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Abstract

In this thesis we introduce the notion of a cdp-functor on the category of proper

schemes over a Noetherian base, and we show that cdp-functors to Waldhausen cate-

gories extend to factors that satisfy the excision property. This allows us to associate

with a cdp-functor an Euler-Poincaré characteristic that sends the class of a proper

scheme to the class of its image. Applying this construction to the Yoneda embed-

ding yields a monoidal proper-fibred Waldhausen category over Noetherian schemes,

with canonical cdp-functors to its fibres. Also, we deduce a motivic measure to the

Grothendieck ring of finitely presented simplicially stable motivic spaces with the

cdh-topology.

i



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2. Conventions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1. Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1. Localisation of Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1. Properties of Localisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1. Basics of Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2. Cellular Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.3. Proper Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.4. Simplicial Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.5. Monoidal Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.2.6. Left Bousfield Localisation of Model Structures . . . . . . . . . . . . . . 39

1.3. Stable Homotopy Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3.1. Symmetric Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.4. Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.4.1. Preliminaries of Triangulated Categories . . . . . . . . . . . . . . . . . . . 46

1.4.2. Homotopy (Co)limits in Triangulated Categories . . . . . . . . . . . . . 49

1.4.3. Thick Subcategories and Verdier’s Quotient . . . . . . . . . . . . . . . . 50

1.4.4. Brown’s Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.4.5. t-Structures and Weight Structures . . . . . . . . . . . . . . . . . . . . . . 52

1.5. Algebraic K-Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.5.1. Quillen Exact Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.5.2. Waldhausen K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.5.3. Grothendieck Group of Triangulated Categories . . . . . . . . . . . . . . 64

Chapter 2. Motivic Spaces and Complexes . . . . . . . . . . . . . . . . . . . . . . . . 65

2.1. Homotopy Theories of Simplicial (Pre)sheaves . . . . . . . . . . . . . . . . . . . 65

ii



iii

2.1.1. Symmetric Monoidal Structure . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1.2. The Model Structures on Simplicial (Pre)sheaves . . . . . . . . . . . . . 67

2.1.3. Local Weak Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.1.4. The Homotopy Theory of Simplicial Sheaves for Sites with Intervals . 71

2.2. τ -Local Homotopy of Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.1. The B.G.-Property in the Nisnevich Topology . . . . . . . . . . . . . . 73

2.2.2. Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3. The Unstable A1-Homotopy of Schemes . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.1. Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.2. Motivic Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4. Stable Motivic Homotopy Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4.1. Stable A1-Homotopy Theory of S1-Spectra . . . . . . . . . . . . . . . . . 76

2.4.2. Stable A1-Homotopy Theory of P1-Spectra . . . . . . . . . . . . . . . . . 77

2.5. Motivic Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.1. Finite Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.2. Geometric Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5.3. Motivic Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 3. Motivic Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1. Grothendieck Ring of Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1. Grothendieck Ring of Varieties in Characteristic Zero . . . . . . . . . . 90

3.1.2. The Modified Grothendieck Ring of Varieties . . . . . . . . . . . . . . . . 91

3.2. Counting Points over a Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1. Counting Points on Effective Chow Motives . . . . . . . . . . . . . . . . 95
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Introduction

A motivic measure is a map from the classes of varieties over a field to a ring that

satisfies the scissors relations (19) and respects products. To each motivic measure

one associates a zeta function, by applying the motivic measure to symmetric powers

of algebraic varieties. For instance, counting points over a finite field gives rise to the

Hasse-Weil zeta function through applying it to symmetric powers, as it was first shown

by Kapranov in [Kap00]. Another example arises from Larsen-Lunts motivic measure

that takes value in the monoid ring of stable birational classes of algebraic varieties over

a field, which has important applications in birational algebraic geometry, see [LL03]

and [GS14]. The map to the Grothendieck ring of varieties, which is generated by

the isomorphism classes of varieties modulo the scissors relations, provides a universal

motivic measure. There are other important questions in algebraic geometry tackled

through the Grothendieck ring of varieties, see [NS11] and [DL04]. However, this ring

is not fully understood; for instance, the class of the affine line was not shown to be a

zero divisor for a field of characteristic zero until recently, see [Bor15].

More generally, for a category with a set of distinguished sequences (e.g. exact

sequences, cofibre sequences, distinguished triangles), its Grothendieck group is the

group generated by isomorphism classes of objects module splitting the sequences. It

can be though of as a decategorification of the category, with respect to the considered

sequences. For a category with an exact structure, Quillen introduced an algebraic

K -theory, that extends the Grothendieck group, see [Qui73]. That was generalised

by Waldhausen in [Wal85], who defined what is now called a Waldhausen structure,

to which he associated an algebraic K -theory spectrum whose path components group

coincides with its Grothendieck group. Functors that respect these structures induce

maps of spectra, and hence homomorphisms between the Grothendieck groups.

Most Waldhausen categories one is familiar with arise from model structures. A

notion first developed by Quillen in [Qui67], and recently it gained more attention due

to its extensive use in Morel-Voevodsky motivic homotopy theory of schemes. For

a field of characteristic zero, there exists a surjective motivic measure to the path

components of a Waldhausen spectrum of a subcategory of motivic spaces, due to

Röndigs, see [Rön16]. However, we are not aware of the existence of such measures in

positive characteristic, unless one inverts the Tate sphere.

1
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The motivation for this thesis is the idea to lift the Hasse-Weil zeta function to

motivic spaces, suggested by Vladimir Guletskĭı. This can be split into the following

two questions.

(1) Is there a non-trivial motivic measure that takes value in a Waldhausen sub-

category of motivic spaces, over a finite field?

(2) Does the motivic measure of counting points factorise through such a motivic

measure, if it exists?

Regarding the first question, the Yoneda embedding and Kan extensions provide

a functor form the category of schemes, over a Noetherian base, to pointed motivic

spaces. However, sending a smooth scheme to its pointed motivic space does not induce

a motivic measure, as it does not respect the scissors relations. Then, one may consider

altering motivic spaces to induce a functor that gives rise to a motivic measure.

Some motivic measures, like the Hodge measure and the `-adic measure arise from

cohomology theories with proper1 support, i.e. they satisfy the excision property, (E).

Such a cohomology theory arises from a plain cohomology theory (that does not satisfy

the excision property), and both versions coincide for proper schemes, over the base.

Then, it becomes natural to ask if motivic spaces are a plain theory, that admits a

properly supported counterpart. This question is not restricted to motivic spaces, and

it can be asked in a greater generality. That is, for a scheme S, when does a weak

monoidal functor F ∶ Prop/S → C , from proper S-schemes to a symmetric monoidal

Waldhausen category, define a weak monoidal functor F c ∶ Sch
ftprop

/S → C that satisfies

the excision property?

On the one hand, when S = Speck, for a field k of characteristic zero, the motivic

measure to the simplicially stable motivic homotopy category, introduced in [Rön16],

relies on a presentation of the Grothendieck group of varieties, in which the generators

are classes of smooth projective varieties and the relations are induced by blow up

squares, recalled in Theorem 3.1.2. On the other hand, the aforementioned cohomology

theories send cdp-squares2 of proper schemes to (homotopy) pushout squares. That led

us to distinguish functors to a Waldhausen category that satisfy the properties (PS1)-

(PS3), the most relevant of which is sending cdp-squares of proper schemes to pushout

squares, which accounts to independence of compactifications. We call a functor that

satisfies these properties a cdp-functor, and we use Nagata’s Compactification Theorem

to show that such functors give rise to motivic measures. The below theorem is our

main result.

1They are usually called cohomology theories with compact support. However, the term ‘compact’
referees to a notion of smallness that we use, and we prefer to use ‘proper support’ to avoid confusion.

2A generalisation of blow up squares, see Definition A.4.28.
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Theorem (4.1.32). Let S be a Noetherian scheme of finite Krull dimension, and let

F ∶ (Prop/S,×, S) → (C ,∧,1) be a weak monoidal cdp-functor to a symmetric monoidal

Waldhausen category. Then, there exists a functor

F c ∶ (Sch
ftprop

open/S,×, S) → (C ,∧,1),

where Sch
ftprop

open/S is the category of separated schemes of finite type over S whose mor-

phisms are finite compositions of proper morphisms and formal inverses of open im-

mersions, such that

● there exists a natural isomorphism ϕ ∶ F ⇒ F c
∣Prop/S

;

● F c satisfies the excision property, i.e. for every closed immersion i ∶ v ↪ XÐ→ x

in Sch
ft/S with complementary open immersion j ∶ u ↪ ○Ð→ x, the sequence

F c(v)
i
!Ð→ F c(x) j!Ð→ F c(u).

is a cofibre sequence in C ; and

● F c is weak monoidal, i.e. there exist natural transformations

φc ∶ F c ∧ F c → F c(×) and φc
S ∶ 1→ F (S)

that satisfy the associativity and unitality axioms, whose components are weak

equivalences in C .

Therefore, there exists a motivic measure

µF ∶ K0(Sch
ft/S) → K0(C ),

that sends the class of a proper S-scheme x to the class of F (x).

The (pointed) Yoneda embedding is not a cdp-functor. Therefore, we provide a brief

account of how to associate a motivic measures to functors that are not a cdp-functor.

In particular, in §.4.2.2, we apply the above theorem to a properly supported version

of the Yoneda embedding, and we obtain motivic spaces with proper support, with the

cdh-topology.

Regarding question 2, we distinguish a Quillen adjunction that counts points for

A1-rigid schemes, which we expect to factorise the classical motivic measure of counting

points.

It became expected that a Grothendieck group of a category is a shadow of a richer

structure, a K -theory, that encodes deeper information about the category one started

with. However, the category of varieties does not admit a Waldhausen structure, due

to the lack of enough cokernels. Recently, Zakharevich introduced, in [Zak17], the

notion of an assembler, and used it to define a spectrum whose path components coin-

cide with the Grothendieck group of varieties. Then, Campbell defined a variation of a

Waldhausen structure, called a semi-Waldhausen structure, on the category varieties,



4

in which closed immersions play the role of cofibrations, resulting in an E∞-ring spec-

trum with the same property, see [Cam17]. Applying Theorem 4.1.32 to the properly

supported Yoneda embedding in §.4.2, we recover a spectrum that we expect its path

components to be isomorphic to the modified Grothendieck ring of varieties. In fact,

such spectrum arises from a fibre of a monoidal proper-fibred Waldhausen category

over Noetherian schemes.

0.1. Thesis Outline

The thesis consists of an introduction, four chapters, and an appendix. The first

three chapters review known materials that are needed for our constructions; whereas,

in Chapter 4, we present our constructions and results.

The development of motivic homotopy theory depends on the well-established the-

ory of model categories and their localisations. Therefore, we devote Chapter 1 to

review the main notions of homotopy categories, needed to work in the realm of mo-

tivic homotopy theory. It starts with the notion of localisation of categories and the

general theory of model categories. In particular, we focus on certain types of model

structures that are particularly relevant to motivic homotopy theory, namely proper,

cellular, simplicial and monoidal model structures. Then, we move to the central notion

of localisation of model categories, especially Bousfield localisation. Since we need to

consider stable homotopy categories, we recall stabilisation using symmetric spectra,

followed by a brief account of triangulated categories. Finally, we conclude the chapter

with a review of algebraic K -theory.

In Chapter 2, we review motivic homotopy theory and geometric motives. We

began by recalling the standard model structures of simplicial (pre)sheaves. Then,

we review the motivic spaces, motivic spectra, and motivic complexes. we recall the

main constructions of motivic spaces (spectra) and complexes, and recall some of the

relations between them.

Chapter 3 is concerned mainly with the motivic measure of counting points over a

finite field. We also recall with some details how this motivic measure lifts to effective

Chow motives.

Chapter 4 begins with a section on compactifications, needed to extend cdp-functors.

Afterwards, we prove the existence of properly supported extensions for cdp-functors.

We provide a brief outline how to compactify functors that are not cdp-functors, which is

applied to the Yoneda embedding to obtain a monoidal proper-fibred Waldhausen cate-

gory over Noetherian schemes, with canonical cdp-functors to its fibres. Then, we apply

this constriction to obtain properly supported motivic spaces, with the cdh-topology.
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This is followed by calculations to examine a candidate for a functor to realise the

motivic measure of counting points on the motivic homotopy categories.

The thesis assumes the reader’s familiarity with basics of category theory, as in

[ML98]. Yet, in the Appendix A, we briefly recall the main categorical notions used

in the thesis.

0.2. Conventions and Notations

Throughout this thesis, all schemes are assumed to be separated over the ring of

integers, and hence all morphisms of schemes in this thesis are separated. We denote

the category of schemes and their morphisms by Sch. For a scheme S, let

● Sch
ft/S denote the category of schemes of finite type over S;

● Var/S denote the full subcategory in Sch
ft/S of reduced S-schemes;

● Sm/S denote the full subcategory in Sch
ft/S of smooth S-schemes;

● Prop/S denote the full subcategory in Sch
ft/S of proper S-schemes;

● Proj/S denote the full subcategory in Sch
ft/S of projective S-schemes;

● SmProp/S denote the intersection of Sm/S and Prop/S; and

● SmProj/S denote the intersection of Sm/S and Proj/S.

Since we do not use the category Sch/S of all schemes over S, we abuse notation and

refer to an object in Sch
ft/S by an S-scheme. Also, an object in Var/S is called an

S-variety.

For a subcategory C in Sch
ft/S and for sets P and I of morphisms in Sch

ft/S that

are closed under composition and contain isomorphisms of S-schemes, we denote the

subcategory in Sch
ft/S whose objects belong to Ob(C ) and whose morphisms belong

to P by C P , whereas the category (C I )op is denoted by CI . Also, we denote the

subcategory in Sch
ft/S whose objects belong to Ob(C ) and whose morphisms are finite

compositions of morphisms in P and formal inverses of morphisms in I by C P
I .

Also, we let Noe
fd

denote the full subcategory in Sch of Noetherian schemes of finite

Krull dimensions.



CHAPTER 1

Homotopy Theory

Many notions in mathematics are invariant with respect to a set of morphisms

between the studied objects. In such situations, the homotopy category with respect

to those morphisms becomes the category of main interest, as a natural framework to

consider such notions. For instance, most invariants of algebraic topology are invari-

ant with respect to homotopy equivalences, which makes topological homotopy types

natural objects to study.

Usually it is difficult to study a homotopy category H directly, and one uses a

presentation of H by a pair of a category C and a set S of its morphisms. That is H is

a localisation of C with respect to S, which presents H as a ‘minimal’ category under

C in which morphisms of S are inverted. However, it is important to emphasise that a

homotopy theory is concerned with a homotopy category rather than its presentations.

In some occasions, different presentations of a homotopy category may possess technical

advantages over the others, and one may consider those more suitable for the given

occasion. Also, one usually favours presentations with additional technical sets of

morphisms, e.g. fibrations or cofibrations, which allow for a simpler description of the

homotopy category, and provide tools to work with homotopy (co)limits.

We commence this chapter with a review of localisation of categories, explaining

the difficulties one may encounter with localisation. Then, following Quillen, we re-

view model categories, which provide a convenient framework to do homotopy theory,

avoiding the technical difficulties that arise with localisation in general.

Some homotopy categories admit a rich structure, providing technical advantages

to work with. To that end, we provide a brief account on stable homotopy categories of

symmetric spectra, in §.1.3, and on triangulated categories, in §.1.4. Then, we conclude

this chapter with algebraic K-theory.

1.1. Localisation of Categories

The notion of localisation of categories generalises localisation of rings, modules,

and topological spaces, in that it ‘universally’ inverts a set of morphisms in a given

category.

6
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Definition 1.1.1. Let C be a category, and let S be a set of morphisms in C . A

functor F ∶ C → D is said to be S-local if it sends morphisms in S to isomorphisms in

D . An S-local functor LS ∶ C →HSC is a localisation of C with respect to S if

(1) for every S-local functor F ∶ C → D there exists a functor GF ∶HSC → D and

a natural isomorphism φ ∶ GF ○ LS ⇒ F ; and

(2) the functor

L∗S ∶ Fun(HSC ,D) → Fun(C ,D),

given by precomposition with LS , is fully faithful for every category D .

At first encounter, the definition above may not reflect its intended universality.

It is formulated so that a localisation is unique up to equivalences of categories, if it

exists, see [KS06, Prop.7.1.2]. Hence, by a homotopy category, one may referee to such

a category up to equivalences of categories. However, in our view, a notion deserves to

be called universal if it can be viewed as a universal morphism. To that end, we devote

the following paragraphs, where we use subdivision categories to recognise the property

of being S-local in terms of the existence of certain strong 2-commutative squares, as in

Lemma 1.1.2, which are used to realise a localisation of a large category as a 2-universal

1-morphism, as in Lemma 1.1.3. Readers comfortable with the definition above, and

not interested in such formalities, may skip to §.1.1.1.

We begin by recalling the notion of a subdivision category, as in [ML98, p.224].

For a category C , its subdivision category C § is given by

● the set Ob(C §) ∶= Ob(C )⊔Mor(C ); and

● for each X,Y ∈ Ob(C §), the set of morphisms

C §(X,Y ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∗ if X = Y ;

∗ if Y ∈ Mor(C ),X ∈ Ob(C ) and either domY =X or codomY =X;

∅ otherwise;

with the canonical composition and identity morphisms, where ∗ and ∅ are a singleton

and an empty set in the fixed universe, respectively, see §.A.1. When C is a (locally)

small category, so is C §. For every morphism f ∈ Mor(C ), denote the unique morphisms

dom f → f and codom f → f in C § by αf and βf , respectively. There exists canonical

functors
→
π∶ C § → C and

←
π∶ C § → C op given on objects of C § by

→
π (C) = C ,

→
π (f) = codom(f) and

←
π (C) = Cop ,

←
π (f) = dom(f)op,

and on the non-identity morphisms of C § by

→
π (αf) = f ,

→
π (βf) = idcodomf and

←
π (αf) = iddom

op
f

,
←
π (βf) = fop,

for every C ∈ Ob(C ) and f ∈ Mor(C ).
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Lemma 1.1.2. Let F ∶ C → D be a functor between large categories, let S be a set

of morphisms in C , and let i
S
∶ S ↪ C be the subcategory in C generated by S. Then,

F is S-local if and only if there exists a strong 2-commutative square

Sq
F
∶

S § � �
i
S
○→π
//

←

π

��

C

F

��

∼e

{�
S op

j
// D

in CAT2, i.e. if there exists a functor j ∶ S op → D and a natural isomorphism e ∶
F ○ i

S
○ →π⇒ j○ ←π.

Proof. Assuming that F is S-local, the existence of the strong 2-commutative

square Sq
F

is evident, where the functor j is given by

j(Xop) = F (X) and j(sop) = F (s)−1

for Xop ∈ Ob(S op) and sop in S op, whereas the natural isomorphism e is given by

eX = idF (X) and es = F (s)-1

for every X ∈ Ob(S ) and s ∈ Mor(S ).

On the other hand, assume that the strong 2-commutative square Sq
F

exists. Then,

the natural isomorphism e induces a commutative diagram

F (X)

F (s)
��

eX // j(Xop)
e−1
X // F (X)

F (s)
��

F (Y ) es // j(Xop)
e−1
s // F (Y )

F (Y ) eY
// j(Y op)

j(sop)
OO

e−1
Y

// F (Y )

in D whose composite horizontal morphisms are identities, for every morphism s ∶X →
Y in S . Which implies that F (s) is an isomorphism with an inverse e−1

X ○ j(sop) ○ eY ,

for every morphism s ∶X → Y in S . Hence, F is S-local. �

Let CAT●←●→●

2 denote the strict 2-category of strict 2-functors from the span category

●←●→● to CAT2 (i.e. spans of large categories), their pseudo-natural transformations, and

modifications of the latter, see §.A.2.1.2, and let ∆ ∶ CAT2 Ð→ CAT●←●→●

2 denote the

evident constant strict 2-functor. Then, a functor F ∶ C → D between large categories

is S-local, i.e. fits into a strong 2-commutative square Sq
F

, if and only if it fits into a

1-morphism ((H,G,F ), (φ,ψ)) from the span S op
←

π←ÐS §
i
S
○→π
Ð→ C to ∆(D) in CAT●←●→●

2 .

To ease the notation, when ψ = φ = id
F○i

S
○→π , we denote such a 1-morphism by F .
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Lemma 1.1.3. Let C be a large category, and let S be a set of morphisms in C .

Then, an S-local functor LS ∶ C →HSC between large categories is a localisation of

C with respect to S if and only if LS is a strict 2-universal 1-morphism from the

span S op
←

π←ÐS §
i
S
○→π
Ð→ C to the constant strict 2-functor ∆ ∶ CAT2 → CAT●←●→●

2 , where

i
S
∶ S ↪ C is the subcategory in C generated by S.

Proof. For a large category D , one has MapCAT2
(HSC ,D) = Fun(HSC ,D). Then,

Definition A.2.7 implies that LS is a strict 2-universal 1-morphism from S op
←

π←ÐS §
i
S
○→π
Ð→ C

to the strict 2-functor ∆ ∶ CAT2 → CAT●←●→●

2 if and only if the induced functor

L∗S ∶ Fun(HSC ,D) Ð→ MapCAT●←●→●2

⎛
⎝
S op

←

π←ÐS §
i
S
○→π
Ð→ C ,∆(D)

⎞
⎠
,

given by L∗S(G) = G ○ LS , is an equivalence of categories for every large category D .

Given the axiom of choice, that is equivalent to L∗S being essentially surjective and fully

faithful.

Since a functor C → D is S-local if and only if it fits into a 1-morphism from the

span S op
←

π←ÐS §
i
S
○→π
Ð→ C to ∆(D) in CAT●←●→●

2 , the essential surjectivity of L∗S for every

large category D is equivalent to Definition 1.1.1.(1).

On the other hand, L∗S is fully faithful if and only if the precomposition with the

natural isomorphism idLS induces a bijection of sets

(L∗S)G,H ∶ Fun(HSC ,D)(G,H) ≅ MapCAT●←●→●2

⎛
⎝
S op

←

π←ÐS §
i
S
○→π
Ð→ C ,∆(D)

⎞
⎠
(GLS ,H LS)

≅ Fun(C ,D)(GLS ,H LS)

for every large category D and for every pair of functors G,H ∶ HSC → D . That, in

turn, is equivalent to Definition 1.1.1.(2). �

The lemma above means in particular that a localisation LS fits into a strict

2-pushout square of the span S op
←

π←ÐS §
i
S
○→π
Ð→ C in the strict 2-category CAT2.

1.1.1. Properties of Localisations. For every category C and a set S of its

morphisms, there exists a localisation LS ∶ C →HSC , in which HSC is the (a priori

big) category C [S-1] of fractions of C with respect to S. The set of objects of C [S-1]
equals the set of objects of C , whereas its morphisms are equivalence classes of zigzags of

morphisms in C with the components directed backwards being elements in S, modulo

the evident equivalence relations, see [GZ67, §.I.1.1].

The construction of the category of fractions has some disadvantages, mainly due to

the ‘size’ of its hom-sets and to the nature of its morphisms. First, the category C [S-1]
is not necessarily locally small even when C is, which restricts possible constructions
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on C [S-1], including the hom -bifunctor. Also, morphisms of the category of fractions

are rather formal and hard to work with, compared to those of C .

Some of the difficulties one encounters with the category of fractions can be reme-

died when the localisation is reflective, as in Definition 1.1.4, or when the presenting

category admits an additional structure making the homotopy category more acces-

sible, like left or right calculus of fractions, or a model structure. In the rest of this

section, we briefly recall reflective localisations, and we devote the next section for the

study of model structures and their localisations.

Definition 1.1.4. Let C be a category, let S be a set of morphisms in C , and let

LS ∶ C Ð→ HSC be a localisation of C with respect to S. If LS admits a fully faithful

right adjoint US , the localisation LS is said to be reflective.

Definition 1.1.5. Let C be a category, let S be a set of morphisms in C , and let

LS ∶ C Ð→ HSC be a localisation of C with respect to S. An object Z ∈ C is said to

be S-local if the induced map

f∗ ∶ C (Y,Z) → C (X,Z)

is a bijection of sets for every morphism f ∶X → Y in S, i.e. if the representable functor

hZ factorises through L
op
S .

Remark 1.1.6. When the localisation LS is reflective, with a reflector US , the

adjunction LS ⊣ US implies that US(X) is an S-local for every X ∈ HSC . Also, the

Yoneda lemma implies that a morphism LS(f) is an isomorphism in HSC if and only

if the induced map

f∗ ∶ C (Y,Z) → C (X,Z)

is a bijection for every S-local object Z in C . Therefore, a reflective homotopy category

HSC is equivalent to the full subcategory of S-local objects in C , which makes a re-

flective homotopy category more accessible, compared to a general homotopy category.

1.2. Model Categories

Model structures were first developed by Quillen in [Qui67] as a framework to

study homotopy theories. The existence of a model structure on a presentation of

a homotopy category addresses some of the issues arising in localisation in general,

and makes the homotopy category more accessible, through realising it using a better

understood quotient category, as in Theorem 1.2.15.

In this section, we recall the basic notions and properties of model categories,

distinguishing special types of model structures that are of a special importance in

motivic homotopy theory, namely left proper, cellular, and simplicial model structures.

Then, we follow by a brief account on left Bousfield localisation.
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1.2.1. Basics of Model Categories. The development of model structures is

motivated by the homotopy theory of (topological and simplicial) spaces, and hence it

relays on generalisations of familiar techniques in topology, which are recalled below.

Definition 1.2.1. Let C be a category, and let f and g be morphisms in C . The

morphism f is said to be a retract of g if there exist commutative squares D ∶ f → g,

and R ∶ g → f in C such that R ○D = idf in Mor(C ), i.e.

X
d0 //

f
��

X ′ r0 //

g
��

X

f
��

X
idX //

f
��

X

f
��

Y
d1

//

D

Y ′
r1
//

R

Y

=

Y
idY

//

idf

Y.

