i)}

g

f

for all i ∈ J . It is clear that g is unique by the uniqueness of the set J and it is
straightforward to check that the definitions of the morphisms imply that

V ′ S

S ′ S

f |V ′

ι

g

is cartesian. It follows that HilbS(S) = S.

We conclude by remarking that HilbS(S) has finitely many components if and
only if S has finitely many connected (and therefore irreducible) components.
More precisely if #IS = n then HilbS(S) has n.#CS = n(2n − 1) components.
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1.2.12 Hilbert schemes of points. Let X be a projective variety over k. The
simplest Hilbert polynomials for subschemes of X are the constant ones. Recall
that the degree of the Hilbert polynomial of a projective scheme coincides with
its dimension. Thus, by definition of the Hilbert polynomial, if Z is a subscheme
of dimension 0 on X, then its Hilbert polynomial must be the constant

PZ(t) = dimk H
0(Z,OZ).

Let us look at examples of schemes corresponding to points on Hilbm(X).
Suppose Z is a collection of m distinct k-points {p1, . . . , pr} ⊂ X, that is

Z ∼=
m∐
i=1

Spec k,

then clearly H0(OZ , Z) =
⊕m

i=1 k and PZ(t) = m. In other words, Z defines a
k-point in Hilbm(X).

Now, suppose Z ′ is a non-reduced point of X, for example Z ′ ∼= Spec k[t]/(tm)

for some m. Then since H0(Z ′,OZ′) = k[t]/(tm) is generated as a k vector space
by the classes of {1, . . . , tm−1} we clearly have

PZ(t) = dimk k[t]/(t
m) = m

and Z ′ defines a k-point on Hilbm(X).
Combining both of those examples we have subschemes Z ↪→ X such that

Z ∼=
∐

m1+···+mr=m

Spec k[t]/(tmi)

defining k-points on Hilbm(X).
The study of Hilbert schemes of points has been very prolific in many areas

of mathematics. To illustrate how far these parameter spaces can reach we will
mention an interesting application on complex geometry in two steps:

1. If char k = 0, the Hilbert schemes Hilbm(X) have a natural connection
with the symmetric powers of X. Recall that the m-th symmetric power
of a projective variety X over k is defined to be the quotient of Xm by
the group of permutations of m elements Σm. We will denote it Symm(X).
The k-points of the symmetric powers Symm(X) can be understood as
unordered selections of k-points on X which can be simply denoted by
{p1, . . . , pm}. Notice however that each pi is not necessarily distinct from
pm. This repetition can be dealt with in the following way: since char k = 0

the variety Symm(X) is isomorphic to a variety parametrizing effective 0-
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cycles on X, so that any k-point in Symm(X) actually corresponds to a
finite formal sum of points

∑r
i=1mipi such that

∑r
i=1 mi = m. There exists

a regular morphism

Hilbm(X) −→ Symm(X)

[Z] 7−→
∑

p∈Supp(Z)

dimk(OZ,p)p

called the Hilbert-Chow morphism. If dimX = 1, this morphism is an
isomorphism. If dimX = 2 then it is the resolution of singularities of the
symmetric power Symm(X), see for instance [FGI+05, Chapter 7].

2. If k = C and X is a K3 surface, then Hilbm(X) are examples of irreducible
holomorphic symplectic (IHS) manifolds. IHS manifolds are defined to be
simply connected compact Kähler manifolds such that H0(X,Ω2

X/C) is gen-
erated by a non-degenarate two form.

The existence of the Hilbert-Chow morphism was used by Beauville [Bea83]
to prove that Hilbm(X) satisfies these conditions. This deserves special
attention since the list of known IHS manifolds so far is not particularly big:
they consist of K3 surfaces, the collection of the Hilbert scheme of points
on those K3 surfaces, generalized Kummer varieties and two examples of
dimension 6 and 10 developed by Kieran O’Grady, commonly referred as
OG6 and OG10. See for instance [Huy99] for a more detailed discussion on
IHS manifolds.

1.2.13 Comment. The representability result of the functors HilbS(X) given
in Theorem 1.2.9 provides a wide range of examples for which the Hilbert scheme
exists. A natural question is whether the hypothesis that X is projective and
flat over a noetherian base scheme S can be relaxed. We will also see below that
in fact, if we take X to be quasi-projective over S, the functor HilbS(X) is still
representable.

The explicit example in 1.2.11 of HilbS(S) is another example of representabil-
ity when S is an arbitrary scheme. A much more interesting instance of relaxing
the hypotheses of Theorem 1.2.9 is given by Gustavsen, Laksov and Skjelnes in
[GLS07] where they prove that for an arbitrary scheme S and X projective over
S, the functors HilbmS (X) are representable and provide explicit constructions for
the representing schemes.

1.2.14 Hilbert schemes of curves. Let X be a projective variety over k.
Consider the linear polynomials dt+m. By Remark 1.1.5 the scheme Hilbdt+m(X)
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parametrizes curves of degree d and arithmetic genus 1−m.
An interesting particular case happens when m = 1. That is, when Hilbdt+1(X)

parametrizes curves of degree d and arithmetic genus 0.
Recall that the arithmetic and geometric genera coincide for any nonsingular

projective curve. Therefore, any nonsingular rational curve of degree d on X

corresponds to a point on Hilbdt+1(X). The converse might not be true, that is,
not every k-point on Hilbdt+1(X) corresponds necessarily to a smooth rational
curve (or not even necessarily a rational curve). The points corresponding to
smooth rational curves of degree d form an open subscheme of Hilbdt+1(X).

There is plenty of literature about those schemes. A good example is provided
by Piene and Schlessinger [PS85]: they prove that the space parametrizing smooth
rational curves of degree 3 in Hilb3t+1(P3

k) is a subvariety H0 which is smooth and
irreducible of dimension 12. Moreover they prove that Hilb3t+1(P3

k) consists of
two components: H = H0 and a component H ′ = H ′

0, where H ′
0 is a subvariety

parametrizing plane cubic curves union a point, these are, of course, singular
curves. We have that H0 ∩H ′

0 = ∅, however H ∩H ′ is a smooth rational variety
of dimension 11.

Other interesting examples arise from hypersurfaces in projective spaces. For
instance, Starr proves in his thesis [Sta00] that if X is a smooth cubic threefold
in P4

C the subschemes of Hilbdt+1(X) parametrizing nonsingular rational curves
on X are irreducible of dimension 2d. In the same direction there has also been
progress on these schemes when X ⊂ P5

C is a smooth cubic fourfold: Starr and
de Jong [JS04] study the birational geometry of the subscheme parametrizing
nonsingular rational curves in Hilbdt+1(X) and prove that for d ≥ 5 and odd this
scheme is not uniruled.

Further to that Harris, Roth and Starr [HRS05] prove that for a nonsingular
complex cubic threefold X ⊂ P4

C the subschemes of Hilbdt+1−g(X) parametrizing
nonsingular curves of degree d and arithmetic genus g are irreducible of dimension
2d for 1 ≤ d ≤ 5.

1.2.15 Comment. Recall that, when we are working with projective curves as
schemes over a field k one can usually study them by taking their normalization.
In fact, the category of normal projective curves over a field and non-constant
morphisms between them is equivalent to the category of smooth projective curves
over a field. See for instance [Stacks, 0BY1].

However, if we want to study a projective variety X over k by the behaviour
of its curves, most of them will be unavoidably singular. We will have to manage
their singularities without altering significantly the geometry of X.

If we restrict ourselves to rational curves we can quickly see this even on plane

https://stacks.math.columbia.edu/tag/0BY1
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curves: by the genus-degree formula for plane curves [Har77, Example V.1.5.1.]
the only rational nonsingular curves in P2

k are those of degree d = 1, 2, that is
lines and conics; every rational curve of degree d ≥ 3 will be singular.

1.3 Properties of the Hilbert schemes

We formulate a few properties of the Hilbert scheme which will be useful to
deduce properties of different parameter spaces such as the scheme of morphisms.
The first useful property is that the Hilbert scheme behaves well under base
change, that is, the following holds:

1.3.1 Proposition. Let h : S ′ → S be a morphism of noetherian schemes and
let X be a flat projective scheme over S. Then we have a natural isomorphism
HilbS′(XS′) ∼= HilbS(X)×S S ′.

Proof. For this proof, denote for simplicity

HilbS
..= HilbS(X) and HilbS′ ..= HilbS′(XS′),

and let
U ∈ HilbS(X)(HilbS) and U ′ ∈ HilbS′(XS′)(HilbS′)

be the respective universal sections (A.1.7) of the Hilbert functors.

Let g : HilbS → S and g′ : HilbS′ → S ′ denote the structure morphisms. No-
tice that h defines HilbS′ as an S-scheme, hence U ′ fits the following commutative
diagram

U ′

XS′ ×S′ HilbS′ XS′ X

HilbS′ S ′ S,
g′ h

where all the squares are cartesian. In other words, we can consider U ′ as a
section in HilbS(X)(HilbS′), and the representability of HilbS(X) implies that
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there exists an S-morphism h′ : HilbS′ → HilbS such that

HilbS′ HilbS

S ′ S

g′

h′

g

h

(1.6)

is commutative and such that U ′ ∼= U ×HilbS HilbS′ . That is, there is a commuta-
tive diagram

U ′ U

XS′ ×S′ HilbS′ X ×S HilbS

HilbS′ HilbS
h′

where all squares are cartesian. It suffices to prove that the square (1.6) is carte-
sian by checking that it satisfies the corresponding universal property. That is, if
we suppose there exists an S-scheme S ′′ such that the diagram of full arrows

S ′′

HilbS′ HilbS

S ′ S

β

α

∃!γ

g′

h′

g

h

is commutative, then there exists a unique dashed arrow γ : S ′′ → HilbS′ making
everything commutative. Indeed, notice that by the representability of HilbS(X),
the morphism α : S ′′ → HilbS corresponds to a unique section V ∈ HilbS(X)(S ′′).
That is, V is a closed subscheme of XS′′ , flat and proper over S ′′ and, moreover,
such that V ∼= U ×HilbS S ′′. Equivalently, we have that the diagram

V U

S ′′ HilbS
α

is cartesian. The morphism β : S ′′ → S ′ makes S ′′ into a S ′-scheme, and since
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XS′′ ∼= X ×S′ S ′′, we have that V ∈ HilbS′(XS′)(S ′′). In particular, the universal
property of U ′ implies that there exists a unique S ′-morphism γ : S ′′ → HilbS′

such that β = g′ ◦ γ and such that V ∼= U ′ ×HilbS′ S
′′. Therefore, h′ ◦ γ induces

an isomorphism

V ∼= U ′ ×HilbS′ S
′′ ∼= (U ×HilbS HilbS′)×HilbS′ S

′′ ∼= U ×HilbS S ′′.

We can summarise the above by saying that we have a commutative diagram

V

U ′ U

XS′′ XS′ X

XS′ ×S′ HilbS′ X ×S HilbS

S ′′ S ′ S

HilbS′ HilbS

β

γ

h

h′

g′ g

for which every vertical square is cartesian. Since U is a universal section, it
satisfies property (A.3), and therefore, α is the unique morphism inducing the
isomorphism V ∼= U ×HilbS S ′′. We conclude that α = h′ ◦ γ. �

1.3.2 . Let X be a projective scheme over a noetherian base scheme S, and
let j : U ↪→ X and i : Z ↪→ X be an open and a closed immersion of schemes
over S repectively. We will prove that there exists Hilbert schemes of U and Z,
which will be respectively an open and a closed subscheme of the Hilbert scheme
HilbS(X).

1.3.3 Lemma. Let X be a separated scheme over S and ι : W ↪→ X be an
immersion of schemes over S. Then, ι induces a monomorphism of functors
ηι : HilbS(W ) ↪→ HilbS(X).

Proof. We check it on sections: let S ′ be an S-scheme and let V ∈ HilbS(W )(S ′)

be a section, and consider a closed immersion V ↪→ WS′ fitting in the commutative
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diagram
V

WS′ XS′

S ′,

ιS′

where V ↪→ WS′ → S ′ is proper and flat, and the schemes WS′ and XS′ stand for
the base changes of W and X respectively via S ′ → S.

Since X is separated, it follows that the composition V ↪→ WS′
ιS′
↪→ XS′ is

proper (see [Stacks, 01W6]). Moreover, since V ↪→ XS′ is an immersion of schemes
and it is proper, it is a closed immersion of schemes (see [Stacks, 01IQ]). There-
fore, V induces a closed subscheme of XS′ which is flat and proper over S ′. Thus
we have a map

HilbS(W )(S ′)→ HilbS(X)(S ′)

taking the closed subscheme defined by V ↪→ WS′ to the closed subscheme defined
by V ↪→ WS′

ιS′
↪→ XS′ . This map is clearly natural on S ′ and injective since ιS′ is

a monomorphism in the category of schemes (see [Stacks, 01L7]). �

1.3.4 Proposition. Let X be a proper scheme over S. Let i : V ↪→ X be a closed
subscheme over S and j : U ↪→ X be an open subscheme of X. Then there exists
an open subscheme S0 ⊆ S with the following property:

for any morphism of schemes f : S ′ → S, f factors through S0

if and only if the base change iS′ : VS′ ↪→ XS′ factors through US′ .
(1.7)

Proof. First, let U ∩ V denote the scheme theoretic intersection of V and U

defined by the cartesian square

U ∩ V U

V X.

iU

jV j

i

If U and V are disjoint inside X, then U ∩ V is the empty scheme. Notice
that for any morphism f : S ′ → S, the base change VS′ is disjoint from US′ . In
this case S0 can also be taken to be the empty scheme, since clearly VS′ factors
through US′ if and only if S ′ is the empty scheme.

https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/01IQ
https://stacks.math.columbia.edu/tag/01L7
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Therefore, we can assume U and V are not disjoint, that is, U ∩ V is non-
empty. Then let q ∈ U ∩ V be a point and p ∈ S be the image of q under the
structure morphism U ∩ V → S. Then we have a commutative diagram

(U ∩ V )p Up

Vp Xp Specκ(p)

U ∩ V U

V X S,

iUp

jVp jp

ip

iU

jV j

i

where (U ∩V )p, Up, Vp and Xp correspond to the fibers over p, and all squares are
cartesian.

Claim. The morphism ip : Vp ↪→ Xp factors through Up if and only if

jVp : (U ∩ V )p ↪→ Vp

is surjective.

Proof of claim. Indeed, by the universal property of the fiber product, Vp factors
through Up if and only if the open immersion jVp admits a section, in particular,
this implies that jVp is surjective.

Conversely, if jVp is surjective, since it is also an open immersion, it is a fortiori
an isomorphism, therefore Vp factors through Up. �

We define the set

S0
..={p ∈ S | jVp : (U ∩ V )p ↪→ Vp is surjective}

={p ∈ S | ip : Vp ↪→ Xp factors through Up}.

We claim that S0 is open in S and satisfies property (1.7). Indeed, consider
the morphism g : V

i
↪→ X → S. Since X is proper over S and i is a closed
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immersion, g is a proper morphism. Consider the diagram

U ∩ V V

S.

jV

g

Claim. We have S0 = S r g(V r jV (U ∩ V )). In particular, S0 is open, since jV

is an open embedding and g is proper.

Proof of claim. Let p ∈ S r g(V r jV (U ∩ V )). Then, the underlying topological
space of Vp, denoted |Vp|, is contained in the image jV (U ∩ V ). This is easy to
see, since

|Vp| ⊆g−1(S r g(V r jV (U ∩ V ))) = V r (g−1(g(V r jV (U ∩ V ))))

⊆V r (V r jV (U ∩ V )) = jV (U ∩ V ).

Since jV is an open embedding, that means that Vp → V factors uniquely
through jV : U ∩ V → V (see [Stacks, 01HI]). By the universal property of
fiber product, the morphism jVp : (U ∩ V )p → Vp admits a section, that is, it is
surjective.

Conversely, if p ∈ S0, then jVp is a surjective open embedding and thus it is
an isomorphism. Therefore, Vp → V factors through jV : U ∩ V → V , which
happens if and only if

|Vp| = g−1(p) ⊆ jV (U ∩ V ).

That is,
g−1(p) ∩

(
V r jV (U ∩ V )

)
= ∅,

or equivalently,
p ∈ S r g(V r jV (U ∩ V )).

�

Claim. S0 has the property (1.7).

Proof of claim. Let f : S ′ → S be a morphism. Suppose that iS′ : VS′ ↪→ XS′

factors through US′ . Let q ∈ S ′ be a point and p = f(q). We prove that p ∈ S0.
Notice that, in particular, the morphism iS′,q : VS′,q ↪→ XS′,q induced at the
fibers over q factors through the fiber US′,q. Consider the canonical morphism

https://stacks.math.columbia.edu/tag/01HI
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α : Specκ(q)→ Specκ(p) and the induced commutative diagram:

VS′,q

US′,q XS′,q Specκ(q) S ′

Vp

Up Xp Specκ(p) S.

αV

iS′,q

αU

jS′,q

αX α f

ip

jp

Notice that since α is a morphism between points, it is surjective, and since
surjectivity is stable under base change ([Stacks, 01S1]), the morphisms αV , αU , αX

are surjective.

It suffices to prove that the underlying topological space of the image ip(Vp)

is contained in jp(Up). Indeed, if v ∈ Vp, by surjectivity we have a point v′ ∈ VS′,q

such that αV (v
′) = v. Then we have iS′,q(v

′) = jS′,q(u
′) for some u′ ∈ US′,q.

Denote u = αU(u
′). We have

jp(u) =jp ◦ αU(u
′) = αX ◦ jS′,q(u

′)

=αX ◦ iS′,q(v
′) = ip ◦ αV (v

′) = ip(v).

That is, ip(Vp) is contained in jp(Up), as desired. Thus, p = f(q) ∈ S0 for all
q ∈ S ′, and f : S ′ → S factors through S0 ↪→ S.

Conversely, suppose that f : S ′ → S factors through S0. Let iS0 : VS0 ↪→ XS0

be the base change of i with respect to the inclusion S0 ↪→ S, and consider the

https://stacks.math.columbia.edu/tag/01S1


1.3. Properties of the Hilbert schemes 25

diagram
VS′

US′ XS′ S ′

VS0

US0 XS0 S0

V

U X S,

iS′

jS′

f

iS0

jS0

i

j

where all squares are cartesian.
By the definition of S0, we have

iS0,p(VS0,p) ⊆ jS0,p(US0,p) ⊆ jS0(US0)

for all p ∈ S0. That is, iS0 factors through jS0 . It follows immediately that
iS′ : VS′ → XS′ factors through US′ ∼= US0 ×S0 S

′ by the universal property of
fiber product. Therefore, S0 has property (1.7), which proves the claim and the
lemma. �

�

1.3.5 Proposition. Let j : U → X be an open immersion of schemes over S.
Then the morphism ηj : HilbS(U) ↪→ HilbS(X) defined in 1.3.3 makes HilbS(U)

into an open subfunctor of HilbS(X). In particular, if X is projective and flat over
S, then HilbS(U) is representable by an open subscheme HilbS(U) ↪→ HilbS(X).

Proof. By Lemma 1.3.3, we have a subfunctor ηj : HilbS(U) ↪→ HilbS(X). To
prove it is an open subfunctor, by Proposition A.2.9, it suffices to prove that for
every S-scheme S ′ and section V ∈ HilbS(X)(S ′), there exists an open subscheme
S0 ↪→ S ′ satisfying the property: for any morphism f : S ′′ → S ′, f factors through
S0 if and only if HilbS(X)(f)(V ) belongs to ηj,S′′(HilbS(U)(S ′′)) or equivalently,
the base change V ×S′ S ′′ ↪→ XS′′ factors through US′′ .

Such S0 is obtained by applying Lemma 1.3.4 to the closed immersion V ↪→
XS′ and open immersion jS′ : US′ → XS′ .
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The second assertion follows from Proposition A.2.7. �

1.3.6 Remark. A similar statement can be proved for a closed embedding over
S by different methods. That is, if i : Z ↪→ X is a closed immersion, then
ηi : HilbS(Z) ↪→ HilbS(X) is a closed subfunctor. We provide a sketch of the
reasoning.

Let S be a noetherian scheme, X be a projective S-scheme and E be a coherent
sheaf over S. There exists a functor

QuotE/X/S : (Noe/S)op → Set

associating every morphism f : S ′ → S to the set of equivalence classes of families
of quotients of ES′ ..= f ∗E which are flat over S ′ and have proper support.

Grothendieck [Gro60] proved that the functor QuotE/X/S is representable by
a scheme, denoted QuotE/X/S. More recent and detailed proofs of this repre-
sentability can be found in [AK80] and [FGI+05, Chapter 5]. In particular, when
E = OX , we have QuotOX/X/S

∼= HilbS(X), see [FGI+05, Section 5.1.3, page 109].
If i : Z ↪→ X is a closed immersion, we have a canonical surjection OX � i∗OZ .
Moreover, by [FGI+05, Lemma 5.17, pg 127] we have a natural morphism

Quot i∗OZ/X/S → QuotOX/X/S

which is a closed subfunctor. Since the support of i∗OZ on X is Z and in addition,
Z is flat if and only if i∗OZ is flat over X, we have canonical isomorphisms

Quot i∗OZ/X/S
∼= QuotOZ/Z/S

∼= HilbS(Z),

and the claim follows.

1.4 The functor and scheme of morphisms

In this section we present the main parameter spaces studied in Chapter 2 of
the thesis. These are schemes parametrizing morphisms of schemes over a base
scheme. As for any other parameter space, we should first define the functor of
points.

1.4.1 Definition. Let X and Y be schemes over S. The functor of morphisms

MorS(X,Y ) : (Noe/S)op → Set
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from X to Y is defined on S-schemes by

MorS(X,Y )(S ′) = HomS′(XS′ , YS′)

where HomS′(XS′ , YS′) is the set of morphisms from XS′ to YS′ over S ′. We define
the functor on S-morphisms taking S ′′ → S ′ to the map

HomS′(XS′ , YS′) −→ HomS′′(XS′′ , YS′′)

fS′ 7−→ fS′′

where fS′′ : XS′′ → YS′′ is the base change of fS′ making the following diagram
commutative

S ′′

XS′′ YS′′

S ′

XS′ YS′

S

X Y

fS′′

fS′

and for which every square is cartesian.

1.4.2 If the functor MorS(X,Y ) is representable by a scheme, then each of
its S-points correspond to morphisms f : X → Y over S. We then denote
the representing scheme MorS(X,Y ). We give a few examples for which we
can determine representability by the functor of points, and recall under which
conditions on X and Y representability is guaranteed.

1.4.3 Lemma (Rigidity). Let S be a locally noetherian scheme. Consider the
commutative diagram of schemes

X Y

S.

f

g h

Suppose that g is flat and proper. Let Xp denote the fibre of g at a point p ∈ S,
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and suppose we have H0(Xp,OXp)
∼= κ(p) for all points p ∈ S. Then, if there

exists a point p ∈ S on each connected component of S such that f(Xp) is set-
theoretically a single point, then there exists a S-section η : S → Y such that
η ◦ g = f .

Proof. When S is connected this is precisely [MFK94, Proposition 6.1, pg 115].
If S has several connected components, we can write S =

∐
i∈IS Si as its partition

in connected components. Since S is locally noetherian, the collection {Si}i∈IS
of connected components forms an open cover of S. Hence, we apply the same
proposition to each component Si and obtain the sections ηi fitting in the fibered
diagram

Si

Xi Yi

S

X Y.

ηi

f |Xi

g|Xi

h|Yi

f

g h

Therefore, we can define η =
∐

i∈IS ηi, that is, η is the glueing of the ηi. �

1.4.4 Lemma. Let S be a scheme and X,Y be schemes over S. Then we have
a canonical morphism

hY →MorS(X,Y ).

If X → S has an S-section, then this morphism is injective. Moreover, if X

and S satisfy the conditions of the Rigidity Lemma 1.4.3, then this morphism
is surjective if, and only if, for every morphism SpecK → S with K a field,
all morphisms in HomK(XK , YK) are constant, where XK

..= X ×S SpecK and
YK

..= Y ×S SpecK. In such a situation we have a canonical isomorphism

Y ∼= MorS(X,Y ).

Proof. Let S ′ be an S-scheme. Then any morphism f ∈ hY (S
′) = HomS(S

′, Y )

induces a unique S ′-section S ′ → YS′ and we can define the composition g : XS′ →



1.4. The functor and scheme of morphisms 29

S ′ → YS′ , fitting on the diagram (in black)

XS′ S ′ YS′

X S Y

g

f

and defining a map hY (S
′)→MorS(X,Y )(S ′) natural in S ′.

Moreover, if X → S has a S-section S → X, this morphism is injective:
indeed, this S-section induces a unique S ′-section S ′ → XS′ (in blue in the
diagram above) so that we can define a map Mor(X,Y )(S ′) → hY (S

′) taking
any morphism g : XS′ → YS′ to the composition S ′ → XS′

g−→ YS′ → Y . It is
clear that this map is natural in S ′ and that the composition

hY →MorS(X,Y )→ hY

is the identity. In particular, hY →MorS(X,Y ) is injective.
Assuming that X and S satisfy the additional hypotheses of Lemma 1.4.3,

we claim that hY → MorS is surjective if and only if for each morphism in
HomS(SpecK,Y ) the morphisms in HomK(XK , YK) are constant. Indeed, sup-
pose all HomK(XK , YK) are constant, let g : XS′ → YS′ be a morphism in
HomS′(XS′ , YS′) and let q ∈ S ′ be a point. Notice that fiber Xκ(q) fits in the
fibered diagram

Xκ(q) XS′,q XS′ X

Specκ(q) S ′ S.

∼=

We have an analogous diagram for Yκ(q) = YS′,q. Then, by assumption, the
induced morphism on fibres

gq : Xκ(q) → Yκ(q)

is constant. Therefore, by the Rigidity Lemma 1.4.3, the morphism g factors
through S, hence hY (S

′)→MorS(X,Y )(S ′) is surjective for all S ′.
Conversely, if hY →MorS(X,Y ) is surjective, then for any SpecK → S, all

morphisms HomK(XK , YK) factor through SpecK and hence are constant. �

1.4.5 Example. Let k be a field, not necessarily algebraically closed, and K/k
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be any field extension. Denote T = SpecK and let α : T → Spec k be the
morphism of schemes corresponding to the field extension. We claimMor(Pn

k , T )

is representable by T .
Recall that Pn

k → Spec k has k-sections, therefore by Lemma 1.4.4 it suffices
to check that for any other field extension L/k, the morphisms

HomL(Pn
L, SpecL⊗k K) (1.8)

are constant. Denote U = SpecL, hence SpecL⊗kK = T ×U . Notice that every
L-morphism g : Pn

L → T × U fits the following commutative diagram

U

Pn
L T × U

Spec k

Pn
k T.

β

δ

α

ε

g

γ

(1.9)

Notice that, by the universal property of fiber products, the morphism g

factors through δ : Pn
L → U if and only if there exists a dashed morphism ε

making the following diagram commute

Pn
L T

U Spec k.

γ

δ α

β

ε (1.10)

Next, we claim that in fact there exists a unique morphism ε : U → T such that
(1.10) commutes. Recall that since the underlying topological spaces of T and
U consist of points, the comorphisms γ# and δ# are completely given by global
sections, and we can write

γ# : K = OT (T ) ↪→ γ∗OPn
L
(T ) ∼= H0(Pn

L,OPn
L
) ∼= L and

δ# : L = OU(U) ↪→ δ∗OPn
L
(U) ∼= H0(Pn

L,OPn
L
) ∼= L.

Notice that the existence of sections for δ implies that δ# is actually an auto-
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morphism. Thus, we can define ε as the morphism of schemes associated to the
morphism of rings

ε# ..= (δ#)−1 ◦ γ#.

Notice then that γ = ε ◦ δ; this is clear at the level of topological spaces and by
definition, we have

(ε ◦ δ)# : OT (T )
ε#−→ ε∗OU(T )

ε∗(δ#)−−−−→ ε∗δ∗OPn
L
(T ).

Since ε is a morphism between schemes whose underlying topological spaces are
single points we clearly have ε∗(δ

#) = δ#, in other words

(ε ◦ δ)# = δ# ◦ (δ#)−1 ◦ γ# = γ#.

Moreover, we have α ◦ ε = β: indeed,

α ◦ γ = α ◦ ε ◦ δ = β ◦ δ

and hence α ◦ ε = β, since δ is an epimorphism1 of schemes. Uniqueness of ε also
follows from δ being an epimorphism.

Therefore, all morphisms HomL(Pn
L, T ×U) are constant, and by Lemma 1.4.4

we conclude that Mor(Pn
k , T )

∼= hT , or equivalently,

Mor(Pn
k , SpecK) ∼= SpecK.

1.4.6 Example. Let S be a locally noetherian scheme and A be an abelian
scheme over S. We claim that

MorS(P1
S, A)

∼= A.

Indeed, since P1
S → S always has S-sections, we have the injective morphism

hA →MorS(P1
S, A).

Thus, by Lemma 1.4.4, in order to prove it is also surjective, it suffices to prove
that for every SpecK → S, the induced morphism of fibers in HomK(P1

K , AK) is
constant. Recall that AK = A×S SpecK is an abelian variety over K, therefore
every morphism P1

K → AK is constant, see for instance [Mil08, Proposition 3.9].

1Recall that any surjective and flat morphism is an epimorphism of schemes, see [Stacks,
02VW].

https://stacks.math.columbia.edu/tag/02VW
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1.4.7 Representability ofMorS(X,Y ). Next, we prove that if X is projective
and flat over S and Y is also projective, then MorS(X,Y ) is representable by
an open subscheme of HilbS(X ×S Y ). This result is well known and the proof
presented here is an expansion on proofs presented in [FGI+05, Theorem 5.23]
and the course notes [Oss].

1.4.8 Lemma. Let f : X → Y be a morphism of proper schemes over a locally
noetherian scheme S. Suppose that X is flat over S and suppose there exists a
point p ∈ S such that the fiber fp : Xp → Yp is an isomorphism. Then there exists
an open subscheme S0 ↪→ S satisfying the following property:

for any morphism of locally noetherian schemes h : S ′ → S,

h factors through S0 if and only if the base change

fS′ : XS′ ↪→ YS′ is an isomorphism .

(1.11)

Proof. Consider the set

A = {p ∈ S | fp : Xp → Yp is an isomorphism}.

If A = ∅ then the empty scheme trivially satisfy the conditions of the statement.
Hence we can assume A 6= ∅.

It follows from [Gro61, Chapitre III, Proposition 4.6.7(ii)] that for each p ∈
A there exists an open neighbourhood Sp such that f |XSp

: XSp → YSp is an
isomorphism. Therefore, we define S0

..=
⋃

p∈A Sp.
Let h : S ′ → S be a morphism of locally noetherian schemes and suppose

f ′
S : XS′ → YS′ is an isomorphism. Then for every point q ∈ S ′, we have a

morphism
Specκ(q)→ S ′ h−→ S

such that fS′,q : XS′,q → YS′,q is an isomorphism. The morphism h induces a
morphism Specκ(q) → Specκ(h(q)), which is clearly flat and surjective, and
such that the diagram

Xq Yq Specκ(q)

Xh(q) Yh(q) Specκ(h(q))

fS′,q

fh(q)

is fibered. Hence, by faithfully flat descent [Gro65, Chapitre II, Proposition 2.7.1],
fS′,q is an isomorphism if and only if fh(q) is an isomorphism. In other words,
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h(q) ∈ A ⊂ S0 for all q ∈ S ′, that is, h(S ′) ⊂ S0. Therefore, h factors through
S0, see for instance [Stacks, 01HD]. The converse is clear since fS′ : XS′ → YS′

will be the base change of the morphism fS0 : XS0 → YS0 and isomorphisms are
stable under base change. �

1.4.9 Theorem. Let X and Y be schemes projective over S. Then MorS(X,Y )

is an open subfunctor of Hilb((X ×S Y )/S). In particular, if X is flat over S,
then MorS(X,Y ) is representable by an open subscheme of the Hilbert scheme
HilbS(X ×S Y ) and each irreducible component of MorS(X,Y ) is of finite type
over S.

Proof. Let f ∈MorS(X,Y )(S ′) and let

Γf : XS′ → XS′ ×S YS′

be the graph morphism of f , that is, the unique morphism making the diagram

XS′

XS′ ×S′ YS′ YS′

XS′ S ′

idX

f

Γf

pr1

pr2 (1.12)

commutative. Since Y is projective, it is in particular separated and therefore Γf

is a closed immersion, see [GW10, Definition and Proposition 9.7] for instance.
Therefore, it defines the closed subscheme im (Γf ) on XS′ ×S YS′ isomorphic to
XS′ . Since X is proper and flat over S, so is XS′ ∼= im (Γf ) over S ′. In other
words, we have defined a map

ΘS′ :MorS(X,Y )(S ′) −→ HilbS(X ×S Y )(S ′)

f 7−→ im (Γf ).

Injectivity follows since if f, f ′ are two morphisms defining the same closed sub-
scheme of XS′ ×S′ YS′ , we have an automorphism α : XS′

∼−→ XS′ such that
Γf = Γf ′ ◦ α (see Remark 1.2.1). By the definition of the graph morphism in
diagram (1.12) we deduce that

f = pr2 ◦Γf = pr2 ◦Γf ′ ◦ α = f ′ ◦ α and

idXS′ = pr1 ◦Γf = pr1 ◦Γf ′ ◦ α = α.

https://stacks.math.columbia.edu/tag/01HD
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That is, we deduce that f = f ′. In other words, MorS(X,Y ) is a subfunctor of
HilbS(X ×S Y ).

It remains to show thatMorS(X,Y ) is open. Before that, notice the following.

Claim. A closed subscheme V in XS′ ×S′ YS′ is in the image of ΘS′ if and only
if pr1(V ) ∼= XS′ .

Proof of claim. The direct implication is clear from the definition of the graph.
For the converse, notice that if ι : V ↪→ XS′ ×S′ YS′ is a subscheme such that we
have an isomorphism β ..= pr1 ◦ι : V

∼−→ XS′ , then we define f = pr2 ◦ι ◦ β−1 and
it is easy to see that Γf = ι◦β−1. Then the claim follows from Remark 1.2.1. �

Finally, to prove that MorS(X,Y ) is open, we use the criterion provided by
Proposition A.2.9, which in our case translates to the following. Let S ′ be an
S-scheme and

V ∈ HilbS(X ×S Y )(S ′)

be a section. Then it suffices to prove that there is an open subscheme S0 ↪→ S ′

such that a morphism h : S ′′ → S ′ factors through S0 if and only if the base
change VS′′ of V with respect to h fitting in the fibered diagram

VS′′ V

XS′′ ×S YS′′ XS′ ×S YS′

XS′′ XS′

S ′′ S ′

pr1 pr1

h

is in the image of ΘS′′ . By the claim above, this happens if and only if the
composition VS′′ ↪→ XS′′ ×S′′ YS′′

pr1−−→ XS′′ is an isomorphism.
Therefore, by Lemma 1.4.8 applied to V → XS′ , an open subscheme S0 ↪→

S ′ satisfying this condition exists, and thus MorS(X,Y ) is an open subfunctor
of HilbS(X ×S Y ). Finally, by Proposition A.2.7, the functor MorS(X,Y ) is
represented by an open subscheme MorS(X,Y ) of HilbS(X ×S Y ).

In particular, if we fix a very ample line on X×SY , each irreducible component
of MorS(X,Y ) is a locally closed subscheme contained in a proper subscheme
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HilbP
S (X ×S Y ) for some polynomial P ∈ Q[t], and therefore it is of finite type

over S. �

1.4.10 Universal morphism. Whenever MorS(X,Y ) is representable by a
scheme MorS(X,Y ), there exists a universal section:

fun ∈MorS(X,Y )(MorS(X,Y ))

which we call universal morphism. Unwinding the definition in A.1.7, we have
that a morphism

fun : X ×S MorS(X,Y )→ Y ×S MorS(X,Y )

is universal if it satisfies the following property: for each S ′ in Noe/S and each
S ′-morphism f ′ : XS′ → YS′ , there exists a unique map g : S ′ → MorS(X,Y )

such that MorS(X,Y )(g)(fun) = f ′, i.e. such that the diagram

S ′

XS′ YS′

MorS(X,Y )

X ×S MorS(X,Y ) Y ×S MorS(X,Y )

g

f ′

fun

is commutative and all squares are cartesian.

1.4.11 Corollary. Let X and Y be schemes projective over S with X flat over
S and let h : S ′ → S be a morphism of locally noetherian schemes. Then we have
a natural isomorphism

MorS′(XS′ , YS′) ∼= MorS(X,Y )×S S ′.

Proof. The proof follows the same lines as the one of Proposition 1.3.1. Denote
MorS ..= MorS(X,Y ) and MorS′ ..= MorS′(XS′ , YS′) and let

fun
S ∈MorS(X,Y )(MorS) and fun

S′ ∈MorS′(XS′ , YS′)(MorS′)

be their respective universal morphisms. Since h makes MorS′ into an S-scheme,
the representability of MorS(X,Y ) implies there exists a unique S-morphism
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h′ : MorS′ → MorS such that

MorS(X,Y )(h′)(fun
S ) = fun

S′

(in the sense of 1.4.10). Let g and g′ be the structure morphisms of MorS and
MorS′ respectively, and let α : S ′′ → MorS and β : S ′′ → S ′ be two morphisms
such that h ◦ β = g ◦ α. In order to conclude the proof, it suffices to prove there
is a unique γ : S ′′ → MorS′ such that

S ′′

MorS′ MorS

S ′ S

β

α

∃!γ

g′

h′

g

h

is commutative.

By representability of MorS(X,Y ), the morphism α corresponds to a unique
section of MorS(X,Y )(S ′′), that is, a unique morphism f ′′ : XS′′ → YS′′ such
that MorS(X,Y )(α)(fun

S ) = f ′′. On the other hand, since β makes both XS′′

and YS′′ into S ′-schemes, f ′′ ∈MorS′(X,Y )(S ′′) and therefore representability of
MorS′(XS′ , YS′) implies that there exists γ : S ′′ → MorS′ such that β = g′ ◦ γ
and f ′′ is given by the pullback of fun

S′ , that is

MorS′(XS′ , YS′)(γ)(fun
S′ ) = f ′′.
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Since g ◦ α = h ◦ g′ ◦ γ we have commutative diagrams

S ′′ S ′′

XS′′ YS′′ XS′′ YS′′

MorS′

X ×S MorS′ Y ×S MorS′

MorS MorS

X ×S MorS Y ×S MorS X ×S MorS Y ×S MorS,

α

γ

f ′′ f ′′

h′

fun
S′

fun
S fun

S

where every square is cartesian. In particular, we have proved that

MorS(X,Y )(h′ ◦ γ)(fun
S ) =MorS(X,Y )(α)(fun

S ) = f ′′,

by universal property of fun
S that gives α = h′ ◦ γ. �

1.4.12 Lemma. Let S be a locally noetherian scheme and X be a projective flat
scheme over S. Let PrSch/S be the category of projective schemes over S and
Y be an object in PrSch/S. Then the association Y 7→ MorS(X,Y ) is natural
in Y . In other words, this association defines a functor

MorS(X,−) : PrSch/S → Sch/S.

Proof. In fact, we prove a more general statement at the level of functors. Let
f : W → Y be a morphism of S-schemes and h : S ′ → S a morphism in Noe/S,
then we have a map

µf,S′ : HomS′(XS′ ,WS′) −→ HomS′(XS′ , YS′)

taking any g : XS′ → WS′ to the composition fS′ ◦ g : XS′ → YS′ , where fS′ is the
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pullback of f with respect to h fitting in the commutative diagram

S ′ XS′

WS′ YS′

S X

W Y.

h

g

fS′◦g

fS′

f

In particular, by the definition of the functors MorS(X,W ) and MorS(X,Y ),
the maps µf,S′ define a natural transformation

µf :MorS(X,W )→MorS(X,Y ). (1.13)

That is, for any S ′′ → S ′ we have a commutative diagram

MorS(X,W )(S ′) MorS(X,Y )(S ′)

MorS(X,W )(S ′′) MorS(X,Y )(S ′′),

µf,S′

µf,S′′

where the vertical arrows are restriction morphisms defined in 1.4.1. If both
W and Y are projective, by Theorem 1.4.9, both functors MorS(X,W ) and
MorS(X,Y ) are represented by schemes MorS(X,W ) and MorS(X,Y ) respec-
tively. Therefore, it follows from Yoneda lemma (A.1.4) that the natural trans-
formation µf corresponds uniquely to a morphism

MorS(X,W )→ MorS(X,Y ).

�

1.4.13 Alternative definition of Mor . Let X and Y be any schemes over S

and S ′ → S be any base change morphism. Notice there is a bijection of sets

αS′ : HomS′(XS′ , YS′)→ HomS(XS′ , Y )
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taking any f ′ : XS′ → YS′ to the composition of f with the first projection of YS′ .
The inverse map is given by taking any S-morphism g : XS′ → Y to the unique
morphism defined by universal property of YS′ . That is, we take g to the unique
f making the following diagram commutative:

XS′

YS′ S ′

Y S.

g

∃!f

Also, for any S ′′ → S ′ we have morphisms

HomS′(XS′ , YS′) HomS(XS′ , Y )

HomS′′(XS′′ , YS′′) HomS(XS′′ , Y )

αS′

αS′′

induced by pullback. In other words, these bijections are natural in S ′. Thus,
the functor MorS(X,Y ) is naturally isomorphic to the functor

Mor ′S(X,Y ) : (Noe/S)op → Set

defined at the level of objects by Mor ′S(X,Y )(S ′) ..= HomS(XS′ , Y ), and for any
S-morphism h : S ′′ → S ′ by

Mor ′S(h) : HomS(XS′ , Y ) −→ HomS(XS′′ , Y )

f ′ 7−→ f ′′,

where f ′′ is the composition of the natural projection XS′′ → XS′ with f ′. Equiv-
alently, f ′′ is the unique morphism making the following diagram commutative

XS′′ XS′ X Y

S ′′ S ′ S,

f ′′

f ′
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where all squares are cartesian.

1.4.14 Universal morphism as an evaluation morphism. Since we have
the natural isomorphism of functorsMorS(X,Y ) ∼=Mor ′S(X,Y ), ifMorS(X,Y )

is representable by a scheme MorS(X,Y ), then it also represents the functor
Mor ′S(X,Y ). Hence, there exists a universal section

ev ∈Mor ′S(X,Y )(MorS(X,Y )).

In other words, an S-morphism

ev : X ×MorS(X,Y )→ Y

satisfying the following property: for each S ′ in Noe/S and each S-morphism
f ′ : XS′ → Y , there exists a unique map g : S ′ → MorS(X,Y ) such that

Mor ′S(X,Y )(g)(ev) = f ′,

i.e. such that the diagram

XS′ X ×S MorS(X,Y ) Y

S ′ MorS(X,Y )

f ′

ev

g

commutes, where the square is the base change by g. The morphism ev is said
to be the evaluation morphism of MorS(X,Y ).

1.5 Properties of the functor of morphisms

Let X be a projective and flat S-scheme. Recall that in Lemma 1.4.12 we
have defined a functor

MorS(X,−) : PrSch/S → Noe/S (1.14)

taking any projective S-scheme Y to the scheme MorS(X,Y ). In this section we
prove useful properties of this functor. For instance, we will see that it behaves
well with fiber products and that it preserves closed and open embeddings. Many
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of these properties can actually be proven at the level of functors MorS(X,Y ).
A good instance of that is the lemma below.

1.5.1 Lemma (Functorial properties). Let S be a scheme. The following prop-
erties hold:

1. Let {Xi}i∈I be a finite family of schemes over S and Y be a scheme over
S. Then

MorS

(∐
i∈I

Xi, Y

)
∼=
∏
i∈I

MorS(Xi, Y ),

where the right hand side denotes the fiber product over hS;

2. Let I be a category and F : I→ Sch/S be a functor such that limF exists
in Sch/S. Then

MorS(X, limF) ∼= limMorS(X,F),

where MorS(X,F) : I → Psh(Sch/S) is the functor i 7→MorS(X,F(i)).
In other words, MorS(X,−) preserves with limits.

Proof. Both properties follow easily from the analogous properties of the bifunctor
HomS(−,−). Indeed, for 1, notice that

MorS

(∐
i∈I

Xi, Y

)
(S ′) =HomS′

((∐
i∈I

Xi

)
×S S ′, YS′

)
∼= HomS′

(∐
i∈I

(Xi ×S S ′), YS′

)
∼=
∏
i∈I

HomS′ (Xi ×S S ′, YS′) ∼=
∏
i∈I

MorS (Xi, Y ) (S ′).

(see Comment 1.5.2 below). Similarly for 2, for any S-scheme S ′ consider the
functors

FS′ : I −→ Sch/S ′

i 7−→ F(i)×S S ′

and for each S-scheme S ′ we define the functors

HomS′(XS′ ,FS′) : I −→ Set

i 7−→ HomS′(XS′ ,F(i)×S S ′).
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Then it follows that

MorS(X, limF)(S ′) =HomS′(XS′ , (limF)×S S ′)

∼=HomS′(XS′ , limFS′) ∼= limHomS′(XS′ ,FS′)

∼= (limMorS(X,F)) (S ′).

It is straightforward to check naturality on S ′ in both cases, since limits and
colimits of presheaves are defined sectionwise. �

1.5.2 Comment. In general, if S is a scheme, {Xi}i∈I an arbitrary collection
of schemes over S and Y → S a morphism, then(∐

i∈I

Xi

)
×S Y ∼=

∐
i∈I

(Xi ×S Y ).