Definition 1.2.2. Let C be a category, and let i ∶ U → V and p ∶ X → Y be

morphisms in C . The morphism i is said to have the left lifting property (LLP) with

respect to p, and p is said to have the right lifting property (RLP) with respect to i, if

for every solid commutative square

U
e0 //

i
��

X

p

��
V e1

//

h

>>

Y

in C , there exists a dotted lift h ∶ V →X, not necessarily unique, that makes the whole

diagram commute. A morphism f is said to have the LLP (resp. RLP) with respect

to a set I of morphisms in C if it has the LLP (resp. RLP) with respect to every

morphism in I.

Example 1.2.3. Let C be a category. Every morphism in C have both the RLP

and LLP with respect to the set of isomorphisms in C .

Sets of morphisms defined using the left and right lifting properties are fundamental

in the study of model structures. For a set of morphisms I in C , a morphism in C is

called an I-projective (resp. I-injective) if it has the LLP (resp. RLP) with respect to I.

The set of I-projective (resp. I-injective) morphisms in C is denoted by I-proj (resp.

I-inj). Then, a morphism in C is called an I-cofibration (resp. I-fibration) if it has

the LLP (resp. RLP) with respect to I-inj (resp. I-proj). The set of I-cofibrations

(resp. I-fibrations) is denoted by I-cof (resp. I-fib).

The sets I-proj and I-inj are closed under retracts and compositions, and they

contain all isomorphisms of C . Also, the set I-proj is closed under pushouts, whereas

I-inj is closed under pullbacks.

Hovey’s definition of model categories, presented in [Hov99], is more restrictive

than the original definition due to Quillen [Qui67], as it requires the existence of

functorial factorisations, recalled below.
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Definition 1.2.4. Let C be a category. A functorial factorisation (α,β) in C is a

pair of functors

α,β ∶ Mor(C ) → Mor(C )

that form a factorisation system, i.e. for every morphism f ∶ X → Y in C , we have a

commutative diagram

X
f //

α(f) ((
Y

Z β(f)
66

in C , for Z = domβ(f) = codomα(f). Alternatively, the functorial factorisation (α,β)
can be given by a functor

(α,β) ∶ C 2 → C 3.

Remark 1.2.5. The three notions of factorisation, lifting, and retract are interac-

tively connected, and this might be best shown through the retract argument and its

consequences.

Lemma 1.2.6 (The Retract Argument). Let C be a category, and assume that a

morphism f ∶X → Z factorises in C as

X
f //

i ((
Z

Y p

66 .

If f has the RLP with respect to i, then it is a retract of p. Dually, if f has the LLP

with respect to p, then it is a retract of i.

Proof. See [Hov99, Lem.1.1.9]. �

Definition 1.2.7. Let C be a category, let C,F and W be sets of morphisms in

C , and let (α,β) and (γ, δ) be functorial factorisations in C . The quintuple M =
(C,F,W, (α,β), (γ, δ)) is called a model structure on C if

CM1 C is bicomplete;

CM2 (Two-out-of-three) morphisms in W satisfy the two-out-of-three property, i.e.

for composable morphisms f and g in C , if two of the morphisms f, g, and

g ○ f belong to W , then so does the third;

CM3 (Stability under retract) the sets C,F, and W are closed under retracts;

CM4 (Lifting) morphisms in C have the LLP with respect to F ⋂W , and morphisms

in C⋂W have the LLP with respect to F ; and

CM5 (Factorisation) for every morphism f ∶X → Y in C , one has

a) β(f) ∈ F ⋂W , and α(f) ∈ C; and

b) δ(f) ∈ F , and γ(f) ∈ C⋂W .

Then, the pair (C ,M ) is called a model category, and the sets C,F,W,C⋂W and

F ⋂W are called the sets of cofibrations, fibrations, weak equivalences, weak cofibra-

tions, and weak fibrations, respectively, in M . More generally, a presentation (C , S)
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of a homotopy category is called a category with weak equivalences if S contains all

isomorphisms of C and satisfies the two-out-of-three property.

A bicomplete category may admit different model structures, see §.2.1.2 for a dis-

cussion on different model structures on the category of simplicial presheaves on an

essentially small site.

Model structures are used to be called closed model structures, that is to refer to

the relations among the axioms in Definition 1.2.7. For instance, the set of cofibrations

(resp. weak cofibrations) is precisely the set of morphisms with the LLP with respect to

weak fibrations (resp. fibrations); whereas the set of fibrations (resp. weak fibrations)

is precisely the set of morphisms with the RLP with respect to weak cofibrations (resp.

cofibrations), see [Hov99, Lem.1.1.10]. In the presence of the two-out-of-three and

factorisation axioms, we see that any two of the sets C,F, and W , in a model structure,

determine the third. In fact, the retract axiom can be replaced by the requirement that

any two of the sets C,F, and W determine the third, as in [GM03, Ch.V, §1.4, p293].

For a model category (C ,M ), cofibrations, weak cofibrations, fibrations, and weak

fibrations form subcategories in C , each of which contains all isomorphisms of C

and is closed under retracts. Also, cofibrations and weak cofibrations are closed un-

der pushouts. Dually, fibrations and weak fibrations are closed under pullbacks, see

[Hov99, Cor.1.1.11].

Example 1.2.8. There exist model structures on the category of topological spaces

Top, with weak equivalences, cofibrations, and fibrations given by

● weak homotopy equivalences, LLP with respect to weak Serre fibrations, and

Serre fibrations, respectively; it is called the classical model structure or the

Quillen-Serre model structure on Top, see [Qui67, §.II.3.Th.1]; and

● homotopy equivalences, closed Hurewicz cofibrations, and Hurewicz fibrations,

respectively, called the Hurewicz-Strøm model structure, see [Str72, Th.3].

Example 1.2.9. Let (C ,M ) be a model category, and let U,Y ∈ C . Then, the

faithful (but not full) forgetful functors U ↓ C → C , C ↓ Y → C , and U ↓ C ↓ Y → C

induce canonical model structures U ↓M , M ↓ Y , and U ↓M ↓ Y on the bicomplete

categories U ↓C , C ↓Y , and U ↓C ↓Y , respectively. The cofibrations, fibrations, and

weak equivalences in theses canonical model structures are morphisms whose images

are cofibrations, fibrations, and weak equivalences, respectively. The forgetful functor

U ↓C → C admits a left adjoint given by coproduct with U , whereas C ↓Y → C admits

a right adjoint given by product with Y .

The category ∗↓C is pointed, and the model structure ∗↓M satisfies several desired

properties that do not always hold for M . The category ∗↓C is usually denoted by C●

and the left adjoint (−∐∗,∗) ∶ C → C● is denoted by −+.
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1.2.1.1. The Homotopy Category of a Model Category. A model category is a par-

ticular presentation of a homotopy category, with an extra structure that enables us

to realise the homotopy category through a better understood quotient category with

respect to a congruence relation induced from the model structure. Hence, model cat-

egories provide useful tools to deal with and understand homotopy theories. In fact,

when Quillen introduced the notion of a model category in [Qui67], it was called “a

category of model for homotopy theory”.

The homotopy category of a model category (C ,M ) is defined to be a localisation

LM ∶ C → HM C of C with respect to the set of weak equivalences in M . Hence,

different model structures with the same set of weak equivalences present equivalent

homotopy categories.

One defines homotopy relations in a model category in an analogous manner to

topological spaces. One starts by axiomatising the cylinder and path spaces, resulting

in the cylinder and path objects, and use the latter to define left and right homotopies,

respectively.

For a space V , since idV is left homotopic to itself, the canonical maps i0, i1 ∶ V →
V × I and the universal property of coproducts produce a factorisation pr1 ○ (i0∐ i1)
of the fold map ∇V ∶ V ∐V → V , illustrated by the commutative diagram

V ∐V

i0∐ i1
��

V

;;

i0 //

idV ))

V × I
pr1
��

V.

cc

i1oo

idVuuV

Recall that the projection V × I Pr1→ V is a weak equivalence. Moreover, when we

restrict ourselves to the category CGHaus of compactly generated Hausdorff spaces,

we find that the map i0∐ i1 is a Hurewicz cofibration, which gives rise to the following

definition.

Definition 1.2.10. Let (C ,M ) be a model category, and let V,X ∈ C .

● A cylinder object for V is a factorisation of the fold morphism ∇V ∶ V ∐V → V

C ∶ V ∐V
i0∐ i1// Cyl(V ) pC // V ,

where pC is a weak equivalence in M , and i0, i1 ∶ V → Cyl(V ) are morphisms

in C for which i0∐ i1 is a cofibration in M .

● A path object for X is a factorisation of the diagonal morphism ∆X ∶X →X×X

P ∶ X
iP // Path(X) p0×p1 // X ×X ,
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where iP is a weak equivalence in M , and p0, p1 ∶ Path(X) →X are morphisms

in C for which p0 × p1 is a fibration in M .

Remark 1.2.11. The functorial factorisations in a model category provide canonical

functorial cylinder and path objects. In fact, it is sufficient to consider homotopies

defined using these canonical cylinder and path objects, see [Hir03, Prop.7.3.4]. Denote

the canonical cylinder object for V ∈ C that is induced by the functorial factorisation

(α,β), applied to the fold map ∇V , by

CV ∶ V ∐V
i0∐ i1 // CylM (V ) pC // V ,

and the canonical path object for X ∈ C that is induced by the functorial factorisation

(γ, δ), applied to the diagonal map ∆V , by

PX ∶ X
iP // PathM (X) p0×p1 // X ×X .

Definition 1.2.12. Let (C ,M ) be a model category, and let f0, f1 ∶ V → X be

morphisms in C .

● A left homotopy from f0 to f1 is a pair (C,Hl), where C is a cylinder object

for V and Hl ∶ Cyl(V ) → X is a morphism in C for which f0 = Hl ○ i0 and

f1 =Hl ○ i1, i.e. that makes the following diagram

V

f0 ))

i0 // Cyl(V )
Hl
��

V
i1oo

f1uu
X

commute; if there exists a left homotopy (C,Hl) from f0 to f1, we say that f0

is left homotopic to f1, and we write f0
l≃ f1.

● A right homotopy from f0 to f1 is a pair (P,Hr), where P is a path object

for X and Hr ∶ V → Path(X) is a morphism in C for which f0 = p0 ○Hr and

f1 = p1 ○Hr, i.e. that makes the following diagram

V
f0

��

f1

��
Hr
��

X Path(X) p0

//
p1

oo X

commute; if there exists a right homotopy (P,Hr) from f0 to f1, we say that

f0 is right homotopic to f1, and we write f0
r≃ f1;

● if f0 is both left and right homotopic to f1, then we say that f0 is homotopic

to f1, and we write f0 ≃ f1; and

● a morphism f ∶ V → X in C is called a homotopy equivalence if there exists a

morphism g ∶X → V such that fg ≃ idX and gf ≃ idV .

For topological spaces, the cylinder functor −×I is a left adjoint to the path functor

−I , which allows for the interchange between right and left topological homotopies.
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Also, it explains the terminology of left and right homotopies, where the left homotopy

is the one defined by the left adjoint cylinder functor. However, even the ‘nicest’ cylinder

functor CylM (−) and path functor PathM (−), induced by the functorial factorisations

of a model structure M , do not have to be adjoint, and one needs to distinguish between

left and right homotopies.

In a general model category, neither the left nor the right homotopy defines equiva-

lence relations on hom -sets. In particular, such relations are not necessarily symmetric,

as in Kan-Quillen’s model structure on simplicial sets, see [GJ09, §.I.6]. However,

that can be remedied through restricting attention to the subcategory of fibrant and

cofibrant objects. For a model category (C ,M ), an object V ∈ C is said to be cofibrant

if the unique morphism ∅ → V is a cofibration in M , and an object X ∈ C is said to

be fibrant if the unique morphism X → ∗ is a fibration in M . The full subcategories

Cc,Cf , and Ccf of cofibrant, fibrant, and cofibrant-fibrant objects, respectively, play an

essential role in realising the homotopy category of (C ,M ).

A model structure M on a category C induces model structures Mc,Mf and Mcf

on the bicomplete categories Cc,Cf , and Ccf , respectively, in which a morphism is a

cofibration, a fibration, or a weak equivalence, if and only if it is mapped by the inclusion

functor to a cofibration, a fibration, or a weak equivalence, respectively. Whereas, the

functorial factorisations are given by the restriction of the functorial factorisations of

M .

Proposition 1.2.13. Let (C ,M ) be a model category. Then, left and right homo-

topies between cofibrant-fibrant objects in (C ,M ) coincide. Moreover, the homotopy

relation is a congruence relation on the category Ccf of cofibrant-fibrant objects.

Proof. See [Hov99, Cor.1.2.6 and Cor.1.2.7]. �

Proposition 1.2.14. Let (C ,M ) be a model category, and let f be a morphism

between cofibrant-fibrant objects in C . Then, f is a weak equivalence in M if and only

if it is a homotopy equivalence.

Proof. See [Hov99, Prop.1.2.8]. �

Theorem 1.2.15. Let (C ,M ) be a model category and let Q ∶ Ccf → πCcf be the

quotient functor of Ccf with respect to the homotopy congruence relation. Then, there

exists an equivalence of categories πCcf →HCcf .

Proof. See [Hov99, Cor.1.2.9]. �

Since the inclusion functors induce equivalences of categories

HCcf →HCc →HC and HCcf →HCf →HC ,
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by [Hov99, Prop.1.2.3], the categories HC and πCcf are equivalent. In particular, when

C is locally small there exists a locally small homotopy category of C with respect to

the weak equivalences of M , namely πCcf .

Cofibrant and Fibrant Replacements. Proposition 1.2.14 and Theorem 1.2.15 illus-

trate the importance of the cofibrant and fibrant objects in a model category. The

functorial factorisations of a model category provide a machinery to functorially ‘ap-

proximate’ its objects by cofibrant or fibrant objects, where ‘approximate’ means re-

placing objects by weakly equivalent ones, and hence by isomorphic objects in the

homotopy category.

Definition 1.2.16. Let (C ,M ) be a model category. Define a functor Q ∶ C → Cc

that sends each morphism i ∶ U → V in C to the morphism

Q(i) ∶= codomMorC α

⎛
⎜⎜⎜⎜
⎝

U
i // V

∅ //

OO

∅

OO
⎞
⎟⎟⎟⎟
⎠
= domMorC β

⎛
⎜⎜⎜⎜
⎝

U
i // V

∅ //

OO

∅

OO
⎞
⎟⎟⎟⎟
⎠

in Cc. Since (α,β) is a functorial factorisation in M , the assignment above gives a

well-defined functor Q. It is called the cofibrant replacement functor of M .

For every object V ∈ C , the morphism β(∅ → V ) ∶ Q(V ) → V is a weak fibration.

Definition 1.2.17. Let (C ,M ) be a model category. Define a functor R ∶ C → Cf

that sends each morphism p ∶X → Y in C to the morphism

R(p) ∶= codomMorC γ

⎛
⎜⎜⎜
⎝

X

��

p // Y

��
∗ // ∗

⎞
⎟⎟⎟
⎠
= domMorC δ

⎛
⎜⎜⎜
⎝

X

��

p // Y

��
∗ // ∗

⎞
⎟⎟⎟
⎠

in Cf . The functor R is called the fibrant replacement functor of M .

For every object X ∈ C , the morphism γ(X → ∗) ∶X → R(X) is a weak cofibration.

The two-out-of-three property shows that both the cofibrant and fibrant replace-

ment functors preserve weak equivalences, which is essential for Definition 1.2.24 of

total derived functors.

Remark 1.2.18. A model category may admit different cofibrant and fibrant ap-

proximations, see [Hir03, §.14.6]. For instance, in left localisations of model categories,

it is desired to have a cofibrant approximation that maps arbitrary morphisms to cofi-

brations between cofibrant objects, which may be called cofibration cofibrant approxi-

mation. The cofibrant replacement functor Q given in Definition 1.2.16 does not satisfy

this property. However, an evident iteration of Q does.
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1.2.1.2. Quillen Functors. Although morphisms of a mathematical structure are

usually defined to be those preserving that structure, considering only functors pre-

serving the whole model structure is too restrictive, because it excludes motivating

examples of particular interests in the classical homotopy theory, like the identity func-

tor from the Quillen-Serre model category TopQS to the Hurewicz-Strøm model category

TopHS. Since one is interested in the homotopy categories rather than their presenta-

tions, one considers functors between the presenting model categories that canonically

induce total derived functors between the homotopy categories. The widely-adopted

notion of a morphism of model categories is what is now called a Quillen adjunction.

It preserves enough aspects of the model structures so that it both induces canoni-

cal adjunction between the homotopy categories and cover the functors one usually is

interested in.

Definition 1.2.19. Let (C ,M ) and (D ,N ) be model categories.

● A functor F ∶ C → D is called a left Quillen functor if it is a left adjoint and

preserves cofibrations and weak cofibrations.

● A functor G ∶ D → C is called a right Quillen functor if it is a right adjoint

and preserves fibrations and weak fibrations.

Given an adjunction F ∶ C ⇄ D ∶ G, the functor F is a left Quillen functor if and

only if G is a right Quillen functor, see [Hov99, Lem.1.2.3]. Such an adjunction is

called a Quillen adjunction.

Example 1.2.20. The adjunction

∣−∣ ∶ sSetKQ ⇄ TopQS ∶ Sing

of the geometric realisation and the singular functor, recalled in §.1.2.4.1, is a Quillen

adjunction between Kan-Quillen’s model structure on simplicial sets and Quillen-Serre’s

model structure on topological spaces, see [Hov99, Th.3.6.7 and Th.2.4.23].

Example 1.2.21. For a model category (C ,M ) and for an object U ∈ C , the left

adjoint functor −∐U ∶ C → U ↓C is a left Quillen functor with respect to the model

structure U ↓M , as in Example 1.2.9. Particularly, the adjoining base point functor

−+ is a left Quillen functor. Moreover, a Quillen adjunction F ∶ (C ,M ) ⇄ (D ,N ) ∶
G induces a Quillen adjunction F● ∶ (C●,M●) ⇄ (D●,N●) ∶ G●, with F●(X+) being

canonically isomorphic to F (X)+ for every X ∈ C , see [Hov99, Prop.1.3.5].

Although Quillen functors are not required to preserve all weak equivalences, Ken

Brown’s Lemma 1.2.22 implies that they preserve just enough weak equivalences to

induce adjoint functors between the homotopy categories.

Lemma 1.2.22 (Ken Brown’s Lemma). Let (C ,M ) be a model category, let (D ,WD)
be a category with weak equivalences, and let F ∶ C → D be a functor. If F sends weak
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cofibrations between cofibrant objects to weak equivalences, then it sends all weak

equivalences between cofibrant objects to weak equivalences. Dually, if F sends weak

fibrations between fibrant objects to weak equivalences, then it sends all weak equiva-

lences between fibrant objects to weak equivalences.

Proof. See [Hov99, Lem.1.1.12]. �

Corollary 1.2.23. Let F ∶ (C ,M ) ⇄ (D ,N ) ∶ G be a Quillen adjunction. Then,

F preserves all weak equivalences between cofibrant objects, and G preserve all weak

equivalences between fibrant objects.

Therefore, the restrictions

F ∣Cc ∶ Cc → D and G∣Df ∶ Df → C

preserve all weak equivalences. Hence, they induce well-defined functors between the

homotopy categories

HF ∣Cc ∶HCc →HD and HG∣Df ∶HDf →HC .

These functors, in addition to the cofibrant and fibrant replacements, give rise to an

adjunction HC ⇆HD between the homotopy categories.

Definition 1.2.24. Let F ∶ (C ,M ) ⇆ (D ,N ) ∶ G be a Quillen adjunction.

● The total left derived functor LF ∶HC →HD is the composition

HC
HQ // HCc

HF // HD ,

where Q is the cofibrant replacement of M , as in Definition 1.2.16.

● The total right derived functor RG ∶HD →HC is the composition

HD
HR // HDf

HG // HC ,

where R is the fibrant replacement of N , as in Definition 1.2.17.

This definition is the main reason to require the factorisation to be fixed for a model

structure, and for it to be functorial, see [Hov99, §.1.3.2]. In fact, one obtains derived

functors for every Quillen adjunction and for every choice of cofibrant and fibrant

approximation functors. That is particularly useful when the functorial factorisations

are given by the small object argument for some large cardinality, as it is the case of

the local model structures of simplicial presheaves, see §.2.1. In which cases, one looks

for more nicely behaved cofibrant and fibrant approximation functors.

Example 1.2.25. The Quillen adjunction of the geometric realisation and the sin-

gular functor, recalled in §.1.2.4.1, induces an equivalence of homotopy categories

L ∣−∣ ∶HsSetKQ ⇄HTopQS ∶ RSing,

see [Hov99, Th.3.6.7 and Th.2.4.23].
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More generally, a Quillen adjunction F ∶ (C ,M ) ⇄ (D ,N ) ∶ G is called a Quillen

equivalence if the total derived functors LF and RG are adjoint equivalences of cate-

gories, see [Hov99, §.1.3.3].

1.2.2. Cellular Model Categories. The localisation of a model structure, as in

Definition 1.2.62, possesses some technical challenges, mainly in terms of the existence

of the functorial factorisations for the localised structure. Such challenges may be over-

come when the original model structure is cellular, which is roughly a model structure

that both satisfies some relative smallness conditions and contains a large enough set

of cofibrations that behave like inclusions of sets, see Definition 1.2.40. The Bousfield-

Smith cardinality argument, recalled in Theorem 1.2.67, uses a bounded version of the

small object argument which relies on the aforementioned properties of a cellular model

structure to establish the functorial factorisations for the localised model structure.

Before recalling cellular model structures, one needs to be familiar with the notion

of (presented) relative cell complexes, some relative smallness notions, and the small

object argument. In fact, relative cell complexes and relative smallness are formulated

to express the small object argument. Hence, readers looking for motivations for the

following constructions are encouraged to skim the small object argument, in §.1.2.2.3,

before proceeding from here.

1.2.2.1. Relative I-cell Complexes. Let C be a cocomplete category, and let λ be

an ordinal. A λ-sequence in C is a colimit-preserving functor Z ∶ λ → C . Denote the

image of the unique morphism υ → ξ along Z by zξυ for ordinals υ < ξ < λ, denote zξ+1
ξ

by zξ, and denote the morphism Zξ → colimZ, induced by the universal property of

colimits, by zλξ , for every ordinal ξ < λ.

Definition 1.2.26. Let C be a cocomplete category, and let Z a λ-sequence in C .

The transfinite composition of Z is the colimit injection zλ0 ∶ Z0 → colimZ. Let I be a

set of morphisms in C , a transfinite composition Z0 → colimZ is called a transfinite

composition of morphisms in I if zξ belongs to I, for every ξ+1 < λ. A set of morphisms

I in C is said to be closed under transfinite compositions if it contains all transfinite

compositions of morphisms in I.

Example 1.2.27. Let C be a cocomplete category, let I be a set of morphisms in

C . Then, the set I-proj is closed under transfinite compositions, and so is I-cof. In

particular, (weak) cofibrations in a model category are closed under transfinite compo-

sitions.

Definition 1.2.28. Let C be a cocomplete category, let I be a set of morphisms in

C , and let f ∶ A→ B be a morphism in C . We say that f is a relative I-cell complex

if it is a transfinite composition of pushouts of morphisms in I. That is, a morphism

f ∶ A→ B in C is a relative I-cell complex if there exist an ordinal λ and a λ-sequence
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Z in A↓C , where zξ is a cobase change in C of a morphism gξ in I, for every ordinal ξ

with ξ + 1 < λ, such that f is the transfinite composite of Z, visualised in the diagram

X0

}}

g0 //

⌟

Y0

��

Xξ

��

gξ //

⌟

Yξ

��

Xξ+1

~~

gξ+1 //

⌟

Yξ+1

��
A = Z0 z0

//

f

44Z1 ... // Zξ zξ
// Zξ+1 zξ+1

// Zξ+2
... // colimZ = B

The set of relative I-cell complexes in C is denoted by I-cell. A relative I-cell

subcomplex of f ∶ A→ B is a relative I-cell complex f ′ ∶ A→ B′ with a monomorphism

f ′ → f in A ↓ C . An object B ∈ C is said to be an I-cell complex if the initial

morphism ∅ → B is a relative I-cell complex. A monomorphism f ∶ A→ B in C that

is a relative I-cell complex between I-cell complexes A and B is called an inclusion

of I-cell -complexes.

The notion of relative I-cell complexes is an abstraction of gluing of cells in

topology, and hence the name.

Relative I-cell complexes may be expressed in different ways as transfinite com-

positions of pushouts of morphisms in I. However, when I-cell consists of effective

monomorphisms, fixing the presentation for relative I-cell complexes makes them be-

have like inclusions of sets, as in Proposition 1.2.31, which is essential for the Bousfield-

Smith cardinality argument, recalled in Theorem 1.2.67.

Definition 1.2.29. Let C be a cocomplete category, let I be a set of morphisms

in C , and let f ∶ A → B be a relative I-cell complex. A presentation P of f is a

pair (Z, (Sξ, gξ, iξ)ξ<λ), where Z is a λ-sequence in A ↓ C for some ordinal λ, with a

transfinite composition isomorphic to f , such that for every ordinal ξ + 1 < λ,

● Sξ is a set (indexing cells);

● gξ is a function gξ ∶ Sξ → I (choosing cells); and

● iξ is a function iξ ∶ Sξ → Ob(C ↓Zξ) (gluing cells);

with dom gξ(sξ) = dom iξ(sξ), for every sξ ∈ Sξ, for which there exists the pushout square

(1) in C , on the next page, where X(sξ) ∶= dom iξ(sξ) and Y (sξ) ∶= codom iξ(sξ). The

set ⊔
ξ<λ

Sξ is called the set of cells of the presentation, and it is cardinality is called the

size of the presentation. Moreover, the pair (f,P ) is called a presented relative I-cell

complex. A presented relative I-cell subcomplex of (f,P ) is a pair (f ′, P ′), where f ′

is a relative I-cell subcomplex of f and P ′ is a presentation of f ′ whose set of cells is

a subset of cells of P , and whose choice and gluing maps are the restrictions of those
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of P .