Indeed, recall that Xi ↪→
∐

i∈I Xi is an open immersion and {Xi}i∈I is an open
cover of

∐
i∈I Xi. Since open immersions are stable under base change we have

ιi : Xi ×S Y ↪→

(∐
i∈I

Xi

)
×S Y

are also open immersions, and moreover, the collection {ιi(Xi ×S Y )}i∈I is an
open cover of

(∐
i∈I Xi

)
×S Y . Therefore, the canonical morphism

∐
i∈I

(Xi ×S Y )→

(∐
i∈I

Xi

)
×S Y

obtained by the universal property of coproducts (or equivalently by gluing all ιi
along empty intersections) is a surjective open immersion and hence an isomor-
phism.

1.5.3 Remark. We will use many times the following particular case of Lemma
1.5.1. Let X be an S-scheme and Y → Y ′′, Y ′ → Y ′′ be morphisms of schemes
over S. We have a canonical isomorphism of functors

MorS(X,Y ×Y ′′ Y ′) ∼=MorS(X,Y )×MorS(X,Y ′′)MorS(X,Y ′).

If X is projective and flat over S, and Y, Y ′ and Y ′′ are quasi-projective over S,
we have the analogous isomorphism of schemes of morphisms. In particular, if
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Y ′′ = S we have MorS(X,S) ∼= S, therefore

MorS(X,Y ×S Y ′) ∼= MorS(X,Y )×S MorS(X,Y ′).

1.5.4 Lemma. Let X be a separated S-scheme, ι : W ↪→ Y be an immersion of
schemes over S and µι :MorS(X,W ) ↪→MorS(X,Y ) be the induced morphism
of functors defined in 1.13. Consider ιX : X ×S W ↪→ X ×S Y to be the induced
immersion on the base change and let ηιX : HilbS(X ×S W ) ↪→ HilbS(X ×S Y ) be
the induced morphism of functors defined in 1.3.3. Then the square

MorS(X,W ) MorS(X,Y )

HilbS(X ×S W ) HilbS(X ×S Y ),

µι

ηιX

(1.15)

where vertical arrows are the natural inclusions in Theorem 1.4.9, is commutative
and cartesian.

Proof. Recall that for each S-scheme S ′, the natural inclusions ΘS′ defined in the
proof of Theorem 1.4.9 take each morphism f ∈ MorS(X,Y )(S ′) to the closed
subscheme defined by the graph morphism Γf : XS′ ↪→ (X ×S Y )S′ , which is a
closed immersion as X is separated. Moreover, the natural morphism

ηιX ,S′ : HilbS(X ×S W )(S ′) ↪→ HilbS(X ×S Y )(S ′)

takes any closed subscheme of (X ×S W )S′ defined by an immersion

V ↪→ (X ×S W )S′

to a subscheme defined by the composition

V ↪→ (X ×S W )S′
ιX,S′
↪→ (X ×S Y )S′ .

Let g ∈MorS(X,W )(S ′) and denote

f ..= µι,S′(g) = ιS′ ◦ g,
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and consider the commutative diagram

XS′

(X ×S W )S′ WS′

(X ×S Y )S′ YS′

XS′ S ′,

Γg
g

π

ιX,S′ ιS′

pr2

pr1

(1.16)

where all squares are cartesian. Note that the composition

XS′
Γg

↪→ (X ×S W )S′
ιX,S′
↪→ (X ×S Y )S′ → XS′

is the identity on XS′ . To check that (1.15) commutes, it suffices to check that
Γf = Γg ◦ ιX,S′ , but this follows from the uniqueness of the graph morphism, since

pr1 ◦ιX,S′ ◦ Γg = idXS′ and pr2 ◦ιX,S′ ◦ Γg = ιS′ ◦ g = f.

Moreover, we claim that (1.15) is cartesian. By Definition A.2.2, in order to
show this, it suffices to show that for each S-scheme S ′ and each pair

(V, f) ∈ HilbS(X ×S W )(S ′)×HilbS(X×SY )(S′)MorS(X,Y )(S ′),

there exists a unique morphism g : XS′ → WS′ satisfying two conditions:

1. the closed subscheme defined by the closed immersion

ηιX ,S′(Γg) = ιX,S′ ◦ Γg : XS′ → (X ×S Y )S′

is the same as the one defined by

V ↪→ (X ×S W )S′
ιX,S′
↪→ (X ×S Y )S′ ;

2. µι,S′(g) = ιS′ ◦ g = f .

Notice that by definition of the pair (V, f), we have that the closed subscheme
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defined by the composition

V ↪→ (X ×S W )′S
ιX,S′
↪→ (X ×S Y )S′

is the same as the one defined by Γf : XS′ ↪→ (X ×S Y )S′ . Therefore, we have an
isomorphism V ∼= XS′ . Define g as the composition

g : XS′
∼=−→ V ↪→ (X ×S W )S′

π−→WS′ .

By the definition of graph morphism, we obtain a commutative diagram such as
(1.16). In other words, g satisfies the conditions 1 and 2 above. To see that g

is unique, just notice that if g′ was another morphism satisfying condition 2, we
would have

ιS′ ◦ g = ιS′ ◦ g′.

Therefore g = g′, since immersions are monomorphisms in the category of schemes
(see [Stacks, 01L7]). �

1.5.5 Proposition. Let X be a separated S-scheme, let i : Z ↪→ Y be a closed
immersion and j : U ↪→ Y be an open immersion of schemes over S. Then the
morphisms

µi :MorS(X,Z)→MorS(X,Y ),

µj :MorS(X,U)→MorS(X,Y )

make MorS(X,Z) and MorS(X,U) respectively to be a closed and an open sub-
functor of MorS(X,Y ). In particular, if X is projective and flat over S and Y

is quasi-projective over S, the morphisms

MorS(X, i) :MorS(X,Z)→ MorS(X,Y )

MorS(X, j) :MorS(X,U)→ MorS(X,Y )
(1.17)

induced by applying the functor MorS(X,−) (1.14) to i and j, are a closed and
an open immersion respectively.

Proof. Let jX : X ×S U ↪→ X ×S Y be the open immersion induced by the base
change of j. By Proposition 1.3.5, we have an open subfunctor

ηjX : HilbS(X ×S U)→ HilbS(X ×S Y ).

Thus, by Lemma 1.5.4, µj is also an open subfunctor.
Moreover, if X is projective and flat over S and Y is projective over S, all

https://stacks.math.columbia.edu/tag/01L7
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the functors involved are representable. By definition, µj induces the morphism
(1.17), which is an open immersion by A.2.7.

The proof is exactly the same for the closed immersion i : Z ↪→ Y , obtained by
judiciously replacing j by i, U by Z, the words “open” by “closed” and applying
Remark 1.3.6 instead of Proposition 1.3.5. �

1.5.6 Remark. It follows from Proposition 1.5.5, that the functor (1.14) is de-
fined on the category QPrSch/S of quasiprojective schemes over S. That is, we
have the functor

MorS(X,−) : QPrSch/S −→ Sch/S.



Chapter 2
Schemes of rational curves

We have defined schemes parametrizing morphisms of schemes over a base in
the previous chapter. For this chapter we restrict our attention to S = Spec k

where k is an algebraically closed field. Let us first fix the notation

Mor(P1
k, X) ..= MorSpec k(P1

k, X)

for the scheme parametrizing morphisms from P1
k to a projective variety over k.

We have seen in Lemma 1.1.10 that C ↪→ X is a rational curve if and only
if it is the image of a non-constant morphism P1

k → X. Thus, we will abuse in
language and say that Mor(P1

k, X) parametrizes rational curves on X.
By definition, any morphism f : P1

k → Pn
k corresponds to a k-point on

Mor(P1
k, X). This k-point will be denoted

[f ] ∈ Mor(P1
k, X).

In section 2.1 we give a well known heuristic description of the scheme Mor(P1
k,Pn

k)

including its partition in terms of the degrees of the morphisms f : P1
k → Pn

k fol-
lowing [Deb13].

In section 2.2 we consider the following question: let X be a projective variety
over k and

σ : BlZ(X)→ X

be the blow-up of Z at a closed subscheme. Can we find components of Mor(P1
k,BlZ(X))

using the induced morphism

Mor(P1
k,BlZ(X))→ Mor(P1

k, X)?

We use properties of blow-ups to describe a rough partition of Mor(P1
k,BlZ(X)).

When Z = {p1, . . . , pr} is a finite collection of points in Pn
k , we are able to expand

47
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the heuristic description of section 2.1. We determine a partition depending on
the degrees of curves in Pn

k and their multiplicities at each point pi, see Theorem
2.2.11. It is natural to look at the case of the blow-ups of P2

k and in particular,
Del Pezzo surfaces.

In section 2.3 we relate the scheme of morphisms and linear systems. More
precisely: for each positive integer d and when char k = 0 we define a morphism Ξd

from Mor(P1
k,P2

k) to the complete linear system of divisors of degree d. We prove
that it is invariant with respect to an Aut(P1

k)-action and its fiber is irreducible
of dimension 3.

In section 2.4 we combine all of the above with results of Daigle and Melle-
Hernández [DM12] on rational linear systems to describe the image of Ξd. This
allows us to find components in Mor(P1

k, X) containing embedded resolutions of
singularities of curves in the P2

k, see Theorem 2.3.5. To conclude the chapter we
use the classification of Gimigliano, Harbourne and Idà [GHI13] of rational curves
whose singularities are resolved by blowing-up points in general position. This
classification allows us to find all the possible components given in Theorem 2.4.8
when r ≤ 7. As an example, we provide a complete list of these components on
a smooth cubic surface in Example 2.4.10.

2.1 Rational curves on projective spaces

Morphisms f : P1
k → Pn

k can be described in a very elementary fashion. This
elementary description will allow us to give a heuristic description of the scheme
Mor(P1

k,Pn
k) as a disjoint union of open subsets of projective spaces. This section

is a slightly more detailed explanation of [Deb13, §2.1].

2.1.1 Regular morphisms from the projective line. Recall that a rational
map f : P1

k 99K Pn
k is an equivalence class of maps

(u : v) 7→ (F0(u, v) : · · · : Fn(u, v))

where each Fi is a homogeneous polynomial in k[u, v] and degFi = d for all i.
We say two tuples (F0 : · · · : Fn) and (G0 : · · ·Gn) are equivalent if

FiGj = FjGi (2.1)

for all 0 ≤ i, j ≤ n, see for instance [Sha13a, p. 51].

Claim. The relations (2.1) hold if and only if there exists a homogeneous poly-
nomial H ∈ k[u, v] such that Fi = Gi ·H.
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Proof of claim. If the relations (2.1) hold, and since k[u, v] is an UFD, we can
assume that the collection (F0, . . . , Fn) consists of polynomials which do not have
any factor in common. In that case the relations (2.1) imply that Fi divides Gi,
i.e., there exists an index i and a homogeneous polynomial H ∈ k[u, v] such that
Gi = H ·Fi. The relations also imply that Gj = H ·Fj for the other indexes. The
converse is clear. �

We say a rational map f : P1
k 99K Pn

k is regular if for each (a : b) ∈ P1
k there

exists a representative (F0, . . . , Fn) for f such that there exists at least one i such
that Fi(a, b) 6= 0, see [Sha13a, p. 48]. In the proposition below we see that any
rational map from P1

k is in fact regular.

2.1.2 Lemma. Let k be an algebraically closed field. Let (F0, . . . , Fn) be a collec-
tion of homogeneous polynomials in k[u, v]. Then they have a factor in common
if and only if V (F0, . . . , Fn) 6= ∅ in P1

k.

Proof. Recall that each Fi splits into the product of linear factors over k. There-
fore, if they have a factor in common it is clear that they have a nontrivial
common root.

Conversely, if they have a common root (α1 : α2), without loss of generality
we can assume that α2 6= 0 and therefore α1/α2 is a root of fi(u) ..= Fi(u, 1) for
each i.

Let m(u) be the minimal polynomial of α1/α2 over k. Then m(u) divides all
of the fi(u), i.e. fi(u) = gi(u)m(u). Once we homogenize the polynomials we
obtain

Fi(u, v) = vdeg(fi)fi(u/v) = vdeg(gi)gi(u/v) · vdeg(m)m(u/v) = Gi(u, v) ·M(u, v)

for homogeneous polynomials Gi and M in k[u, v]. �

2.1.3 Remark. We conclude that for each regular morphism f : P1
k → Pn

k there
exists a unique representative (F1, . . . , Fn) for which the polynomials do not have
factors in common.

Notice that the definition in 2.1.1 above is given in terms of classical lan-
guage of varieties. It follows that, over an algebraically closed field k, the regular
morphisms P1

k → Pn
k correspond bijectively to morphisms of schemes between P1

k

and Pn
k , see [Sha13b, Example 5.19, p.29]. More precisely there is a fully faithful

functor between the category of varieties over k to the category of schemes over
k (see also [Har77, Proposition II.2.1.6]). Hence from now on we will make no
distinction between the terms regular morphism and morphism.
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2.1.4 Lemma. Let F ..= (F0, . . . , Fn) be a collection of homogeneous polynomials
of degree d in k[u, v]. The collection does not have factors in common if and only
if there exists an integer m ≥ d such that the k-linear map

θF :
n⊕

i=0

k[u, v]m−d −→ k[u, v]m

⊕n
i=0Gi 7−→

∑n
i=0 FiGi

(2.2)

is surjective, where k[u, v]m is the k-vector space generated by monomials of de-
gree m.

Proof. By Lemma 2.1.2, the polynomials in the collection Fi do not have factors
in common if and only V (F0, . . . , Fn) = ∅ in P1

k. By the projective Nullstellensatz
this means

(u, v) ⊂
√
(F0, . . . , Fn).

Equivalently, it means that there exists an integer m such that

(u, v)m = (um, um−1v, . . . , vm) ⊂ (F0, . . . , Fn). (2.3)

If there exists an integer m such that (2.3) holds, then for each 0 ≤ j ≤ m,
there exists a collection of polynomials

{
G

(j)
i

}
0≤1≤n

in k[u, v] such that

n∑
i=0

G
(j)
i Fi = um−jvj, (2.4)

which are a fortiori homogeneous of degree degG
(j)
i = m − d. Thus the k-linear

map (2.2) is surjective. Conversely if we have relations (2.4), then (2.3) holds. �

2.1.5 Consider the morphism

f : P1
k −→ Pn

k

(u : v) 7−→ (F0(u, v) : . . . : Fn(u, v)),
(2.5)

where (F0(u, v) : . . . : Fn(u, v)) is the unique representative of f for which the Fi

are homogeneous polynomials of degree d with no common factor, as described
in (2.1.1). Then we can write each polynomial in the collection as

Fi(u, v) = bi0u
d + bi1u

d−1v + · · ·+ bidv
d,

and therefore, f corresponds to a unique point in P(n+1)(d+1)−1
k given by the co-

ordinates {bij}. By Lemma 2.1.4, the polynomials F0, . . . , Fn have no factor in
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common if and only if there exists an integer m ≥ d such that the map θF in
(2.2) is surjective. We will choose a basis for the source and target of θF to find
a convenient description in matrix form of this linear map.

Consider the ring of polynomials k[x00, x01, . . . , xnd] and define Mθ(x00, . . . , xnd)

to be the (n+ 1)(m− d+ 1)× (m+ 1) matrix:

x00 x10 xn0

x01 x00 x11 x10 xn1 xn0

x02 x01
. . . x12 x11

. . . xn2 xn1
. . .

... ... . . . x00
... ... . . . x10 · · ·

... ... . . . xn0

x0d x0(d−1)
. . . ... x1d x1(d−1)

. . . ... xnd xn(d−1)
. . . ...

x0d
. . . ... x1d

. . . ... xnd
. . . ...

. . . ... . . . ... . . . ...
x0d x1d xnd


(2.6)

whose entries consist of monomials in k[x00, . . . , xnd]. Let both

k[u, v]m−d and k[u, v]m

have the usual bases

{um−d, um−d−1v, . . . , vm−d} and {um, um−1v, . . . , vm}

respectively. Then
⊕n

i=0 k[u, v]m−d has a basis consisting of n + 1 copies of the
monomial basis {um−d, um−d−1v, . . . , vm−d}. The corresponding matrix of θF un-
der this choice of bases is given by the matrix Mθ(b00, b01, . . . , bnd) with each entry
monomial computed at the point

(b00 : . . . : bnd) ∈ P(n+1)(d+1)−1
k = Pnd+n+d

k .

Notice that θF is surjective if and only if the rank of Mθ(b00, . . . , bnd) is m+ 1.

Now suppose that the collection F = (F1, . . . , Fn) has factors in common.
Then rk θF < m + 1, that is, all (m + 1) × (m + 1) minors of Mθ(b00, . . . , bnd)

vanish. The reasoning above shows that a collection F = (F1, . . . , Fn) has factors
in common if and only if the corresponding point in Pnd+d+n

k belongs to the variety
cut out by the (m+ 1)× (m+ 1) minors of Mθ(x00, . . . , xnd). Let us denote this
variety by Vd. Then we have just established a set theoretical bijection between
regular morphisms f : P1

k → Pn
k given by collections (F1, . . . , Fn) with no common
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factors, and the points of the quasi-projective variety

Mord(P1
k,Pn

k)
..= Pnd+n+d

k r Vd.

In [Deb13] we find the analogous construction for fields which are not algebraically
closed.

2.1.6 Proposition ([Deb13, p. 39]). Let k be a field (not necessarily algebraically
closed). Then we have a partition

Mor(P1
k,Pn

k)
∼=
∐
d∈N

Mord(P1
k,Pn

k),

where each Mord(P1
k,Pn

k) is an open subset of Pnd+n+d
k . In particular, each Mord(P1

k,Pn
k)

is irreducible, nonsingular and has dimension nd+ n+ d.

2.1.7 Remark. Let X ↪→ Pn
k be a closed immersion of schemes and define

Mord(P1
k, X) to be the scheme fitting in the fibered diagram

Mord(P1
k, X) Mord(P1

k,Pn
k)

Mor(P1
k, X) Mor(P1

k,Pn
k).

By Propositions 2.1.6 and 1.5.5 there is a partition

Mor(P1
k, X) ∼=

∐
d∈N

Mord(P1
k, X)

with Mord(P1
k, X) as a closed subscheme of Mord(P1

k,Pn
k).

2.1.8 Remark. The heuristic description of Mor(P1
k,Pn) above might be tempt

us to try to use similar descriptions for Mor(Pm
k ,Pn

k) for m > 1. Notice that the
variety Mord(P1

k,Pn
k) is defined by the open condition induced by collections of

n+1 polynomials in k[u, v]d not having factors in common. In this case we have by
Lemma 2.1.2 that this condition coincides with these polynomials defining regular
maps from P1

k. However the condition is not sufficient for regularity for m > 1.
Indeed an easy counter example is given by the classical Cremona transformation

P2
k 99K P2

k

(x : y : z) 7→ (xy : xz : yz).
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2.1.9 Remark. Notice that if [f ] ∈ Mord(P1
k,Pn

k) is a k-point, then the morphism
f is given by a collection of polynomials Fi ∈ k[u, v]d ∼= H0(P1

k,OP1
k
(d)) with no

factors in common. In particular, by the proof of [Har77, Theorem II.7.1(b)] we
have that f is a morphism such that f ∗OPn

k
(1) = OP1

k
(d).

2.1.10 Degrees and field extensions. Let [f ] ∈ Mord(P1
k,Pn

k) be a k-point
corresponding to a morphism f : P1

k → Pn
k and let C be its scheme theoretic

image. By Remark 2.1.9 we have f ∗OPn
k
(1) ∼= OP1

k
(d), hence we have seen in

Example 1.1.13 that if f is birational onto its image if and only if d = degC, that
is, d is the leading coefficient of the Hilbert polynomial of C with respect to its
embedding in Pn

k . We say that f is generically one-to-one if f is birational onto
its image.

Now suppose that f is not generically one-to-one, and let ν : P1
k → C be the

normalization of C. Then, there is a unique morphism g such that f = ν ◦ g. In
particular, g : P1

k → P1
k corresponds uniquely to a pair of polynomials G0, G1 ∈

k[u, v] of degree m0 with no factors in common. It follows that m0 divides d, and
since ν is a birational morphism ([Stacks, 0BXC]), it follows that d0 ..= d/m0 is
the degree of C, in other words

d = m0 degC. (2.7)

For any f : P1
k → Pn

k and C = im (f) we will define the degree of f to be

deg(f) = m0 degC.

The morphism g induces a morphism between two copies of the function field
of P1

k denoted g∗ : k(t) ↪→ k(t), and the integer m0 is nothing but the degree of
the field extension [g∗(k(t)) : k(t)], see [Stacks, 02NY]. In particular, g consists
of a composition between a cover of P1

k and (if the characteristic is positive) a
Frobenius endomorphism, see [Stacks, 0CCZ].

2.2 Rational curves on blowups at points

We have just seen in section 2.1 that for any projective variety X over a
field k, the scheme Mor(P1

k, X) can be partitioned according to the degree of
the morphisms. However, if X 6= Pn

k , each partition can be composed of several
irreducible components. A simple example is given when X is a smooth cubic
surface in P3

k: we know that it contains exactly 27 lines and indeed we will see in
2.4.10 that the scheme Mor1(P1

k, X) has 27 components.

https://stacks.math.columbia.edu/tag/0BXC
https://stacks.math.columbia.edu/tag/02NY
https://stacks.math.columbia.edu/tag/0CCZ
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With that in mind, the purpose of this section is to make use of the functor
Mor(P1

k,−) to produce a finer partition of Mor(P1
k, X) when X is the blow-up of a

projective space at a finite number of points. First of all, we recall the definition
of blow-up via its universal property.

2.2.1 Definition. Let Y be a scheme and E ↪→ Y be a closed subscheme. We
say E is an effective Cartier divisor if for every point p ∈ E, there exists an affine
neighbourhood U = SpecA ⊂ X such that

E ∩ U ∼= Spec(A/(a))

where a ∈ A is a non-zero divisor. In other words, E is locally cut out by one
equation.

Let X be a scheme and let Z ↪→ X be a closed subscheme. Then the blow-up
of X along Z is a pair consisting of a morphism

σ : BlZ(X)→ X

and a closed subscheme
E ↪→ BlZ(X)

fitting on the fibered diagram

E BlZ(X)

Z X

σ

and satisfying the following property: the closed subscheme E is an effective
Cartier divisor on BlZ(X) and moreover, for any morphism X ′ → X and a
cartesian square

E ′ X ′

Z X

such that E ′ is an effective Cartier divisor on X ′, we have that this diagram
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factorizes as a fibered diagram

E ′ X ′

E BlZ(X)

Z X.

The subscheme E is said to be the exceptional divisor of BlZ(X).

Furthermore, for any closed subscheme ι : W ↪→ X, consider the fibered
diagram

σ−1(W r Z) σ−1(W ) BlZ(X)

W r Z W X.

ι′

σ

ι

We define the total transform of W with respect to σ to be the scheme theoretic
preimage σ−1(W ). We define the strict transform of W with respect to σ to be
the scheme theoretic image im

(
ι′|σ−1(WrZ)

)
, that is the closure of σ−1(W \Z) on

BlZ(X).