∐
sξ∈Sξ

X(sξ)
∐
sξ∈Sξ

gξ(sξ)
//

∐
sξ∈Sξ

iξ(sξ)

�� ⌟

∐
sξ∈Sξ

Y (sξ)

��
Zξ zξ

// Zξ+1

(1)

Remark 1.2.30. Inclusions of I-cell complexes allow set-theoretic arguments in

abstract cocomplete categories, when I-cell consists of effective monomorphisms, i.e.

equalisers, as it is the case in cellular model categories. In which case, they become

analogous to inclusions of sets, admitting operations similar to the intersection and

union of sets, see Proposition 1.2.31.

Let C be a cocomplete category, let I be a set of morphisms in C such that I-cell

consists of monomorphisms. Assume that B is an I-cell complex, and let S be the

set of cells of a presentation of the initial morphism ∅ → B in C . Then, every inclusion

of I-cell complexes f ∶ A ↪ B is determined up to isomorphisms by a subset of cells,

that is a subset of S, see [Hir03, Prop.10.6.10]. Moreover, every subset of S, that is

compatible with the choice and gluing maps, determines uniquely up to isomorphisms

an inclusion of I-cell complexes f ∶ A↪ B, see [Hir03, Prop.10.6.11].

Proposition 1.2.31. Let C be a cocomplete category, let I be a set of morphisms in

C such that I-cell consists of effective monomorphisms, let B be an I-cell complex,

and let S be the set of cells of a presentation of the initial morphism ∅ → B in C .

Assume that f1 ∶ B1 ↪ B and f2 ∶ B2 ↪ B are inclusions of I-cell complexes, with

subsets of cells S1 ⊂ S and S2 ⊂ S, respectively. Then, the subsets S1⋂S2 ⊂ S1⋃S2 ⊂ S
of cells determine up to isomorphisms inclusions of I-cell complexes

i1 ∶ B1 ↪ B1⋃B2 , i2 ∶ B2 ↪ B1⋃B2 , i ∶ B1⋃B2 ↪ B,

j1 ∶ B1⋂B2 ↪ B1 and j2 ∶ B1⋂B2 ↪ B2,

for objects B1⋂B2,B1⋃B2 ∈ C . Moreover, the square

B1⋂B2
j2 //

j1
��

B2

i2
��

B1
i1
// B1⋃B2

is bicartesian in C , and the pullback of the span B1 ↪ B ↩ B2 exists in C and is

isomorphic to B1⋂B2.

Proof. See [Hir03, Prop.12.2.3 and Th.12.2.6]. �



23

1.2.2.2. Relative Smallness. Obtaining a functorial factorisation usually comes down

to some objects being ‘small’ with respect to certain colimits, that is morphisms from

those objects to the colimits factorise through the colimits cocones. There are several

such smallness notions, which are influenced by the considered colimits and the desired

properties of the factorisation. We recall briefly the smallness notions needed for the

small object argument and the Bousfield-Smith cardinality argument.

The notion of κ-small relative objects, as in Definition 1.2.33, is modelled over

factorisations in the category Set of small sets and their maps, and it captures smallness

with respect to transfinite compositions, which are the colimits that arise in the small

object argument, see §.1.2.2.3.

Let Z be a λ-sequence in Set, and let f ∶ A → colimZ be a map. Then, being

able to factorise f through Zξ, for some ordinal ξ < λ, depends on the relation between

the cardinality of A and the ordinal λ, provided the axiom of choice. A sufficient and

necessary condition for such a factorisation to occur, for any such map f , is axiomatised

in the following definition.

Definition 1.2.32. Let κ be a cardinal. An ordinal λ is said to be κ-filtered if it is

a limit ordinal and for every set A ⊆ λ with ∣ A ∣≤ κ one has supA < λ.

For a finite cardinal κ, one has supA ∈ A, and hence all limit ordinals are finitely

filtered. However, when κ is an infinite cardinal, κ-filtered ordinals are limit ordinals

that are greater than or equal to κ+.

Definition 1.2.33. Let C be a cocomplete category, let I be a set of morphisms

in C , and let κ be a cardinal. An object K ∈ C is said to be κ-small relative to I, if

for every κ-filtered ordinals λ, the induce map

colimC (K,Z) → C (K,colimZ)

is an isomorphism, for every λ-sequence Z ∶ λ → C of morphisms in I. Also. K is said

to be small relative to I if it is κ-small relative to I for some cardinal κ.

Small objects relative to I are closed under retracts and small colimits, see [Hir03,

Prop.10.4.7 and Prop.10.4.8].

Example 1.2.34. A set A is ∣A∣-small relative to any set of morphisms in Set.

Example 1.2.35. Finite CW -complexes are ℵ0-small relative to the set of inclusions

of CW -complexes, see [Hir03, Ex.10.4.3]. On the other hand, topological spaces that

are small relative to Mor(Top) are precisely the discrete topological spaces, see [Bou77,

Ex.4.4].

A stronger variation of relative κ-smallness, recalled in the following definition,

constitutes the main technical ingredient for the Bousfield-Smith cardinality argument.
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Definition 1.2.36. Let C be a cocomplete category, let I be a set of morphisms

in C , and let κ be a cardinal. An object K ∈ C is said to be κ-compact relative to I,

if for every presented relative I-cell complex (f ∶ A→ B,P ), every morphism K → B

factorises through a presented relative I-cell subcomplex of (f ∶ A → B,P ) of size at

most κ. K is said to be compact relative to I if it is κ-compact relative to I for some

cardinal κ.

When I-cell consists of monomorphisms, compact objects relative to I are small

relative to I, see [Hir03, Prop.10.8.7]. Also, they are closed under retracts and small

colimits, see [Hir03, Prop.10.8.4 and Prop.10.8.8].

Example 1.2.37. Let I be the set of the canonical inclusions

{∣∂n∣ ∶ ∣∂∆n∣ ↪ ∣∆n∣ ∣ n ≥ 0}

of the boundaries of the standard topological simplices, see §.1.2.4.1. Then, finite

CW -complexes are ℵ0-compact relative to I. Also, for an infinite cardinal κ, every

CW -complex of size κ is κ-compact relative to I, see [Hir03, Ex.10.8.3].

1.2.2.3. The Small Object Argument. The small object argument became the stan-

dard technique to obtain functorial factorisations, since a countable version of which

was first used by Quillen in [Qui67, §.II.3.Lem.3] to show that any continuous map

of topological spaces admits a factorisation as a cofibration followed by a weak Serre

fibration.

We believe that it is more profitable for a non-specialised reader if we present an

explanation of the main idea behind the small object argument, which links the fac-

torisation with small relative objects, before stating the argument in Definition 1.2.38.

Since fibrations (resp. weak fibrations) have the RLP with respect to weak cofibra-

tions (resp. cofibration), the question of finding a functorial factorisation for a model

structure on a category C follows from being able to find a functorial factorisation

(σ, τ) with σ(f) ∈ I and τ(f) ∈ I-inj for every morphism f in C , for a suitable set of

morphisms I.

Let C be a cocomplete category, let I be a set of morphisms in C and let f be a

morphism in C . When f does not belong to I-inj, there exists a commutative square

K

g

��

e0 //

E

X

f
��

L e1
// Y,
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with g ∈ I, called an I-lifting problem for f , that does not admit a lift. When the

desired factorisation exists, the square admits a partial lifting

K

g

��

e0 // X0

σ(f)
��

f

��

Z

τ(f)
��

L e1
//

h

>>

Y,

for having τ(f) ∈ I-inj. Hence, given a morphism f , as a first step in finding the

desired factorisation, one may look for a factorisation of f satisfying the necessary

condition of providing partial liftings for all I-lifting problems for f . Let If be the set

of I-lifting problems for f , and consider the solid commutative square

∐
E∈If

KE

∐
E∈If

e0,E

//

∐
E∈If

gE

��

X

i

��
f

��

Z

p

��
∐
E∈If

LE
∐
E∈If

e1,E

//

h

88

Y

(2)

in C . Notice that all I-lifting problems for f admit partial liftings when the dotted

morphisms in (2) exist, and make the whole diagram commute. In particular, such

dotted morphisms exist for (Z, i, h) being the pushout of the span

∐
E∈If

LE ∐
E∈If

KE

∐
E∈If

e0,E

//

∐
E∈If

gE

oo X,

and p being induced by the universal property of pushouts, in which case i ∈ I-cell.

Since not all lifting problems for p arise from those of f , the morphism p does not

necessarily belong to I-inj. Let X0 ∶= X, X1 ∶= Z, f0 ∶= f , f1 ∶= p, and let x0 ∶= i.
Iterating the preceding argument yields a sequence X● in X ↓ C and a commutative

diagram

X0
x0 //

f0

��

X1
x1 //

f1

}}

⋯ // Xk
xk //

fk

qq

Xk+1,

fk+1ooY

for every integer k ≥ 0. For every non-negative integer k′ ≤ k, one has xk′ ∈ I-cell. Also,

all I-lifting problems for fk′ are solved for fk for every k > k′, i.e. they admit partial

liftings at fk. Taking the colimit of the sequence X● yields a factorisation fk = fω ○ xωk ,
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where xωk ∶ Xk → Xω is the colimit injection for every integer k ≥ 0, and fω ∶ Xω → Y is

the morphism induced by the universal property of colimits. Similarly, for an integer

k ≥ 0, all I-lifting problems for fk are solved for fω, and xωk ∈ I-cell as I-cell is closed

under transfinite compositions. Having established the initial, successor1, and the limit

cases, one may iterate the construction for any ordinal λ to obtain a factorisation

fξ = fλ ○ xλξ in which xλξ ∈ I-cell and all I-lifting problems for fξ are solved for fλ, for

every ordinal ξ < λ.

The argument above shows that, for ordinals ξ < λ, the factorisation f = fξ○xξ○⋯○x0

can be refined into a factorisation f = fλ ○ xλ ○⋯ ○ x0 in which fλ admits lifts for more

I-lifting problems than fξ. The transfinite composition xλ ○⋯○xξ+1 ○xξ ○⋯○x0 always

belongs to I-cell, by it very construction. The main point of the small object argument

is to show that, under smallness conditions on I, halting the aforementioned iterative

process at a big enough ordinal λ guarantees that fλ belongs to I-inj.

When there exists some cardinal κ for which domains of morphisms in I are κ-small

relative to I-cell, it suffice to choose λ to be a κ-filtered ordinal for fλ to belong to

I-inj. That is, for an I-lifting problem

K

g

��

e0 // Xλ

fλ
��

L e1
// Y

for fλ, since domains of morphisms in I are κ-small relative to I-cell, e0 factorise at

Xξ for an ordinal ξ < λ, inducing the solid I-lifting problem

K

g

��

e0,ξ // Xξ

xξ

��

fξ

��

Xξ+1

xλξ+1

��
Xλ

fλ
��

L e1
//

hξ

FF

Y

for fξ, where e0 = xλξ ○ e0,ξ. Such I-lifting problem admits the dotted partial lifting by

the very construction of xξ and fξ+1. Then, h ∶= xλξ+1 ○hξ is a lift for E, and fλ ∈ I-inj.

Definition 1.2.38. Let C be a cocomplete category. A set I of morphisms in C

is said to admit the small object argument if the domains of morphisms in I are small

relative to I-cell.

1The same argument used for integers greater than zero applies for any successor ordinal.
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Theorem 1.2.39 (The Transfinite Small Object Argument). Let C be a cocomplete

category, and let I be a small set of morphisms in C that admits the small object

argument. Then, there exists a functorial factorisation (σ, τ) on C such that every

morphism f in C factorises as f = τ(f) ○σ(f), where σ(f) ∈ I-cell and τ(f) ∈ I-inj.

Proof. See [Hir03, Prop.10.5.16]. �

The sets I-cof and I-cell are defined through different concepts, the former is

given by lifting properties whereas the latter is given by transfinite compositions and

pushouts. Yet, when I admits the small object argument, I-cofibrations coincide with

retracts of relative I-cell complexes, and I-cofibrant objects coincide with retracts of

I-cell complexes, see [Hir03, Lem.10.5.25].

1.2.2.4. Cellular Model Structures.

Definition 1.2.40. A cofibrantly generated model structure is a triple (M , I, J),
where M is a model structure on a category C , and I and J are small sets of morphisms

in C that admit the small object argument, such that

(1) the set of fibrations in M coincides with the set J-inj; and

(2) the set of weak fibrations in M coincides with the set I-inj.

Then, I and J are called the sets of generating cofibrations and generating weak cofi-

brations, respectively. Moreover, a cofibrantly generated model structure (M , I, J) is

said to be cellular if

(3) the domains and codomains of morphisms in I are compact relative to I;

(4) the domains of morphisms in J are small relative to I-cell; and

(5) cofibrations in M are effective monomorphisms.

Since I and J admit the small object argument, cofibrations and weak cofibrations

in M coincide with retracts of relative I-cell complexes and retracts of relative J-cell

complexes, respectively, see [Hir03, Prop.11.2.1].

Theorem 1.2.41 (Recognising Cellular Model Structures). Let (C ,M ) be a model

category, and let I and J be small sets of morphisms in C . Then, (M , I, J) is a cellular

model structure on C if and only if

(1) the set of weak fibrations in M coincides with I-inj;

(2) the set of fibrations in M coincides with J-inj;

(3) the domains and codomains of morphisms in I are compact relative to I;

(4) the domains of morphisms in J are small relative to I-cell; and

(5) relative I-cell complexes are effective monomorphisms.

Proof. See [Hir03, Th.12.1.8]. �
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The following theorem is the main result about cellular model structures that is par-

ticularly useful for Bousfield localisation, §.1.2.6, in addition the boundedness technical

result presented in [Hir03, Prop.12.5.3].

Theorem 1.2.42. Let (M , I, J) be a cellular model structure on C . Then, cofibrant

objects in M are small relative to the set of all cofibrations.

Proof. See [Hir03, Th.12.4.3]. �

1.2.3. Proper Model Categories. Gluing of (pointed) topological spaces, i.e.

pushing-out along cofibrations, is invariant under weak equivalences, and hence it

presents homotopy pushouts, see [Hir03, Th.13.1.10 and Th.13.3.10]. The same is not

true for a general model category. Proper model structures guarantee that pushouts

(resp. pullbacks) along cofibrations (resp. fibrations) present homotopy pushouts (resp.

homotopy pullbacks).

Definition 1.2.43. A model structure M is said to be

(1) left proper if weak equivalences are closed under pushouts along cofibrations;

(2) right proper if weak equivalences are closed under pullbacks along fibrations;

and

(3) proper if it is both left and right proper.

Left proper model categories admit homotopy pushouts given by pushouts of cofi-

brant factors of the spans in question. In particular, pushouts along cofibrations present

homotopy pushouts, as seen below.

Lemma 1.2.44. Let (C ,M ) a model category. Assume that M is

● left proper, then for every solid commutative diagram

U

⌟

i //

j

��

∼ f
!!

V

iV

��

∼ g
  

U ′

⌟

i′ //

j′

��

V ′

iV ′

��

W
iW //

∼ h
!!

Z

∼ h
  

W ′ iW ′ // Z ′,

in which i and i′ are cofibrations and the solid diagonal morphisms are weak

equivalences, the induced morphism Z → Z ′ is a weak equivalence, for Z ∶=
W ∐U V and Z ′ ∶=W ′∐U ′ V ′; and
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● right proper, then for every solid commutative diagram

Y

⌟

∼ f
  

X
poo

∼ g
!!

Y ′

⌟

X ′p′oo

Z

q

OO

∼ h
  

W

πX

OO

∼ h
!!

πWoo

Z ′

q′

OO

W ′,

πX′

OO

πW ′oo

in which p and p′ are fibrations and the solid diagonal morphisms are weak

equivalences, the induced morphism W →W ′ is a weak equivalence, for W ∶=
Z ×Y X and W ′ ∶= Z ′ ×Y ′ X ′.

Proof. See [Hir03, Prop.13.3.10]. �

1.2.4. Simplicial Model Categories. Homotopy categories of model structures

are enriched over Kan-Quillen’s homotopy category of simplicial sets HsSetKQ, and

hence the latter influences the considered homotopy theory, see [Hov99, §.6]. Simplicial

model structures allow one to take advantage of the well-studied simplicial methods to

do homotopy in abstract categories. Moreover, simplicial methods have proven fruitful

in other areas, for instance see Deligne’s influential paper [Del74].

1.2.4.1. The Simplex Category. Let ∆ denote the simplex category, i.e. the skeleton

of the category of non-empty finite ordered sets and order-preserving maps between

them. The morphisms in ∆ are generated by the sets of coface and codegeneracy

maps, recalled below.

For integers n ≥ 1, 0 ≤ i ≤ n, the ith-coface map ∂in ∶ [n − 1] → [n] is the unique

injective such map in ∆ skipping the value i, i.e.

∂in(j) = { j for j < i;
j + 1 for j ≥ i.

Whereas, for integers 0 ≤ i ≤ n, the ith-codegeneracy map σin ∶ [n+1] → [n] is the unique

surjective such map in ∆ repeating the value i, i.e.

σin(j) = { j for j ≤ i;
j − 1 for j > i.

Any morphism µ ∶ [m] → [n] in ∆ is a composition of faces and degeneracies, and can

be expressed uniquely as a composition

µ = ∂i1n ○ ∂i2n−1 ○ ... ○ ∂
is
n−s+1 ○ σ

jt
m−t ○ σ

jt−1

m−t+1 ○ ... ○ σ
j1
m−1,

where n−m = s−t, n ≥ i1 > i2 > ... > is ≥ 0, and m−1 ≥ j1 > j2 > ... > jt ≥ 0, see [May92].
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Let C be a category, the category of simplicial objects (resp. cosimplicial objects)

in C is the functor category ∆opC ∶= Fun(∆op,C ) (resp. ∆C ∶= Fun(∆,C )). For a

simplicial object X ∶ ∆op → C and a cosimplicial object R ∶ ∆ → C , it is conventional

to denote X([n]) and R([n]) by Xn and Rn, respectively, and one usually writes

dni ∶=X(∂in) , sni ∶=X(σin) , din ∶= R(∂in) and sin ∶= R(σin).

Simplicial Set. The category sSet of simplicial (small) sets is the category of sim-

plicial objects in Set. It is common to denote the Yoneda embedding h− ∶ ∆ → sSet

by ∆−. Then, the Yoneda lemma implies the existence of a canonical isomorphism

X− ≅ sSet(∆−,X), for every simplicial set X. For an integer n ≥ 0, the simplicial set

∆n, represented by [n], is called the standard n-simplex.

Since the category Set is bicomplete, so is sSet. In fact, sSet is Cartesian closed,

as it admits an internal Hom -functor

Hom ∶ sSetop × sSet→ sSet,

called the function complex, which is given by Hom(−,−−)● ∶= sSet(− ×∆●,−−).

Let ∆●
top ∶∆→ Top be the standard cosimplicial topological space, given on an object

[n] ∈∆ by the standard topological n-simplex

∆n
top = {(t0, t1, ..., tn) ∈ Rn+1 ∣

n

∑
i=0

ti = 1, ti ≥ 0},

and on a morphism µ ∶ [m] → [n] in ∆ by the map

∆(µ) ∶ ∆m
top → ∆n

top

u ↦ t, with ti = ∑
j∈µ−1(i)

uj for 0 ≤ i ≤ n.

There exists a tensor-Hom adjunction

∣−∣ ∶ sSet⇄ Top ∶ Sing,

associated with the functor ∆●
top, as in Example A.3.8. The functor Sing is the sin-

gular simplicial functor given by Sing(−)● ∶= Top(∆●
top,−), whereas ∣−∣ is the geometric

realisation functor given by the left Kan extension of ∆●
top along the Yoneda embedding

∆● ∶ ∆ ↪ sSet, see [Kan58, §.2-3]. The geometric realisation functor can be given for

a simplicial set X by the space

∣X ∣= (
∞
⊔
n=0

(Xn ×∆n
top)) / ∼, (3)

where ∼ is the smallest equivalence relation that identifies (xm, u) ∈ Xm × ∆m
top and

(xn, t) ∈Xn ×∆n
top whenever there exists a morphism µ ∶ [m] → [n] in ∆ for which

xm =Xµ(xn) and t = ∆µ
top(u),

and for a morphism f ∶X → Y of simplicial sets by ∣ f ∣ ([(xn, t)]) = [(fn(xn), t)].
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In addition to the standard simplices and the adjunction ∣−∣ ⊣ Sing, the boundary

simplices, horns, and simplicial circle play an essential role in the homotopy theories of

simplicial sets, and hence of simplicial (pre)sheaves. For an integer n, the boundary of

the standard n-simplex ∂∆n is a simplicial subset in ∆n given on an object [p] by

∂∆n
p = {α ∶ [p] → [n] ∣ α is not surjective},

and the quotient Sn ∶= ∆n/∂∆n is called the n-simplicial circle. For integers 0 ≤ r ≤ n,

the r-horn Λnr is the smallest simplicial subset in ∆n that contains ∂in ∈ ∆n
n−1 for

0 ≤ i ≠ r ≤ n. Moreover, the geometric realisation of ∆n, ∂∆n, and Sn is ∆n
top, ∂∆n

top,

and Sntop, respectively.

Kan-Quillen’s Model Structure on Simplicial Sets. The category of simplicial sets ad-

mits a left proper cellular model structure, cofibrantly generated by sets

I ∶= {∂[n] ∶ ∂∆n ↪∆n ∣ n ∈ Z≥0} and J ∶= {λnr ∶ Λnr ↪∆n ∣ n ∈ Z≥0,0 ≤ r ≤ n}

of generating cofibrations and generating weak cofibrations, respectably, called Kan-

Quillen’s model structure on simplicial sets, see [Hov99, §.3]. In this model structure, a

morphism of simplicial sets is a weak equivalence if and only if its geometric realisation

is a weak equivalence of topological spaces, and is a cofibration if and only if it is an

injection, see [Qui67, §.II.3.Prop.2]. Recall Example 1.2.25, the geometric realisation-

singular simplicial adjunction is a Quillen equivalence between Kan-Quillen’s model

structure on simplicial sets and Quillen-Serre’s model structure on topological spaces.

The fibrations in Kan-Quillen’s model structure are morphisms of simplicial sets

with the RLP with respect to J, they are called Kan fibrations. A simplicial set K is

said to be a Kan complex if the terminal morphism K → ∗ is a Kan fibration.

Theorem 1.2.45 (Quillen). The geometric realisation of a Kan fibration is a Serre

fibration.

Proof. See [Hov99, Cor.3.6.2]. �

However, there are far more Serre fibrations than realisations of Kan fibrations. For

instance, every topological space is a Hurewicz fibrant object, and hence a Serre fibrant

object.

On the other hand, a map of topological spaces is a Serre fibration if and only if

its mapped to a Kan fibration by the singular simplicial functor, see [May92, §.III].

In particular, for every topological space X, the singular simplicial set S(X) is a Kan

complex. Hence, the endofunctor S(∣−∣) is a fibrant approximation functor. However,

the cardinality S(∣X ∣) is much bigger than the cardinality of X, and S(∣−∣) is difficult

to use in model structures induced by sSetKQ.
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Kan introduced a better behaved fibrant replacement functor in [Kan57], known

as Kan’s Ex∞ functor, prior to Quillen’s introduction of the notion of model structures.

Although the construction of the functor Ex∞ bears a resemblance to the small object

argument, it relays heavily on the specificity of the simplex category ∆, particularly on

the barycentric subdivision functor, recalled below.

Let Path ∶ Cat → Cat be the path functor, that sends a small category to the poset

of its nonempty (finite) paths, partially ordered by inclusion, and let N ∶ Cat ↪ sSet

be the fully faithful nerve functor, as in Example A.3.8.(2). The tensor-Hom adjoint

functors associated with the composite functor N ○Path ○[−] ∶∆→ sSet, as in Example

A.3.8, are called the barycentric subdivision sd and Kan’s extension functor Ex,

∆
[−] //

∆−

��

Cat
Path //
idCat

// Cat N // sSet,

ExnnsSet
sd

::

see [Kan57]. Then, one has

Ex(X)● ≅ sSet(∆●,Ex(X)) ≅ sSet(sd∆●,X).

In particular, the functor Ex preserves 0-simplices. On the other hand, the composite

functor N ○[−] ∶∆→ sSet coincides with the dense Yoneda embedding ∆−, and hence its

tensor-Hom adjoint functors may be given by the identity functors, see §.A.3.3. There

exist natural transformations i ∶ [−] ⇄ Path ○[−] ∶ p given component-wise, for [n] ∈ ∆,

by

in(k) = [k] ∈ Path([n]) and pn(P ) = codomP ∈ [n],

for every k ∈ [n] and P ∈ Path([n]). One has p ○ i = id[−], and hence i (resp. p) is a

natural split monomorphism (resp. epimorphism). The natural transformation j ∶= Np

lifts to a natural split epimorphism and a natural split monomorphism

j∗ ∶ sd→ idsSet and j∗ ∶ idsSet → Ex,

respectively. Moreover, the components of j∗ and j∗ are weak equivalences of simplicial

sets, see [Kan57, Lem.7.4 and Lem.7.5]. Then, the functor Ex∞ ∶ sSet→ sSet is defined

to be the colimit of the injective system

idsSet
j∗ // Ex

j∗Ex // Ex2
j∗
Ex2 // Ex3

j∗
Ex3 // . . . .

The induced natural monomorphism RKan ∶ idsSet → Ex∞ is a fibrant replacement for

the model category sSetKQ, see [Kan57, Th.4.2].
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1.2.4.2. Simplicial Categories. Simplicial categories2 are sSet-enriched categories

that are bitensored over sSet, i.e.

● for every object X ∈ C , the functor Map(X,−) ∶ C → sSet has a sSet-enriched

left adjoint

X ⊗ − ∶ sSet→ C ; and

● for every object Y ∈ C , the functor Map(−, Y ) ∶ C op → sSet has a sSet-enriched

left adjoint

Y − ∶ sSet→ C op.