2.2.2 Let σ : BlZ(X)→ X be the blow-up of X along a closed subscheme Z and
consider the induced morphism

σM
..= Mor(P1

k, σ) : Mor(P1
k,BlZ(X))→ Mor(P1

k, X),

and the open subschemes σ−1(X r Z) and X r Z. Recall that

σ|σ−1(XrZ) : σ
−1(X r Z)→ X r Z

is an isomorphism, see [Stacks, 02OS]. Therefore, we have a commutative diagram

σ−1(X r Z) X r Z

BlZ(X) X.

∼

σ

https://stacks.math.columbia.edu/tag/02OS


56 Schemes of rational curves

If we apply the functor Mor(P1
k,−) we obtain the following commutative diagram

Mor(P1
k, σ

−1(X r Z)) Mor(P1
k, X r Z)

Mor(P1
k,BlZ(X)) Mor(P1

k, X),

∼

σM

where the top row is also an isomorphism and the vertical arrows are open im-
mersions by Lemma 1.5.5. In other words, σM |Mor(P1

k,σ
−1(XrZ)) is an isomorphism

between open subschemes of Mor(P1
k,BlZ(X)) and Mor(P1

k, X).

Of course, since the Mor(P1
k, X) usually has infinitely many components, this

isomorphism can be between relatively small open subsets and the morphism
σM is very far from being birational. However, we are already equipped to say
something meaningful for the morphism σM when restricted to the complement
Mor(P1

k, X)rMor(P1
k, Z).

Notice that Mor(P1
k, Z) ↪→ Mor(P1

k, X) is a closed immersion by Lemma 1.5.5
and therefore Mor(P1

k, X) r Mor(P1
k, Z) is an open subscheme of Mor(P1

k, X)

parametrizing rational curves intersecting the open subset X r Z.

We will use this to prove a proposition regarding the morphism σM , but before
stating it we recall one last definition.

2.2.3 Definition. A morphism of schemes f : X → Y is said to be (locally)
quasi-finite if it is (locally) of finite type and for each point p ∈ Y , the fiber
f−1(p) is a discrete topological space.

2.2.4 Proposition. Let X be a projective scheme over an algebraically closed
field k, Z be a closed subscheme of X and σ : BlZ(X)→ X be the blow-up of X
along Z. Let

σM : Mor(P1
k,BlZ(X))→ Mor(P1

k, X)

be the induced morphism and let N ..= Mor(P1
k, X) r Mor(P1

k, Z) be the open
subscheme parametrizing rational curves intersecting X r Z and N ′ ..= σ−1

M (N).
Then the restriction

σM |N ′ : N ′ → N

is locally quasi-finite. More specifically, it is a bijection on k-points.

Proof. Any k-point [f ] ∈ N corresponds to a morphism f : P1
k → X whose image

intersects the open XrZ. Since σ|σ−1(XrZ) is an isomorphism, there is a rational
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map g : P1
k 99K BlZ(X) such that the diagram

BlZ(X)

P1
k X

σ

f

g

is commutative. Since P1
k is nonsingular, this rational map has domain of def-

inition P1
k, that is, g is regular (see for instance [Sil09, Chapter II, Proposition

2.1.]). Furthermore, it is unique (see [Stacks, 0A1Y]). This is equivalent to say
that the fiber of the morphism σM at the point [f ] has a unique k-point [g].

Let σ−1
M ([f ]) denote this fiber. By Theorem 1.4.9, the scheme Mor(P1

k,BlZ(X))

is locally of finite type over k, and thus, so is σ−1
M ([f ]). Hence, its set of k-points

is dense (see [GW10, Proposition 3.35]). We conclude that σ−1
M ([f ]) consists of a

single point [g] and hence σM |N ′ is a bijection on k-points.

To see it is locally quasi-finite, recall that any irreducible component of N ′

and of N is of finite type. Let N ′
0 ⊂ N ′ be an irreducible component. The

restriction σM |N ′
0

is bijective on k-points between schemes of finite type, therefore
it is quasi-finite (see [GW10, Remark 12.16]). We conclude that σM |N ′ is locally
quasi-finite. �

2.2.5 Schemes of rational curves on blow-ups. Let us consider the blow-up
σ : BlZ(X)→ X with exceptional divisor E, and denote

N ..= Mor(P1
k, X)rMor(P1

k, Z) and N ′ ..= σ−1
M (N),

as in Proposition 2.2.4.

Claim. The open subscheme N ′ is isomorphic to Mor(P1
k,BlZ(X))rMor(P1

k, E).

Proof of claim. Recall that the exceptional divisor of the blow-up fits in the carte-
sian square

E BlZ(X)

Z X.

σ

https://stacks.math.columbia.edu/tag/0A1Y
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By Remark 1.5.3, we have a cartesian square

Mor(P1
k, E) Mor(P1

k,BlZ(X))

Mor(P1
k, Z) Mor(P1

k, X).

σM

In other words, σ−1
M (Mor(P1

k, Z))
∼= Mor(P1

k, E). Therefore, we obtain

N ′ =σ−1
M (Mor(P1

k, X)rMor(P1
k, Z))

∼= σ−1
M (Mor(P1

k, X))r σ−1
M (Mor(P1

k, Z))

∼=Mor(P1
k,BlZ(X))rMor(P1

k, E). �

It follows that N ′ parametrizes rational curves on BlZ(X) not contained in
the exceptional divisor E. Furthermore, the open subscheme

U ..= Mor(P1
k, σ

−1(X r Z))

is contained in N ′. We conclude that there is a partition

Mor(P1
k,BlZ(X)) = Mor(P1

k, σ
−1(X r Z))qN ′′ qMor(P1

k, E), (2.8)

where N ′′ is a closed subscheme whose underlying topological space is N ′ r U .
By definition, the subscheme N ′′ parametrizes rational curves intersecting the
exceptional divisor E properly, that is, curves intersecting E but not contained
in E.

Proposition 2.2.4 gives us a hint for the behaviour of components in N ′′. In
fact, it tells us that if N0 is an irreducible component of N , then the preimage
N ′

0
..= σ−1

M (N0) can be roughly understood as a “splitting” of N0. A variant of the
theorem of dimension of fibers ([Mus17, Proposition 5.5.1]) tells us that there ex-
ists a unique component N ′

1 ⊂ N ′
0 dominating N0 and such that dimN ′

1 = dimN0.
However, since N ′

0 might not be irreducible, it may split in many other compo-
nents of dimension strictly smaller than the dimN0. Intuitively, the component
N ′

1 should be the closure of U ∩N ′
0 in N ′

0, since U ∩N ′
0 is isomorphic to an open

subset of N0. Therefore, we expect that any irreducible component of

N ′′
0

..= N ′
0 ∩N ′′ ⊂ N ′′

has dimension strictly less than dimN0. The behaviour of components just de-
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scribed is illustrated in the fibered diagram

∅ N ′′
0 ∩N ′

1 N ′′
0 N ′ ∩N ′′ N ′′

U ∩N ′
0 N ′

1 N ′
0 N ′ Mor(P1

k,BlZ(X))

N0 N Mor(P1
k, X).

∼=

σM

In the following subsections we investigate further this splitting when X = Pn
k

and Z is a finite collection of points. We start by adopting an elementary de-
scription of morphisms from the projective line to the blow-up of a point in Pn

k

based on the ones of Section 2.1.

2.2.6 Morphisms from P1
k to a blow-up. Let k be an algebraically closed

field, Pn
k be a projective space and σ : Blp(Pn

k) → Pn
k be the blow-up of Pn

k at
the point p = (1 : 0 : · · · : 0). Recall that Blp(Pn

k) can be defined as a closed
subscheme of the fiber product Pn

k × Pn−1
k . Explicitly, if we define coordinates

(x0 : · · · : xn) for Pn
k and (y1 : · · · : yn) for Pn−1

k , the closed subscheme Blp(Pn
k) is

given by the equations

{xiyj = yjxi} for 1 ≤ i, j ≤ n

in Pn
k ×Pn−1

k (see for instance [Sha13a, Chapter 2, §4.1.]). Therefore, we have the
commutative diagram

Blp(Pn
k)

Pn
k × Pn−1

k Pn−1
k

Pn
k Spec k.

σ

τ

(2.9)

Recall that

Homk(P1
k,Pn

k × Pn−1
k ) ∼= Homk(P1

k,Pn
k)× Homk(P1

k,Pn−1
k ),
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that is, any regular morphism f : P1
k → Pn

k ×Pn−1
k corresponds uniquely to a pair

of regular morphisms F : P1
k → Pn

k and G : P1
k → Pn−1

k . Furthermore, by 2.1.1,
the pair (F,G) corresponds uniquely to a pair

((F0 : · · · : Fn), (G1 : · · · : Gn)) (2.10)

of tuples of homogeneous polynomials in k[u, v] with degFi = d and degGi = e

and such that each tuple of polynomials have no factors in common. Finally, a
regular morphism f ′ : P1

k → Blp(Pn
k) is just a regular morphism f : P1

k → Pn
k×Pn−1

k

such that f(P1
k) ⊂ Blp(Pn

k), in other words, it corresponds uniquely to tuples
(2.10) such that

FiGj = FjGi for 1 ≤ i, j ≤ n.

This description is useful even when we consider the case of blow-ups at multiple
points. In fact, we will be able to describe morphisms from P1

k to blow-ups at
multiple points by reducing them to several of the cases above. To do this, we
recall another general property of blow-ups.

2.2.7 Blow-up closure. Let X be a scheme, let Z ↪→ X be a closed subscheme
and let σ : BlZ(X) → X be the blow-up of X with exceptional divisor E. Let
f : X ′ → X be a morphism and define Z ′ ..= f−1(Z) to be the scheme theoretic
preimage of Z, that is, Z ′ fits the fibered diagram

Z ′ X ′

Z X.

f

If σ′ : BlZ′(X ′)→ X ′ is the blow-up with exceptional divisor E ′, then the fibered
diagram of the blow-up σ factors through a diagram

E ′ BlZ′(X ′)

E ×X Z BlZ(X)×X X ′

Z ′ X ′

σ′
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such that the hooked arrows are closed immersions. See for instance [Ful98,
Subsection B.6.9] or [Vak17, Lemma 22.2.6].

Notice that by the universal property of the blow-up, we also have a fibered
diagram

E ′ BlZ′(X ′)

E BlZ(X)

Z X.

f◦σ′

σ

2.2.8 Proposition. Let {p1, . . . , pr} be a finite collection of distinct points in
Pn
k . Let σ : X → Pn

k be the blow-up of Pn
k at {p1, . . . , pr} with exceptional divisor

E and let σi : Blpi(Pn
k)→ Pn

k be the blow-up of Pn
k with exceptional divisor Ei for

each i. Then, there exist closed immersions X ↪→ Blp1(Pn
k) ×Pn

k
· · · ×Pn

k
Blpr(Pn

k)

and E ↪→ E1 ×Pn
k
· · · ×Pn

k
Er such that we have a factorization

E X

E1 ×Pn
k
· · · ×Pn

k
Er Blp1(Pn

k)×Pn
k
· · · ×Pn

k
Blpr(Pn

k)

{p1, . . . , pr} Pn
k ,

where the outer square is cartesian.

Proof. Let σ1···j : Blp1,...,pj(Pn
k)→ Pn

k be the blow-ups of Pn
k at the points p1, . . . , pj

for 1 ≤ j < r and E1···j be the respective exceptional divisors. Consider the fiber
products

Blpj+1
(Pn

k)×Pn
k
Blp1,...,pj(Pn

k) Blp1,...,pj(Pn
k)

Blpj+1
(Pn

k) Pn
k .

σ1···j

σj+1

Consider the point q ..= σ−1
1···j(pj+1) ∈ Blp1,...,pj(Pn

k) and let

σq : Blp1,...,pj ,q(Pn
k)

..= Blq(Blp1,...,pj(Pn
k))→ Blp1,...,pj(Pn

k)
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be the blow-up of Blp1,...,pj(Pn
k) at q with exceptional divisor Eq. By 2.2.7, the

morphism σq and the restriction σq|Eq factorize as the commutative diagram:

Eq Blp1,...,pj ,q(Pn
k)

Ej+1 ×Pn
k
{q} Blpj+1

(Pn
k)×Pn

k
Blp1,...,pj(Pn

k)

{q} Blp1,...,pj(Pn
k)

{pj+1} Pn
k .

σq |Eq σq

σ1···j

Claim. Blp1,...,pj ,q(Pn
k)
∼= Blp1,...,pj+1

(Pn
k).

Proof of claim. Consider the composition

Blp1,...,pj ,q(Pn
k)

σq−→ Blp1,...,pj(Pn
k)

σ1···j−−−→ Pn
k ,

and the following fibered diagram

E ′
1···j E ′

1···j q Eq Blp1,...,pj ,q(Pn
k)

E1···j E1···j q q Blp1,...,pj(Pn
k)

{p1, . . . , pj} {p1, . . . , pj+1} Pn
k .

∼= σq

σi···j

Clearly E ′
1···j is an effective Cartier divisor (see [Stacks, 02OO]) and, by definition,

so is Eq. Therefore, E ′
1···jqEq is also an effective Cartier divisor. By the universal

property of Blp1,...,pj+1
(Pn

k), there exists

α : Blp1,...,pj ,q(Pn
k)→ Blp1,...,pj+1

(Pn
k)

such that
σ1···j ◦ σq = σ1···j+1 ◦ α

https://stacks.math.columbia.edu/tag/02OO
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and inducing a fibered diagram

E ′
1···j q Eq Blp1,...,pj ,q(Pn

k)

E1···j+1 Blp1,...,pj+1
(Pn

k)

{p1, . . . , pj+1} Pn
k .

α

σ1···j◦σq

σ1···j+1

On the other hand, since E ′ ..= σ−1
i···j+1({p1, . . . , pj}) is clearly a disjoint

union of effective Cartier divisors on Blp1,...,pj+1
(Pn

k), the universal property of
Blp1,...,pj(Pn

k) implies that there exists

ρ : Blp1,...,pj+1
(Pn

k)→ Blp1,...,pj(Pn
k)

such that
σ1···j+1 = σ1···j ◦ ρ

and induces a fibered diagram

E ′ Blp1,...,pj+1
(Pn

k)

E1···j Blp1,...,pj(Pn
k)

{p1, . . . , pj} Pn
k .

ρ

σ1···j+1

σ1···j

Moreover, if we consider the fibered diagram

E ′′ Blp1,...,pj+1
(Pn

k)

q Blp1,...,pj(Pn
k)

{pj+1} Pn
k ,

ρ

σ1···j
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then we see that E ′′ is a component of E1···j+1. Therefore, it is an effective
Cartier divisor. The universal property of Blp1,...,pj ,q(Pn

k) implies that there exists
a morphism

β : Blp1,...,pj+1
(Pn

k)→ Blp1,...,pr,q(Pn
k)

such that ρ = σq ◦ β and inducing the fibered diagram

E ′′ Blp1,...,pj+1
(Pn

k)

Eq Blp1,...,pj ,q(Pn
k)

q Blp1,...,pj(Pn
k).

β

ρ

σq

It is straightforward to check that E1···j+1 = E ′ qE ′′. To prove the isomorphism
in the claim, it suffices to check that α and β are mutually inverses. Notice that

σ1···j+1 ◦ α ◦ β =σ1···j ◦ σq ◦ β

=σ1···j ◦ ρ = σi···j+1.

Universal property of σi···j+1 implies α ◦ β = id. On the other hand,

σ1···j ◦ σq ◦ β ◦ α = σ1···j ◦ ρ ◦ α

= σ1···j+1 ◦ α = σ1···j ◦ σq

Universal property of σ1...j implies that σq ◦ β ◦ α = σq and universal property of
σq implies that β ◦ α = id, and we obtain the desired isomorphism. �

It follows that we have a closed immersion

ιr : Blp1,...,pr(Pn
k) ↪→ Blp1,...,pr−1(Pn

k)×Pn
k
Blpr(Pn

k).

For 1 < j < r, we define recursively the closed immersions ιj fitting in the fibered
diagram

Blp1,...,pj(Pn
k)×Pn

k
Blpj+1

(Pn
k) Blp1,...,pj−1

(Pn
k)×Pn

k
Blpj(Pn

k)×Pn
k
Blpj+1

(Pn
k) Blpj+1

(Pn
k)

Blp1,...,pj(Pn
k) Blp1,...,pj−1

(Pn
k)×Pn

k
Blpj(Pn

k) Pn
k

ιj−1

ιj
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Thus, we can define the immersion of the statement as the composition

X =Blp1,...,pr(Pn
k)

ιr
↪−→ Blp1,...,pr−1(Pn

k)×Pn
k
Blpr(Pn

k)
ιr−1

↪−−→ · · ·

· · · ι1
↪−→ Blp1(Pn

k)×Pn
k
· · · ×Pn

k
Blpr(Pn

k). �

2.2.9 Definition. Let f : P1
k → Pn

k be a non-constant morphism corresponding
to a tuple (F0 : . . . : Fn) of forms on k[u, v]. Let p ∈ f(P1

k) be a point in the
image. Up to change of coordinates on Pn

k , we can assume p = (1 : 0 : · · · : 0).
It follows that p ∈ f(P1

k) if and only if {Fj}1≤j≤n have factors in common. By
the claim in 2.1.1, we know that this is equivalent to saying that there exists a
homogeneous H ∈ k[u, v] such that H divides Fi for 1 ≤ i ≤ n. We define

mp(f) = max{degH | H ∈ k[u, v] and H divides Fj for 1 ≤ j ≤ n}

to be the parametric multiplicity of p on f .

2.2.10 Remark. Let f : P1
k → Pn

k be a morphism corresponding to a tuple
(F0 : · · · : Fn) of forms of degree d. If

p = (1 : 0 : · · · : 0) ∈ f(P1
k),

then we can write Fi = HF ′
i for 1 ≤ i ≤ n with degH = mp(f), that is, we have

the relation
mp(f) = d− degF ′

i .

If f is generically one-to-one and char k = 0, then the parametric multiplicity
mp(f) coincides with the multiplicity of the point p at the scheme theoretic image
of f , see for instance [Pér07, Theorem 8] for n = 2.

When f is not generically one-to-one, it follows from (2.7) in 2.1.10 that if

ν : P1
k → C ..= im (f)

is the normalization of C, then there is morphism g : P1
k → P1

k such that f = ν ◦g
and we have the relation

mp(f) = m0mp(ν), (2.11)

where m0 is the degree [g∗k(t) : k(t)].

2.2.11 Theorem. Let k be an algebraically closed field, {p1, . . . , pr} ⊂ Pn
k be a

finite collection of points in a projective space. Let σ : X → Pn
k be the blow-

up of Pn
k along {p1, . . . , pr} with exceptional divisor E. Let m ..= (m1, . . . ,mr)

denote an r-tuple of non-negative integers. Then we have the partition in closed
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subschemes

Mor(P1
k, X) ∼= Mor0(P1

k, X)q

(∐
d>0

∐
mi≤d

Md,m

)
qMor>0(P1

k, E),

where

• Mor0(P1
k, X) parametrizes constant morphisms;

• a k-point [g] belongs to Md,m if and only if

deg(σ ◦ g) = d and

mpi(σ ◦ g) = mi for 1 ≤ i ≤ r;

• Mor>0(P1
k, E) ∼=

∐r
i=1

∐
e>0More(P1

k,P
n−1
k ).

In particular, for 0 ..= (0, . . . , 0) and each positive integer d, the subschemes Md,0

are nonsingular of dimension nd + d + n and parametrize curves which do not
intersect E.

Proof. For this proof we will use the following notational convention: for any
morphism of schemes α : X → Y over k, we denote

αM : Mor(P1
k, X)→ Mor(P1

k, Y )

to be the corresponding morphism on schemes of morphisms.

Case r = 1:

We denote p ..= p1 = (1 : 0 : · · · : 0) and X = Blp(Pn
k). Let σ and τ be

morphism fitting the diagram (2.9). We can describe the scheme Mor(P1
k, X) by

looking at the fibers of σM , that is, we start by noticing the partition

Mor(P1
k,Blp(Pn

k)) =
∐
d∈N

σ−1
M (Mord(P1

k,Pn
k)), (2.12)

where σ−1
M (Mord(P1

k,Pn
k)) denotes the scheme theoretic inverse image of Mord(P1

k,Pn
k)

under σM . That is, σ−1
M (Mord(P1

k,Pn
k)) fits in a cartesian square

σ−1
M (Mord(P1

k,Pn
k)) Mor(P1

k,Blp(Pn
k))

Mord(P1
k,Pn

k) Mor(P1
k,Pn

k).

σM
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Claim 1. If T is an irreducible component of Mor(P1
k, X), then

T ⊂ σ−1
M (Mord(P1

k,Pn
k))

for a unique d ≥ 0.

Proof of claim. Since T is irreducible, σM(T ) is irreducible, therefore we have
σM(T ) ⊂ Mord(P1

k,Pn
k) for a unique d ≥ 0. �

We can further partition (2.12) using τM . Indeed, for each d ≥ 0, we have

σ−1
M

(
Mord(P1

k,Pn
k)
)
=
∐
e≥0

σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (More(P1
k,Pn−1

k )), (2.13)

where
σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (More(P1
k,Pn−1

k ))

denotes the scheme theoretic intersection fitting on the fibered diagram:

σ−1
M (Mord(P1

k,Pn
k)) ∩ τ−1

M (More(P1
k,P

n−1
k )) τ−1

M (More(P1
k,P

n−1
k ))

σ−1
M (Mord(P1

k,Pn
k)) Mor(P1

k,Blp(Pn
k)).

Claim 2. If T is an irreducible component of σ−1
M (Mord(P1

k,Pn
k)), then we have

T ⊂ σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (More(P1
k,Pn−1

k ))

for a unique e ≥ 0.

Proof of claim. Since T is irreducible, τM(T ) is irreducible, therefore we have
τM(T ) ⊂ More(P1

k,P
n−1
k ) for a unique e ≥ 0. �

Claim 3. We have

σ−1
M (Mor0(P1

k,Pn
k))
∼= Mor0(P1

k, σ
−1(Pn

k r {p})qMor(P1
k, E)

∼= Mor0(P1
k, X)qMor>0(P1

k, E)

Proof of claim. Let f : P1
k → Pn

k be the constant morphism sending P1
k to p and

let [f ] be the corresponding point in Mor0(P1
k,Pn

k). Notice that Mor(P1
k, {p}) = [f ]
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and by Remark 1.5.3, we have a cartesian square

Mor(P1
k, E) Mor(P1

k,Blp(Pn
k))

[f ] Mor(P1
k,Pn

k).

σM

That is, the fiber σM at [f ] is precisely Mor(P1
k, E) ∼= Mor(P1

k,P
n−1
k ). It follows

that
σ−1
M ([f ]) ∼= Mor(P1

k,Pn−1
k ) ∼=

∐
e≥0

More(P1
k,Pn−1

k ).

In addition to that, we have that

Mor0(P1
k,Pn

k) = Mor0(P1
k,Pn

k r {p})q [f ],

and by 2.2.2 and Remark 2.2.6, we have that

σ−1
M (Mor0(P1

k,Pn
k r {p})) ∼= Mor0(P1

k, σ
−1(Pn

k r {p})).

Moreover it is clear that Mor0(P1
k, σ

−1(Pn
k r {p}) qMor0(P1

k,P
n−1
k ) parametrize

all the constant morphisms, that is this union is isomorphic to Mor0(P1
k, X) and

the claim follows. �

For any point [g] in σ−1
M (Mord(P1

k,Pn
k)) for some d ≥ 1, the description in

2.2.6 implies that the morphism g corresponds uniquely to a pair

((F0 : · · · : Fn), (G1 : · · · : Gn)), (2.14)

where:

• (F0 : · · · : Fn) is a collection of homogeneous polynomials of degree d with
no common factors;

• (G1 : · · · : Gn) is also a collection of polynomials with no common factors;

• and FiGj = FjGi for 1 ≤ i, j ≤ n.

Claim 4. Let d and e be positive integers. If e > d, then

σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (More(P1
k,Pn−1

k )) = ∅.

If e ≥ d, a k-point [g] belongs to

σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (More(P1
k,Pn−1

k ))
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if and only if
deg(σ ◦ g) = d and mp(σ ◦ g) = d− e.

Moreover, if d = e, then this subscheme is irreducible of dimension nd+ n+ d.

Proof of claim. Consider a morphism g : P1
k → X. We have two situations: either

p = (1 : 0 : · · · : 0) belongs to the image (σ ◦ g)(P1
k) or it does not.

Suppose that p /∈ (σ ◦ g)(P1
k). This is equivalent to saying that F1, . . . , Fn in

(2.14) have no roots in common and by Proposition 2.1.2 they have no factors
in common. Since G1, . . . , Gn also do not have factors in common, we have that
FiGj = FjGi, for all 1 ≤ i, j ≤ n if and only if

Gi = Fi for 1 ≤ i ≤ n

(see Claim in 2.1.1). In particular, degGi = degFi = d, or equivalently, τ ◦ g has
degree d. In other words,

τM([g]) ∈ Mord(P1
k,Pn−1

k ) and [g] ∈ σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (Mord(P1
k,Pn−1

k )).

Recall that by 2.2.2, the morphism

σM |Mor(P1
k,σ

−1(Pn
kr{p})) : Mor(P1

k, σ
−1(Pn

k r {p}))→ Mor(P1
k,Pn

k r {p})

is an isomorphism of open subsets of Mor(P1
k, X) and Mor(P1

k,Pn
k). Notice that

Mord(P1
k,Pn

k r {p}) ..= Mord(P1
k,Pn

k) ∩Mor(P1
k,Pn

k r {p})

is a non-empty open subscheme of Mord(P1
k,Pn

k) (indeed, since k is infinite we
can always find morphisms P1

k → Pn
k of degree d whose image avoids a point p).

Therefore, Mord(P1
k,Pn

k r {p}) is irreducible and nonsingular of dimension

dimMord(P1
k,Pn

k) = nd+ n+ d,

by Proposition 2.1.6. Finally notice that, by definition,

[g] ∈ σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (Mord(P1
k,Pn−1

k ))

if and only if p 6∈ (σ◦g)(P1
k), which is equivalent to say [σ◦g] ∈ Mor(P1

k,Pn
kr{p}).

Thus, we have

σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (Mord(P1
k,Pn−1

k )) ∼= Mord(P1
k,Pn

k r {p}).
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Now suppose
p = (1 : 0 : · · · : 0) ∈ (σ ◦ g)(P1

k).

Since d ≥ 1, we have that p ∈ (σ ◦g)(P1
k) if and only if the polynomials {Fi}1≤i≤n

have roots in common. Thus, by Proposition 2.1.2, there exists a homogeneous
polynomial H in k[u, v] such that

Fi = H · F ′
i for 1 ≤ i ≤ n

(notice that H - F0). We can assume without loss of generality that m ..= degH is
maximal. In such a situation we have equalities FiGj = FjGi for all 1 ≤ i, j ≤ n

if and only if
Gi = F ′

i for 1 ≤ i ≤ n.

In particular, all the polynomials {Gi}1≤i≤n have degree d−m, that is, τ ◦ g has
degree d−m. In other words,

τM([g]) ∈ Mord−m(P1
k,Pn−1

k ) and

[g] ∈ σ−1
M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (Mord−m(P1
k,Pn−1

k ))

for some 1 < m < d. �

Define

Md,m
..= σ−1

M

(
Mord(P1

k,Pn
k)
)
∩ τ−1

M (Mord−m(P1
k,Pn−1

k ))

for all d ≥ 1 and 0 ≤ m < d. Notice that by Claim 4, deg(τ ◦ g) = d−m if and
only if we have parametric multiplicity mp(σ ◦ g) = m. Thus, Md,m has k-points
satisfying the conditions of the statement.

The partitions (2.13) and the one given by the Claim 3 yield

Mor(P1
k, X) ∼= Mor0(P1

k, X)q

(∐
d>0

∐
m≤d

Md,m

)
qMor>0(P1

k, E),

and concludes the proof for r = 1.

Case r > 1:

We fix the following notation:

• σ : X = Blp1,...,pr(Pn
k) → Pn

k is the blow-up of Pn
k along {p1, . . . , pr} with

exceptional divisor E;

• σi : Blpi(Pn
k)→ Pn

k is the blow-up of Pn
k at pi with exceptional divisor Ei;
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• ι : X ↪→ Blp1(Pn
k) ×Pn

k
· · · ×Pn

k
Blpr(Pn

k) is the closed immersion defined in
Proposition 2.2.8;

• pri : Blp1(Pn
k)×Pn

k
· · ·×Pn

k
Blpr(Pn

k)→ Blpi(Pn
k) is the natural i-th projection;

• θ : Blp1(Pn
k)×Pn

k
· · · ×Pn

k
Blpr(Pn

k)→ Pn
k is the natural morphism to Pn

k ;

• N is Mor(P1
k,Pn

k);

• The partition

Mor(P1
k,Blpi(Pn

k))
∼= M i

Pn
k
qMEi

qMor(P1
k, Ei)

induced by each σi by the case r = 1, where:

– M i
Pn
k

..=
∐

di∈NM
i
di,0

;

– MEi
..=
∐

di∈N
∐di

mi=1M
i
di,mi

;

• fi : P1
k → Pn

k is the constant morphism such that fi(P1
k) = pi.

Notice that we have the relations σi ◦ pri = θ for all i and θ ◦ ι = σ.

Claim 5. Let m = (m1, . . . ,mr) denote r-tuples of non-negative integers. We
have an isomorphism

Mor(P1
k,Blp1(Pn

k)×Pn
k
· · · ×Pn

k
Blpr(Pn

k))

∼=

(
r∐

i=1

θ−1
M ([fi])

)
q

(∐
d∈N

∐
mi<d

M1
d,m1
×N · · · ×N M r

d,mr

)
.

Proof of claim. By Remark 1.5.3, we have an isomorphism

Mor(P1
k,Blp1(Pn

k)×Pn
k
· · · ×Pn

k
Blpr(Pn

k))

∼= Mor(P1
k,Blp1(Pn

k))×N · · · ×N Mor(P1
k,Blpr(Pn

k)).

Let i and j be two distinct integers in {1, . . . , r} and notice that since coproducts
commute with fibered products in the category of schemes, we have an isomor-
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phism

Mor(P1
k,Blpi(Pn

k))×N Mor(P1
k,Blpj(Pn

k))

∼=
(
M i

Pn
k
×N M j

Pn
k

)
q
(
M i

Pn
k
×N MEj

)
q
(
M i

Pn
k
×N Mor(P1

k, Ej)
)

q
(
MEi
×N M j

Pn
k

)
q
(
MEi
×N MEj

)
q
(
MEi
×N Mor(P1

k, Ej)
)

q
(
Mor(P1

k, Ei)×N M j
Pn
k

)
q
(
Mor(P1

k, Ei)×N MEj

)
q
(
Mor(P1

k, Ei)×N Mor(P1
k, Ej)

)
.

We can easily describe some of the products above. First, consider the mor-
phisms πi, πj and θij fitting in the fibered diagram

Blpi(Pn
k)×Pn

k
Blpj(Pn

k) P1
k,Blpi(Pn

k)

Blpj(Pn
k) N

πi

θijπj σi

σj

and the natural projection

prij : Blp1(Pn
k)×Pn

k
· · · ×Pn

k
Blpr(Pn

k)→ Blpi(Pn
k)×Pn

k
Blpj(Pn

k).

Notice that we have

pri = πi ◦ prij
prj = πj ◦ prij
θ = θij ◦ prij

(2.15)

Then, by definition of the partitions, we have

M i
Pn
k
×N Mor(P1

k, Ej) ∼= π−1
i,M(σ−1

i,M(Mor(P1
k,Pn

k r {pi})) ∩ π−1
j,M(σ−1

j,M([fj]))

= θ−1
ij,M(Mor(P1

k,Pn
k r {pi})) ∩ θ−1

ij,M([fj])) = θ−1
ij,M([fj]).

(2.16)

Similarly, we obtain

Mor(P1
k, Ei)×N M j

Pn
k

∼= θ−1
ij,M([fi]).
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Furthermore, since

σj,M(Mor(P1
k, Ej)) = [fj] /∈ σi,M(MEi

)

and [fi] 6= [fj],

we have

MEi
×N Mor(P1

k, Ej) = ∅

Mor(P1
k, Ei)×N MEj

= ∅

Mor(P1
k, Ei)×N Mor(P1

k, Ej) = ∅.

(2.17)

Since the relations (2.15), (2.16) and (2.17) hold for any pair of distinct indices
i, j, we obtain:

Mor(P1
k,Blp1(Pn

k)×Pn
k
· · · ×Pn

k
Blpr(Pn

k))
∼=

(
r∐

i=1

θ−1
M ([fi])

)
qM ′,

where
M ′ ∼=

∐
M ′

i∈{M i
Pn
k
,MEi

}

M ′
1 ×N · · · ×N M ′

r.

Let [g] ∈ Mor(P1
k, X) be a k-point and suppose that

pri,M([g]) = [pri ◦g] ∈M i
di,mi

.

Then, we have that
σi,M ◦ pri,M([g]) = θM([g])

corresponds to a morphism
θ ◦ g : P1

k → Pn
k

of degree di. We conclude that

M i
di,mi
×N M j

dj ,mj
= ∅

whenever i 6= j. Thus, we obtain the partition

M ′ ∼=
∐
d∈N

∐
mi<d

M1
d,m1
×N · · · ×N M r

d,mr
. �

Finally, consider ιM to be the induced closed embedding of Mor(P1
k, X) into

Mor(P1
k,Blp1(Pn

k)) ×N · · · ×N Mor(P1
k,Blpr(Pn

k)). We can define the partition of
the statement as follows.
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Subschemes Md,m:

Define
Md,m

..= ι−1
M (M1

d,m1
×N · · · ×N M r

d,mr
)

for all positive integers d and 1 ≤ m1, . . . ,mr ≤ d. The universal property of
fiber products yields

M1
d,m1
×N · · · ×N M r

d,mr
∼= pr−1

1,M

(
M1

d,m1

)
∩ · · · ∩ pr−1

r,M

(
M r

d,mr

)
.

Hence, for any point k-point [g] ∈Md,m we have

pri,M ◦ιM([g]) = [pri ◦ι ◦ g] ∈M i
d,mi

.

On the other hand, by definition of M i
d,mi

in the case r = 1, this is equivalent to

mpi(σi ◦ pri ◦ι ◦ g) = mpi(σ ◦ g) = mi.

In particular, if m = 0 = (0, . . . , 0), then since fibered products commute
with fibered products and Mor(P1

k,−) commutes with fibered products, we have
the isomorphism

M1
d,0 ×N · · · ×N M r

d,0

∼=θ−1
M

(
Mor(P1

k,Pn
k r {p1})

)
∩ · · · ∩ θ−1

M

(
Mor(P1

k,Pn
k r {pr})

)
∼=θ−1

M

(
Mor(P1

k,Pn
k r {p1}) ∩ · · · ∩Mor(P1

k,Pn
k r {pr})

)
∼=θ−1

M

(
Mor(P1

k,Pn
k r {p1, . . . pr})

)
.

Furthermore, since σ = θ ◦ ι is an isomorphism when restricted to the preimage
of Pn

k r {p1, . . . , pr}, we have

Md,0
∼= σ−1

M

(
Mord(P1

k,Pn
k r {p1, . . . pr})

)
is irreducible of dimension nd+ n+ d, here we use that k is infinite to guarantee

Mord(P1
k,Pn

k r {p1, . . . , pr})

is always non-empty.

Subschemes of Mor(P1
k, E):
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Just as the case r = 1, we have fibered diagram

E X

θ−1({p1, . . . , pr}) Blp1(Pn
k)×Pn

k
· · · ×Pn

k
Blpr(Pn

k)

{p1, . . . , pr} Pn
k

ι

θ

inducing a corresponding fibered diagram

Mor(P1
k, E) Mor(P1

k,Blp1,...,pr(Pn
k))

θ−1
M ({[f1], . . . , [fr]}) Mor(P1

k,Blp1(Pn
k))×N · · · ×N Mor(P1

k,Blpr(Pn
k))

{[f1], . . . , [fr]} N.

ιM

θM

Since Ei
∼= σ−1(pi), we have E =

∐r
i=1 σ

−1(pi) ∼=
∐r

i=1Ei. Since fibered products
commute with coproducts, it follows that

Mor(P1
k, E) ∼= ι−1

M

(
r∐

i=1

θ−1
M ([fi])

)
∼=

r∐
i=1

σ−1
M ([fi]) ∼=

r∐
i=1

Mor(P1
k, Ei)

∼=
r∐

i=1

∐
e≥0

More(P1
k, Ei)

As before, we have Mor0(P1
k, X) ∼= M0,0 qMor0(P1

k, E), therefore we obtain
the partition of the statement. �

2.2.12 Remark. Notice that one of the main features of the partition of Theorem
2.2.11 is that it reflects the intersection of curves with the exceptional divisor E.
Indeed, by the definition of Md,m, if at least one of the mi in m = (m1, . . . ,mr)

is positive then any k-point [g] ∈ Md,m corresponds to a curve intersecting the
exceptional divisor E properly, i.e. if C ..= im (g), then C ∩ E 6= ∅ and C 6⊂ E.

Moreover, the subscheme Mor(P1
k, E) parametrizes curves strictly contained

on the exceptional divisor E.



76 Schemes of rational curves

2.2.13 Warning. Although the partitions in Theorem 2.2.11 can be stated for
any finite collection of points {p1, . . . , pr} in the projective space, the behaviour
of the components depends heavily on the configuration of these points. It follows
that some of the components Md,m in Theorem 2.2.11 can be empty. For example,
let {p1, p2, p3} be three non-colinear points in P2

k. Then we have that M1,(1,1,1) = ∅
on Blp1,p2,p3(P2

k).

2.3 Rational plane curves and linear systems

Let L ⊂ P2
k be a line and recall that for each positive integer d, there is a pro-

jective space parametrizing effective divisors on P2
k which are linearly equivalent

to dL. This projective space is the complete linear system of dL, and is denoted
|dL|, see also B.1.2. In fact, |dL| can be defined as P(H0(P2

k,OP2
k
(d))∨) and it has

dimension N =
(
d+2
d

)
− 1.

The aim of this section is to prove that there is a regular morphism

Ξd : Mord(P1
k,P2

k)→ |dL|

and that its fibers are of dimension 3. Moreover, we prove that the image im(Ξd)

contains locally closed subschemes of |dL| for which we can compute the dimen-
sion. We start with a heuristic description of how this map should act on the
k-points of these varieties. We have summarized some background on divisors
and linear systems on surfaces used here on Appendix B.

2.3.1 Definition ([Ful98, §1.1 and §1.4]). Let X be a scheme of finite type
over k. An s-cycle on X is a finite formal sum

Z ..=
∑
i

aiZi,

where Zi are integral subschemes of X of dimension s. The set of all s-cycles
forms a group denoted Cycls(X) and called the group of cycles of dimension s on
X.

If X is projective, i.e., if it is embedded in some Pn
k , the degree of the cycle Z

is defined as
degZ ..=

∑
ai degZi,

where degZi is the degree of the subscheme Zi with respect to its embedding in
Pn
k . We say Z is effective if ai > 0 for all i.

Let f : X → Y be a proper morphism between schemes of finite type over
k. For any closed subvariety Z ⊂ X, we have that W = im (f |Z) is a closed
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subvariety. Let ζ and ξ be the generic points of Z and W respectively. The
morphism f |Z defines a morphism between the function fields (f |Z)∗ : κ(ξ) →
κ(ζ). Define

deg(Z/W ) ..=

[κ(ξ) : κ(ζ)], if dimW = dimZ,

0, if dimW < dimZ.

For any s-cycle Z =
∑

aiZi on X, the cycle

f∗Z =
∑
i

ai deg(Zi/Wi)Wi

is called the proper pushforward of Z.

2.3.2 Let f : P1
k → Pn

k be a morphism corresponding to a tuple (F0, . . . , Fn) of
degree d and let C = im (f) be its scheme theoretic image. Then, by definition,
the proper pushforward of P1

k as a cycle is the cycle on Pn
k given by

f∗P1
k = [κ(t) : k(C)]C.

This is also a 1-cycle in P2
k, i.e. a divisor in DivP2

k.
Equivalently, if f = ν ◦ g is the factorization through the normalization ν :

P1
k → C given in 2.1.10, then

f∗P1
k = [g∗k(t) : k(t)]C = m0C. (2.18)

By definition, the degree of f∗P1
k is d = m0 degC. Let

Homd(P1
k,P2

k)
..= {f : P1

k → P2
k | degFi = d for all i}.

Let Diveffd P2
k be set of effective divisors in DivP2

k of degree d. We can define a
set theoretical map

Homd(P1
k,P2

k) −→ Diveffd P2
k

f 7−→ f∗(P1
k).

(2.19)

The main point of this section is to prove that when the characteristic of k is
zero, the map (2.19) correponds to the map on the k-points of a regular morphism
between Mord(P1

k,P2
k) and a complete linear system. This can be proven through

the existence of the Chow scheme of 1-cycles in P2
k.

If the characteristic of k is positive, we cannot guarantee the existence of the
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Chow scheme. However, we will point out a strategy to bypass the existence of
the Chow scheme by using the functor of linear systems LinSysOPn

k
(d) defined in

B.2.4.

2.3.3 Remark. It is easy to see that if char k = 0, f : P1
k → P2

k is a non constant
morphism and p ∈ f(P1

k) then the parametric multiplicity mp(f) coincides with
the multiplicity of the divisor µp(f∗P1

k) (see B.1.8 for the definition). Indeed, we
already know this holds if f is generically one-to-one. In general, write f = ν ◦ g
where ν is the normalization of C = im (f) and m0 = [g∗k(t) : k(t)]. Therefore,
by Remark 2.2.10 and equation (2.18) above

mp(f) = m0mp(ν) = m0µp(C) = µp(f∗P1
k).

2.3.4 Two words about Chow schemes. Linear systems are examples of
schemes parametrizing effective cycles. These schemes exist in more generality,
at least when the characteristic of the ground field is zero. Let us briefly comment
on this topic following [Kol96].

Let X ↪→ Pn
k be an integral scheme and assume char k = 0. For any scheme S

over k we obtain a flat morphism X × S → S, and for each point p ∈ S consider
the fiber Xp. A natural question is for which closed subschemes Z ⊂ X × S the
fiber Zp is a a cycle in Cycls(Xp) for some s. That is, Z can be understood as
a “family of cycles” on X × S over S. Another two reasonable expectations are
that Z ⊂ X×S is proper over S and that degZp = degZq for all points p, q ∈ S.
These reasonable expectations motivate the definition of a well defined family of
proper cycles of dimension s and degree d, see [Kol96, p. I.3.10]. We can define
the set

Chow s,d(X)(S) =


Well defined families of effective,

proper, algebraic cycles on X × S over S

of dimension s and degree d

 .

In fact, for any morphism S ′ → S between semi-normal varities (see [Kol96,
Definition I.7.2.1]), Kóllar defines suitable morphisms

Chow s,d(X)(S)→ Chow s,d(X)(S ′)

so that the association
S 7→ Chow s,d(X)(S)

is a functor from the category of semi-normal schemes to sets, see [Kol96, Propo-
sition I.3.19].
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Moreover, if char k = 0, this functor is represented by a scheme called the
Chow scheme and denoted Chows,d(X). In particular, we have

Hom(Spec k,Chows,d(X)) ∼= {D ∈ Cycls(X) | D effective and degD = d}.

The theory to prove the representability of Chow s,d(X) is deep and goes much
beyond the scope of this thesis. The reader is referred to [Kol96, §1.3]. A theory
of relative cycles has also been developed by Suslin-Voevodsky [SV00], although
the Chow presheaves defined by them differ slightly from those defined by Kóllar.
These sheaves are still not representable by a scheme in positive characteristic.
However, the sheafification of these presheaves (on a sufficiently fine Grothendieck
topology) is isomorphic to the sheafification of the functor of points of a scheme.
This scheme is unique up to universal homeomorphism. The interested reader
is referred to loc.cit or a more detailed exposition of both previous approaches
given in [And19]. In particular, Anderson proves that the Chow scheme defined
above following [Kol96] is the semi-normalization of the one obtained in [SV00],
see [And19, Corollary 6.3.26].

2.3.5 Example. If X = Pn
k and N =

(
n+d
d

)
− 1, then we already know that

|dH| ..= P(H0(Pn
k ,OPn

k
(d))∨) parametrizes the effective divisors of degree d on Pn

k ,
where H ⊂ Pn

k is a hyperplane. If we assume that char k = 0, then we have that
the Chow scheme is isomorphic to the classical construction of Chow varieties
constructed by Chow coordinates. In particular, we have that

Chown−1,d(Pn
k)
∼= |dH|

see [Ryd03, Example 8.29] for an accessible proof using Chow coordinates.

2.3.6 Scheme of morphisms and cycles. Suppose char k = 0. It follows
from [Kol96, Corollary I.6.9] that there is a regular morphism1

Ξ : Mor(P1
k,P2

k) −→ Chow(P2
k)

[f ] 7−→ [f∗P1
k].

In particular, let d > 0 and L ⊂ P2
k be a line in P2

k. We can restrict this morphism
to Mord(P1

k,P2
k) and define

Ξd
..= Ξ|Mord(P1

k,P2
k)
: Mord(P1

k,P2
k) −→ Chow1,d(P2

k)
∼= |dL|. (2.20)

1Notice that in [Kol96, Corollary I.6.9] we need to take the semi-normalization of the scheme
Mor(X,Y ), however since Mor(P1

k,P2
k) is nonsingular, seminormalization is not needed, see

[Kol96, Proposition I.7.2.3].
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2.3.7 Example. Consider the morphisms f1, f2 : P1
k → P2

k and given by the
equations

f1(u : v) = (u2 : (u+ v)2 : v2);

f2(u : v) = (u2 : u2 + v2 : v2).