Thus, there exist isomorphisms

MapC (X ⊗K,Y ) ≅ MapsSet(K,MapC (X,Y )) ≅ MapC op(Y K ,X) ≅ MapC (X,Y K) (4)

of simplicial sets, natural in X,Y ∈ C and K ∈ sSet, giving rise to a sSet-adjunction

− ⊗K ∶ C ⇄ C ∶ −K ,

for every simplicial set K, see [GJ09, §.II.Lem.2.2].

Remark 1.2.46. Every simplicial category C defines a category whose hom -sets

are given for every X,Y ∈ C by C (X,Y ) = Map(X,Y )0. It is called the underlying

category of C , and it is denoted by C0. The category C0 is said to admit the simplicial

structure (Map,⊗,−−). Moreover, the Yoneda lemma implies the existence of canonical

isomorphisms

Map(X,Y )n ≅ Map(∆n,Map(X,Y ))0 ≅ C (X ⊗∆n, Y ).

for every X,Y ∈ C and n ≥ 0.

The Category of Simplicial Objects. The prototypical example of simplicial cate-

gories is the category of simplicial objects in a bicomplete category, as it admits a

canonical simplicial structure, called the standard simplicial structure, which is recalled

below, see also [GS07, §.4.2].

Let C be a bicomplete category, let ϕ ∶ A → B be a map of small sets, and let

f ∶ X → Y be a morphism in C . The universal properties of coproducts and products

induce canonical morphisms

∐
ϕ

f ∶ ∐
A

X →∐
B

Y and ∏
ϕ

f ∶ ∏
B

X →∏
A

Y,

which give rise to functors

⊠ ∶∆opC × sSet→ Fun(∆op ×∆op,C ) and −⊠ ∶ sSetop ×∆opC → Fun(∆op ×∆,C ),

given on objects, for a simplicial object X in C and a simplicial set K, by

(X ⊠K)([−], [−−]) = ∐
K−−

X− and X⊠K([−], [−−]) =∏
K−

X−−,

2Some authors call a simplicial object in the category of small categories a simplicial category. To
avoid confusion, we call a simplicial object in Cat a simplicial small category.
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and similarly on morphisms. Then, precomposing with the diagonal functor ∆op →
∆op ×∆op and taking ends, as in [ML98, §.IX.5], yield functors

⊗ ∶∆opC × sSet→∆opC and Hom∆ ∶ sSetop ×∆opC → C . (5)

In particular, for a simplicial object X in C and a simplicial set K, ons has

(X⊗K)n =∐
Kn

Xn and Hom∆(K,X) = ∫
[n]∈∆

∏
Kn

Xn,

see [GS09, §.2]. In fact, Hom∆(−,X) is the right X-Hom functor, as in Example A.3.8,

i.e. it is the right Kan extension of X along the functor ∆−op ∶ ∆op → sSetop, and

hence Hom∆(∆n,X) ≅Xn for every integer n ≥ 0.

The tensor bifunctor of the standard simplicial structure on the category of simpli-

cial objects ∆opC is the bifunctor ⊗ in (5); the Map -simplicial sets bifunctor

Map∆opC ∶ (∆opC )op ×∆opC → sSet

is given by

Map∆opC (−,−−)● ∶=∆opC (− ⊗∆●,−−);

whereas the cotensor bifunctor −−− ∶ sSetop ×∆opC →∆opC is given by

(−−−)● = Hom∆(− ×∆●,−−).

Example 1.2.47. For C = Set, the bifunctors ⊗ and Hom∆ coincide with the Carte-

sian product and the hom -set bifunctors of simplicial sets, respectively. Also, the functor

Map coincides with the cotensor bifunctor.

Simplicial Model Categories. Simplicial model categories are categories endued with

a simplicial structure and a model structure, that are compatible in the sense of the

following theorem.

Theorem 1.2.48 (Homotopy Lifting–Extension Theorem). Let C be a simplicial

category, and let M be a model structure on the category C0. Then, the following

statements are equivalent

● for every cofibration i ∶ U → V and every fibration p ∶ X → Y in M , the

induced morphism of simplicial sets

Map(i, p) ∶ Map(V,X) → Map(U,X) ×Map(U,Y ) Map(V,Y )

is a Kan fibration; moreover, if either of i or p is a weak equivalence in M ,

then so is Map(i, p);
● for every cofibration i ∶ U → V in M and every cofibration j ∶ K → L in

sSetKQ, the induced morphism

i ◻ j ∶ U ⊗L ∐
U⊗K

V ⊗K → V ⊗L
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is a cofibration in M ; moreover, if either of i or j is a weak equivalence in M

or sSetKQ, respectively, then so is i ◻ j; and

● for every fibration p ∶X → Y in M and every cofibration j ∶K → L in sSetKQ,

the induced morphism

pj ∶XL →XK ×Y K Y L

is a fibration in M ; moreover, if either of p or j is a weak equivalence in M

or sSetKQ, respectively, then so is pj .

Proof. See [Hir03, Prop.9.3.7]. �

Definition 1.2.49. A simplicial model category is a pair (C ,M ), where C is a

simplicial category and M is a model structure on the category C0, that satisfies any

of the equivalent statements in Theorem 1.2.48.

Example 1.2.50. The pair of the Kan-Quillen’s model structure and the standard

simplicial structure endues the category of simplicial sets with a simplicial model struc-

ture, see [Hir03, Ex.9.1.13].

In a simplicial model categories (C ,M ), the model structure can be determined

on the level of simplicial sets. That is, a morphism i is a cofibration (resp. weak

cofibration) in M if and only if the morphism Map(i, p) is a weak Kan fibration for

every weak fibration (resp. fibration) p in M , see [Hir03, Prop.9.4.4]. The dual

statement holds for (weak) fibrations.

Proposition 1.2.51 (Detecting Weak Equivalences). Let (C ,M ) be a simplicial

model category, and let f ∶ X → Y be a morphism in the category C0. Then, the

following statements are equivalent

● the morphism f is a weak equivalence in M ;

● for every fibrant object Z in M , the induced morphism

Q(f)∗ ∶ Map (Q(Y ), Z) → Map (Q(X), Z)

is a weak equivalence in sSetKQ, where Q is a cofibrant approximation functor

for M ; and

● for every cofibrant object W in M , the induced morphism

R(f)∗ ∶ Map (W,R(X)) → Map (W,R(Y ))

is a weak equivalence in sSetKQ, where R is a fibrant approximation functor

for M .

Proof. See [Hir03, Th.9.7.4]. �
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1.2.5. Monoidal Model Categories. Most model categories one is interested

in admit monoidal structures that are compatible with the model structures, in an

analogous manner to Theorem 1.2.48. Such monoidal structures descent to monoidal

structures on the homotopy categories.

Definition 1.2.52. A symmetric monoidal model structure on a category C is

a pair (M ,S ) of a model structure M and a closed symmetric monoidal structure

S = (⊗,1,Hom, ψ,α, λ, ρ) such that

(1) for cofibrations i ∶ U → V and j ∶K → L in M , the pushout product

i ◻ j ∶ U ⊗L ∐
U⊗K

V ⊗K → V ⊗L

is a cofibration in M ; moreover, if either of i or j is a weak equivalence in M ,

then so is i ◻ j; and

(2) for the cofibrant replacement morphism Q(1) → 1, the morphism

X ⊗Q(1) →X ⊗ 1 ≅ρ X

is a weak equivalence in M , for every cofibrant object X in M .

Then, the triple (C ,M ,S ) is called a symmetric monoidal model category.

In a symmetric monoidal model category (C ,M ,S ), the adjunction − ⊗ X ⊣
Hom(X,−) is a Quillen adjunction, for every cofibrant object X in M . Hence, the

homotopy category HC admits a canonical closed symmetric monoidal structure, with

a monoidal product and internal Hom bifunctors given by the derived functors ⊗L and

RHom, respectively, see [Hov99, Th.4.3.2]. Axiom (2), in Definition 1.2.52, is needed

for the derived monoidal structure to exist. However, when 1 is cofibrant in M , (2)

follows from (1), see [Hov99, §.4.2] and [SS03a, §.3.1].

Example 1.2.53. The pair of the Kan-Quillen’s model structure and the closed

Cartesian monoidal structure endues the category of simplicial sets with a symmetric

monoidal model structure, see [Hov99, Prop.4.2.8].

A monoidal Quillen adjunction between symmetric monoidal model categories is

defined so that it induces a strong monoidal functor between the homotopy categories.

Definition 1.2.54. A weak monoidal Quillen adjunction F ∶ (C ,M ,S ) ⇄ (D ,N ,T ) ∶
G between symmetric monoidal model categories is a Quillen adjunction F ⊣ G, in

which F is an oplax monoidal functor, such that

(1) for cofibrant objects X,Y ∈ C , the oplax morphism

F (X ⊗ Y ) → F (X) ⊗ F (Y )

is a weak equivalence in N ; and



37

(2) the composition of the morphism F (Q(1C )) → F (1C ), induced by the cofi-

brant replacement morphism, with the oplax morphism F (1C ) → 1D is a weak

equivalence in N , see [SS03a, §.3.2].

Moreover, a strong monoidal Quillen adjunction is a Quillen adjunction F ⊣ G, in which

F is strong monoidal, and the morphism F (Q(1C )) → F (1C ), induced by the cofibrant

replacement morphism, is a weak equivalence in N , see [Hov99, Def.4 .2.16].

For a weak monoidal Quillen adjunction F ⊣ G, since F is oplax monoidal, one

finds that G is lax monoidal.

Theorem 1.2.55. Let F ∶ (C ,M ,S ) ⇄ (D ,N ,T ) ∶ G be a weak monoidal Quillen

adjunction between symmetric monoidal model categories. Then, the left derived func-

tor LF is strong monoidal.

Proof. See the proof of [Hov99, Th.4.3.3]. �

Proposition 1.2.56. Let (C ,M ,S ) be a symmetric monoidal model category,

whose unit 1 is a cofibrant object in M and coincides with the terminal object ∗
of C . Then, the pointed category C● admits a closed symmetric monoidal structure

S●, making (C●,M●,S●) into a symmetric monoidal model category, with a unit 1● =
1+ = (∗∐∗,∗), a smash product ∧ given for pointed objects (X,x), (Y, y) ∈ C● by the

pushout of the span

X∐Y
(idX⊗y)∐(x⊗idY ) //

��

X ⊗ Y

∗
in C , with the canonical base-point, and an internal Hom● given for pointed objects

(X,x), (Y, y) ∈ C● by the pullback of the cospan

Hom(∗, Y ) Hom(X,Y )
Hom(x,idY )oo

∗
Hom(∗,y)

OO

in C , with the canonical base-point induced by the point y and the morphism X → ∗.

Proof. See [Hov99, Prop.4.2.9]. �

Example 1.2.57. The smash product endues the pointed model category sSet●,KQ

with a symmetric monoidal model structure, with pointed internal Hom● given for

pointed simplicial sets (X,x0) and (Y, y0) by

Hom● ((X,x0), (Y, y0))n = (sSet●((X,x0) ∧∆n
+, (Y, y0)), y0 ○ pX),

for every [n] ∈ ∆, where p
X
∶ X → ∆0 is the terminal such morphism in sSet, see

[Hov99, Cor.4.2.10].
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1.2.5.1. Modules over Monoidal Model Categories. A module over a symmetric

monoidal model category (C ,M ,S ) is a model category whose homotopy category

admits an action of the monoidal homotopy category HC .

Definition 1.2.58. Let (C ,M ,S ) be a symmetric monoidal model category. A

C -(right) model structure is a pair of a (C ,S )-enriched category D that is bitensored

over (C ,S ) and a model structure N on D , such that

(1) for every cofibration i ∶ U → V in N and every cofibration j ∶ K → L in M ,

the induced morphism

i ◻ j ∶ U ⊗L ∐
U⊗K

V ⊗K → V ⊗L

is a cofibration in N ; moreover, if either of i or j is a weak equivalence in N

or M , respectively, then i ◻ j is a weak equivalence in N ; and

(2) for the cofibrant replacement morphism Q(1C ) → 1C , the morphism X ⊗
Q(1C ) →X ⊗1C is a weak equivalence in N , for every cofibrant object X in

N .

Then, the pair (D ,N ) is called a (C ,M ,S )-(right) model category.

When no confusion arises, we may abuse notations and refer to (C ,M ,S )-model

categories by C -model categories.

Proposition 1.2.59. Let (C ,M ,S ) be a symmetric monoidal model category, and

let (D ,N ) be a C -model category. Then, the homotopy category HD is HC -enriched

and bitensored over HC .

Proof. See [Hov99, Th.4.3.4]. �

Every symmetric monoidal model category (C ,M ,S ) is a right model category

over itself. Moreover, if (D ,N ) is a C -model category, then (D●,N●) is a C●-model cat-

egory, with respect to the symmetric monoidal model structure (M●,S●), see [Hov99,

Prop.4.2.19].

Example 1.2.60. A simplicial model category is a sSetKQ-model category, and

hence a pointed simplicial model category is a sSet●,KQ-model category, see [Hov99,

p.114].

Example 1.2.61. Let C be a pointed simplicial model category, and hence a

sSet●-model category, the derived adjoint functors

− ∧L (S1,0) ∶HC ⇄HC ∶ RHom ((S1,0),−)

are called the suspension and loop functors, and usually denoted by Σ and Ω, respectively.

For every object X ∈ C , the object ΣX (resp. ΩX) admits a canonical cogroup

(resp. group) structure, and it can be used to compute the homotopy groups of the
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Map -simplicial sets, and hence detect weak equivalences in C , similar to pointed topo-

logical spaces, see [Hov99, §.6.1].

1.2.6. Left Bousfield Localisation of Model Structures. A localisation of a

model category presents a localisation of its homotopy category. Let H be a homo-

topy category presented by a model category (C ,M ). The localisation of the model

structure M with respect to a set S of morphisms in C , if it exists, is a ‘minimal’

model structure MS on C whose weak equivalences contain weak equivalences of M

and morphisms of S. Then, the homotopy category HS of (C ,MS) is a localisation of

the homotopy category H with respect to the image of S in H, i.e. HS ≅ LSH.

Definition 1.2.62. Let (C ,M ) be a model category, and let S be a set of mor-

phisms in C .

(1) A left localisation of M with respect to S, if it exists, is a pair (LS M , ηS),
where LS M is a model structure on C , and ηS ∶ (C ,M ) → (C ,LS M ) is a

left Quillen functor such that

(a) the total left derived functor LηS takes morphisms in LM (S) to isomor-

phisms; and

(b) any left Quillen functor θ ∶ (C ,M ) → (D ,N ), for which the total left de-

rived functor L θ ∶HC →HD takes morphisms in LM (S) to isomorphisms

in HD , factorises uniquely through ηS .

(2) A right localisation of M with respect to S, if it exists, is a pair (RS M , εS),
where RS M is a model structure on C , and εS ∶ C →RS C is a right Quillen

functor such that

(a) the total right derived functor R εS takes morphisms in LM (S) to isomor-

phisms; and

(b) any right Quillen functor θ ∶ (C ,M ) → (D ,N ), for which the total right

derived functor R θ ∶ HC → HD takes morphisms in LM (S) to isomor-

phisms in HD , factorises uniquely through εS .

In the sequel, we restrict ourself to left localisations, yet most of what comes next

can be easily dualised for right localisations, see [Hir03, Ch.3 and Ch.5]. Also, we find

it convenient to restrict ourselves to simplicial model categories. Readers interested in

the general argument are encouraged to consult [Hir03].

Proposition 1.2.51 imposes restrictions on the fibrant objects and the weak equiv-

alences of the localised model structure, when it exists, giving rise to the following

definition.

Definition 1.2.63. Let (C ,M ) be a simplicial model category, let Q be a cofibrant

approximation functor for M , and let S be a set of morphisms in C . An object Z ∈ C
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is called an S-local object if Z is a fibrant object in M for which the induced morphism

Q(i)∗ ∶ Map(Q(V ), Z) → Map(Q(U), Z).

is a weak equivalence in sSetKQ, for every morphism i ∶ U → V in S. Whereas, a

morphism i ∶ U → V in C is called an S-local equivalence if the induced morphism

Q(i)∗ ∶ Map(Q(V ), Z) → Map(Q(U), Z)

is a weak equivalence in sSetKQ, for every S-local object Z ∈ C .

Both weak equivalences in M and morphisms in S are S-weak equivalences. More-

over, S-weak equivalences satisfy the two-out-of-three property and are closed under

retracts, see [Hir03, Prop.3.2.3 and Prop.3.2.4].

S-local objects (resp. S-weak equivalences) are intended to form the fibrant objects

(resp. weak equivalences) in the localised model structure, if it exists. Their role may

be better illustrated through the following theorem.

Theorem 1.2.64. Let F ∶ (C ,M ) ⇄ (D ,N ) ∶ G be a Quillen adjunction between

simplicial model categories, and let S be a set of morphisms in C . Then, the following

statements are equivalent

(1) the total left derived functor LF ∶ HC → HD takes morphisms in LM (S) to

isomorphisms in HD ;

(2) the functor F takes the cofibrant replacements of morphisms in S to weak

equivalences in N ;

(3) the functor G takes fibrant objects in N to S-local objects in C ; and

(4) the functor F takes S-local equivalences between cofibrant objects to weak

equivalences in N .

Proof. See [Hir03, Th.3.1.6]. �

Definition 1.2.65. Let (C ,M ) be a simplicial model category, and let S be a set

of morphisms in C . A left Bousfield localisation of M with respect to S, if it exists,

is a model structure LS M on C whose weak equivalences, cofibrations, and fibra-

tions are S-weak equivalences, cofibrations in M , and S-local fibrations, respectively;

where S-local fibrations are the morphisms in C with the RLP with respect to S-weak

cofibrations.

When a left Bousfield localisation LS M exists, the pair (LS M , idC ) forms a left

localisation of M with respect to S, see [Hir03, Th.3.3.19]. In which case, the fibrant

objects in LS M are S-local objects, but the converse does not always hold. However,

when in addition M is left proper, fibrant objects in LS M coincide with S-local objects,

see [Hir03, Prop.3.4.1].
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In general, the main obstacle to the existence of a left Bousfield localisation is

the existence of its functorial factorisations, particularly the factorisation as S-weak

cofibrations and S-local fibrations. Since the main tool used to produce functorial

factorisations is the small object argument, it is natural to look for a small set JS of

S-weak cofibrations that both admits the small object argument and for which the

set JS-inj coincides with the set of S-local fibrations. In cellular model categories,

inclusions of I-cell complexes play an essential role in obtaining such a small set JS ,

and that is mainly due to their set-theoretic-like nature, seen in Proposition 1.2.31.

Lemma 1.2.66. Let (M , I, J) be a left proper cofibrantly generated simplicial model

structure on a category C , let S be a set of morphisms in C , and let p ∶ X → Y be a

fibration in M . Then, the morphism p is an S-local fibration if and only if it has the

RLP with respect to the set of all S-weak inclusions of I-cell complexes.

Proof. See [Hir03, Prop.4.5.1 and Lem.4.5.2]. �

Since the small object argument applies for small sets, the set of all S-weak inclu-

sions of I-cell complexes needs to be further refined to a small set. The set of all

isomorphism classes of S-weak inclusions of I-cell complexes of size at most κ is a

small set, let JS,κ be a set of its representatives, and hence a small set. In general,

the set JS,κ-inj does not coincide with the set of S-local fibrations. However, the

Bousfield-Smith cardinality argument shows that there exists an accessible cardinal for

which the two sets coincide, see [Hir03, §.4.5].

Theorem 1.2.67. Let (M , I, J) be a left proper cellular simplicial model structure

on a category C , and let S be a small set of morphisms in C . Then, a left Bousfield

localisation LS M exists and fibrant objects in LS M coincide with S-local objects.

Moreover, LS M is a left proper cellular simplicial model structure with generating

cofibrations I and generating weak cofibrations JS ∶= JS,κ, for a large enough accessible

cardinal κ.

Proof. See [Hir03, Th.4.1.1 and §.4.5-6]. �

1.3. Stable Homotopy Categories

Stable homotopy theories, in which the suspension functor is quasi-inverted, are

better behaved and admit richer structures, allowing for more invariants compared to

unstable homotopy theories. Stabilising a homotopy category can be obtained in dif-

ferent ways, some of which have advantages over others. The universal stabilisation is

given by the Spanier-Whitehead construction, and its main advantage is being applied

on the level of homotopy categories. However, in general, it does not produce cocom-

plete categories. On the other hand, the categories of spectra and symmetric spectra

are constructed on the level of model categories, with the latter inheriting symmetric
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monoidal structures. Since monoidal structures are particularly interesting for us, we

restrict our attention to symmetric spectra.

1.3.1. Symmetric Spectra. Let (C ,S ) be a closed symmetric monoidal cate-

gory, and let T ∈ C . A T -spectrum is a pair (X,e) of a sequence X = {Xn ∣ n ∈ Z≥0} of

terms in C and a sequence e = {en ∶ Xn ⊗ T → Xn+1 ∣ n ∈ Z≥0} of assembly morphisms

in C . A morphism of T -spectra f ∶ (X,e) → (Y, c) is a sequence f = {fn ∶ Xn → Yn ∣ n ∈
Z≥0} of morphisms in C that commute with the assembly morphisms.

A T -symmetric spectrum (X,τ, e) is a T -spectrum (X,e) with a left action τ of the

symmetric group Σn on Xn, for every integer n ≥ 0, such that the composition

en+p−1○⋯○(en+1⊗id
T⊗(p−2))○(en⊗id

T⊗(p−1))∶Xn⊗T⊗p→Xn+1⊗T⊗(p−1)→⋯→Xn+p−1⊗T→Xn+p

is Σn+p ⊃ (Σn×Σp)-equivariant for every pair of integers p,n ≥ 0, where Σp acts on T⊗p

by permutation of factors. A morphism of T -symmetric spectra f ∶ (X,τ, e) → (Y, ς, d)
is a morphism of T -spectra f ∶ (X,e) → (Y, d) whose nth-term is Σn-equivariant. Denote

the category of T -symmetric spectra in C by SptΣ(C , T ). There exists a full embedding

Σ∞T ∶ C ↪ SptΣ(C , T ),

sending an objectX in C to its T -symmetric suspension spectrum Σ∞T X = (X,X⊗T,X⊗
T⊗2,X ⊗ T⊗3,⋯), with the canonical left action and the identity assemble morphisms.

Alternatively, the category of T -symmetric spectra in C can by given as a subcat-

egory of symmetric sequences in C . This makes it easier to endue it with a monoidal

structure. Let Σ denote the skeleton of the groupoid of finite sets with isomorphisms

between them, and denote objects of Σ by the cardinality of their representative. The

category Σ is symmetric monoidal with a canonical monoidal product

⊕ ∶ Σ ×Σ→ Σ,

induced by the canonical injection Σp ×Σq ⊆ Σp+q, whose unit is 0. Let the category of

symmetric sequences in C be the functor category C Σ. When C is (co)complete, the

category C Σ is (co)complete with level-wise (co)limits. Moreover, since C is a closed

symmetric monoidal category, so is the category C Σ. To see that, one may rerun a

variant of the argument used to established the standard simplicial structure on the

category of simplicial objects. The monoidal product ⊗ and internal Hom in C define

functors

⊠ ∶ C Σ ×C Σ → C Σ×Σ and hom ∶ (C Σ)op ×C Σ×Σ → C Σop×Σ×Σ,

given for X,Y ∈ C Σ and Z ∈ C Σ×Σ by

(X ⊠ Y )−,−− =X− ⊗ Y−− and hom(X,Z)−,−−,● = Hom(X−, Z●,−−),

and similarly on morphisms. One may be tempted to define the monoidal product on

C Σ through a precomposition with the diagonal functor Σ → Σ × Σ, i.e. (X ⊗ Y )n =
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Xn×Yn for every X,Y ∈ C Σ. Although such definition yields a monoidal product on C Σ,

it does not give rise to a closed monoidal structure in general, due to the lack of a dense

canonical functor Σop → C Σ, compared to ∆● ∶∆→ sSet. Let Hom⊠ ∶ C Σop×C Σ×Σ → C Σ

be the functor induced by taking the end of hom, i.e.

Hom⊠(X,Z)n = ∫
p∈Σ

Hom(Xp, Zn,p),

for every X ∈ C Σ and Z ∈ C Σ×Σ. Then, the monoidal product ⊗ and internal Hom⊗ on

C Σ are given by

− ⊗ −− ∶= Lan⊕ − ⊠ − − and Hom⊗(−,−−) ∶= Hom⊠(−,− − ○⊕),

i.e.

(X ⊗ Y )n =
(p,q)∈⊕↓n

∫ Xp ⊗ Yq and Hom⊗(X,Y )n = ∫
p∈Σ

Hom(Xp, Yn+p),

for every X,Y ∈ C Σ, with a unit (1,∅,∅,⋯) ∈ C Σ, see [May04, §.6]. Expanding the

monoidal product coend formula yields

(X ⊗ Y )n = ∐
p+q=n

((∐
Σn

Xp ⊗ Yq)/Σp ×Σq),

Hence, a morphism of symmetric sequences X ⊗ Y → Z can be realised by (Σp ×
Σq)-equivariant morphisms Xp ⊗ Yq → Zp+q, for every p, q ∈ Σ, see [Jar00, p.506]. The

symmetric suspension spectrum Σ∞T 1 = (1, T, T⊗2, T⊗3,⋯) is a commutative monoid in

C Σ, and hence the category of T -symmetric spectra SptΣ(C , T ) can be defined equiv-

alently as the category of right Σ∞T 1-module in the category of symmetric sequences

C Σ, see [HSS99, Prop.2.2.1]. Thus, the category of T -symmetric spectra in C is a bi-

complete category, with level-wise (co)limits. Also, it forms a closed monoidal category

with a monoidal product

X ∧ Y ∶= coeq (X ⊗ Σ∞T 1⊗ Y ⇉X ⊗ Y ),

where the horizontal morphisms are given by the action of Σ∞T 1 on X and Y , see

[Hov01, §.7].