The scheme theoretic image of f1 is the irreducible conic

C = {x2
0 + x2

1 + x2
2 − 2(x0x1 + x0x2 + x1x2) = 0},

while the scheme theoretic image of f2 is the line

L = {x0 − x1 + x2 = 0},

but notice that f2 is a double cover of L. Thus, we have

Ξ2([f1]) = [C] and Ξ2([f2]) = [2L].

2.3.8 A strategy for positive characteristic. To define the morphism Ξd

we assumed the characteristic of k was zero and used that the Chow scheme
Chow1,d(P2

k)
∼= |dL|. We expect that this can be proven in a more direct way

for k of arbitrary characteristic using the functor of linear systems LinSysOP2
k
(d),

defined in B.2.4, in the following way. Since Mor(P1
k,P2

k)
∼= hMor(P1

k,P2
k)

we define
the functor Mord(P1

k,P2
k) to be the fibered product in

Mord(P1
k,P2

k) hMord(P1
k,P2

k)

Mor(P1
k,P2

k) hMor(P1
k,P2

k)

∼

∼

and recall that if S is a scheme of finite type over k, we have

LinSysOP2
k
(d)(S) =


D ⊂ P2

k × S relative effective Cartier divisor
such that OP2

k×S(D) ∼= pr∗1(OP2
k(d)

)⊗OP2
k
×S

pr∗2(K)

for some K ∈ PicS

 .
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The key point of the argument would be to define a morphism

Υd(S) :Mord(P1
k,P2

k)(S) −→ LinSysOP2
k
(d)(S)

[f : P1
k × S → P2

k × S] 7−→ (pr∗1(pr1 ◦f)∗(P1
k × S))

and check this defines a well defined morphism of functors. This would require
checking the following:

• for every f : P1
k × S → P2

k × S, the cycle pr∗1(pr1 ◦f)∗(P1
k × S) is a relative

effective Cartier divisor;

• OP2
k×S(pr

∗
1(pr1 ◦f)∗(P1

k × S)) ∼= pr∗1(OP2
k
(d)) ⊗OP2

k
×S

pr∗2(K) for some K ∈
PicS;

• and for any morphism g : S ′ → S, we have a well defined commutative
diagram

Mord(P1
k,P2

k)(S) LinSysOP2
k
(d)(S)

Mord(P1
k,P2

k)(S
′) LinSysOP2

k
(d)(S

′).

Υd(S)

Υd(S
′)

To check all of the items, one might need a better description of f : P1
k×S →

P2
k×S, as it is does not simply correspond to polynomials of degree d. The third

item, however, seems to be manageable by [SV00, Theorem 3.6.1].
If this is, in fact, a well defined morphism of functors, then the restriction of

Mord(P1
k,P2

k) to the category FinType/k is still representable by Mord(P1
k,P2

k),
and therefore, the morphism Υd would induce a unique morphism of varieties
Ξd : Mord(P1

k,P2
k) → |dL| by Yoneda Lemma. For now, whenever we use the

morphisms Ξd we will assume that char k = 0.

2.3.9 Two words about group actions. We can understand the fibers of the
morphisms Ξd as the orbit of a group action. We recall basic definitions following
[Mil17, Chapter 1].

We say that G is an algebraic group over k if it is a group object in the category
FinType/k of schemes of finite type over k. In other words, it is a pair (G,m)

where G is a scheme of finite type over k, m : G×G→ G is a regular morphism
and there exist morphisms e : Spec k → G and inv : G → G satisfying natural
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commutative diagrams:

G×G×G G×G G G×G G

G×G G Spec k G Spec k

id×m

m×id m

(inv , id)

m

(id , inv)

m e e

Spec k ×G G×G G× Spec k

G.

e×id

≃
m

id×e

≃

Let G be an algebraic group over k and X be a scheme of finite type over k.
We say G acts on X if there is a regular morphism

α : G×X −→ X

satisfying commutative diagrams:

G×G×X G×X Spec k ×X G×X

G×X X X

id×α

m×id α
≃

e×id

α

α

(compare with [MFK94]).
Suppose that G is non-singular acting on X via α. Then the G-orbit of p ∈ X

is defined to be the scheme theoretic image of an orbit map

op : G× p ∼= G −→ X

g 7−→ α(g, p)

and we will denote it by Op. Moreover, we can define the stabilizer of a point
p ∈ X as the fiber Gp

..= o−1
p (p). It is an algebraic subgroup of G.

2.3.10 Lemma. Let G be a nonsingular algebraic group over k acting over an
integral scheme X over k. If there exists a point p such that dimGp = 0, then
there exists an open subset U0 ⊂ X such that for any point q ∈ U0 we have
dimOq = dimG.

Proof. The morphism op is faithfully flat onto its image (see [Mil17, Proposition
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7.4(b)]). Therefore, for any point in q ∈ Op we have

dim o−1
p (q) = dimG− dimOp,

see [Har77, Corollary III.9.6]. By [MFK94, Definition 0.9], the set

Zr = {p ∈ X | dim o−1
p (p) ≥ r}

is closed in X. Thus, U0
..= X r Z1 is an open subset consisting of points whose

orbits under the action of G are 0-dimensional. It follows that if there exists a
point p such that dim o−1

p (p) = 0, then p ∈ U0. In other words, U0 is non-empty
and for any point q ∈ U0, we have dimOq = dimG. �

2.3.11 Lemma. Let k be an algebraically closed field of characteristic 0 and

Ξd : Mord(P1
k,P2

k)→ |dL|

be the morphism defined in (2.20). Then there exists an open subset

U ⊂ Mord(P1
k,P2

k)

such that for any k-point [D] ∈ im(Ξd|U) we have that Ξ−1
d ([D]) is irreducible of

dimension 3.

Proof. Recall that
Aut(P1

k)
..= Mor1(P1

k,P1
k)

is the variety parametrizing automorphisms of P1
k. It is well known that it is an

algebraic group, and we have already seen it is nonsingular and dimAut(P1
k) = 3.

Furthermore, we have a natural action of Aut(P1
k) on each Mord(P1

k,P2
k) given by

Aut(P1
k)×Mord(P1

k,P2
k) −→ Mord(P1

k,P2
k)

([g], [f ]) 7−→ [f ◦ g].
(2.21)

By definition, for every k-point in im(Ξd) corresponding to a divisor D, we
have that D = f∗P1 for some f : P1

k → P2
k. On the other hand, for any auto-

morphism [g] ∈ Aut(P1
k) we have that D = (f ◦ g)∗P1

k. In other words, Ξd is
Aut(P1

k)-invariant.

Claim. There is an open subset U ⊂ Mord(P1
k,P2

k) such that for each [D] ∈ U

fiber Ξ−1
d ([D]) is the Aut(P1

k)-orbit of [f ] under the action (2.21).

Proof of claim. Let Morbir(P1
k,P2

k) denote the open subscheme of Mor(P1
k,P2

k)

parametrizing morphisms from P1
k to P2

k which are generically one-to-one (see
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[Kol96, Definition II.2.6]) and let

U ..= Morbir(P1
k,P2

k) ∩Mord(P1
k,P2

k).

Consider two points [f ], [f ′] ∈ U such that f ′
∗P1

k = f∗P1
k, then

im (f) ∼= im (f ′) =.. C.

Since both f and f ′ induce birational morphisms onto C there exists a morphism
g : P1

k → P1
k such that the diagram

P1
k

C P2
k

P1
k

g

f

f ′

is commutative. Since

deg(f) = deg(f ′) = d and deg(g ◦ f ′) = deg(g) deg(f ′) = deg(f),

it follows that deg g = 1, i.e g ∈ Mor1(P1
k,P1

k) and [f ′] is in the Aut(P1
k)-orbit of

[f ]. �

In particular, by the definition of the orbits in 2.3.9 and since Aut(P1
k) is

irreducible, we have that Ξ−1
d ([D]) is irreducible for every [D] ∈ U .

Claim. There exists a morphism f : P1
k → P2

k such that the stabilizer Aut(P1
k)[f ]

has dimension 0.

Proof of claim. Define f(u : v) ..= (ud : vd : ud−1v) and notice that if [g] ∈
Aut(P1

k), then we can write g(u : v) = (αu+ βv : γu+ δv) with α, β, γ, δ ∈ k and
det
(
α β
γ δ

)
6= 0. Then it is easy to see that f ◦ g = f if and only if the system

β = 0

γ = 0

αd = 1

δd = 1

αd−1δ = 1

has a solution. The third and fourth equations imply that α = εad and δ =
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εbd, where εd is the primitive root of the unit. The fifth equation implies that
(d− 1)a+ b ≡ 0 mod d, or equivalently a ≡ b mod d. It follows that α = δ and
hence g = idP1

k
, as claimed. In particular, Aut(P1

k)[f ] consists of a single point
and dimAut(P1

k)[f ] = 0. �

By Lemma 2.3.10, there exists an open subset U0 ⊂ Mord(P1
k,Pn

k) such that
for any [f ] ∈ U0 and D ..= f∗P1

k we have

dimΞ−1
d ([D]) = dimO[f ] = dimAut(P1

k) = 3.

Finally, since Ξd|U is an Aut(P1
k)-invariant morphism and Aut(P1

k) is defined
over k we can can apply Remark [MFK94, (4) of p. 6 & 7] on Ξd|U and con-
clude that the dimensions of the fibers of Ξd|U are constant in the irreducible
components of U . Since U ∩U0 is non-empty and U is irreducible, it follows that
dimΞ−1

d ([D]) = 3 for all D ∈ im (Ξd|U). �

2.4 Rational curves on Del Pezzo surfaces

Let us denote X = Blp1,...,pr(Pn
k) and recall that in Theorem 2.2.11 we have

defined a partition of Mor(P1
k, X) which is independent of a projective embedding

of X. Once we fix a projective embedding X ↪→ PN
k , we can use this partition

to refine the partition of Mor(P1
k, X) =

∐
e∈N More(P1

k, X) in degrees of Remark
2.1.7.

We say r points in P2
k (with 1 ≤ r ≤ 8) are in general position if no three of

them lie on a line, no six of them lie on a conic and all of them do not lie on a
cubic. If X is the blow-up of P2

k at r points in general position then X is a Del
Pezzo surface and there are well known projective embeddings for X. We use
those projective embeddings to refine the partition of degrees on Mor(P1

k, X).

2.4.1 Corollary. Let k be an algebraically closed field and let r ≤ 8 be a positive
integer. Let σ : X → P2

k be the blow-up of P2
k in r points in general position. Let

Md,m denote the closed subschemes defined in Theorem 2.2.11 and More(P1
k, Ei)

denote the scheme parametrizing morphisms of degree e to the exceptional line
Ei. Let a be a positive integer such that −aKX is very ample and let

ι−aKX
: X ↪→ PN

k

be the corresponding embedding. Then for each integer e > 0, the scheme parametriz-
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ing morphisms of degree e from P1
k to X with respect to ι−aKX

is given by

More(P1
k, X) =

 ∐
e=a(3d−|m|)

Md,m

q( r∐
i=1

More(P1
k, Ei)

)
.

Proof. Let L ∈ PicP2
k be the divisor class of a line in P2

k. The anticanonical class
of X is given by

−KX = 3σ∗L−
r∑

i=1

Ei.

Recall that it is ample (see [Man86, Theorem 24.4]), i.e. there is an integer a > 0

such that −aKX induces a closed immersion ι−aKX
: X ↪→ PN

k (if r ≤ 6 we can
take a = 1, see [Man86, Theorem 24.5]).

Let e > 0 and let [f ] be a closed point in More(P1
k, X) and consider the scheme

theoretic image C = im (σ ◦ f).

Claim. Suppose C is not a point. Then, there exists a positive integer d such
that

e = (3d−
∑r

i=1mpi(σ ◦ f)) a,

where mpi(σ ◦ f) is the parametric multiplicity of σ ◦ f in pi.

Proof of claim. Notice that C̃ ..= im (f) is the strict transform of C under σ. Let
d be the degree of C in P2

k and let mi
..= µpi(C) be the multiplicity of C at each

point pi.

Suppose that f is generically one-to-one. Hence, so is σ ◦f . In particular, the
parametric multiplicities coincide with the multiplicities of C at each pi, that is,
mpi(σ ◦ f) = µpi(C), see [Pér07, Theorem 8]. Notice that [f ] ∈ Md,m for some
collection m = (m1, . . . ,mr).

Since σ ◦ f is generically one-to-one, it follows from Example 1.1.13 that e

coincides with the degree of C̃ in PN
k . Furthermore, the degree of C̃ in PN

k is the
intersection number C̃ · (−aKX) ([Har77, Remark V.1.6.2]).

Recall that we can write the total transform of C via σ as

σ∗C = C̃ +
r∑

i=1

miEi,
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see B.2. We can use B.1.3 and B.1.6 to compute

e = deg C̃ = C̃ · (−aKX) = a

(
σ∗C · (−KX)−

(
r∑

i=1

miEi

)
· (−KX)

)

= a

(
σ∗C · σ∗3L− σ∗C ·

(
r∑

i=1

Ei

)
−

(
r∑

i=1

miEi

)
· σ∗3L+

(
r∑

i=1

miEi

)
·

(
r∑

i=1

Ei

))

= a

(
3 degC −

r∑
i=1

mi

)
= a (3d− |m|) .

If f is not generically one-to-one, then let ν : P1
k → C̃ be the normalization

of C̃. Then there exists a unique g : P1
k → P1

k such that f = ν ◦ g. Let m0 be the
degree of the polynomials defining g, by (2.7), we have

e = m0 deg C̃.

Moreover since σ is birational, so is σ ◦ ν and since

im (σ ◦ ν) = im (σ ◦ f) = C and σ ◦ f = σ ◦ ν ◦ g,

it follows that
d = m0 degC.

By (2.11) in Remark 2.2.10 we have that

mpi(f) = m0mpi(ν)

for all pi. Since ν is generically one-to-one, it follows from the previous case that

deg C̃ = a

(
3 degC −

r∑
i=1

mpi(ν)

)
.

Therefore e = a(3d− |m|) as before. �

Claim. Suppose C is a point. Then there exists i such that [f ] ∈ More(P1
k, Ei).

Proof of claim. Clearly, if C is a point, then C̃ = Ei for some i and Ei
∼= P1

k is a
line. Therefore, [f ] ∈ More(P1

k, X) ∩Mor(P1
k, Ei) if and only if f is a morphism

of degree e to Ei. �

The two claims yield the desired result. �

2.4.2 Remark. Notice that, under the hypotheses of Corollary 2.4.1, we have
More(P1

k, Ei) ∼= More(P1
k,P1

k), therefore More(P1
k, Ei) is an irreducible nonsingular
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component of dimensions 2e+1. Moreover, if Md,0 ⊂ More(P1, X) for some e > 0

we can write the dimension of this component in terms of e as dimMd,0 = e/a+2.

2.4.3 Components in Md,m. Consider σ : X → P2
k to be the blow-up of P2

k

at r points in general position, with r ≤ 8. That is, X is a Del Pezzo surface
of degree 9 − r. Our objective is to find components in Md,m ⊂ Mor(P1

k, X) for
given d and m = (m1, . . . ,mr).

The strategy is to look at the preimages of the composition of the maps

Md,m

σM |Md,m−−−−−→ Mord(P1
k,P2

k)
Ξd−→ |dL|.

Notice that the image im
(
Ξd ◦ σM |Md,m

)
consists of effective divisors of degree

d in P2
k supported on rational curves passing through each blown-up point with

specified multiplicities. Let us be more precise.
Let f : P1

k → X be a morphism and C = im (σ ◦ f). Suppose that [f ] ∈Md,m

and f is generically one-to-one. Then each mi coincides with the multiplicity
µpi(C) at the point pi. Hence, we need to describe the locus on |dL| of divisors
supported on irreducible rational curves passing through the blown-up points pi

with multiplicity mi. We will see that under the assumption that C̃ ..= im (f)

is smooth, the closure of Ξd ◦ σM(Md,m) in |dL| contains an irreducible locally
closed subset of |dL| dense in a linear system of |dL| containing the divisor C,
and we will determine its dimension.

Before proceeding to the proof of this, we introduce rational linear systems
following Daigle and Melle-Hernández [DM12]. We follow their terminology and
use the main result of their paper to compute the desired dimension.

2.4.4 Definition ([DM12, Definition 2.1]). Suppose char k = 0 and let X be a
rational surface over k. A linear system of divisors L on X is said to be rational
if a general member is an irreducible rational curve, i.e., if there exists a closed
proper subset Z ⊂ L such that every point in the open U ..= L r Z corresponds
to an irreducible rational curve (see [Iit82, §7.9])

2.4.5 Remark. In the original definition [DM12, Definition 2.1], the authors
assume dimL ≥ 1. We will adopt the convention that if dimL = 0, then L
consists of a single divisor supported on a rational curve on X.

2.4.6 Lemma. Suppose char k = 0. Let C be an irreducible rational curve of
degree d in P2

k passing through points p1, . . . , pr with multiplicities m1, . . . ,mr

and let σ : X → P2
k be the blow-up of P2

k on the points pi. Let C̃ be the strict
transform of C under σ. Suppose that C̃ is non-singular. Then there exists a
rational linear system LC on P2

k satisfying the following properties:
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1. D ∈ LC ⇐⇒ D is an effective divisor of degree d in P2
k such that the

multiplicity of D at pi is mi for all i.

2. dimLC = max {d2 + 1−
∑r

i=1m
2
i , 0};

3. L is a rational linear system containing C if and only if L ⊆ LC.

Moreover, the intersection im(Ξd) ∩ LC is dense on LC.

Proof. Let C̃ be the strict transform of the curve C. Define

LC =
{
σ∗D

′ ∈ DivP2
k | D′ ∈ |C̃|

}
. (2.22)

Let L be the divisor class of a line P2
k and |dL| be the complete linear system of

divisors of degree d in P2
k. For each divisor D in DivP2

k let µpi(D) denote the
multiplicity of D at the point pi (see B.1.8).

Claim. We have D ∈ LC if and only if D ∈ |dL| and µpi(D) = mi for each i.

Proof of claim. If D ∈ |dL| and µpi(D) = mi, by (B.2) we have that σ∗D −∑r
i=1miEi is effective and linearly equivalent to C̃, therefore, by B.1.8,

D = σ∗

(
σ∗D −

r∑
i=1

miEi

)
∈ LC .

Conversely, if D ∈ LC , then D is linearly equivalent to σ∗C̃ = C, thus we have
σ∗D is linearly equivalent to σ∗C, by B.2, this happens if and only if

µpi(D) = µpi(C) = mi for all i. �

Suppose C̃2 ≥ 0. The set LC is parametrized by a linear system on P2
k, which

we will denote LC , of dimension dim |C̃| (see [DM12, Definition 2.5]) and since C̃

is nonsingular we have C̃ ∼= P1
k, therefore by [DM12, Lemma 2.4.(a)] we obtain

dimLC = C̃2 + 1 =

(
σ∗C −

r∑
i=1

miEi

)2

+ 1 = d2 + 1−
r∑

i=1

m2
i .

therefore LC has properties 1 and 2. It follows from [DM12, Theorem 2.8.] that
LC is a rational linear system satisfying property 3.

Claim. Suppose C̃2 < 0, then |C̃| is a point and consists of the effective divisor
C̃.
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Proof of claim. Let D ∈ |C̃| be an effective divisor. Suppose that D 6= C̃ is
an irreducible curve, then since it is linearly equivalent to C̃ it is numerically
equivalent to C̃, see Remark B.1.5, therefore

C̃ ·D = C̃2 < 0,

which is a contradiction since C̃ ·D ≥ 0, see Remark B.1.4. Therefore D = C̃.
Now suppose D ∈ |C̃| is just an effective divisor, since D is numerically

equivalent to C̃ we must have C̃ ·D < 0, therefore, by the case above one, of the
curves on the support of D must be C̃, in other words

D = aC̃ +D′

where a ≥ 1, D′ is an effective divisor and

D′ · C̃ < −aC̃2.

Moreover, we have that the class of σ∗D is the same as the class of C in PicP2
k,

in other words

aC + σ∗D
′ = C in PicP2

k ⇐⇒ (a− 1)C = −σ∗D
′ in PicP2

k

⇐⇒ (a− 1) deg(C) = − deg(σ∗D
′).

In particular, since D′ is effective, so is σ∗D
′, thus deg(σ∗D

′) ≥ 0 and it follows
that

0 ≤ (a− 1) deg(C) = − deg(σ∗D
′) ≤ 0.

Hence a = 1 and deg(σ∗D
′) = 0, that is D′ ∈ kerσ∗, or equivalently D′ =∑r

i=1m
′
iEi for m′

i ∈ Z, see Remark B.1.7. Finally, since the classes of Ei are gen-
erators for PicX ∼= Zr+1 we have that D = C̃ +

∑r
i=1m

′
iEi is linearly equivalent

to C̃ if and only if m′
i = 0 for all i, that is D = C̃. �

The claim above tells us that if C̃2 < 0 then LC = {C}, hence LC is a 0-
dimensional rational linear system for which 1, 2 are trivially satisfied. It follows
from [DM12, Theorem 2.8. not (d) =⇒ not (b)] that if we suppose L is a
rational linear system containing C, then dimL = 0, that is L is the trivial linear
system LC .

To prove the last assertion, notice that it follows from Remark 2.3.3 and
property 1 that

im (Ξd) ∩ LC =
{
f∗P1

k ∈ Diveff P2
k | deg(f) = d and µpi(f∗P1

k) = mi for all i
}
.
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In other words, it is the set of divisors on P2
k supported on rational curves passing

through the points p1, . . . , pr with multiplicities mi. Since LC is a rational linear
system, there is an open subset U ⊂ LC whose points correspond to irreducible
rational curves. For any irreducible rational curve ι : C ↪→ P2

k in LC we can take
its normalization ν : P1

k → C and define f ..= ι ◦ ν such that C = f∗P1
k an by

definition we have deg(f) = d, see 2.1.10. It follows that U ⊂ im(Ξd) ∩ LC and
im(Ξd) ∩ LC is dense on LC . �

2.4.7 Lemma (Dimension of fibers). Let f : X → Y be a morphism of algebraic
varieties over k. Suppose that Y is irreducible and that all (closed) fibers of f are
irreducible and of the same dimension m (in particular, f is surjective). Then:

• there is a unique irreducible component X0 of X that dominates Y and;

• every irreducible component Z of X is a union of fibers of f with dimZ =

dim(f(Z)) +m. In particular, dimX0 = dimY +m.

Proof. See [Mus17, Proof of Proposition 5.5.1]. �

2.4.8 Theorem. Let k be an algebraically closed field of characteristic 0. Let

σ : X → P2
k

be the blow-up of P2
k at r points. Suppose there exists a rational curve C of

degree d in P2
k passing through these points with multiplicities m = (m1, . . . ,mr)

such that its strict transform under σ is nonsingular. Consider Md,m to be the
closed subscheme of Mor(P1

k, X) defined in Theorem 2.2.11. Then, there exists
an irreducible component M0

d,m ⊂Md,m such that

dimM0
d,m = max

{
d2 + 1−

∑r
i=1 m

2
i , 0
}
+ 3.