For every integer n ∈ Σ, there exists an n-evaluation functor

Evn ∶ SptΣ(C , T ) → C

that sends a T -spectrum to its nth-term, and a natural transformation

σn ∶ Evn⊗T → Evn+1,

given by the assembly morphisms, i.e. σn,(X,τ,e) = en. The functor Evn admits a left

adjoint

Fn ∶ C → SptΣ(C , T ),
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given on an object X ∈ C by the monoidal product

Fn(X) ∶= (∅,∅,⋯,∐
Σn

X,∅,⋯)⊗ Σ∞T 1

in C Σ, where the nontrivial term in (∅,∅,⋯,∐ΣnX,∅,⋯) is centred in level n. Then,

in particular, one has F0 = Σ∞T . Also, Evn has a right adjoint

Mn ∶ C → SptΣ(C , T ),

given on an object X ∈ C by the internal Hom⊗

Mn(X) ∶= Hom⊗ (ΣT (1), (∗,∗,⋯,∏
Σn

X,∗,⋯)),

in C Σ, where the nontrivial term in (∗,∗,⋯,∏ΣnX,∗,⋯) is centred in level n.

1.3.1.1. Model Structures on Symmetric Spectra. Throughout this section, fix a

left proper cellular symmetric monoidal model category (C ,M ,S ), with sets I and

J of generating cofibration and weak cofibration, respectively. The model structure

(M , I, J) induces several symmetric monoidal model structures on the category of

T -symmetric spectra in C .

The Projective Model Structure. The functor category C Σ admits canonical sym-

metric monoidal model structures induced level-wise from (C ,M ). These structures

are inhabited by the category SptΣ(C , T ).

Definition 1.3.1. A morphism f of T -symmetric spectra is called a level (weak)

equivalence, a level cofibration, or a level fibration, if the morphism fn is a weak equiv-

alence, a cofibration, or a fibration for every n ∈ Σ. Moreover, f is said to be an

injective fibration (resp. projective cofibration) if it has the RLP with respect to level

weak cofibrations (resp. LLP with respect to level weak fibrations).

Theorem 1.3.2. There exists a left proper model cellular structure on SptΣ(C , T )
whose weak equivalence, cofibrations, and fibrations are level equivalences, projective

cofibrations, and level fibrations, respectively; it is called the projective model struc-

ture on SptΣ(C , T ). Moreover, the sets IT ∶= ⋃n∈Σ Fn(I) and JT ∶= ⋃n∈Σ Fn(J) are

the generating cofibration and weak cofibration, respectively, for the projective model

structure.

Proof. See [Hov01, Th.8.2]. �

Denote the resulting model category by SptΣ(C , T )proj. Since the functor Evn takes

level equivalences and level fibrations to equivalences and fibrations in M , it is a right

Quillen functor, and hence Fn is a left Quillen functor, for every n ∈ Σ.

Theorem 1.3.3. The pair of the projective model structure and the closed sym-

metric monoidal structure endues the category SptΣ(C , T ) with a symmetric monoidal
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model structure. Moreover, the functor − ∧ Σ∞T T ∶ SptΣ(C , T )proj → SptΣ(C , T )proj is

a left Quillen functor.

Proof. See [Hov01, Th.8.3]. �

The Stable Model Structure. The left Quillen functor −∧Σ∞T T , in Theorem 1.3.3, is

not necessarily a left Quillen equivalence. Since the model category SptΣ(C , T )proj is

left proper and cellular, it admits Bousfield localisations with respect to small subsets

of its morphisms; and the functor − ∧ Σ∞T T becomes a left Quillen equivalence for an

adequate such localisation, see Theorem 1.3.5.

For every X ∈ C and n ∈ Σ, let

ζ̂QXn ∶ QX ⊗ T =∐
Σ1

(QX ⊗ T ) Ð→ ∐
Σn+1

(QX ⊗ T ) = Evn+1 FnQX

be the canonical such morphism induced by the inclusion Σ1 ⊂ Σn+1, where Q is the

cofibrant replacement functor of (C ,M ), and let

ζQXn ∶ Fn+1(QX ⊗ T ) Ð→ FnQX

be the preimage of ζ̂QXn along the adjunction Fn+1 ⊣ Evn+1.

Definition 1.3.4. The stable model structure on SptΣ(C , T ) is a left Bousfield

localisation of the projective model structure on SptΣ(C , T ) with respect to the small

set

ζT (I) ∶= {ζQXn ∶ Fn+1(QX ⊗ T ) Ð→ FnQX ∣X ∈ dom(I)⋃codom(I)}.

Denote the resulting model category by SptΣ(C , T )stab. The ζT (I)-weak equivalences

and ζT (I)-fibrations are called T -stable (weak) equivalences and T -stable fibrations,

respectively.

Theorem 1.3.5. Assume that the domains of morphisms of I are cofibrant objects

in M . Then, the pair of the stable model structure and the closed symmetric monoidal

structure endues SptΣ(C , T ) with a symmetric monoidal model structure. Moreover,

the functor − ∧ Σ∞T T ∶ SptΣ(C , T )stab → SptΣ(C , T )stab is a let Quillen equivalence,

i.e. the total left derived functor − ∧L Σ∞T T is an autoequivalence of categories on

HSptΣ(C , T )stab, with a quasi-inverse RHom∧(Σ∞T T,−).

Proof. See [Hov01, Th.8.10 and Th.8.11]. �

The total derived functors −∧LΣ∞T T and RHom∧(Σ∞T T,−) are called the T -suspension

functor and the T -loop functor, respectively, and usually denoted by ΣT and ΩT , re-

spectively.

The T -suspension functor has a simple description on the stable homotopy category.

Define the left shift functor sl ∶ SptΣ(C , T ) → SptΣ(C , T ) by

sl(−) ∶= − ∧ F1(1),
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i.e. for X ∈ SptΣ(C , T ), one has sl(X)0 = ∅ and sl(X)n = ∐ΣnXn−1/Σn−1, for every

integer n ≥ 1, with the canonical Σn-action. Let the right shift functor sr ∶ SptΣ(C , T ) →
SptΣ(C , T ) be the right adjoint of sl given by

sr(−) ∶= Hom∧(F1(1),−),

i.e. for X ∈ SptΣ(C , T ), one has sr(X)n = Xn+1, for every integer n ≥ 0, with the

Σn-action induced by the canonical inclusion Σn ↪ Σn+1.

Theorem 1.3.6. There exists a natural isomorphism between the total derived

functors −∧L Σ∞T T and R sr. Also, there exists a natural isomorphism between the total

derived functors RHom∧(Σ∞T T,−) and L sl.

Proof. See [Hov01, Th.8.10]. �

The Additive Structure of the Stable Homotopy Category. The stable homotopy cate-

gory H ∶=HSptΣ(C , T )stab is an additive category. The abelian group structure on the

set H(X,Y ) is induced formally by the abelian cogroup structure on X ≅ Σ2(Ω2X),
for every X,Y ∈ H, see [Hel68, Cor.7.2]. The finite coproduct on SptΣ(C , T ) induces

a finite coproduct on H, making H into an additive category, by [ML98, §.VIII.2].

Moreover, the suspension functor ΣT is an additive endofunctor.

The pair (H,ΣT ) admits a canonical triangulated structure. Therefore, we devote

the next section to the study of triangulated categories, and we recall such canonical

triangulated structure in Example 1.4.2.

1.4. Triangulated Categories

The study of derived categories led to the formulation of the notion of triangu-

lated categories, which is usually credited to Verdier (1963). The central notion in

triangulated categories is that of distinguished triangles, which play the role of short

exact sequences in abelian categories. Also, distinguished triangles induce long ex-

act sequences of abelian groups allowing the development of the conventional diagram

machinery that is frequently used in homological algebra on abelian categories.

1.4.1. Preliminaries of Triangulated Categories. Fix an additive category

with a suspension (A ,Σ), i.e. Σ ∶ A → A is an additive autoequivalence of categories,

and let φΣ be the adjunction induced by the natural isomorphism idA ⇒ Σ
-1 ○Σ.

A triangle in (A ,Σ) is a diagram

T ∶ X
u // Y

v // Z
w // ΣX

in A . When convenient, we refer to the triangle T by the triangle (u, v,w) on (X,Y,Z),
and when no confusion may arise that is shortened to the triangle (u, v,w). A triangle

(u, v,w) is called a candidate triangle if v○u = 0, w○v = 0, and Σ(u)○w = 0. A morphism

of triangles is a natural transformation between them.
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Definition 1.4.1. A triangulated structure on (A ,Σ) is a set T of triangles in

(A ,Σ), called distinguished triangles of T , subject to the following axioms

TR1 (a) every morphism u ∶X → Y in A can be completed into a triangle (u, v,w)
on (X,Y,Cone(u)) in T , for some object Cone(u) ∈ A , which is called a

cone of u in T ;

(b) for every object A ∈ A the triangle (idA,0,0) on (A,A,0) belongs to T ;

(c) every triangle in (A ,Σ) that is isomorphic to a triangle in T is in T ;

TR2 a triangle (u, v,w) is in T if and only if the triangle (v,w,−Σu) belongs to

T ;

TR3 given two triangles T and T ′ in T on (X,Y,Z) and (X ′, Y ′, Z ′), respectively,

and two compatible morphisms f ∶ X → X ′ and g ∶ Y → Y ′, i.e. morphisms

that make the solid diagram

T ∶

��

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

ΣX

Σ f

��
T ′ ∶ X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′,

commute, the pair (f, g) can be completed into a morphism of triangles

(f, g, h) ∶ T → T ′; and

TR4 (Verdier’s axiom) for triangles (u1, v1,w1), (u2, v2,w2), and (u3, v3,w3) in T ,

in which u2 = u3 ○ u1, there exists a triangle (u4, v4,w4) in T that makes the

diagram

X

u2

��

u1 ��

Z

v3

  

v2

  

X ′

w4

""

w3

""

ΣZ ′

Y

u3

>>

v1   

Y ′

v4

==

w2

!!

ΣY

Σ v1

<<

Z ′

u4

>>

w1

??ΣX

Σu1

<<

(6)

commute.

The triple (A ,Σ,T ) is said to be a triangulated category. A triangulated functor

F ∶ (B,Ω,S ) → (A ,Σ,T ) between triangulated categories is an additive functor that

preserves the triangulated structure, i.e. it is an additive functor F ∶ B → A with a

natural isomorphism Φ ∶ F ○Ω→ Σ ○F which sends a triangle (u, v,w) in S to a triangle

(F (u), F (v),ΦX ○ F (w)) in T .

Verdier’s axiom asserts the existence of the dotted morphisms making the whole

diagram commute not knowing a priori that the solid diagram is commutative, which

imposes a strong restriction on the set of distinguished triangles. Verdier’s axiom is



48

usually called the octahedron axiom based on a possible rearrangement of the diagram

(6) into a three-dimensional octahedron, see [Wei94, p.375]; whereas the diagram (6)

is due to May, given in [May05].

Example 1.4.2. Let (C ,M ) be a left proper cellular monoidal model category, let

T ∈ C , and let H ∶= HSptΣ(C , T )stab be the stable homotopy category of T -symmetric

spectra, as in §.1.3.1.1. Then, the additive category with suspension (H,ΣT ) admits

a canonical triangulated structure, called the cofibration-triangulation, whose distin-

guished triangles are T -symmetric suspension spectra of cofibre sequences in C , see

[Hel68, §.9].

Example 1.4.3. Let (A ,Σ,T ) be a triangulated category, and let A → Ã be its

Karoubian envelope, see [BS01, Def.1.2]. Then, the additive structure, the suspension

functor, and the triangulated structure descend to Ã , making it into a triangulated

category, see [BS01, Th.1.7].

Definition 1.4.4. Let (A ,Σ,T ) be a triangulated category, let B be an abelian

category, and let H ∶ A →B be a functor. The functor H is said to be homological on

(A ,Σ,T ) if it maps every triangle (u, v,w) in T to a half exact sequence

H(X)
H(u) // H(Y )

H(v) // H(Z)

in A . A cohomological functors is defined dually.

Remark 1.4.5. The corepresentable and representable functors hA and hA are ho-

mological and cohomological functors, respectively, for every object A ∈ A . This, in

particular, shows that Cone(u) is both a weak cokernel for u and a weak kernel for Σu,

for every morphism u in A .

A candidate triangle is said to be exact if it is mapped to a half exact sequence by

every corepresentable and representable functor.

1.4.1.1. The Diagram Lemmas. A triangulated structure encodes enough informa-

tion to provide the main diagram machinery one usually uses in homological algebra.

Lemma 1.4.6 (5-Lemma). Let (A ,Σ,T ) be a triangulated category, and let (f, g, h) ∶
T → T ′ be a morphism of exact triangles, such that both f and g are isomorphisms.

Then, h is an isomorphism.

Proof. A direct result of the Yoneda lemma and the 5-Lemma for abelian groups,

see [Nee01, Ex.1.1.15 and Prop.1.1.20]. �

As a result of the 5-Lemma, the completion of a morphism into a distinguish triangle

in a triangulated structure is unique up to non-canonical isomorphisms. That implies

that a morphism is an isomorphism if and only if its cone is isomorphic to the zero

object, see [Nee01, Cor.1.2.6].
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Direct consequences of the 5-Lemma also include:

● a direct sum of triangles is distinguished if and only if its summands are, see

[Nee01, Prop.1.2.1 and Prop.1.2.3]; and

● a direct sum of objects is a cone of the zero morphism from the desuspension

of one of the object to the other, see [Nee01, Cor.1.2.7 and Lem.1.2.8].

Lemma 1.4.7 (3 × 3-Lemma). Let (A ,Σ,T ) be a triangulated category. Then,

every commutative square

X
u //

f
��

Y

g

��
X ′

u′
// Y ′

in A can be completed into the diagram below

X

f
��

u // Y

g

��

v // Z

h
��

w // ΣX

Σ f
��

X ′

f ′

��

u′ // Y

g′

��

v′ // Z

h′

��

w′ // ΣX ′

Σ f ′

��
X ′′

f ′′

��

u′′ // Y

g′′

��

v′′ // Z

h′′

��

w′′ // ΣX ′′

Σ f ′′

��
ΣX

Σu // ΣY
Σ v // ΣZ

Σw // Σ2X,

that is commutative everywhere apart from the bottom right square, which is anticom-

mutative, with all horizontal and vertical triangles being distinguished in T .

Proof. See [May05, Lem.1.7]. �

1.4.2. Homotopy (Co)limits in Triangulated Categories. In general homo-

topy theory, one relays on the extra machinery of the presenting category to present

homotopy (co)limits, which are usually difficult to realise directly on a homotopy cate-

gory. However, triangulated categories, and hence stable homotopy categories, possess

intrinsic and easy-to-express homotopy pullbacks and pushouts. However, that comes

at the expense of not having well-behaved homotopy (co)limits, which means that such

homotopy (co)limits are not functorial.

1.4.2.1. Homotopy Cartesian Squares. Recall that in an abelian category, a com-

mutative square

X
f //

g

��

Z

g′

��
X ′

f ′
// Z ′

(7)
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is Cartesian or cocartesian if and only if the sequence

0 // X

⎛
⎝
g
−f

⎞
⎠
// X ′⊕Z

( f ′ g′ )
// Z ′ // 0

is left exact or right exact, respectively. Since distinguished triangles play the role of

exact sequences in a triangulated category, one distinguishes a commutative square (7)

that gives rise to a distinguished triangle

X

⎛
⎝
g
−f

⎞
⎠
// X ′⊕Z

( f ′ g′ )
// Z

δ // ΣX,

for some morphism δ ∶ Z → ΣX, and calls it a homotopy Cartesian square. This notion

is self-dual, due to axiom TR2 in Definition 1.4.1. In a homotopy Cartesian square (7),

the pair (f, g) is called a homotopy pullback of (f ′, g′), and (f ′, g′) is called a homotopy

pushout of (f, g).

Both the homotopy pullbacks and homotopy pushouts always exist in any trian-

gulated category, and they are unique up to non-canonical isomorphisms. This allows

the construction of Verdier’s Quotient of a triangulated category with respect to a

triangulated subcategory, as in §.1.4.3.

When a triangulated category admits certain (co)limits, it provide more general

homotopy (co)limits, see [Nee01, §.1.6].

1.4.3. Thick Subcategories and Verdier’s Quotient. Verdier’s quotient pro-

vides a universal machinery to contract triangulated subcategories, through localising

the ambient triangulated category with respect to an associated set of morphisms.

Definition 1.4.8. Let (A ,Σ,T ) be a triangulated category. A full triangulated

subcategory in (A ,Σ,T ) is a full subcategory i ∶ B ↪ A that is closed with respect

to the suspension and desuspension, such that (B,ΣB) is endued with a triangulated

structure with respect to which the functor i is triangulated.

The restriction of the definition to full subcategories guarantees the uniqueness of

the triangulated substructure on (B,ΣB) in (A ,Σ,T ), denoted by TB, which given

by the set of all triangles in B that are distinguished in T . Hence, we may abuse the

notation and refer to (B,ΣB,TB) by B.

In practice, one is interested in full triangulated subcategories that are closed under

isomorphisms in the ambient category, called strict full triangulated subcategories, see

[Tho97] and [Nee01, Def.1.5.1]. In such categories, stability with respect to the

suspension becomes a consequence of the other conditions.
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Example 1.4.9. Let F ∶ (B,Ω,S ) → (A ,Σ,T ) be a triangulated functor, and let

kerF be the strict kernel of the additive functor F , i.e. kerF is the full subcategory

in B with a set of objects

Ob(kerF ) = {B ∈ B ∣ F (B) ≅ 0A }.

Then, kerF is a strict full triangulated subcategory in (B,Ω,S ), see [Nee01, Lem.2.1.4].

In fact, kerF is not only additive, but also contains all summands of its objects, see

[Nee01, Lem.2.1.5]. A strict full triangulated subcategory that contains all summands

of its objects is called a thick triangulated subcategory, see [Ric89].

Definition 1.4.10. Let B be a strict full triangulated subcategory in a triangulated

category (A ,Σ,T ). A Verdier’s quotient of (A ,Σ,T ) with respect to B, if it exists,

is an initial universal triangulated functor

QB ∶ (A ,Σ,T ) → (A/B,ΣA/B,TA/B)

for which B ⊂ kerQB.

Remark 1.4.11. Using Lemma 1.4.6, one shows that a triangulated functor F from

A contracts objects of B if and only if it inverts morphisms in the set

WB ∶= {u ∈ Mor(A ) ∣ Cone(u) ∈ B}.

Morphisms of WB are called B-weak equivalences, and they admit several desired

properties that are essential for the construction of Verdier’s quotient. In particular,

WB satisfies the two-out-of-three property and is closed with respect to homotopy

pushouts and homotopy pullbacks, see [Nee01, Lem.1.5.5-8]. These properties, in

addition to cones being weak cokernels, as in Remark 1.4.5, imply that A admits left

and right calculus of fractions with respect to WB, see [GZ67, §.I].

Let HB denote a homotopy category of (A ,WB). The category HB admits a nat-

ural triangulated structure induced from (A ,Σ,T ), with respect to which the localisa-

tion functor LWB
is triangulated. Since LWB

is triangulated and inverts the morphisms

of WB, it contracts objects of B, by Remark 1.4.11, and hence one has B ⊆ kerLWB
.

Theorem 1.4.12. Let B be a strict full triangulated subcategory in a triangulated

category (A ,Σ,T ). Then, a Verdier’s quotient of (A ,Σ,T ) with respect to B always

exists, and it is given by the localisation of A with respect to the set of morphisms WB.

Moreover, kerQB is the full subcategory of summands of objects in B. In particular,

when B is a thick triangulated subcategory, one has kerQB = B.

Proof. See [Nee01, Lem 2.1.26-33]. �

Example 1.4.13. The derived category D(A ) of an abelian category A is a Verdier’s

quotient of the classical homotopy category of complexes K(A ) with respect to acyclic

complexes.
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1.4.4. Brown’s Representability. Brown’s Representability for triangulated cat-

egories, recalled in Theorem 1.4.15, provides a criterion for cohomological functors on

‘nice’ triangulated categories to be representable.

Let (A ,Σ,T ) be a triangulated category admitting small coproducts, and let B

be a set of objects in A . The triangulated category (A ,Σ,T ) is said to be generated

by B if it is the smallest thick subcategory in (A ,Σ,T ) that is closed with respect to

coproducts in A and contains B. Moreover, (A ,Σ,T ) is said to be compactly generated

if it is generated by a small set B of compact objects in A , i.e. for every K ∈ B and for

every small set {Xλ ∈ A ∣ λ ∈ Λ} of objects in A , the canonical morphism

⊕
λ∈Λ

A (K,Xλ) → A (K,⊕
λ∈Λ

Xλ)

is an isomorphism of abelian groups, cf. Definition 1.2.33.

Definition 1.4.14. Let (A ,Σ,T ) be a triangulated category admitting small co-

products. The triangulated category (A ,Σ,T ) is said to satisfy the Brown’s Repre-

sentability Theorem if for every cohomological functor F ∶ A op → Ab the following

statements are equivalent

● F is representable; and

● F commutes with small products.

Theorem 1.4.15. Let (A ,Σ,T ) be a compactly generated triangulated category.

Then, (A ,Σ,T ) satisfies the Brown’s Representability Theorem.

Proof. See [Nee96, Th.3.1] and [SS03b, Lem.2.2.1]. �

In fact, the statement of this theorem holds in a greater generality, see [Nee01,

Ch.8].

1.4.5. t-Structures and Weight Structures. The axioms of a triangulated cat-

egory capture core properties of the derived category of an abelian category; yet, they

do not provide all the tools available in homological algebra, in particular there is no

canonical choice of cones, compared to the mapping cones for complexes.

1.4.5.1. t-Structures. A t-structure on a triangulated category, first introduced in

[BBD82, §.1.3], guarantees that the triangulated category is equivalent to the derived

category of an abelian category, which can be retrieved by means of the t-structure, see

Theorem 1.4.20.

Definition 1.4.16. Let (A ,Σ,T ) be a triangulated category. A t-structure on

(A ,Σ,T ) is a pair t = (t≤0, t≥0) of subsets of objects of A such that

t1 t≤0 and t≥0 are strict, i.e. they contain all objects isomorphic to their elements;

t2 t≤0 ⊂ Σ-1
t≤0 and Σ

-1
t≥0 ⊂ t≥0;

t3 A (t≤0,Σ
-1

t≥0) = 0, i.e. for every X ∈ t≤0 and Y ∈ t≥0, A (X,Σ-1
Y ) = 0; and
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t4 (t-decomposition) for every object X ∈ A there exists a distinguished triangle

X≤0 →X → Σ
-1

X≥0 → ΣX≤0,

with X≤0 ∈ t≤0 and X≥0 ∈ t≥0.

The full subcategory ♡ t ⊂ A with objects Ob(♡ t) ∶= t≤0⋂ t≥0 ⊂ Ob(A ) is called the heart

of the t-structure t = (t≤0, t≥0).

Example 1.4.17. Let B be an abelian category. The derived category D(B) admits

a t-structure, given by the pair (Ob(D≤0(B)),Ob(D≥0(B))) of the full subcategories of

complexes whose cohomology vanish in positive degrees and negative degrees, respec-

tively; it is called the standard t-structure on the derived category D(B), see [GM03,

Prop.IV.4.3].

For a t-structure t on a triangulated category (A ,Σ,T ), let t≤n and t≥n denote full

additive subcategories Σ−n t≤0 and Σ−n t≥0, respectively.

Although the t-decomposition property does not require the functoriality or unique-

ness of the decomposition, the other axioms imply its uniqueness up to canonical iso-

morphisms.

Lemma 1.4.18. Let t = (t≤0, t≥0) be a t-structure on a triangulated category (A ,Σ,T ).
Then,

● the inclusion ι≤nt ∶ t≤n ↪ A admits an additive right adjoint τ≤nt ∶ A → t≤n; and

● the inclusion ι≥nt ∶ t≥n ↪ A admits an additive left adjoint τ≥nt ∶ A → t≥n.

Moreover, there exists a t-decomposition

τ≤0
t X →X → Σ

-1

τ≥0
t X → Σ τ≤0

t X (8)

for every X ∈ A . Also, every t-decomposition for X is canonically isomorphic to (8).

Proof. See [GM03, Lem.IV.4.5]. �

The functors τ≤nt and τ≥nt are called the t-structure truncation functors.

Example 1.4.19. Let B be an abelian category, and let t be the standard t-structure

on the derived category D(B), with the standard triangulated structure. Then, the

functors τ≤nt and τ≥nt coincide with the canonical truncation functors for complexes in

B.

The functors τ≤0
t and τ≥0

t are used to construct kernels and cokernels for morphisms

in ♡ t, which is the main component of the proof of the following theorem, see [GM03,

§.IV.4.7].

Theorem 1.4.20. Let t be a t-structure on a triangulated category (A ,Σ,T ).
Then, ♡ t is an admissible abelian subcategory in A .

Proof. See [BBD82, Th.1.3.6]. �
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1.4.5.2. Co-t-structures or Weight structures. A co-t-structure or weight structure

is a dual notion to a t-structure. It was introduced independently in [Pau08] un-

der the name of a co-t-structure and in [Bon10] under the name of a weight struc-

ture. When it exists, it is used to realise a triangulated category as the classical

homotopy category of complexes in an additive category. Bondarko uses the Chow

weight structure, constructed in [Bon10, §.6.5], to establish an equivalence of cate-

gories Kb(CHMeff
Q (k)) → DMeff

gm(k,Q) for a perfect field k, and hence an isomorphism

between the Grothendieck rings K⊕(CHMeff
Q (k)) and K△ (DMeff

gm(k,Q)), see [Bon11].