Moreover, a general point of M0
d,m corresponds to a generically one-to-one mor-

phism.

Proof. Let σM : Mor(P1
k, X) → Mor(P1

k,P2
k) be the induced morphism, Ξd be

the morphism defined in (2.20), C be a curve satisfying the hypotheses of the
statement and LC ⊂ |dL| be the rational linear system divisors passing through
the blown up points with multiplicities m1, . . . ,mr defined on Lemma 2.4.6.

Claim. Ξd ◦ σM(Md,m) = im(Ξd) ∩ LC .

Proof of claim. For each [f ] ∈Md,m it follows from Remark 2.3.3 that

mpi(σ ◦ f) = µpi((σ ◦ f)∗P1
k) (2.23)
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for all i. In other words, we have that

Ξd(σM([f ])) = (σ ◦ f)∗P1
k ∈ LC .

Conversely, for any divisor D ∈ im(Ξd)∩LC , we have that there exists a morphism
g : P1

k → P2
k such that

D = g∗P1
k and deg(g) = degD = d.

Thus, by Proposition 2.2.4, there exists a unique [f ] ∈ Mor(P1
k, X) such that

σ ◦ f = g, that is, D = (σ ◦ f)∗P1
k = Ξd(σM([f ])). By Lemma 2.4.6 we have

µpi(D) = mi, thus, once again by Remark 2.3.3, we have (2.23). In other words,
[f ] ∈Md,m. �

Define
N ..= im

(
σM |Md,m

)
red

,

that is, N is the reduction of the scheme theoretical image of σM |Md,m
in Mor(P1

k,P2
k).

Then by Lemma 2.4.6, LC has dimension s ..= dimmax{d2+1−
∑r

i=1m
2
i , 0} and

the image Ξd(N) contains an open subset U ⊂ LC such that each point in U

corresponds to an irreducible rational curve. Moreover, we have seen in the proof
of Lemma 2.3.11, that for each point [f ] of the open subset

V ..= Morbir(P1
k,P2

k) ∩Mord(P1
k,P2

k)

we have that the fiber over Ξd([f ]) is irreducible of dimension 3.

Claim. Ξ−1
d (U) ⊂ V .

Proof of claim. Suppose there exists a morphism f : P1
k → P2

k, such that

[f ] ∈ Mord(P1
k,P2

k)r V

such that Ξd([f ]) = f∗P1
k ∈ U , that is f∗P1

k is an irreducible rational curve, by
definition of the proper pushforward we have f∗P1

k = [k(t) : κ(C)]C, but since f

is not generically one-to-one, i.e. f is not birational to its image, we have that
the induced degree of the field extension [k(t) : κ(C)] is greater than 1. In other
words, f∗P1

k is not an irreducible rational curve, which is a contradiction. �

Define U ′ ..= Ξ|−1
N (U). We have that Ξd|−1

U ′ : U ′ → U is a surjective morphism
of varieties such that every fiber is irreducible of dimension 3. Thus, by Lemma
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2.4.7, there exists a unique irreducible component U ′′ ⊂ U ′ such that

Ξd|U ′′ : U ′′ → U

is dominant and U ′′ has pure dimension s+ 3.

Notice that by definition of the scheme theoretic image we have that σM |Md,m

factors as
σM |Md,m

: Md,m
α−→ im

(
σM |Md,m

) ι
↪−→ Mord(P1

k,P2
k)

where ι is a closed immersion and by the universal property of reduction we have
a unique map αred such that the diagram

(Md,m)red N

Md,m im
(
σM |Md,m

)

αred

α

is commutative. Consider the scheme theoretic preimage

W ..= α−1
red(U

′′).

By Proposition 2.2.4, σM |Md,m
is bijective on closed points and since U ′ has under-

lying topological space isomorphic to Ξ−1
d (U) ⊂ σM(Md,m) and reductions induce

isomorphisms on underlying topological spaces, we have that αred|W is also bi-
jective on closed points. This can be visualized in the following commutative
diagram of sets

W U ′′

α−1
red(U

′) U ′ Ξ−1
d (U)

(Md,m)red N σM(Md,m).

∼

∼ ∼

σM |(Md,m)red

αred

In particular, every closed fiber of αred|W is irreducible of dimension 0. Again
by Lemma 2.4.7, there exists a unique irreducible component W ′ ⊂ W dominant-
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ing U ′′ and of pure dimension s + 3. We illustrate the schemes defined here in
the following commutative diagram

W ′

W U ′′

U ′ U

(Md,m)red N Mord(P1
k,P2

k) LC

dominant

dominant

αred Ξd

where the squares are cartesian. We take M0
d,m to be the component of Md,m

whose underlying topological space is the closure W ′ ⊂Md,m.
It is easy to see that every point [f ] ∈ (Ξd◦σM)−1(U)∩M0

d,m is generically one-
to-one. Indeed just notice that, by definition of U , we have that (σ ◦f)∗(P1

k) = D

for an irreducible rational curve D, that is deg(P1
k/im (σ ◦ f)) = 1, see Definition

2.3.1. Recall that

deg(P1
k/im (σ ◦ f)) = deg(P1

k/im (f)) deg(X/P2
k)

see [Stacks, 02NZ]. Since σ is birational we have deg(X/P2
k) = 1, therefore we

obtain deg(P1
k/im (f)) = 1, that is if f is birational onto its image. �

2.4.9 We have now plenty of tools to find components of Mor(P1
k, X) when X is

a Del Pezzo surface given by the blow-up of at most 8 points p1, . . . , pr in general
position.

Theorem 2.4.8 states that if a rational curve of d passing through the points
p1, . . . , pr with multiplicities m1, . . . ,mr is resolved by blowing-up the plane at
these points, then we can find a component M0

d,m in Mor(P1
k, X) and compute its

dimension.
Curves which can be resolved by blowing-up points in general position have

been completely classified when r ≤ 7 by Gimigliano, Harbourne and Idà [GHI13].
In particular, their classification implies there is a complete list of the possible

components M0
d,m for Del Pezzo surfaces of degree ≥ 2, and allows us to compute

their dimension explicitly.
As an example, we will give below the complete list of the components of

Mor(P1
k, X) that we can obtain by combining Theorems 2.2.11, 2.4.8, Corollary

2.4.1 and [GHI13, Theorem 3.6.] when r = 6, that is, when X is a smooth cubic
surface in P3

k.

https://stacks.math.columbia.edu/tag/02NZ
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2.4.10 Example. Let k be an algebraically closed field with char k = 0. Let
p1, . . . , p6 be points in general position in P2

k, let σ : X → P2
k be the blow-up

of those points with exceptional divisors E1, . . . , E6, and consider the embedding
X ↪→ P3

k given by the very ample linear system |σ∗3L− E1 − · · · − E6|.
For each integer e, Corollary 2.4.1 yields that we have 6 components of

More(P1
k, X) given by More(P1

k, Ei) ∼= More(P1
k,P1

k) which are nonsingular of di-
mension 2e + 1. These components parametrize covers of degree e of the excep-
tional lines.

Furthermore, for each e the classification in [GHI13, Theorem 3.6] allows us
to determine each d and m = (m1, . . . ,mr) satisfying the following

• e = 3d− |m| and;

• there exists a rational curve C of degree d and µpi(C) = mi for each i which
is resolved by blowing up the points pi.

In particular, [GHI13, Theorem 3.6] yields that if C is resolved by blowing-up
pi, then for any permutation of τ of r elements we can find a rational curve C ′

of degree d such that µpi(C) = mτ(i) which is also resolved by blowing up the
points pi. This follows since the classes of C and C ′ on PicX are in the same
orbit under the action the Weyl group of orthogonal transformations on PicX.
We refer to [GHI13, Sections 2.5. and 3.2.] and for details.

It follows that we can compute the dimension and the number of components
defined in Theorem 2.4.8 for each fixed d and to compute their number it suffices
to compute the possible permutation types of m = (m1, . . . ,mr). We organize
this data in the Table 2.1 below.

2.4.11 Remark. We compare the example above with the description of the
components of Mor(P1

k, X) of degree 1 ≤ e ≤ 3 given in [Kol08, Example 5.4.]
when X is a smooth cubic surface. There, we have the following description:

• 27 components of degree e = 1 parametrizing lines in a cubic surface;

• 27 components of degree e = 2 parametrizing conics;

• 73 components of degree e = 3, 72 of those parametrizing twisted cubics on
X and 1 component parametrizing plane cubics on X.

Notice that by the list obtained in Example 2.4.10, we have

• 27 components of degree e = 1 consisting of 21 on Table 2.1 and 6 corre-
sponding to Mor1(P1

k,P1
k);
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e d m
#M0

d,m dimM0
d,mt = 0 t > 0

1
1 (1, 1, 0, 0, 0, 0) 15

3
2 (1, 1, 1, 1, 1, 0) 6

2
1 (1, 0, 0, 0, 0, 0) 6

42 (1, 1, 1, 1, 0, 0) 15
3 (2, 1, 1, 1, 1, 1) 6

3 + 2t

1 + t (t, 0, 0, 0, 0, 0) 1 6

5 + 2t

2 + t (1 + t, 1, 1, 0, 0, 0) 20 60
2 + 2t (1 + t, 1 + t, 1 + t, 1 + t, 0, 0) 20 60
3 + t (2 + t, 1, 1, 1, 1, 0) 30
3 + 2t (2 + t, 1 + t, 1 + t, 1 + t, 1, 0) 30 90
3 + 3t (2 + 2t, 1 + t, 1 + t, 1 + t, 1 + t, t) 30
4 + 2t (2 + t, 2 + t, 2 + t, 1 + t, 1, 1) 20 60
4 + 3t (2 + 2t, 2 + t, 2 + t, 1 + t, 1 + t, 1 + t) 20 60
5 + 3t (2 + 2t, 2 + t, 2 + t, 2 + t, 2 + t, 2 + t) 1 6

4 + 2t

2 + t (1 + t, 1, 0, 0, 0, 0) 15 30

6 + 2t

3 + t (2 + t, 1, 1, 1, 0, 0) 60
3 + 2t (2 + t, 1 + t, 1 + t, 1 + t, 0, 0) 60
4 + 2t (2 + t, 2 + t, 2 + t, 1 + t, 1, 0) 60 120
4 + t (3 + t, 1, 1, 1, 1, 1) 6
4 + 3t (3 + 2t, 1 + t, 1 + t, 1 + t, 1 + t, 1 + t) 6
5 + 2t (3 + t, 2 + t, 2 + t, 2 + t, 1, 1) 60
5 + 3t (3 + 2t, 2 + t, 2 + t, 2 + t, 1 + t, 1 + t) 60
6 + 3t (3 + 2t, 3 + t, 2 + t, 2 + t, 2 + t, 2 + t) 15 30

6

4 (2, 2, 2, 0, 0, 0) 20

4
6 (4, 2, 2, 2, 2, 0) 30
8 (4, 4, 4, 2, 2, 2) 20
10 (4, 4, 4, 4, 4, 4) 1

Table 2.1: List of components M0
d,m in a smooth cubic surface in P3

k.

• 33 components of degree e = 2 consisting of 27 on Table 2.1 corresponding to
the conics and 6 corresponding to double covers of the exceptional divisors
Mor2(P1

k,P1
k);

• 78 components of degree e = 3 consisting of 72 on Table 2.1 (given by 1

for d = 1, 20 for d = 2, 30 for d = 3, 20 for d = 4 and 1 for d = 5), and 6

corresponding to triple covers of the exceptional divisors Mor3(P1
k,P1

k).

We clearly have some discrepancies on the descriptions. Let us shed some light on
them. First of all, the description in [Kol08, Example 5.4.] only takes into account
components containing morphisms which are generically one-to-one, while our
description also takes into account some which do not. Let us see this case by
case.



2.4. Rational curves on Del Pezzo surfaces 97

• For e = 1, we obtain the same components given by the classical descrip-
tion of lines on cubics which can be found, for instance, in [Har77, Theorem
V.4.9.]. That is, we obtain the components which correspond to lines pass-
ing through 2 of the points pi, conics passing through 5 points pi and the
exceptional divisors.

• For e = 2, we obtain the same 27 components corresponding to conics. In
Example 2.4.10 we are also considering the double covers of the exceptional
divisors Ei. However, we have that Md,m also contains components corre-
sponding to the double covers of the remaining 15 lines. We obtain those
by taking d = 2 and m a permutation of (2, 2, 0, 0, 0, 0), or taking d = 4

and m is a permutation of (2, 2, 2, 2, 2, 0). We have in total 54 components
of degree e = 2 when we count the double covers.

• For e = 3, we have counted in Example 2.4.10 the triple covers of exceptional
divisors, but we are again missing the triple covers of the remaining 21 lines
inside the components Md,m. These are components in Md,m when d = 3

and m is a permutation of (3, 3, 0, 0, 0, 0), or when d = 6 and m is a
permutation of (3, 3, 3, 3, 3, 0).

We also have 72 components of table 2.1. It is easy to see that all these
components correspond to the families of twisted cubics on X, that is, cubics
not contained in a plane. Indeed for any cubic curve C = Π ∩ X where
Π ⊂ P3

k is a plane, we have that C is singular (since it is well known that
a curve of degree ≥ 2 is singular on a projective plane) then C cannot be
the image of any morphism [f ] in a component of type M0

d,m since all such
images are strict transforms of curves of degree d with multiplicity m which
are resolved by the blow-up σ. Hence, we see that we are still missing the
component of plane cubics altogether on the description of Example 2.4.10.
Counting all of the components described above and triple covers, we will
have in total 27 + 72 + 1 = 100 components of degree e = 3.

This missing component of cubics shows that there are natural occurring
components of Md,m which correspond to curves on the plane and also are not
resolved by the blow-up of the points pi which are not just covers of a rational
curve. As the degree e (or d) increases, we can expect that these consist of the
majority of the components in the various Md,m. This expectation is natural and
also evidenced by the Table 2.1, which shows that the number of components
M0

d,m is relatively small for arbitrarily high degree e.
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2.4.12 Future work. The theorems in Chapter 2 have many directions for im-
provement and generalization. We point out at least three immediate directions
regarding looking at other components, higher dimensions and characteristic is-
sues. More precisely:

• Components: We can investigate them if we can still say something mean-
ingful when we look at components of Md,m which do not contain any curve
satisfying conditions of Theorem 2.4.8.

• Higher dimensions: We can investigate them if a similar statement to The-
orem 2.4.8 when X is the blow-up of Pn

k with n > 2. Also it is possible
to proceed if an analogous statement to Theorem 2.2.11 holds when X is
the blow-up of Pn

k in closed subschemes of higher dimensions. We expect
to obtain a reasonable partition depending on the intersection number of
rational curves with the exceptional divisor.

• Characteristic: we think that the analogous statements to Theorem 2.4.8
can be proven without the assumption of char k = 0, since the classical
descriptions of Del Pezzo surfaces and of linear systems hold for arbitrary
characteristic.



Appendix A
Categorical remarks

A.1 Yoneda Lemma and Representability

In this section we briefly recall Yoneda Lemma and some of its corollaries
used throughout the text. The discussion will follow closely the approach of
[Lei14]. Recall that for every category C, a presheaf F is a functor from Cop to
Set. For any two presheaves F and G, a morphism α : F → G is a collection of
maps αX : F(X) → G(X) for each object X in C such that for any morphism
f : X → Y , the square

F(Y ) G(Y )

F(X) G(X)

F(f)

αY

G(f)

αX

is commutative. Such a morphism α is said to be a natural transformation;
equivalently, we say that the morphisms αX are natural in X. The corresponding
category is denoted Psh(C).

A.1.1 Example. Let C be any locally small category and let Y be an object in
C. We define a functor hY : Cop → Set defined on objects by X 7→ HomC(X,Y )

and taking every morphism f : X ′ → X to the map

hY (f) : HomC(X,Y ) −→ HomC(X
′, Y )

g 7−→ g ◦ f.

In particular, the presheaf hY has an essential property: let idY : Y → Y

be the identity map in hY (Y ). Then for any object X in C and any morphism
g : X → Y in hY (X), we can write

g = hY (g)(idY ). (A.1)

99
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In other words, every section of this presheaf can be recovered from the morphisms
of C and one section of hY (Y ), namely idY .

A.1.2 Theorem (Yoneda Lemma). Let C be a category and Psh(C) the category
of presheaves. Then there is an isomorphism

HomPsh(C)(hX ,F) ∼= F(X)

natural in X and in F .

Proof. Let X be an object in C and F be a presheaf in Psh(C). We define the
maps

ΘX,F : HomPsh(C)(hX ,F) −→ F(X)

(α : hX → F) 7−→ αX(idX)

and

ΞX,F : F(X) −→ HomPsh(C)(hX ,F)

V 7−→ (ξV : hX → F),

where for each object Y in C, the natural transformation ξV is given by

ξVY : hX(Y ) −→ F(Y )

f 7−→ F(f)(V ).
(A.2)

We check that ΘX,F and ΞX,F are mutually inverses. Indeed, for any section
V ∈ F(X), we have

ΘX,F ◦ ΞX,F(V ) = ΘX,F(ξ
V ) = ξVX(idX)

= F(idX)(V ) = idF(X)(V ) = V ;

and conversely, for any natural transformation α : hX → F ,

ΞX,F ◦ΘX,F(α) = ΞX,F(αX(idX)) = ξαX(idX).

By (A.1), it follows that for each object Y in C we have ξ
αX(idX)
Y : hX(Y )→ F(Y )

such that

ξ
αX(idX)
Y (f) = F(f)(αX(idX)) = αY (hX(f)(idX)) = αY (f),

in other words, ξαX(idX) = α.
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It is straightforward to check that these maps are natural in X and F , that is,
for any morphism f : X → Y in C and for any natural transformation α : F → G,
we have commutative diagrams

HomPsh(C)(hY ,F) F(Y ) HomPsh(C)(hX ,F) F(X)

HomPsh(C)(hX ,F) F(X) HomPsh(C)(hX ,G) G(X),

HF (hf )

ΘY,F

F(f)

ΞY,F

HhX
(α)

ΘX,F

αX

ΞX,F

ΘX,F

ΞX,F

ΘX,G

ΞX,G

where HF and HhX
denote the functors HomPsh(C)(−,F) and HomPsh(C)(hX ,−)

respectively. For further details see [Lei14, Theorem 4.2.1.]. �

A.1.3 As an immediate application of the Yoneda Lemma, we can prove that any
category can be embedded in its corresponding category of presheaves. Namely,
we can define a functor

h : C→ Psh(C)

defined on objects by Y 7→ hY and associating to each morphism f : Y → Y ′ the
natural transformation hf : hY → hY ′ given on each section X by

hf (X) : HomC(X,Y ) −→ HomC(X,Y ′)

g 7−→ g ◦ f.

This functor is called Yoneda embedding.

A.1.4 Corollary. Let C be a locally small category. The functor h : C→ Psh(C)

defined in A.1.3 is fully faithful.

Proof. For any two objects X,Y in C, it follows by Yoneda Lemma that

HomC(X,Y ) = hY (X) ∼= HomPsh(C)(hX , hY ).

�

A.1.5 Definition. Let C be a locally small category and F a presheaf on C. We
say F is representable if there exists an object Y in C and a natural isomorphism
hY
∼= F . In such a situation we say hY is a representation of F .



102 Categorical remarks

A.1.6 Corollary. Let C be a locally small category, Y an object of C and F an
object in Psh(C). The functor hY is a representation of F if and only if there
exists an element U ∈ F(Y ) satisfying the following property:

for each object X in C and each section V ∈ F(X), there

exists a unique map f : X → Y such that F(f)(U) = V.
(A.3)

Proof. Let U ∈ F(Y ) and ξU : hY → F be the natural transformation (A.2)
defined in the proof of Yoneda Lemma. Then the statement of the proposition is
equivalent to saying that hY is a representation of F if and only if there exists U
such that each ξUX is a bijection.

Indeed, if α : hY → F is a natural isomorphism, Yoneda Lemma implies that
there exists U ∈ F(Y ) such that α = ξU . It follows that each ξUX is a bijection.
The converse is clear. �

A.1.7 Definition. Let C be a locally small category and F be an object of
Psh(C). If hY is a representation of F , then we say that a section U ∈ F(Y )

satisfying (A.3) is the universal section of F .

A.2 Fibered product of functors

A.2.1 Fiber product of presheaves. Recall that both limits and colimits in
Psh(C) are computed sectionwise. In particular, if F → G and H → G are
morphisms of presheaves, then the fiber product F ×G H in Psh(C) is defined
sectionwise by (F ×G H)(X) ..= F(X) ×G(X) H(X) for every object X in C and
for each morphism f : X ′ → X we have a morphism

(F ×G H)(f) : (F ×G H)(X)→ (F ×G H)(X ′)
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given by the universal property of the fiber product, that is (F ×G H)(f) is the
unique morphism making the diagram

(F ×G H)(X) H(X)

F(X) G(X)

(F ×G H)(X ′) H(X ′)

F(X ′) G(X ′)

(F×GH)(f)

H(f)

G(f)

F(f)

commutative. We recall a few basic properties of this fiber product.

A.2.2 Definition. A commutative square of presheaves over C

K H

F G

is said to be cartesian if there is a natural isomorphism K ∼= F ×G H.
This can be checked sectionwise, that is, the diagram is cartesian if for each

object X in C and each element

(V, V ′) ∈ F(X)×G(X) H(X),

there exists a unique section V ′′ ∈ K(X) such that V ′′ 7→ V ′ and V ′′ 7→ V ′ via
the morphisms K(X)→ F(X) and K(X)→ H(X) respectively.

A.2.3 Proposition. Let f : X → Z and g : X → Z be morphisms in C,
and suppose that the fiber product X ×Z Y exists in C. Let hf : hX → hZ and
hg : hY → hZ be the corresponding natural transformations given in A.1.2, and
hX ×hZ

hY be the fiber product in Psh(C). Then hX ×hZ
hY
∼= hX×ZY .

Proof. By definition, for any object W we have

(hX ×hZ
hY ) (W ) = {(α, β) | f ◦ α = g ◦ β} .

By the universal property of X ×Z Y , for every pair (α, β) ∈ (hX ×hZ
hY ) (W )
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there exists a unique γ : W → X ×Z Y such that the diagram

W

X ×Z Y Y

X Z

α

β

∃!γ

g

f

is commutative. Therefore, there is a clear morphism

(hX ×hZ
hY ) (W ) −→ hX×ZY (W )

(α, β) 7−→ γ

natural in W . The map is clearly surjective and the universal property of the
cartesian square implies that it is injective. �

A.2.4 Proposition. A commutative square of presheaves over C

K H

F G

is cartesian if and only if for each pair of morphisms hX → F and hX → H from
a representable presheaf such that the solid diagram

hX

K H

F G

is commutative, there exists a unique dashed morphism such that the whole dia-
gram is commutative.

Proof. The direct implication comes from the definition of a cartesian square. We
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prove the converse. Suppose there exists a presheaf L and commutative diagram

L

K H

F G.