Definition 1.4.21. Let (A ,Σ,T ) be a triangulated category. A weight structure

on (A ,Σ,T ) is a pair w = (w≤0,w≥0) of subsets of objects of A such that

w1 w≤0,w≥0 are additive and Karoubi-closed in A , i.e. they contain all retracts

of their objects;

w2 w≤0 ⊂ Σ-1
w≤0 and Σ

-1
w≥0 ⊂ w≥0;

w3 A (Σ-1
w≥0,w≤0) = 0, i.e. for every X ∈ w≥0 and Y ∈ w≤0, A (Σ-1

X,Y ) = 0; and

w4 (weight decomposition) for every object X ∈ A there exists a distinguished

triangle

Σ
-1

X≥0 →X →X≤0 → ΣΣ
-1

X≥0,

with X≤0 ∈ w≤0 and X≥0 ∈ w≥0.

The full subcategory ♡w ⊂ A with objects Ob(♡w) ∶= w≤0⋂w≥0 ⊂ Ob(A ) is called

the heart of the weight structure w = (w≤0,w≥0).

Example 1.4.22. Let B be a Karoubian additive category, and let Kb(B) be

the bounded classical homotopy category of complexes in B. Consider the standard

triangulated structure on Kb(B), in which cones are isomorphic to the mapping cones.

Then, the sets w≤0 and w≥0 of complexes that are homotopy equivalent to bounded

complexes concentrated in non-positive and non-negative degrees, respectively, define

a weight structure w on Kb(B). Moreover, B is equivalent to ♡w, and the weight

decomposition is given by the naive truncation of complexes, see [Bon10].

Theorem 1.4.23. Let w be a weight structure on a triangulated category (A ,Σ,T )
such that

⋃
n∈Z≥0

Σ−n (w≤0) = Ob(A ) and ⋃
n∈Z≥0

Σ−n (w≥0) = Ob(A ).

If ♡w is Karoubian then ♡w generates A .

Proof. See [Bon10, Prop.5.2.2]. �

1.5. Algebraic K-Theories

Algebraic K -theory of a category with a structure is a decategorification that gener-

alises its Grothendieck group and emphasises the properties encoded in the structure.
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1.5.1. Quillen Exact Categories. Let A be a category, for a short sequence

M ′ i→M
q→M ′′ (9)

in A , i (resp. q) is called the inflation (resp. deflation) of the sequence. Let S be a set

of short sequences in A , and let M ′,M ′′ ∈ A . An S -extension of M ′ by M ′′, if it exists,

is an object M ∈ A that fits into a short sequence (9) in S . A subcategory B ⊂ A is

said to be (essentially) closed under S -extensions in A if for every short sequence (9)

in S in which M ′,M ′′ are (isomorphic to) objects in B, then M is (isomorphic to) an

object in B.

Quillen exact categories are modelled over a pair (B,E ) of a full additive subcat-

egory B of an abelian category A , and the set E of all short exact sequences in B

which are also exact in A , where B is (essentially) closed under E -extensions in A , see

[Qui73, §.2]. Although every monomorphism in B fits as an inflation in a short exact

sequence in A , it might not be an inflation in a short exact sequence in B that is exact

in A . Inflations (resp. deflations) in E are called admissible monomorphisms (resp. ad-

missible epimorphisms). Admissible monomorphisms (resp. admissible epimorphisms)

will be distinguished by arrows ↣ (resp. ↠).

Lemma 1.5.1. Let B be a full additive subcategory in an abelian category A , which

is (essentially) closed under extensions in A , and let E be the set of all short exact

sequences in B which are also exact in A . Then,

QE1 ● the set E is closed under isomorphisms in B;

● the set E contains all split extensions in B, i.e. the short sequence

X1
i1↣X1⊕X2

p2↠X2

in B belongs to E for every X1,X2 ∈ B ; and

● the inflation (resp. deflation) of every sequence in E is the kernel of its

deflation (resp. cokernel of its inflation);

QE2 the set of inflations (resp. deflations) in E is closed under compositions and

pushouts (resp. pullbacks) in B; and

QE3 every morphism M ′ → M that has a cokernel in B and factors an inflation

M ′ → N in E is an inflation in E . Dually, every morphism M →M ′′ that has

a kernel in B and factors a deflation N →M ′′ in E is a deflation in E .

Proof. See [Qui73] and [Büh10]. �

Definition 1.5.2. Let B be an additive category, and let E be a set of short

sequences in B. The set E is called a Quillen exact structure on B if it satisfies

the statementsQE1-QE3 in Lemma 1.5.1. Then, the pair (B,E ) is called a Quillen

exact category, and sequences in E are called exact sequences. A Quillen exact functor

F ∶ (B,E ) → (C ,F ) between Quillen exact categories is an additive functor F ∶ B → C

that maps sequences in E to sequences in F .
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Example 1.5.3. Every additive category admits the split Quillen exact structure,

given by the split exact sequences, which is the smallest Quillen exact structure on

an additive category. On the other hand, an abelian category admits another Quillen

exact structure, given by all short exact sequences.

Theorem 1.5.4 (Gabriel-Quillen Embedding Theorem). Every small Quillen exact

category (B,E ) can be realised as a full additive subcategory in an abelian category

A , such that B is (essentially) closed under extensions in A .

Proof. See [Büh10, App.A]. �

Definition 1.5.5 (Quillen’s Q Construction). Let (B,E ) be an essentially small

Quillen exact category. Define the category QE B to be the category with

● the set of objects Ob(QE B) ∶= Ob(B); and

● for every X,Y ∈ Ob(QE B), the set homQB(X,Y ) is the isomorphism classes of

roofs X
i→ Z

p← Y with i and p being admissible monomorphism and admissible

epimorphism, respectively;

while the composition is given by pushouts in B. Then, let

B+E B ∶= ΩB∣NQE B∣,

where N is the nerve functor, ∣−∣ is the geometric realisation functor, B is the classifying

space functor, and Ω is the loop functor, see [Nee97, §.0].

In fact, B+E B is a pointed space, whose point is induced from the zero object in B.

Quillen’s K -groups for (B,E ) are the homotopy groups of B+E B, i.e. for an integer

n ≥ 0, let

KE
n(B) ∶= πn(B+E B).

Example 1.5.6. Let (B,E ) be a Quillen exact category. Then, it’s Quillen’s

KE
0 -group is given by the abelian group generated by isomorphism classes of objects in

B and relations {[Y ] = [X] + [Z] ∣ there exists an exact sequence X → Y → Z in E },

where [U] denotes the isomorphism class of an object U in B. Particularly,

● for an additive category B, with the split Quillen exact structure E , the

abelian group KE
0 (B) is generated by isomorphism classes of objects in B and

relations {[X⊕Y ] = [X] + [Y ] ∣X,Y ∈ Ob(B)}, it is denoted by K⊕(B); and

● for an abelian category A , with the short exact sequences structure E , the

abelian group KE
0 (A ) is generated by isomorphism classes of objects in A and

relations {[Y ] = [X] + [Z] ∣ there exists a short exact sequence 0 → X → Y →
Z → 0 in A };

i.e. in both cases, the KE
0 -group coincides with the Grothendieck group.
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Since a Quillen exact category (B,E ) is additive and all split extensions in B

belongs to E , there exists a canonical quotient group homomorphism

K⊕(B) → KE
0 (B),

which is not injective in general.

1.5.2. Waldhausen K-Theory.

Definition 1.5.7. Let C be a category with a zero object, let cC be a subcategory

in C that contains all isomorphisms in C . The pair (C ,cC ) is called a category with

cofibrations, and cC is called a subcategory of cofibrations in C , if

W1 the initial morphism 0→ U belongs to cC for every object U ∈ C ; and

W2 the pushout of all morphisms of cC exist in C , and cC is closed under

pushouts.

A cofibration in a category with cofibrations is denoted by a feathered arrow ↣.

A category with cofibrations is closed under finite coproducts. That is because it

has an initial object 0 ∈ C , and for objects U,V ∈ C , the initial morphisms 0 ↣ U

and 0 ↣ V are cofibrations, and hence the coproduct U∐V = U∐0U exists in C .

Moreover, all cofibrations has cokernels in C , given by pushouts along the terminal

morphisms. Let i ∶ U ↣ V be a cofibration, and denote by V /U its cokernel V ∐U 0.

For a cofibration i ∶ U ↣ V , a cokernel sequence U
i↣ V ↠ V /U is called a cofibre

sequence of i.

Definition 1.5.8. Let (C ,cC ) be a category with cofibrations, and let wC be a

subcategory in C that contains all isomorphisms in C . The triple (C ,cC ,wC ) is called

a Waldhausen category, and (cC ,wC ) is called a Waldhausen structure on C , if they

satisfy the glueing axiom, i.e.

W3 for every solid commutative diagram

U

⌟

// i //

j

��

f

!!

V

iV

��

g

  
U ′

⌟

// i′ //

j′

��

V ′

iV ′

��

W // iW //

h
!!

Z

h
  

W ′ // iW ′ // Z ′,

in C , such that the morphisms i, i′ in cC and the diagonal solid morphisms

belong to wC , then the induced morphism Z → Z ′ belongs to wC , for Z ∶=
W ∐U V and Z ′ ∶=W ′∐U ′ V ′.
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Then, morphisms in wC are called the weak equivalences of the Waldhausen structure.

If wC also satisfies the two-out-of-three property then the Waldhausen category is said

to be saturated. Moreover, the Waldhausen structure is said to satisfy the extension

axiom if for a morphism of cofibre sequences

U //

u

��

V //

v

��

V /U
c

��
U ′ // V ′ // V ′/U ′,

having u and c in wC implies that v is in wC .

When no confusion arise, we refer to the Waldhausen category (C ,cC ,wC ) by C .

For Waldhausen categories C and D , a functor F ∶ C → D is said to be exact with

respect to the Waldhausen structures, if it preserves cofibrations, weak equivalences,

and pushouts along cofibrations, i.e. F(cC ) ⊂ cD , F (wC ) ⊂ wD , and for every

cofibration i ∶ U ↣ V in cC the canonical morphism

F (V ) ∐
F (U)

F (X) → F (V ∐
U

X)

is an isomorphism in D , for every morphism f ∶ U → X in C . On the other hand, a

natural transformation α ∶ F ⇒ G ∶ C → D between exact functors is said to be a weak

equivalence if the components of α belong to wD , see [Wal85, p.330].

Example 1.5.9. Let Cτ be an essentially small site. Then, the category of (finitely

presented objects of) pointed τ -sheaves of sets on C is a Waldhausen category, in

which the cofibrations are the monomorphisms and the weak equivalence are the iso-

morphisms.

Example 1.5.10. The full subcategory of cofibrant objects in a pointed model cat-

egory is a category with cofibrations. Moreover, if the model category is left proper,

then the full subcategory of cofibrant objects is a saturated Waldhausen category whose

set of cofibrations is the set of cofibration of the model category, and whose set of weak

equivalences is the set of weak equivalences of the model category. That includes Kan-

Quillen’s model category of (finitely presented objects3 of) pointed simplicial sets; and

the local injective model category of (finitely presented objects of) pointed simplicial

(pre)sheaves on an essentially small site. A left Quillen functor between such model

categories is not necessarily an exact functor with respect to the corresponding Wald-

hausen structures. Although a left Quillen functor preserves all cofibrations and all

pushouts (the latter for being left adjoint), it does not necessarily preserve all weak

equivalences. However, since the geometric realisation ∣−∣ ∶ sSet● → Top● preserves all

weak equivalences, it is an exact functor with respect to the Waldhausen structure

3An object X ∈ C is said to be finitely presented in C if the corepresentable functor hX preserves
filtered colimits.
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associated to Kan-Quillen’s and Quillen-Serre’s model structures of pointed simplicial

sets and pointed topological spaces, respectively.

Example 1.5.11. Let (A ,E ) be a Quillen exact category, let cA be the set of

admissible monomorphisms in E , and let wA be the set of all isomorphisms in A .

Then, (A ,cA ,wA ) is a Waldhausen category, see [TT90, §.1.2.9].

Definition 1.5.12 (Waldhausen S-construction). Let C be an essentially small

Waldhausen category. The simplicial essentially small category S●C ∶∆op → CAT is the

largest simplicial subcategory S●C of the simplicial functor category Fun(Mor([●]),C )
such that, for every integer n ≥ 0,

● for every functor F ∶ Mor([n]) → C in Ob(SnC ) and for every pair of compos-

able morphisms ϕ ∶ i ≤ j and ϑ ∶ j ≤ k in [n], the sequence

F (ϕ) F (idi,ϑ)Ð→ F (ϑ ○ ϕ) F (ϕ,idk)Ð→ F (ϑ)

is a cofibre sequence; and

● for every natural transformation τ ∶ F → G in the category SnC , the compo-

nent morphism τϕ ∶ F (ϕ) → G(ϕ) is a weak equivalence, for every morphism

ϕ in [n].

Definition 1.5.13. Let C be an essentially small Waldhausen category. The Wald-

hausen K -theory of C is the spectra

K(C ) ∶= Ω∞ ∣N (S●C )∣.

For every integer n ≥ 0, Waldhausen K -group Kn(C ) is the homotopy group

Kn(C ) ∶= πn K(C ) = πn+1∣N (S●C )∣.

An exact functor F ∶ C → D between essentially small Waldhausen categories

induces a map of spectra K(F ) ∶ K(C ) → K(D), and a weak equivalence α ∶ F ⇒ G

between exact functors induces a homotopy K(F ) ⇒ K(G), see [Wal85, Prop.1.3.1].

Theorem 1.5.14. Let (A ,E ) be an essentially small Quillen exact category. Then,

there exists a natural homotopy equivalence between Quillen’s K -theory spectra of

(A ,E ) and Waldhausen’s K -theory spectra of the associated Waldhausen category, as

in Example 1.5.11.

Proof. See [Wal85, §.1.9]. �

The Waldhausen K0 group is known to have a simpler expression, given as follows:

K0(C ) is the abelian group generated by isomorphism classes of objects in C modulo

the relations

(1) [U] = [V ] if there exists a weak equivalence U → V ; and

(2) [V ] = [U] + [V /U] for every cofibre sequence U ↣ V ↠ V /U ;
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where [X] denotes the isomorphism class of an object X in C , see [TT90, §.1.5.6].

Thus, an exact functor between essentially small Waldhausen categories induces a

canonical group homomorphism between their Waldhausen K0 groups.

For an essentially small Waldhausen category C , there exist cofibre sequences

0↣ 0↠ 0 and U ↣ U∐V ↠ V,

and hence [0] is the identity in K0(C ) and [U∐V ] = [U] + [V ], for every U,V ∈ C .

Also, for cofibrations i ∶ U ↣ V and j ∶ U ↣W , there exist a cofibre sequence

U ↣ V ∐
U

W ↠ V /U∐W /U,

which implies [V ∐UW ] = [V ] + [W ] − [U].

Lemma 1.5.15 (Eilenberg Swindle). Let C be an essentially small Waldhausen cate-

gory that is closed under countable coproducts. Then, the spectrum K(C ) is connected,

i.e. the group K0(C ) vanishes.

Proof. Let U be an object in C , then there exists ∐NU ∈ C . Since the initial

morphisms 0 → U and 0 → ∐NU are cofibrations, the morphism U → ∐NU induced

by the pushout square

0

⌟��

// ∐NU

��
U // ∐NU

in C is a cofibration. Since the composition 0 → U → 0 coincides with the unique

isomorphism id0 and a cobase change along a composition is given by the composition

of cobase changes, there exists a cofibre sequence

U ↣ ∐
N

U ↠ ∐
N

U

in C . Thus, [U] = [⋁NU] − [⋁NU] = 0 ∈ K0(C ), and hence K0(C ) = 0. �

In particular, the Waldhausen K -theory spectra of a model category, when de-

fined, is connected. One is usually interested in Waldhausen categories that satisfy

some finiteness conditions, which do not admit Eilenberg Swindle. For example, since

finitely presented objects are closed under finite colimits, given a Waldhausen category

(C ,cC ,wC ), the full subcategory of its finitely presented objects C c admits a Wald-

hausen structure (cC c,wC c), given by the restriction of the structure (cC ,wC ) to

C c.

Example 1.5.16. Let C be the category of spectra of pointed simplicial sets. Then,

K0(C ) = 0 and K0(C c) = Z, see [Bon10, Prop.5.5.1].
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Definition 1.5.17. Let C be an essentially small Waldhausen category. A cylinder

functor on C is a quadruple (Cyl, p, i, j) of a functor Cyl ∶ Mor(C ) → C and natural

transformations p ∶ Cyl ⇒ codom, i ∶ codom ⇒ Cyl, and j ∶ dom ⇒ Cyl, such that for

every commutative square

X
f //

x

��

Y

y

��
X ′

f ′
// Y ′

in C , one has

● pf ○ jf = f and pf ○ if = idY ;

● the induced diagram

X∐Y
jf ∐ if //

x∐y
��

Cyl f
pf //

Cyl(x,y)
��

Y

y

��
X ′∐Y ′

jf ′ ∐ if ′
// Cyl f ′ pf ′

// Y ′

commutes;

● jf ∐ if belongs to cC ;

● if both x and y are in wC , then so is Cyl(x, y); and

● if both x and y are in cC , then so are Cyl(x, y) and the morphism

Cyl f ∐
X∐Y

X ′∐Y ′ Ð→ Cyl f ′.

Moreover, the cylinder functor Cyl is said to satisfy the cylinder axiom if pf belongs

to wC for every morphism f in C .

When a cylinder functor exists, following the notation in the classical homotopy

theory of topological spaces, let

Cyl(U) ∶= Cyl(idU) , ConeCyl(U) ∶= Cyl(U → 0) and ΣCylU ∶= ConeCyl(U)/U,

for every object U ∈ C . Then, one has a cofibre sequence

U → ConeCyl(U) → ΣCyl(U).

The morphism ConeCyl(U) → 0 belongs to wC , and hence [ConeCyl(U)] = 0 ∈ K0(C )
and [ΣCylU] = −[U] ∈ K0(C ).

Example 1.5.18. The mapping cylinder a morphism of pointed simplicial sets,

that is the pushout of the morphism along the cylinder object of its domain, defines a

cylinder functor for the Waldhausen category of (finitely presented objects of) pointed

simplicial sets, recalled in Example 1.5.10, see [TT90, §.1.3.3]. Also, for a pointed

simplicial set K, the pointed simplicial sets ConeCyl(K) and ΣCylK coincide with usual

cone and suspension, respectively. In particular, one has ΣCylK ≅K ∧ (S1,0).
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Theorem 1.5.19 (Localisation Theorem). Let (C ,cC ) be an essentially small cat-

egory with cofibrations that admits two subcategories vC ⊂ wC of weak equivalences

making it into Waldhausen categories (C ,cC ,vC ) and (C ,cC ,wC ), respectively. Let

Cw be the full subcategory in C of wC -acyclic objects in C , i.e. objects whose initial

morphisms are in wC . Assume that wC is saturated and that every morphism f in C

factorises as f = p ○ j where j ∈ cC and p ∈ v(C ). Then, the exact inclusions

(Cw,cCw,vCw) ↪ (C ,cC ,vC ) idC→ (C ,cC ,wC )

induce an exact sequence of abelian groups

K0(vCw) → K0(vC ) → K0(wC ) → 0.

Proof. See [Wei13, Th.9.6]. �

The factorisation in the hypothesis of the Localisation Theorem is usually obtained

via a cylinder functor that satisfies the cylinder axiom, cf. [Wal85, Th.1.6.4] and

[TT90, §.1.8.1-2].

1.5.2.1. Symmetric Monoidal Waldhausen Categories. Similar to the case of model

categories, a symmetric monoidal Waldhausen category admits a symmetric monoidal

structure and a Waldhausen structure that are compatible. That allows one to endue

the Waldhausen K -theory with a homotopy commutative monoid structure.

Definition 1.5.20. A symmetric monoidal Waldhausen category (C ,S ) is a pair

of a Waldhausen category C and a symmetric monoidal structure S = (∧,1∧, ψ,α, λ, ρ)
on C such that

(1) the endofunctors X ∧ − and − ∧X are exact for every X ∈ C ; and

(2) for cofibrations i ∶ U → V and i′ ∶ U ′ → V ′ in C , the pushout product

i ◻ i′ ∶ U ∧ V ′ ∐
U∧U ′

V ∧U ′ → V ∧ V ′

is a cofibration in C .

Example 1.5.21. Let FSet● be the Waldhausen category of pointed finite sets whose

cofibrations (resp. weak equivalences) are pointed monomorphisms (resp. isomor-

phisms). Recall that Barratt-Priddy-Quillen Theorem implies

K(FSet●) ≅ S,

where S = (S0, S1, S2, . . .) is the sphere spectrum, see [Rog10, Th.8.9.3]. The smash

product endues the category FSet● with a symmetric monoidal structure, with a unite

∗+ = (∗∐∗,∗), making it into a symmetric monoidal Waldhausen category. For a

pointed finite set (X,x), one has [(X,x)] = ∣X ∖ {x}∣ ⋅ [∗+] ∈ K0(FSet●), and there

exists an isomorphism

(X,x) ≅ ∐
X∖{x}

∗+.
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For an essentially small symmetric monoidal Waldhausen category (C ,S ), pro-

vided the axiom of choice, there exists an exact functor of Waldhausen categories

υC ∶ Set● → C , for which

υC ((X,x)) ≅ ∐
X∖{x}

1∧,

for every pointed finite set (X,x). Therefore, there exists a map of spectra

K(υC ) ∶ S ≅ K(FSet●) → K(C ).

On the other hand, the monoidal product defines a paring

K(∧) ∶ K(C ) ∧ K(C ) → K(C ),

see [Wal85, p.342]. Then, the coherence natural isomorphisms of the monoidal struc-

ture induce a homotopy commutative monoid structure on the Waldhausen K -theory

spectrum K(C ), i.e. it makes K(C ) into a ring spectrum, see [BM11, Cor.2.8]. In

particular, K0(C ) is a ring and its ring characteristic Z → K0(C ) is given by the ring

homomorphism K0(υS).

Example 1.5.22. Recall Example 1.5.9, for an essentially small site Cτ , the Wald-

hausen category of pointed τ -sheaves of sets on C is a symmetric monoidal Waldhausen

category, whose monoidal product is given by the smash product. Similar to Proposi-

tion 1.2.56, the unit of the symmetric monoidal structure is given by ∗+ = (∗∐∗,∗),
whereas the smash product of pointed τ -sheaves (X , x) and (Y , y) is given by the

pushout of the span

X ∐Y
(idX ×y)∐(x×idY ) //

��

X ×Y

∗

in Shvτ(C ), with the canonical base-point.

An exact functor F ∶ C → D between symmetric monoidal Waldhausen categories

is said to be weak monoidal if F is lax monoidal, such that the coherence morphism

F (X) ∧D F (Y ) → F (X ∧C Y )

belongs to wD for every X,Y ∈ C , and so is the coherence morphism 1D → G(1C ).
For a weak monoidal exact functor F ∶ C → D between essentially small symmetric

monoidal Waldhausen categories, the map of spectra

K(F ) ∶ K(C ) → K(D)

is a morphism of ring spectra, with respect to the induced structures.
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1.5.3. Grothendieck Group of Triangulated Categories. Let (C ,Σ,T ) be a

triangulated category. The Grothendieck group of (C ,Σ,T ), denoted by K△(C ), is the

abelian group generated by isomorphism classes of objects in C and relations

{[Y ] = [X] + [Z] ∣ there exists a distinguished triangle X → Y → Z → ΣX in T },

where [U] denotes the isomorphism class of an object U in C . Then, [0] = 0 and

[ΣX] = −[X], for every X ∈ C .

Example 1.5.23. Let B be an essentially small additive category, and let Kb(B)
be the bounded homotopy category of complexes in B. Then, the Euler characteristic

χ ∶ K△ (Kb(B)) → K⊕ (B)

[C●] ↦ ∑n∈Z(−1)n[Cn],
is an isomorphism of groups, see [Ros11]. More generally, let w be a weight structure on

a triangulated category (A ,Σ,T ), as in Theorem 1.4.23. Then, the inclusion ♡w↪ A

induces an isomorphism

K⊕(♡w) ≅ K△(A ),
see [Bon10, Th.5.3.1].



CHAPTER 2

Motivic Spaces and Complexes

Several theories in algebraic geometry are A1-invariant, which made it desirable to

have a homotopy theory for schemes in which the affine line is contractable. Quillen’s

model structures provide a well-established machinery for homotopy theories; however,

they are restricted to (finitely) bicomplete categories. The A1-homotopy theory of

schemes is obtained by first taking the free cocompletion of the considered category

through the Yoneda embedding. This comes at the cost of loosing colimits that already

exist at the level of schemes, for instance a Zariski open covering does not give a

covering of presheaves, due to the Yoneda embedding not preserving colimits. Hence,

the category of presheaves is localised with respect to hypercovers for a topology τ that

recovers enough colimits needed to obtain a well-behaved theory.

For a base scheme S, the category Shvτ(Sm/S) admits a model structure in which

every projection X ×A1
S →X is a weak equivalence for every τ -sheaf X , i.e. the affine

line is contracted. The homotopy category Hτ,A1
S
(S) of Shvτ(Sm/S) with respect

to this model structure is Quillen equivalent to the homotopy category of simplicial

τ -sheaves sShvτ(Sm/S) with respect to some model structure in which the projection

X ×A1
S →X is a weak equivalence for every simplicial τ -sheaf X . One may then con-

sider the homotopy category of simplicial τ -sheaves which is technically more feasible,

compared to the homotopy category of sheaves.

The machinery mentioned above can be run for different categories of schemes and

different topologies on them. However, some of the important results, like the Gluing

Theorem 2.3.1 and the Purity Theorem 2.3.3, are obtained only for topologies that are

as fine as the Nisnevich topology on smooth schemes over a Noetherian base of finite

Krull dimension.

2.1. Homotopy Theories of Simplicial (Pre)sheaves

Throughout this section, let Cτ be an essentially small Grothendieck site, see §.A.4.

Let sPSh(C ) denote the category of simplicial presheaves on C , i.e. the functor cat-

egory Fun(∆op,PSh(C )), where ∆ is the simplex category, see §.1.2.4.1. Since C is

essentially small, there exist canonical isomorphisms

Fun(∆op,PSh(C )) ≅→ Fun(C op ×∆op,Set) ≅→ Fun(C op, sSet), (10)

65
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which allows considering simplicial presheaves as simplicial objects in presheaves on C ,

presheaves of sets on C ×∆, or presheaves of simplicial sets on C .

The Yoneda embedding induces full embeddings

sSet↪ sPSh(C ) , C ↪ PSh(C ) ↪ sPSh(C ) and ∆●
− ∶∆ ×C ↪ sPSh(C ).

Denote the simplicial presheaf represented by ([n], U) ∈ ∆ × C by ∆n
U . Then, the

Yoneda lemma implies that for a simplicial presheaf X on C , one has a isomorphism

Xm(V ) ≅ sPSh(C )(∆m
V ,X ) for [m] ∈∆,V ∈ C .

In particular, one has an isomorphism

(∆n
U)m(V ) ≅ ∆n

m ×C (V,U) and (∆n
U)ν,ψ = ν∗ × ψ∗

for every [n], [m] ∈ ∆, U,V ∈ C , and morphisms ν ∶ [l] → [m] in ∆ and ψ ∶W → V in

C ; thus, ∆0
− coincides with the embedding C → sPSh(C ).

Let X be a simplicial presheaf on C , and let UX ∶ (∆●
− ↓X ) → sPSh(C ) be the

canonical projection, then there exist an isomorphism

X ≅ colim
(∆●

−
↓X )

UX .

Boundedness is essential for the existence of model structures on simplicial presheaves.

Definition 2.1.1. Let κ be an infinite cardinal. A simplicial presheaf X on C is

said to be κ-bounded if and only if ∣Xn(U)∣ < κ, for every n ≥ 0, U ∈ C .

Example 2.1.2. Let κ be an infinite cardinal, such that κ > 2∣Mor(C )∣. Then, ∆n
U

is κ-bounded, for every n ≥ 0, U ∈ C .

The category sShvτ(C ) of simplicial τ -sheaves over Cτ is the category of simplicial

objects in the category of τ -sheaves Shvτ(C ).

2.1.1. Symmetric Monoidal Structure. The category of simplicial τ -sheaves

on C admits a closed symmetric monoidal structure, whose monoidal product (resp.

unit object) is the Cartesian product (resp. terminal object), and whose internal Hom is

given for simplicial τ -sheaves Y and Z by the τ -sheafification of the simplicial presheaf

Hompre(Y ,Z ), given by

Hompre(Y ,Z )
n
(U) ∶= sShvτ(C )(Y ×∆n

U ,Z ) for [n] ∈∆,U ∈ C .

Denote the coproduct in the pointed category sShvτ,●(C ) by ∨, and define the

smash product of pointed simplicial τ -sheaves (X , x) and (Y , y) to be the cofibre of

the canonical morphism (X , x) ∨ (Y , y) → (X , x) × (Y , y) in the category of pointed

simplicial τ -sheaves. The category sShvτ,●(C ) admits a closed symmetric monoidal

structure, with a monoidal product (resp. a unit object) given by the smash product
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(resp. the pointed simplicial τ -sheaf 1∧ = ∗+), and whose internal Hom● is induced from

Hom as in Proposition 1.2.56.

2.1.2. The Model Structures on Simplicial (Pre)sheaves. It is well-known

that the category of simplicial presheaves on an essentially small site admits several

model structures. Some of these structures depend on the topology, defined stalk-

wise or using alternative local conditions, and they are said to be local structures;

whereas the others, defined object-wise, and they are said to be global structures. These

structures are usually defined based on Kan-Quillen’s model structure on simplicial

sets. Structures with cofibrations induced directly from cofibrations of simplicial sets

are said to be injective structures; whereas structures with fibrations induced directly

from fibrations of simplicial sets are said to be projective structures.

The global structures considered here are Quillen equivalent to each other. Also,

the local structures are Quillen equivalent, assuming the site has enough points, and

hence they give rise to the same homotopy theory. Moreover, local structures are left

Bousfield localisations of their corresponding global ones.

Definition 2.1.3. A morphism f ∶ X → Y of simplicial presheaves on C is said

to be an object-wise (or section-wise) weak equivalence, cofibration, or fibration if

fU ∶ X (U) → Y (U) is a weak equivalence, cofibration, or fibration of simplicial sets,

respectively, for every U ∈ C .

The essential difference between local and global structures lies in weak equiva-

lences, local weak equivalences are recalled in §.2.1.3. Assuming the site has enough

points, local weak equivalences are morphisms that induce weak equivalences of sim-

plicial sets stalk-wise.

The category sPSh(C ) admits a proper cofibrantly generated simplicial model

structure with weak equivalences, cofibrations and fibrations given by

● object-wise weak equivalences, object-wise cofibrations, RLP with respect to

object-wise weak cofibrations, respectively; called the global injective structure,

see [Hel88];

● object-wise weak equivalences, LLP with respect to object-wise weak fibra-

tions, object-wise fibrations, respectively; called the global projective structure

or Bousfield-Kan model structure, see [BK72, §.XI.8] and [Dug01];

● local weak equivalences, object-wise cofibrations, RLP with respect to local

weak equivalences that are object-wise cofibrations, respectively; called the

local injective structure or the Joyal-Jardine model structure, see [Jar87]; and

● local weak equivalences, LLP with respect to local weak equivalences that

are object-wise fibrations, object-wise fibrations, respectively; called the local

projective structure, see [Bla01].
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Lemma 2.1.4. The identity functor is a left Quillen equivalence from the global

projective to the global injective model structures on sPSh(C ).

Proof. See [DHI04]. �

The category of simplicial τ -sheaves admits model structures corresponding to the

local model structures on simplicial presheaves, with weak equivalences, cofibrations,

fibrations being weak equivalences, cofibrations, fibrations, respectively, in the corre-

sponding local model structure of simplicial presheaves. These structures give equiva-

lent homotopy theories.

The local injective model structure on simplicial presheaves is cofibrantly generated

with sets

I ∶= {∂∆n
U ↪∆n

U ∣ n ≥ 0, U ∈ C } and
J ∶= {j ∶ U ↪ V ∣ j is a local injective weak cofibration, and V is κ-bounded}

of generating cofibrations and generating weak cofibrations, respectively, for a cardinal

κ > 2∣Mor(C )∣. The set of cofibrations in the local injective model structure consists of

inclusions of simplicial presheaves. This structure is a left Bousfield localisation of the

global injective model stricture with respect to τ -hypercovers, see [DHI04].

2.1.3. Local Weak Equivalences. Local weak equivalences should be defined in

a way that accounts for the site’s topology. That can be achieved in different ways, using

different topological and simplicial homotopy sheaves, stalks, or local lifting conditions,

see [DI04].

The definitions due to Jardine in [Jar87] and Morel and Voevodsky in [MV99]

depend on different functors of homotopy sheaves, and they are recalled below.

2.1.3.1. Joyal’s Homotopy Sheaves. The presheaves of path connected components

functor

πpre0 (−) ∶ sPSh(C ) → PSh (C )

is given on an object X ∈ sPSh(C ) by

πpre0 (X )(U) ∶= πTop
0 (∣X (U)∣) ,

for U ∈ C ; and the τ -sheaves of path connected components functor πtop0 (−) is given by

the the composition of the τ -sheafification with πpre0 (−).

Similarly, for an integer n ≥ 1 and an object U ∈ C , the presheaves of the nth-homotopy

groups functor

πpren (−∣U ,∗) ∶ sPSh(C )U → PShGrp (C ↓U)

is given on a pointed simplicial presheaf (X , x) over U by

πpren (X ∣U , x)(V ) ∶= πTop
n (∣X (V )∣, x),
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for every V ∈ C ↓U ; and the τ -sheaves of the nth-homotopy groups functor πtopn (−∣U ,∗)
is given by the composition of the τ -sheafification with πpren (−∣U ,∗).

Definition 2.1.5. A morphism f ∶ X → Y of simplicial presheaves on C is called

a topological local weak equivalence if

● πtop0 (f) is an isomorphism of τ -sheaves; and

● for every integer n ≥ 1 and an object U ∈ C , the morphism πtopn (f ∣U , x) is an

isomorphism of τ -sheaves, for all x ∈ X0(U).

Topological local weak equivalences satisfy the two-out-of-three property, and con-

tain object-wise weak equivalences.

2.1.3.2. Morel and Voevodsky’s Homotopy Sheaves. The main difference between

Joyal’s homotopy sheaves and Morel and Voevodsky’s homotopy sheaves is that the

latter considers all base points at once. That is, it is defined on a bigger site that encodes

both the category C and all the vertices of X , namely h− ↓X0, where h− ∶ C → PSh(C )
is the Yoneda embedding, instead of the sites (Cτ ↓U) for every object U ∈ C .

There exists a bijection between the objects in h− ↓X0 and all the vertices of X ,

which sends a morphism f ∶ hU →X0 of presheaves to the vertex xf ∶= fU(idU) ∈ X0(U).

Definition 2.1.6. Let X be a simplicial presheaf on C . For an integer n ≥ 0, the

n-homotopy presheaf of X is defined to be the functor

Πpre
n (X ) ∶ (h− ↓X0)op → Set∗, (11)

given on a object f ∶ hU →X0 by

Πpre
n (X )(f) ∶= πTop

n (∣X (U)∣, xf).

The n-homotopy τ -sheaf Πtop
n (X ) of X is defined to be the τ -sheafification of Πpre

n (X ),
with respect to the induced topology on h− ↓X0, that is the coarser topology with

respect to which the projection p
-1 ∶ h− ↓C → C is a continuous functor.

Let p ∶ Cτ → (h− ↓ X0)h−↓τ be the continuous map of sites given by p
-1

. For a

simplicial presheaf X on C , the direct image p∗(X ) is the presheaf on h− ↓X0, given

on an object f ∶ hU →X0 by

p∗(X )(f) = X0(U),

which can be pointed canonically by xf . Hence, it defines a pointed presheaf p∗(X0)∗
on h− ↓X0, endued with a natural transformation

pX ∶ Πtop
n (X ) → p∗(X0)aτ∗ .

For a morphism of simplicial presheaves f ∶ X → Y , the induced functor

f−1 ∶= h− ↓f ∶ (h− ↓X0) → (h− ↓Y0)
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is continuous with respect to the induced topologies, and hence it defines a continuous

map of sites f ∶ (h− ↓Y0)h−↓τ → (h− ↓X0)h−↓τ . In particular, the direct image

f∗ ∶ PSh(h− ↓Y0) → PSh(h− ↓X0)

preserves τ -sheaves, giving rise to a natural transformation

Πtop
n (f) ∶ Πtop

n (X ) → f∗(Πtop
n (Y )).

For every integer n ≥ 0, the square

Πtop
n (X )

↺pX

��

Πtopn (f) // f∗(Πtop
n (Y ))
pY

��
p∗(X0)aτ∗

p∗(f0)aτ∗
// p∗(Y0)aτ∗

(12)

of pointed τ -sheaves on (h− ↓X0)h−↓τ commutes. In fact, the square above is Cartesian

in Shvh−↓τ(h− ↓ X0) if and only if Joyal’s morphism of sheaves πtopn (f ∣U,x0,U) is an

isomorphism for every U ∈ C and x0,U ∈ X0(U). Therefore, f is a topological local

weak equivalence if and only if for every integer n ≥ 0 the square (12) is Cartesian in

Shvh−↓τ(h− ↓X0), see [MV99, §.2.Rem.1.3].

2.1.3.3. Stalks of Simplicial Presheaves. Let p be a point of the site Cτ , and let

f ∶ X → Y be a morphism of simplicial presheaves on C . Then, the stalks functor at

p induces a morphism of simplicial sets p∗f ∶ p∗X → p∗Y . The morphism f ∶ X → Y

is called a stalk-wise weak equivalence if p∗f is a weak equivalence of simplicial sets for

every point p of Cτ .

Topological local weak equivalences are point-wise weak equivalences, but the in-

verse is not true in general.

Recall that, for every point p of Cτ , the stalks functor p∗ is given by filtered colimits,

see §.A.4.2.1. The geometric realisation commutes with colimits as it is a left adjoint,

and the connected component functor π0(−) and homotopy group functors πn(−,∗)
commute with filtered colimits. Then, for every morphism f ∶ X → Y of simplicial

presheaves on C , there exist canonical bijections

p∗(πtop0 (f)) ≅ π0(∣p∗(f)∣) and p∗∣U(π
top
0 (f∣U , x0)) ≅ πn(∣p∗∣U(f∣U)∣, x0),

for every U ∈ C and for every integer n ≥ 1. Therefore, when the site Cτ has enough

points, the notions of topological local weak equivalences and stalk-wise weak equiva-

lences coincide.
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2.1.4. The Homotopy Theory of Simplicial Sheaves for Sites with Inter-

vals. The fibrant replacement for Bousfield localised model categories is rather compli-

cated and difficult to work with. Morel and Voevodsky provided in [MV99] a relatively

simpler fibrant repentance of Bousfield localised model with respect to an interval.

The main idea here is to use the contractability of the interval ∣∆1∣ in the classical

homotopy theory of topological spaces, or equivalently the contractability of the sim-

plicial set ∆n, for every integer n ≥ 0, and ‘alter’ (simplicial) τ -sheaves ‘replacing’ the

τ -sheaf represented by the affine space An by the simplicial τ -sheaf of the contractable

simplicial set ∆n, for every integer n ≥ 0.

Definition 2.1.7. An interval in the essentially small Cτ is a quadruple (I, µ, i0, i1),
where I is an τ -sheaf on C , µ ∶ I × I → I is a morphism in Shvτ(C ), and i0 and i1 are

two distinct morphisms i0, i1 ∶ ∗ → I in Shvτ(C ), such that

● for the terminal morphism p ∶ I → ∗ in Shvτ(C ), one has

µ ○ (i0 × idI) ≅ µ ○ (idI × i0) ≅ i0 ○ p and µ ○ (i1 × idI) ≅ µ ○ (idI × i1) ≅ idI ; and

● the induced morphism i0∐ i1 ∶ ∗∐∗ → I is a monomorphism.

Then, the morphism µ is called the multiplication of I.

An interval I in Cτ defines a cosimplicial τ -sheaf ∆●
I ∶ ∆ → Shvτ(C), given for an

object [n] ∈∆ by the n-fold Cartesian product I×n in Shvτ(C), with codegeneracies

sin ∶ ∆n+1
I →∆n

I for 0 ≤ i ≤ n,

given by projecting out the (i + 1)th-term, i.e. sin = id×iI × p × id
×(n−i)
I , and cofaces

din ∶ ∆n−1
I →∆n

I for 0 ≤ i ≤ n,

given by

din =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i1 × id
×(n−1)
I i = 0;

id
×(i−1)
I × δI × id

×(n−1−i)
I 0 < i < n;

id
×(n−1)
I × i0 i = n;

where δI is the diagonal morphism δI ∶ I → I × I. The cosimplicial τ -sheaf ∆●
I is called

the cubical cosimplicial τ -sheaf associated to I. A description of the morphism ∆µ
I for

any morphism µ ∶ [m] → [n] in ∆ is given in [Voe96, p.88].

2.1.4.1. Simplified Fibrant Replacement. Assume that τ is subcanonical on C , let

I be an interval in Cτ , and let ∆●
I ∶ ∆ → Shvτ(C ) be the cubical cosimplicial τ -sheaf

associated to the interval I. Since Cτ is subcanonical, the Yoneda embedding h− ∶ C →
PSh(C ) factorises though the category of τ -sheaves on C , let ∆●

I ∶ ∆ → sShvτ(C ) be

the diagonal of the bicosimplicial simplicial τ -sheaf ∆●
I ×∆● ∶ ∆ ×∆ → sShvτ(C ), and

let ∆●
I,− denote the functor ∆●

I × h− ∶∆×C → sShvτ(C ). Since the category sShvτ(C )
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is cocomplete, there exists a ∆●
I,−-tensor and Hom adjunction, given by the left Kan

extensions for the span

∆ ×C
∆●

I,− //

∆●

−

��

sShvτ(C )

sShvτ(C ),
similar to Example A.3.8.

Denote the ∆●
I,−-tensor and Hom functors by ∣−∣

I
and Sing

I
, respectively. The

functors ∣−∣
I

and Sing
I

are isomorphic to the functors ∣−∣∆●

I×∆● and SingI∗, given in

[MV99, p.90 and p.88]. That is, for a simplicial τ -sheaf X ∈ sShvτ(C ), one has

Hom∆×C (∆●
I,−,X )n(U) = sShvτ(C )(∆n

I ×∆n × hU ,X )

≅ sShvτ(C )(∆n
I × hU ,HomsShvτ (C )(∆n,X ))

≅ Shvτ(C )(∆n
I × hU ,HomsShvτ (C )(∆n,X )0)

≅ Shvτ(C )(∆n
I × hU ,Xn) = HomShvτ (C ) (∆n

I ,Xn)(U)

= SingI∗(X )n(U),

for every [n] ∈∆ and U ∈ C . On the other hand,

X ⊗∆×C ∆●
I,− =

([n],U)∈∆×C

∫ ∐
sShvτ (C )(∆n

U ,X )
∆n
I ×∆n × hU

≅
[n]∈∆

∫
U∈C

∫ ∐
Shvτ (C )(hU ,Xn)

∆n
I ×∆n × hU

≅
[n]∈∆

∫ ∆n
I ×∆n ×

U∈C

∫ ∐
Shvτ (C )(hU ,Xn)

hU

≅
[n]∈∆

∫ ∆n
I ×∆n ×Xn = ∣X ∣∆●

I×∆● .

Similarly, considering the left Kan extensions for the span

∆ ×C
∆●

I,− //

∆●

−

��

Shvτ(C )

sShvτ(C )
yields a ∆●

I,−-tensor and Hom adjunction. Denote the ∆●
I,−-tensor and Hom functors by

∣−∣I and SingI , respectively. The functors ∣−∣I and SingI are isomorphic to the functor

∣−∣∆●

I
and the restriction of the functor SingI∗, given in [MV99, p.90 and p.88], to the

category Shvτ(C ).

The functors Sing
I

and SingI preserve filtered colimits, as representable simpli-

cial τ -sheaves (resp. representable τ -sheaves) are compact objects in sShvτ(C ) (resp.
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Shvτ(C )). Moreover, the functor Sing
I

and SingI commute with limits for being right

adjoints, and hence they are symmetric monoidal. However, neither ∣−∣
I

nor ∣−∣I pre-

serves finite product or is symmetric monoidal. That is, for a pair of integers n,m > 0,

∣∆n ×∆m∣I ≅
[p]∈∆

∫ (∆n×∆m)p×∆p
I ≅

[p]∈∆

∫ ∆nm+n+m
p ×∆p

I ≅ ∆nm+n+m
I ≇ ∆n+m

I ≅ ∆n
I ×∆m

I .

Similar to Kan’s Ex functor in §.1.2.4.1, the split epimorphism ∆●
I,− → ∆●

− induces

a monomorphism

X ↪ Sing
I
(X )

of simplicial presheaves that is also an I-weak equivalence, for every X ∈ sShvτ(C ),
see [MV99, §.2.Cor.3.8]. The functor Sing

I
takes the projection X ×I →X to a local

weak equivalence, for every X ∈ sShvτ(C ), see [MV99, §.2.Cor.3.5]. Moreover, for

a fibrant replacement Rτ for the model category sShvτ(C )inj and for a large enough

ordinal λ, the transfinite composition

(Rτ ○ SingI)
λ ○Rτ

is a fibrant replacement for the left Bousfield localisation of sShvτ(C )inj with respect

to the set of projections {X × I →X ∣ X ∈ sShvτ(C )}, see [MV99, §.2.Lem.3.21].

2.2. τ-Local Homotopy of Schemes

Let S be a Noetherian scheme of finite Krull dimension. Recall the conventions and

notations in §.0.2 and suppose that τ is a subcanonical topology on the category Sm/S
of smooth S-scheme. Let sShvτ(Sm/S)loc

inj and sShvτ,●(Sm/S)loc
inj be the local injective

model categories of simplicial τ -sheaves and pointed simplicial τ -sheaves, respectively,

and denote their homotopy categories by Hs
τ(S) and Hs

τ,●(S), respectively.

The Cartesian and smash products preserve τ -local weak equivalences, and they

induce derived closed symmetric monoidal structures on the homotopy categories Hs
τ(S)

and Hs
τ,●(S), respectively.

2.2.1. The B.G.-Property in the Nisnevich Topology. A simplicial presheaf

X ∈ sPSh(Sm/S) is said to have the B.G.-property if it sends Nisnevich distinguished

squares to homotopy Cartesian squares of simplicial set, see Definition A.4.28. This is

an analogue of Brown and Gersten construction in Zariski topology, as in [BG73].

Example 2.2.1. Fibrant simplicial Nisnevich sheaves have the B.G.-property, see

[MV99, §.3.Rem.1.15].

Lemma 2.2.2. Let f ∶ X → Y be a morphism of simplicial presheaves on Sm/S that

has the B.G.-property whose Nisnevich sheafification aNis(f) ∶ aNis(X ) → aNis(Y ) is

a Nisnevich-local weak equivalence. Then, f is an object-wise weak equivalence.

Proof. See [MV99, §.3.Lem.1.18]. �
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2.2.2. Functoriality. For a morphism f ∶ S → T of Noetherian schemes of finite

Krull dimension, the functor f
-1 ∶ Sm/T → Sm/S given by base change along f defines

a continuous map of sites f
-1 ∶ Sm/SNis → Sm/TNis. The induced adjunction

f∗ ∶ sShvNis(Sm/T ) ⇄ sShvNis(Sm/S) ∶ f∗

is a Quillen pair, by [MV99, §.3.Prop.1.20], and hence it induces total derived functors

L f∗ ∶Hs
Nis(S) →Hs

Nis(T ) ∶ R f∗.

Moreover, for a smooth morphism f ∶ S → T , the functor f∗ admits a left adjoint f#

given by composing with f , and it induces an adjunction L f# ⊣ L f∗.

2.3. The Unstable A1-Homotopy of Schemes

The A1
S-model categories sShvτ(Sm/S)A1

S
and sShvτ,●(Sm/S)A1

S
are defined to be

the left Bousfield localisation of sShvτ(Sm/S)loc
inj and sShvτ,●(Sm/S)loc

inj, respectively,

with respect to the set of projections {X × A1
S → X ∣ X ∈ sShvτ(Sm/S)}. The

resulting local weak equivalences are called A1
S-weak equivalences. Then, the unpointed

and (resp. pointed) homotopy category of schemes over S is defined to be the homotopy

category of sShvτ(Sm/S)A1
S

(resp. sShvτ,●(Sm/S)A1
S
), and it is denoted by H(S) (resp.

H●(S)). Objects of H(S) and H●(S) are called unpointed and pointed motivic spaces,

respectively.

These homotopy categories are reflective localisations of the Nisnevich local homo-

topy categories. In particular, for an A1
S-fibrant simplicial Nisnevich sheaves X and

Y , there exists a bijection

H(S) (X ,Y ) ≅Hs
Nis(S) (X ,Y ) .

In fact, the category H(S) is equivalent to the full subcategory Hs
Nis,A1

S
(S) of A1

S-local

simplicial sheaves in Hs
Nis(S). That is, the inclusion Hs

Nis,A1
S
(S) ↪ Hs

Nis(S) admits a

left adjoint

LA1
S
∶Hs

Nis(S) →Hs
Nis,A1

S
(S),

called the A1
S-localisation functor, which sends A1

S-weak equivalences to topological

Nisnevich local equivalences.

The Cartesian and smash products also preserve A1
S-weak equivalences, and hence

the induce closed symmetric monoidal structures on the categories Hs
τ(S) and Hs

τ,●(S),
respectively. In particular, for the simplicial sphere

S1
s ∶= (S1, [δ1

1]) = (∆1, δ1
1)/(∆0, id[0]) ∈ sShvNis,●(Sm/S),

the Quillen pair

− ∧ S1
s ∶ sShvτ,●(Sm/S) ⇄ sShvτ,●(Sm/S) ∶ Hom●(S1

s ,−)
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induces derived functors

Σ ∶H●(S) →H●(S) ∶ Ω,

called the simplicial suspension and the simplicial loop spaces functors, respectively.

2.3.1. Functoriality. A morphism f ∶ S → T of Noetherian schemes of finite Krull

dimension induces an adjunction of total derived functors

L f∗ ∶Hs
Nis(T ) ⇄Hs

Nis(S) ∶ RA
1
S f∗,

as the functor f∗ preserves A1
S-weak equivalences. Moreover, when f is smooth, the

functor L f# preserves A1
S-weak equivalences, and it induces an adjunction

L f# ∶Hs
Nis(S) ⇄Hs

Nis(T ) ∶ L f∗,

see [MV99, §.3.Prop.2.8-9].

Theorem 2.3.1 (Gluing Theorem). Let S be a Noetherian scheme of finite Krull

dimension, let i ∶ Z ↪ XÐ→ S be a closed immersion with an open complement j ∶ U ↪ ○Ð→ S,

and let X be a Nisnevich simplicial sheaf on Sm/S. Then, the square

L j#j
∗X //

��

X

��
U ≅ L j#j∗S // S // i∗ L i∗S // i∗ L i∗X ,

in H(S), induced by the unit and counit of the adjunctions, is homotopy cocartesian.

Proof. See [MV99, §.3.Th.2.21]. �

Lemma 2.3.2. For a proper cdh-square

z ×x y y

z x

p′ p

Ò
i

Ò
i′

⌜

in Sm/S, its simplicial suspension is a homotopy cocartesian square in H(S).

Proof. See [MV99, §.3.Rem.2.30]. �

However, it does not seem to be known whether the square, without suspension, is

a homotopy cocartesian square in H(S), see [Voe10b, p.1406].