β

α

In particular, we have the analogous diagrams for each object X in the category
C. Moreover, Yoneda Lemma defines bijections

ΞX,L : L(X)→ HomPsh(C)(hX ,L), ΘX,K : HomPsh(C)(hX ,K)→ K(X)

natural in X. In addition, by assumption, for each morphism hX → L there is a
commutative diagram

hX L

K H

F G

∃!ΦX(α)

α

β

α

and therefore there is a map ΦX : HomPsh(C)(hX ,L) → HomPsh(C)(hX ,K). The
uniqueness of each ΦX(α) implies that for any morphism f : X → Y the diagram

HomPsh(C)(hY ,L) HomPsh(C)(hY ,K)

HomPsh(C)(hX ,L) HomPsh(C)(hX ,K)

ΦY

HL(hf ) HK(hf )

ΦX

is commutative. Thus, we have maps

L(X)
ΞX,L−−−→ HomPsh(C)(hX ,L)

ΦX−−→ HomPsh(C)(hX ,K)
ΘX,K−−−→ K(X)

natural in X, and therefore a natural transformation L → K whose uniqueness
follows straighforwardly from the definition and Yoneda Lemma. �
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A.2.5 From this point onwards, we will be interested in fiber products of functors
when C is a full subcategory of the category Sch/S of schemes over a base
scheme S. In particular, we want to define properties of functors in Psh(C) from
properties of morphisms of schemes.

A.2.6 Definition. Let C be a full subcategory of Sch/S and F ,G be presheaves
in Psh(C). We say F is a subpresheaf (or subfunctor) of G if there exists a
morphism α : F ↪→ G which is injective sectionwise, that is, α is a monomorphism
in Psh(C).

A subpresheaf α : F ↪→ G is said to be open (resp. closed) if for every scheme
Y in C and morphism β : hY → G, there exists an open subscheme ιβ : Uβ ↪→ Y

in C such that the fiber product F×G hY is naturally isomorphic to hUβ
. In other

words, there exists a morphism hUβ
→ F completing a cartesian diagram

hUβ
hY

F G.

hιβ

β

α

(A.4)

A.2.7 Proposition. Let C be a full subcategory of Sch/S. Let X be an S-
scheme. Any open (resp. closed) subpresheaf H ↪→ hX is representable by an
open (resp. closed) subscheme of X.

Proof. Let hidX : hX → hX be the identity morphism. The induced fiber product
H×hX

hX is naturally isomorphic to H. By the definition of open (resp. closed)
subpresheaf, it follows that H ∼= hUidX

, where UidX is an open (resp. closed)
subscheme of X. �

A.2.8 It is useful to describe open subpresheaves in terms of sections. In that
regard, we have the following proposition.

A.2.9 Proposition. Let C be a full subcategory of Sch/S. Then a monomor-
phism α : F ↪→ G is an open (resp. closed) subpresheaf if and only if for every
S-scheme Y and section V ∈ G(Y ), there exists an open (resp. closed) subscheme
UV ↪→ Y in C satisfying the following universal property:

a morphism f : X → Y in C factors through UV

if and only if G(f)(V ) ∈ αX(F(X)).
(A.5)

Proof. Let Y be any S-scheme. By Yoneda Lemma, a section V ∈ G(Y ) cor-
responds uniquely to the morphism ξV : hY → G given in A.2. The morphism
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α : F ↪→ G is an open (resp. closed) subpresheaf if for each morphism β : hY → G
there exists an open (resp. closed) immersion ιβ : Uβ ↪→ Y in C and a cartesian
diagram (A.4). For each V ∈ G(Y ) write UV

..= UξV and ιV ..= ιξV and consider
the solid commutative diagrams

hX

hUV
hY

F G

hf

∃!

hιV

ξV

α

(A.6)

for each X in C. By Proposition A.2.4, the above square is cartesian if and only
if for each X there exists a unique dashed arrow making (A.6) commute.

Claim. If the square in (A.6) is cartesian, then UV satisfies (A.5).

Proof of claim. Suppose it is cartesian. Let f : X → Y be a morphism in C and
suppose it factors through UV , i.e. there exists a dashed morphism in (A.6) such
that the upper triangle is commutative. Let V ′ be the image of idX in F(X) via

hX(X)→ hUV
(X)→ F(X).

Then by definition

αX(V
′) = ξVX (hf (X)(idX)) = ξVX(f) = G(f)(V ),

that is, G(f)(V ) ∈ αX(F(X)).

Conversely, suppose G(f)(V ) ∈ αX(F(X)), then let V ′ ∈ F(X) be a section
such that αX(V

′) = G(f)(V ). Then ξV
′
: hX → F is a morphism making the outer

diagram on (A.6) commutative. The universal property of the fibered product
implies f : X → Y factors through UV . �

Claim. If UV satisfies (A.5), then the square in (A.6) is cartesian.

By assumption, we have that for any X and any morphism f : X → Y ,
the existence of a morphism hX → hUV

making the upper triangle of the solid
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diagram
hX

hUV
hY

F G.

hf

hιV

ξV

α

(A.7)

commutative is equivalent to the existence of a morphism hX → F such that the
outer solid diagram is commutative.

In particular, if X = UV and f = ιV , then the morphism idUV
yields a dashed

morphism hUV
99K F such that the square in (A.7) is commutative.

We claim that for each X in C and each f : X → Y factoring through UV

the induced solid diagram in (A.7) together with the dashed arrow defined in
the previous paragraph also form a commutative diagram. Indeed, we have that
hX → F

α−→ G coincides with hX → hUV
99K F α−→ G by the commutativity of

the upper triangle and the square. Since α is a monomorphism, we have that
hX → hUV

99K F coincides with hX → F and the whole diagram is commutative.
To prove that the commutative square in (A.7) is also cartesian, we use Propo-

sition A.2.4. Hence, it suffices to prove that for each X in C and pair of morphisms
hf : hX → hY and hX → F making the outer diagram in (A.7) commute, the
induced morphism hX → hUV

(which exists by assumption) is unique, but this
follows from open (resp. closed) immersions being monomorphisms in categories
of schemes. �



Appendix B
Linear systems on surfaces

We very briefly recollect terminology on divisors on surfaces, their intersection
pairing and how this pairing behaves under blow-up at points. This material is
very well known, and thorough treatments can be found in [Har77, §II.6 and
Chapter V] or [HS00, §A.2 and §A.3].

When X is a projective surface and D is a divisor on X, we define the functor
of linear systems with respect to the divisor D and recall that this functor is rep-
resentable. The representing scheme is a projective space parametrizing divisors
linearly equivalent to D. This functorial view of linear systems will be useful to
us to prove in Section 2.3 the existence of the regular morphism

Ξd : Mord(P1
k,P2

k)→ |dL|

through morphisms between their functors of points.

B.1 Divisors on surfaces.

B.1.1 Definition. Let X be an irreducible nonsingular variety over k. A divisor
on X is an element of the free group generated by irreducible and reduced subva-
rieties of codimension 1 on X, denoted by DivX. That is, a divisor D ∈ DivX is
a finite formal sum

∑
aiCi with Ci irreducible and reduced. We define its degree

to be degD =
∑

ai and we say a divisor D is effective if ai ≥ 0 for all i.
We say C is a prime divisor of X if C is a closed irreducible subvariety of

X of codimenison 1. Let ζ be the generic point of a prime divisor C and κ(X)

be the function field of X. Recall that OX,ζ is a discrete valuation ring whose
fraction field is isomorphic to κ(X). In other words, for each such C we have a
discrete valuation

vC : κ(X)→ Z.

For each non-zero f ∈ κ(X), we have that vC(f) 6= 0 only for finitely many
prime divisors (see [Har77, Lemma II.6.1.]). Therefore, for each f ∈ κ(X) we can
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define a divisor
div(f) ..=

∑
C is a prime

divisor

vC(f)C.

We say a divisor D is linearly equivalent to a divisor D′ if there exists f ∈ κ(X)

such that D′ −D = div(f).
Linear equivalence defines a congruence relation on DivX, that is, an equiva-

lence relation preserving the group operation on DivX. Therefore, the quotient
of DivX with respect to this equivalence relation has a well defined group struc-
ture and is denoted ClX called group of divisor classes on X. Since X is regular,
this quotient group is isomorphic to the Picard group PicX, i.e., the group of
isomorphism classes of invertible sheaves on X, see [Har77, Corollary II.6.16.].

B.1.2 Linear systems. For each divisor D ∈ DivX we can define a k-vector
space

LD = {f ∈ κ(X) | D + div(f) is effective} ∪ {0}.

Notice that the set of divisors linearly equivalent to D is in bijection with
closed points of the projective space P(LD) via the map

P(LD) −→

{
D′ ∈ DivX | D′ is effective
and linearly equivalent to D

}
f mod k∗ 7−→ D + div(f)

We define |D| ..= P(LD) and we will identify points in |D| with effective
divisors linearly equivalent to D in DivX. We say |D| is the complete linear
system generated by D, and that a linear system on X is a linear subspace of |D|
for some D ∈ DivX.

Each linear system L can be written as P(V ) where V ⊂ LD is a vector
subspace of dimension m ≤ dimLD. Let f0, . . . , fm−1 be a basis for V , then we
can define a rational map

ιL : X 99K Pm−1
k

p 7→ (f0(p) : · · · : fm−1(p)).

We say L is very ample if ιL is a closed immersion. A divisor D is said to be very
ample if |D| is very ample.

Lastly, the following terminology on linear systems is very commonly used:
we say that a general member of the linear system L has property P if there exists
a proper closed subset of Z ⊂ L such that every divisor corresponding to a point
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in L r Z has property P , see for instance [Iit82, §7.9.]

B.1.3 Intersection pairing. From now on, let X be a nonsingular surface over
k. Recall that two divisors D,D′ ∈ DivX intersect transversally at a point p ∈ X

if the local equations of the curves on D and D′ which pass through p generate
the local ring OX,p. We define an intersection pairing for divisors on X to be a
pairing

DivX ×DivX −→ Z

(D,D′) 7−→ D ·D′

satisfying the following conditions:

• If D and D′ intersect transversally, then D ·D′ = #(D ∩D′);

• D ·D′ = D ·D′;

• (D1 +D2) ·D′ = D1 ·D′ +D2 ·D′;

• if D1 is linearly equivalent to D2, then D1 ·D′ = D2 ·D′.

An intersection pairing exists and is unique, see [Har77, Theorem 1.1.]. In fact,
thanks to the last item, the pairing

PicX × PicX −→ Z

([D], [D′]) 7−→ D ·D′

is well defined. Hence, when there is no risk of confusion, we will use the notation
D both for a divisor on DivX and its class on PicX.

B.1.4 Remark. Notice that if C and D are distinct non-singular irreducible
curves we have C ·D ≥ 0. In fact, this is holds for any pair of distinct irreducible
curves, see [Har77, Proposition V.1.4].

B.1.5 Numerical equivalence. Let D be a divisor on DivX. We say D is
numerically equivalent to 0, and denote it D ≡ 0 if D · E = 0 for all E ∈ DivX.
We say a divisor D′ is numerically equivalent to D, and denote it D ≡ D′, if
(D − D′) ≡ 0. Notice that ≡ defines an equivalence relation on DivX and,
moreover, by the definition of the intersection pairing in B.1.3, if D is linearly
equivalent to D′ then D ≡ D′.
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B.1.6 Intersections on blow-ups. Let σ : X̃ → X be the blow-up of X at the
points p1, . . . , pr, and let E1, . . . , Er be the corresponding exceptional divisors for
each blown up point. We have that Pic X̃ ∼= PicX⊕Zr and there are morphisms

σ∗ : PicX → Pic X̃ and σ∗ : Pic X̃ → PicX

such that
σ∗ ◦ σ∗ = idPicX . (B.1)

We can describe the intersection pairing of X̃ using these morphisms. In fact,
they satisfy the following properties:

1. For any D,D′ ∈ PicX we have (σ∗D) · (σ∗D′) = D ·D′;

2. For any D ∈ PicX we have (σ∗D) · Ei = 0 for all i;

3. E2
i = Ei · Ei = −1, for all i;

4. Ei · Ej = 0, for all i 6= j;

5. For any D ∈ PicX and D′ ∈ Pic X̃, we have (σ∗D) ·D′ = D · (σ∗D
′).

See for instance [Har77, Proposition V.3.2].

B.1.7 Remark. The equality (B.1) tells us that we have a split exact sequence

0→ Zr � Pic X̃
σ∗
�
σ∗

PicX → 0.

In particular, we have ker(σ∗) = Zr, that is σ∗(Ei) = 0 for all i.

B.1.8 Pullback and pushforwards of divisors under blow-ups. We can
describe the morphisms σ∗ and σ∗ more explicitly. For any curve C on X, the
strict transform of C is defined as

C̃ = σ−1(C r p1, . . . , pr).

By extension, for any divisor D =
∑s

i=1 aiCi in DivX, its strict transform is
defined as D̃ =

∑s
i=1 aiC̃i.

For any effective divisor D on X and a point p ∈ X, let g be a local equation for
D in OX,p and let mp ⊂ OX,p be the maximal ideal of the local ring. We define the
multiplicity µp(D) to be the largest integer m such that g ∈ mm

p . When D consists
of a curve, this coincides with the usual definition for the multiplicity of a curve at



B.2. Linear systems revisited 113

the point p. Thus, by [Har77, Proposition V.3.6], for any D =
∑s

i=1 aiCi ∈ PicX

we obtain

σ∗(D) = σ∗

(
s∑

i=1

aiCi

)
= D̃ +

r∑
j=1

s∑
i=1

aiµpj(Ci)Ej. (B.2)

B.2 Linear systems revisited

We have just seen in B.1.2 that for any nonsingular variety X, a divisor class
D ∈ PicX gives rise to a complete linear system |D| isomorphic to a projective
space. A more precise way to formulate this correspondence is by a representabil-
ity result, i.e., |D| is actually a scheme representing a functor of linear systems.
To define this functor we first recall the following definition.

B.2.1 Definition ([Stacks, 01WQ] and [Stacks, 01WX]). Let X be a scheme.
A closed subscheme D ↪→ X is said to be an effective Cartier divisor if its ideal
sheaf ID ⊂ OX is an invertible sheaf.

The sheaf associated to D, denoted OX(D), is defined to be the dual of ID,
that is,

OX(D) ..= Hom(ID,OX).

Let X → S be a morphism. Then D is a relative effective Cartier divisor of
X over S if D is an effective Cartier divisor on X and D ↪→ X → S is flat.

B.2.2 Remark. Definition B.2.1 is motivated by the following: if X → S is a
morphism and D is a relative effective Cartier divisor, then flatness of D → S

implies that for any morphism f : S ′ → S the fibered product DS′ fitting in the
fibered diagram

DS′ D

XS′ X

S ′ S

f ′|DS′

f ′

f

is a relative effective Cartier divisor, see [Stacks, 056Q]. Moreover, we have that
(f ′)∗OX(D) ∼= OXS′ (DS′).

B.2.3 Remark. The definition of an effective Cartier divisor in Definition B.2.1
coincides with the one in Definition 2.2.1 by [Stacks, 01WS].

https://stacks.math.columbia.edu/tag/01WQ
https://stacks.math.columbia.edu/tag/01WX
https://stacks.math.columbia.edu/tag/056Q
https://stacks.math.columbia.edu/tag/01WS
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B.2.4 Definition. Let FinType/k be the category of schemes of finite type over
k, X be a projective surface over k and L ∈ PicX be an invertible sheaf. Then
we define a functor of linear systems as

LinSysL : FinType/k → Set

defined for each finite type scheme S as

LinSysL(S) =


D ⊂ X × S relative effective Cartier divisor
such that OX×S(D) ∼= pr∗1(L)⊗OX×S

pr∗2(K)
for some K ∈ PicS


and defined for any morphism S ′ → S as

LinSysL(S) −→ LinSysL(S ′)

D 7−→ DS′ .

B.2.5 Proposition ([Mum66, Lecture 13, Proposition 2]). Let L be an invertible
sheaf on X. Then the functor LinSysL is representable by P(H0(X,L)∨), where
H0(X,L)∨ is the dual of H0(X,L). In particular, if L ∼= OX(D) for some effective
Cartier divisor D on X, we denote

|D| ..= P(H0(X,OX(D))∨) ∼= P(H0(X, ID)).

B.2.6 Definition. Let X be a projective surface over k and L ∈ PicX. The
complete linear system on X with respect to L is the projective space representing
the functor LinSysL. A linear system is a linear subspace of this projective space.

B.2.7 Example. Let X = P2
k be the projective plane. It is well known that every

invertible sheaf is isomorphic to OP2
k
(d) for some d ∈ N, and that in addition,

H0(P2
k,OP2

k
(d)) = k[x0, x1, x2]d. Therefore, the complete linear systems on P2

k are
projective spaces isomorphic to PN

k , with N =
(
d+2
2

)
.
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Glossary of Notations

[κ(ξ) : κ(ζ)] Degree of the field extension between fraction fields of in-
tegral schemes, page 6

[f ] k-point in Mor(P1
k, X) corresponding to a morphism f :

P1
k → X, page 47

BlZ(X) Blow-up of X along a closed subscheme Z, page 54

F ×G H Fibered product of functors, page 102

F Presheaf over a category C, page 99

OX(D) Sheaf associated to divisor D on X, page 113

C Locally small category, page 99

Cop Opposite category of C, page 99

FinType/k Category of schemes of finite type over k, page 81

I Index category, page 41

Noe/S Category of locally noetherian schemes over S, page 9

PrSch/S Category of projective schemes over a base S, page xvi

Psh(C) Category of presheaves on category C, page 99

QPrSch/S Category of quasi-projective schemes over S, page xvi

Sch/S Category of schemes over S, page 106

Set Category of sets, page 99

Chow s,d(X) Chow presheaf of well defined families of effective proper
cycles on X, page 78

χ(X,F) Euler characteristic of F over X, page 2

Chows,d(X) Chow scheme of s-cycles of degree d over X, page 79

ClX Group of divisor classes on X, page 110
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Cycls(X) Group of cycles of dimension s on X, page 76

degC Degree of a curve C, page 53

deg(f) Degree of a morphism f : P1
k → Pn

k or equivalently, deg(f∗P1
k),

page 53

DivX Group of Weil divisors on X, page 109

Diveffd P2
k Effective divisors on P2

k of degree d, page 77

ηι Natural transformation between Hilbert functors induced
by an immersion ι, page 20

ev Evaluation morphism of MorS(X,Y ), page 40

Γf Graph morphism of the morphism f , page 33

HilbS(X) Hilbert functor of X over S, page 9

HilbPS (X) Hilbert functor of X over S with fixed polynomial P , page 11

HilbP
S (X) Hilbert scheme of X over S with respect to P , page 12

HilbS(X) Hilbert scheme of X over S, page 12

HomC(X,Y ) Set of arrows between X and Y in C, page 99

HomS(X,Y Set of morphisms from X to Y over S, page 27

im(f) Set theoretic image of f , page xvi

κ(p) Residue field of a point p on a scheme, page 10

LinSysL Functor of linear systems on a surface w.r.t line bundle L,
page 114

L Linear system on a variety, page 110

LC Rational linear system containing C, page 88

MorS(X,Y ) Functor of morphisms from X to Y over a base S, page 27

Mor(P1
k, X) Scheme parametrizing rational curves, page 47

Mord(P1
k,Pn

k) Scheme parametrizing rational curves of degree d, page 52

MorS(X,−) Covariant functor between schemes of morphisms, page 40
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MorS(X,Y ) Scheme of morphisms from X to Y over a base S, page 27

µp(D) Multiplicity of divisor at a point p, page 112

PicX Picard group of X, page 110

QuotE/X/S Functor of families of quotients of a coherent sheaf E on X

which are flat and have proper support., page 26

im (f) Scheme theoretic image of f , page xvi

σ Blow up of X along a subscheme, page 47

σ∗ Pullback of σ w.r.t Picard groups, page 112

σ∗ Pushforward of σ w.r.t Picard groups, page 112

σM Morphism between Mor(P1
k,BlZ(X)) and Mor(P1

k, X) in-
duced by the blow-up σ, page 55

C̃ Strict transform of a curve C under the blow-up σ, page 86

fun Universal morphism of MorS(X,Y ), page 35

f∗Z Proper pushforward of the cycle Z, page 77

Gp Stabilizer of an algebraic group action at p, page 82

H i(X,F) i-th cohomology group of a coherent sheaf F over X.,
page 2

hX Representable presheaf, page 99

HL,F Hilbert

function, page 2

k[x0, . . . , xn]t k-vector space of polynomials of degree t in n+1 variables,
page 3

L Line in P2
k, page 76

mp(f) Parametric multiplicity of f at a point p, page 65

Op Orbit of an algebraic group action at p, page 82

op Orbit map of an algebraic group action at p, page 82

pa(X) Arithmetic genus of X, page 3
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pg(X) Geometric genus of X, page 4

PL,F(t) Hilbert polynomial of F with respect to L on a scheme X,
page 2

PX(t) Hilbert polynomial of a projective scheme X over k, page 3

W ∩ Z Scheme theoretic intersection, page xvi

Xp Fiber of a morphism X → S at a point p ∈ S, page 10

XS′ , X ×S S ′ Fibered product of X and S ′ over S, page 9



Index

Algebraic group, 81
Action of, 82

Arithmetic genus, 3

Blow-up, 54

Chow
presheaf, 78
scheme, 79

Closed subscheme, 8
Cycle, 76

effective, 76

Degree
of a cycle, 76
of a divisor, 109
of a morphism, 53
of a projective subscheme, 3

Divisor, 109
Effective Cartier, 54, 113
prime, 109
sheaf associated to, 113
Very ample, 110

Euler characteristic, 2
Evaluation morphism, 40
Exceptional divisor, 55

Fibered product of functors, 102
Functor

of morphisms, 26
of linear systems, 114

General position, 85
Generically one-to-one morphism, 53
Geometric genus, 4

Graph morphism, 33
Group of divisor classes, 110

Hilbert
function, 2
functor, 9

with fixed polynomial, 11
polynomial, 2
scheme, 12

of curves, 16
of points, 15
with fixed polynomial, 12

Hilbert-Chow morphism, 16

Immersion of schemes, xvi
Closed, xvi
Open, xvi

Intersect transversally, 111

Linear equivalence, 110
Linear system

Complete, 76, 114
Very ample, 110

Multiplicity of divisor at a point, 112

Natural transformation, 99
Normal scheme, 4
Normalization of a scheme, 4
Numerical equivalence, 111

Orbit of an action, 82

Parametric multiplicity, 65
Picard group, 110
Projective scheme, xvi
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Proper pushforward, 77

Quasi-finite morphism, 56
Quasi-projective scheme, xvi

Rational
curve, 4
linear system, 88
map from P1

k, 48
Regular map from P1

k, 49
Representable presheaf, 101
Representation of a functor, 102

Scheme theoretic
image, xvi
intersection, xvi

Stabilizer, 82
Strict transform, 55

of divisor, 112
Subfunctor, 106

closed, 106
open, 106

Total transform, 55

Universal
section, 102
morphism, 35

Yoneda embedding, 101
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