Theorem 2.3.3 (Purity Theorem). Let S be a Noetherian scheme of finite Krull

dimension, let i ∶ Z ↪ XÐ→ S be a closed immersion, and let NS,Z → Z be the normal

vector bundle associated to i, with zero sections i0. Then, the quotients X/(X − i(Z))

and NS,Z/(NS,Z − i0(Z)) in H(S) are isomorphic.

Proof. See [MV99, §.3.Th.2.23]. �
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2.3.2. Motivic Spheres. The cocartesian square

GmS //

⌟��

A1
S

��
A1
S

// P1
S

in Sm/S induces an isomorphism of pointed Nisnevich sheaves TS ∶=A1
S/GmS ≅ P1

S/A1
S .

After contracting A1
S in H●(S), the square above induce isomorphisms TS ≅ (P1

S ,∞) ≅
Σs(GmS ,1) = S1

s ∧ (GmS ,1), see [MV99, §.3.Cor.2.18] and [Hov99, §.8.1].

The pointed Nisnevich sheaf (GmS ,1) is called the Tate sphere, and denoted by S1
t .

For a pair of integers p, q ∈ Z≥0, the mixed sphere Sp,q is defined as

Sp,q ∶= (S1
s)

∧p−q ∧ (S1
t )

∧p
.

In particular, one has (P1
S ,∞) ≅ S2,1.

2.4. Stable Motivic Homotopy Theories

2.4.1. Stable A1-Homotopy Theory of S1-Spectra. Let k be a field, and let

SptΣs (k) denote the category of S1
s -symmetric spectra of pointed simplicial Nisnevich

sheaves on Sm/k, i.e.

SptΣs (k) = SptΣT (sShvNis,●(Sm/k), S1
s),

and let Σ∞s ∶ sShvNis,●(Sm/k) ↪ SptΣs (k) be the associated S1
s -symmetric suspen-

sion spectrum. Model structures on sShvNis,●(Sm/k) induce corresponding level and

S1
s -stable model structures on SptΣs (k), as seen in §.1.3.1.

Let SptΣs (k)stab be the S1
s -stable model category induced by the local injective

model structure on sShvNis,●(Sm/k). Weak equivalences in SptΣs (k)stab are called

S1
s -stable weak equivalences. Let SHS1

s
(k) be the homotopy category of SptΣs (k)stab,

called the S1
s -stable homotopy category. Then, the left derived simplicial suspension

LΣs ∶ SHS1
s
(k) → SHS1

s
(k) is an equivalence of categories, see Theorem 1.3.5.

Since SptΣs (k)stab is a left proper model category, it admits Bousfield localisations

with respect to small sets of its morphisms. Let SptΣs (k)
A1
k

stab be the left Bousfield

localisation of SptΣs (k)stab with respect to the set of projections {Σ∞s U+ ∧ Σ∞s (A1
k,0) →

Σ∞s U+ ∣ U ∈ Sm/k}, and let SHs(k) be its homotopy category, called the motivic

S1
s -stable homotopy category, see [VRØ07, §.2.2]. Weak equivalences in SptΣs (k)

A1
k

stab

are called A1
k-stable weak equivalences of S1

s -symmetric spectra. Also, the simplicial

suspension Σs induces an equivalence of categories LΣs ∶ SHs(k) → SHs(k).
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2.4.2. Stable A1-Homotopy Theory of P1-Spectra. Let SptΣ
P1
k
(k) denote the

category of (P1
k,∞)-symmetric spectra of pointed simplicial Nisnevich sheaves on Sm/k,

and let SptΣ
P1
k
(k)A1,stab be the (P1

k,∞)-stable model category induced by the A1
k-model

structure on sShvNis,●(Sm/k), recalled in §.2.3. Its weak equivalences are called motivic

stable weak equivalence. Let SH(k) be the homotopy category of SptΣ
P1
k
(k)A1,stab, called

the motivic stable homotopy category.

Alternatively, SH(k) may be defined from SHs(k), using bigraded homotopy sheaves.

For a (P1
k,∞)-symmetric spectrum E ∈ SptΣ

P1
k
(k), an S1

s -spectrum F ∈ SptΣs (k), and an

integer m ≥ 0, there exists a canonical composite morphism

πm(F,E) ∶=SHs(k)(F L∧ Σ∞s (P1
k,∞)m,Σ∞s Em) →

SHs(k)(F L∧ Σ∞s (P1
k,∞)m+1,Σ∞s (Em ∧ (P1

k,∞))) →

SHs(k)(F L∧ Σ∞s (P1
k,∞)m+1,Σ∞s Em+1) = πm+1(F,E),

and hence a sequence π●(F,E) ∶ Z≥0 → Set. Then, for integers p, q ≥ 0, define the

bigraded homotopy presheaves functor πpre
p,q to be the functor SptΣ

P1
k
(k) → PSh(Sm/k)

given on an object E ∈ SptΣ
P1
k
(k) by

πpre
p,q (E)(−) ∶= colimπ●(Σ∞s (−)+ L∧ Σ∞s S

p,q,E),

and let the bigraded homotopy Nisnevich sheaves functor πp,q be the composition of

the Nisnevich sheafification with πpre
p,q .

Lemma 2.4.1. A morphism f ∶ E → F in SptΣ
P1
k
(k) is a motivic stable weak equiv-

alence if and only if πp,q(f) is an isomorphism of Nisnevich sheaves for every pair of

integers p, q ≥ 0.

Proof. See [VRØ07, §.5]. �

hom -sets in SH(k) can be expressed in terms of colimits of hom -sets in SHs(k).
That is, for a k-scheme X ∈ Sm/k and for a symmetric spectrum E ∈ SptΣ

P1
k
(k), there

exists a sequence (X,E)● ∶ Z≥0 → Set, given for every integer n ≥ 0 by the canonical

composite morphism

(X,E)m ∶=SHs(k)(Σ∞s (X+ ∧ S∧mt ) ,Σ∞s Em) →

SHs(k)(Σ∞s (X+ ∧ S∧m+1
t ) ,Σ∞s (Em ∧ S1

t ) ) →

SHs(k)(Σ∞s (X+ ∧ S∧m+1
t ) ,Σ∞s Em+1) = (X,E)m+1,

which induces an isomorphism

SH(k)(Σ∞
P1
k
X+,E) ≅ colim (X,E)●,

see [VRØ07, Prop.2.13].
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Triangulated Structure. The motivic stable homotopy categories are triangulated,

whose suspensions are always taken to be the simplicial suspensions, and whose dis-

tinguished triangles are symmetric suspension spectra of cofibre sequences of simplicial

sheaves.

2.5. Motivic Complexes

Throughout this section, let k be a field and let R be a commutative unitary ring.

Recall the conventions and notations in §.0.2. In particular, the category of schemes

of finite type over k is denoted by Sch
ft/k. Also, the subcategory in Sch

ft/k of smooth

(resp. smooth projective) schemes over k is denoted by Sm/k (resp. SmProj/k). An

k-scheme (resp. a smooth k-scheme) refers to an object in Sch
ft/k (resp. Sm/k).

2.5.1. Finite Correspondences. In the construction of pure motives over k, one

considers algebraic correspondences modulo rational equivalence for Chow motives, or

an adequate equivalence relation for other pure motives, in order to obtain a well-

defined composition homomorphism. This approaches depends on the Moving Lemma,

and it is restricted to smooth proper k-schemes. Instead of considering such quotients,

one may restrict correspondences to subgroups that provide a well-defined composition,

i.e. they guarantee proper intersections in the corresponding product schemes. That

has been realised using finite correspondences, as in [VSF00].

Definition 2.5.1. Let S be a smooth k-scheme, and let X → S a morphism of

schemes of finite type. A prime cycle Z ∈ C∗(X) is said to be elementary over S if

the composition fZ ∶ Supp(Z) ↪ XÐ→ X → S is a finite morphism that is surjective on a

connected component of S. Then, let c(X/S) denote the abelian group generated by

elementary cycles on X over S, called the group of finite cycles on X over S.

Definition 2.5.2. LetX and Y be smooth k-schemes. An algebraic correspondence

Γ ∶X ⊢ Y is said to be finite if it is a finite cycle on X ×Y over X, along the canonical

projection X × Y prX→ X. Denote the group of finite correspondences from X to Y by

FCor(X,Y ) ∶= c(X × Y /X).

When X is irreducible, one has dimSuppΓ = dimX. Since connected components of

smooth k-schemes coincide with their irreducible components, on has a decomposition

FCor(X,Y ) =⊕
i∈I

FCor(Xi, Y ) ⊂⊕
i∈I

CdimXi(Xi × Y ),

where {Xi ∣ i ∈ I} is the set of connected components of X.

Example 2.5.3. Let f ∶X → Y be a morphism of smooth k-schemes. The morphism

Γf ↪ XÐ→ X × Y ↠ X is an isomorphism, and the algebraic correspondence [Γf ] ∶ X ⊢ Y
is a finite correspondence from X to Y .
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Lemma 2.5.4. Let X,Y, and Z be smooth k-schemes, and let

Γ ∈ FCor(X,Y ) and Θ ∈ FCor(Y,Z)

be elementary correspondences. Then, the cycles Γ × Z and X × Θ intersect properly

in X × Y ×Z. Moreover, the pushforward

Θ ○ Γ = (prXZ)∗((Γ ×Z) ⋅ (X ×Θ))

is a finite correspondence from X to Z.

Proof. See [MVW06, Lem.1.7]. �

Therefore, consecutive elementary correspondences are composable. Extending bi-

linearly, one has a well-defined group homomorphism

○ ∶ FCor(Y,Z) × FCor(X,Y ) → FCor(X,Z). (13)

Definition 2.5.5. The category of finite correspondences over k with coefficients

in R is defined to be the R-linear category SmCor(k,R), given by

● a set of objects Ob(SmCor(k,R)) = Sm/k;

● for a pair (X,Y ) of objects in Ob(SmCor(k,R)), the R-module of finite cor-

respondences with coefficient in R

SmCor(k,R)(X,Y ) ∶= FCor(X,Y )⊗
Z

R;

● for a triple (X,Y,Z) of objects in Ob(SmCor(k,R)), the compositionR-bilinear

homomorphism induced from (13); and

● for an object X ∈ SmCor(k,R), the R-linear homomorphism of modules

1X ∶ R → SmCor(k,R)(X,X)

sending 1 to [ΓidX ] = [∆X] ∶X ⊢X.

For R = Z, write SmCor(k) ∶= SmCor(k,R).

There exists a well-defined covariant faithful (but not full) functor

[−]k,R ∶ Sm/k → SmCor(k,R)
X ↦ X
f ↦ [Γf ].

The category SmCor(k,R) is additive, with a direct sum given by disjoint union of

schemes. Also, it is a symmetric monoidal category, with a monoidal product given by

the Cartesian product of smooth k-schemes.

2.5.2. Geometric Motives. Let Kb(SmCork) be the bounded homotopy category

of complexes in SmCor(k), and let

[−] ∶ Sm/k Ð→ SmCork Ð→ Kb(SmCork)
X ↦ X ↦ ⋯→ 0→X → 0→ ⋯
f ↦ [Γf ] ↦ ⋯ → 0→ [Γf ] → 0→ ⋯
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be the evident functor sending each smooth k-schemes X to the complex concentrated

on X in degree zero, and let T be the set of complexes in Kb(SmCork) of the form

● ⋯ → 0→ [X ×A1
k]

[ΓprX ]
→ [X] → 0→ ⋯, for X ∈ Sm/k; and

● ⋯ → 0 → [U ⋂V ]
[ΓjU ]⊕[ΓjV ]
Ð→ [U]⊕[V ]

[ΓiU ]⊕(−[ΓiV ])
Ð→ [X] → 0 → ⋯, for X ∈

Sm/k and an open covering X = U ⋃V .

Then, let T be the thick closure of T in Kb(SmCork).

Definition 2.5.6. The category DMeff
gm(k,R) of effective geometric motives over

k with R-coefficients is defined to be the Karoubian envelope of the the Verdier quo-

tient Kb(SmCork)/T of Kb(SmCork) with respect to the tick subcategory T . The

composition functor

Sm/k [−]Ð→ Kb(SmCork)
−/TÐ→ Kb(SmCork)/T

−♮Ð→ DMeff
gm(k) ∶= (Kb(SmCork)/T )♮

is denoted by Mgm,R, and called the geometric motive functor. For R = Z, write

DMeff
gm(k) ∶= DMeff

gm(k,R) and Mgm ∶=Mgm,R.

The reduced motive M̃gm(X) of X ∈ Sm/k is defined to be the cocone

M̃gm,R(X) ∶= Cocone (⋯ →Mgm,R(X) →Mgm,R(Speck) → ⋯)

of the complex centred in degrees 0 and 1, see [Voe00, p.192]. Let,

R(0) ∶=Mgm,R(Speck) and R(1) ∶= M̃gm,R(P1
k)[−2].

The geometric motive R(1) is called the Tate motive over k.

The category of effective geometric motives DMeff
gm(k,R) is R-linear additive with a

symmetric monoidal structure. Moreover, the functor

− ⊗R(1) ∶ DMeff
gm(k,R) → DMeff

gm(k,R)

is triangulated, and the category DMgm(k,R) of geometric motives over k withR-coefficients

is defined to be the Spanier-Whitehead stabilisation of DMeff
gm(k,R) with respect to the

functor − ⊗R(1), i.e.

DMgm(k,R) ∶= SWR(1)DMeff
gm(k,R).

Proposition 2.5.7 (Gysin Triangles). Let X be a smooth k-scheme, let i ∶ Z ↪ XÐ→X

be a smooth closed immersion that is everywhere of codimension c, with complementary

open immersion j ∶ U ↪ ○Ð→X. Then, there is a canonical distinguished triangle

Mgm(U)
Mgm(j)// Mgm(X) gZ // Mgm(Z)(c)[2c] // Mgm(U)[1]

in DMeff
gm(k).

Proof. See [Voe00, Prop.3.5.4]. �
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Corollary 2.5.8. Let k be a perfect field of exponential characteristic p. Then, the

triangulated category DMeff
gm[Z[1

p]](k) is generated by direct summands of geometric

motives for smooth projective k-schemes.

Proof. See [Kel12, Prop.5.5.3]. �

Motives of Singular Varieties. Let k be a perfect field. The functors

Mgm,p ∶ Sm/k → DMeff
gm(k,Z[1

p
]) and Mprop

gm,p ∶ SmProp/k ↪ Sm/k → DMeff
gm(k,Z[1

p
])

extend to functors

Mgm,p ∶ Sch
ft/k → DMeff

gm(k,Z[1

p
]) and M c

gm,p ∶ Sch
ftprop

/k → DMeff
gm(k,Z[1

p
]),

called the geometric motive and geometric motive with proper support functors, re-

spectively, see [Kel12, Lem.5.5.2 and Lem.5.5.6]. These functors satisfy the following

homological properties, among others,

● (Homotopy invariance) the morphismMgm,p(prX) ∶Mgm,p(X×A1
k) →Mgm,p(X)

is an isomorphism for every X ∈ Sch
ft/k, see [Kel12, Cor.5.5.9];

● (Blow-up) there exists a canonical distinguished triangle

Mgm,p(p−1
Z (Z)) →Mgm,p(Z)⊕Mgm,p(XZ) →Mgm,p(X) →Mgm,p(p−1

Z (Z))[1]

in DMeff
gm(k,Z[1

p]), for every closed subscheme Z ↪ XÐ→ X in Sch
ft/k, where pZ ∶

XZ →X is the blow-up of X centred at Z, see [Kel12, Cor.5.5.4];

● there exists a canonical isomorphism

M c
gm,p(X) ≅Mgm,p(X),

for every proper k-scheme X ∈ Sch
ft/k, see [Kel12, Prop.5.5.5];

● there exists a canonical isomorphism

M c
gm,p(Y )(n)[2n] →M c

gm,p(X),

for every flat equidimensional morphism f ∶ X → Y in Sch
ft/k, where n =

dimY X, see [Kel12, Prop.5.5.11]; in particular, there exists a canonical iso-

morphism

M c
gm,p(X ×A1

k) ≅M c
gm,p(X)(1)[2],

induced by the projection prX ∶X ×A1
k →X;

● there exist canonical isomorphisms

Mgm,p(X) ≅Mgm,p(Xred) and M c
gm,p(X) ≅M c

gm,p(Xred),

for every X ∈ Sch
ft/k;

● there exists a canonical distinguished triangle

M c
gm,p(Z) →M c

gm,p(X) →M c
gm,p(U) →M c

gm,p(Z)[1],

for every closed immersion Z ↪ XÐ→ X in Sch
ft/k with complementary open im-

mersion j ∶ U ↪ ○Ð→X, see [Kel12, Prop.5.5.5]; and
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● (Künneth Formula) there exist canonical isomorphisms

Mgm,p(X × Y ) ≅Mgm,p(X) ⊗Mgm,p(Y )

M c
gm,p(X × Y ) ≅M c

gm,p(X) ⊗M c
gm,p(Y ),

for every X,Y ∈ Sch
ft/k, see [Kel12, Prop.5.5.8].

These results were obtained by Voevodsky, in [Voe00, §.4], with integral coefficients

for fields admitting resolution of singularities, and by S. Kelly, in [Kel12], with Z[1
p]

coefficients for any perfect field of exponential characteristic p.

In particular, the last three properties imply that the functor M c
gm,p induces a

motivic measure

µDM ∶ K0(Var/k) → K△(DMeff(k,Z[1
p]))

[X] ↦ [M c
gm,p(X)].

(14)

2.5.2.1. Chow Motives. Recall the construction of the category of pure Chow mo-

tives withR-coefficients over k, starting with the category of covariant (resp. contravari-

ant) Chow correspondences of degree zero on smooth projective k-schemes, applying

the Karoubian envelope yields the category of covariant (resp. contravariant) effective

Chow motives, then the Spanier-Whitehead stabilisation of effective Chow motives with

respect to the Lefschetz motive L results in the category of covariant (resp. contravari-

ant) pure Chow motives. This was first developed by Grothendieck in 1964, within the

general framework of motives.

The R-linear categories CorR(k) and CorR(k) of covariant and contravariant Chow

correspondences, respectively, of degree zero over SmProj/k have the same objects of

SmProj/k, and their morphisms are given by the R-modules of Chow correspondences1

CorR(k)(X,Y ) ∶= ⊕
Yj∈irr(Y )

CHdimYj(X × Yj)⊗
Z

R

and

CorR(k)(X,Y ) ∶= ⊕
Xi∈irr(X)

CHdimXi(Xi × Y )⊗
Z

R,

for every pairs (X,Y ) of smooth projective k-schemes, with compositions given by the

intersection product on the Chow rings.

There are well-defined functors

SmProj/k → CorR(k) and SmProj/kop → CorR(k),

1Algebraic correspondences modulo rational equivalence, see [Ful98].
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sending a morphism f of smooth projective k-schemes to the Chow correspondence [Γf ]
of its graph and to its transpose [Γf ]⊺, respectively. Moreover, since connected compo-

nents of smooth k-schemes coincide with their irreducible components, the transpose

defines an isomorphism of categories

CorR(k)op → CorR(k),

that is the identity on objects and given by the transpose on correspondences.

The categories CorR(k) and CorR(k) are additive, whose direct sum (resp. zero

object) is given by the disjoint union of schemes (resp. the scheme Speck). Moreover,

these categories are symmetric monoidal, whose monoidal product is induced by the

Cartesian product of smooth projective k-schemes. However, neither of the categories

CorR(k) and CorR(k) is Karoubian. The categories of covariant and contravariant

effective Chow motives CHMeff
R (k) and CHMR

eff(k), respectively, are defined to be the

Karoubian completion of CorR(k) and CorR(k), respectively. In particular, objects of

CHMeff
R (k) are pairs of the form (X,Ξ), for a smooth projective k-scheme X and an

idempotent Chow correspondence Ξ ∶X ⊢X in CorR(k); and

CHMeff
R (k)((X,Ξ), (Y,Ψ)) ≅ Ψ ○CorR(k)(X,Y ) ○Ξ.

The categories CHMeff
R (k) and CHMR

eff(k) inherit the R-linear additive and symmetric

monoidal structures of CorR(k) and CorR(k), respectively.

Lefschetz motive. Let p ∶ P1
k ↠ Speck be the structure morphism of P1

k, let x ∶
Speck ↪ P1

k be a rational point of P1
k, let e ∶= x○p ∶ P1

k → P1
k, and let Γ ∶= [Γe] ∶ P1

k ⊢ P1
k

be the idempotent endomorphism in CorR(k) corresponding to e. The endomorphism

Γ induces an idempotent endomorphism Γ ∶ (P1
k, [∆P1

k
]) ⊢ (P1

k, [∆P1
k
]) in CHMeff

R (k).
Hence, (P1

k, [∆P1
k
]) decomposes in CHMeff

R (k) as

(P1
k, [∆P1

k
]) ≅ kerΓ⊕imΓ.

Let Γ1 = [Speck ×P1
k] and Γ2 = [P1

k × Speck] be the Chow correspondences spanning

CHMeff
R (k)(P1

k,P
1
k) = CorR(k)(P1

k,P
1
k) = CH1

R(P1
k ×P1

k) ≅ R⊕R,

then Γ1 + Γ2 = [∆P1
k
] ∈ CHMeff

R (k)(P1
k,P

1
k), and Γ = Γ1 = [Speck ×P1

k]. Therefore,

kerΓ ≅ (P1
k, [∆P1

k
] − Γ1) = (P1

k,Γ2) and imΓ ≅ (P1
k,Γ1).

The motive (P1
k,Γ2) = (P1

k, [P1
k × Speck]) is called the covariant Lefschetz Motive and

it is denoted by L. Then, one has

(P1
k, [∆P1

k
]) ≅ (Speck, [∆Speck])⊕L = 1⊕L, (15)

in CHMeff
R (k). The contravariant Lefschetz Motive is defined dually in CHMR

eff(k). The

categories of covariant and contravariant Chow motives CHMR(k) and CHMR(k) are

defined, respectively, to be the Spanier-Whitehead categories

CHMR(k) ∶= SWLCHMeff
R (k) and CHMR(k) ∶= SWLCHMR

eff(k).
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Embedding of Chow Motives in Geometric Motives. Denote the functor SmProj/k →
CHMeff(k) that sends a smooth projective k-scheme to its covariant effective Chow

motive, with integral coefficients, by Chow.

Theorem 2.5.9. There exists a functor MCHM
gm ∶ CHMeff(k) → DMeff

gm(k) for which

the square

SmProj/k � � //

Chow
��

Sm/k
Mgm

��
CHMeff(k)

MCHM
gm

// DMeff
gm(k)

commutes.

Proof. See [Voe00, Prop.2.1.4]. �

This theorem is the main reason beyond using the Karoubian envelope in the con-

struction of the category of geometric motives.

Voevodsky deduced in [Voe00], when k is a field that admits resolutions of sin-

gularities, that the functor MCHM
gm ∶ CHMeff(k) → DMeff

gm(k) is a full embedding. Then,

Bondarko used Gabber’s refined uniformisation to prove the existence of such full em-

bedding for a perfect field, but with Z[1
p]-coefficients. In fact, in [Bon11, Th.2.2.1.(2)],

Bondarko showed the existence of a bounded weight structure on DMeff
gm(k,Z[1

p]), whose

heart is isomorphic to CHMeff
Z[ 1

p
](k), which implies the full faithfulness of the induced

functor MCHM
gm ∶ CHMeff(k) → DMeff

gm(k). Also, it induces an exact conservative functor

DMgm(k,Z[1

p
]) → Kb (CHMZ[ 1

p
](k)),

see [Bon11, Prop.2.3.2.(1)]. Hence, it establishes an isomorphism

K△ (DMgm(k,Z[1

p
])) → K⊕ (CHMZ[ 1

p
](k)). (16)

Also, Bondarko showed, in [Bon11, Th.2.2.1.(1)], that DMgm(k,Z[1
p] is generated, as

a triangulated category, by summands of objects in CHMeff
Z[ 1

p
](k).

2.5.3. Motivic Complexes.

2.5.3.1. (Pre)sheaves with Transfers. A presheaf with transfers with coefficients in

R over k is an additive functor F ∶ SmCoropk → R-Mod, and the category of presheaves

with transfers with coefficients in R over k is the full subcategory in the functor cate-

gory Fun(SmCoropk ,R-Mod), whose objects are presheaves with transfers, it is denoted

by PST(k,R). The category PST(k,R) is abelian and has enough injectives and pro-

jectives, see [MVW06, Th.2.3].

A presheaf with transfers F ∶ SmCoropk → R-Mod is said to be a Nisnevich sheaf with

transfers, if its restriction to the category Sm/k of smooth k-schemes is a Nisnevich

sheaf. Let ShvNis(SmCor(k,R)) be the category of Nisnevich sheaves with transfers
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with coefficients in R over k. Then, the triangulated category of effective motivic

complexes is defined to be the full triangulated subcategory

DMeff(k,R) ⊂ D− (ShvNis(SmCor(k,R))),

whose cohomology sheaves are homotopy invariant, i.e. F ● ∈ D− (ShvNis(SmCor(k,R)))
if

Hn(F ●)(X) ≅ Hn(F ●)(X ×A1
k),

for every X ∈ Sm/k and n ∈ Z. The triangulated category DM(k,R) inherits the stan-

dard t-structure on D− (ShvNis(SmCor(k,R))), given by canonical truncations, whose

heart is the abelian category of homotopy invariant Nisnevich sheaves with transfers

with coefficients in R over k, see [Voe00, p.205].

Let L be the Yoneda embedding functor

L ∶ SmCor(k,R) → ShvNis(SmCor(k,R)) ⊂ PST(k,R)

X ↦ L(X) = c(−,X)R.

The category of presheaves with transfers PST(k,R) is symmetric monoidal. How-

ever, its monoidal product differs from the restriction of the Cartesian product of the

category of presheaves of R-modules over k. To recall the symmetric monoidal struc-

ture on PST(k,R), one needs Suslin simplicial complexes. For a presheaf P ∶ Sm/kop →
R-Mod, the Suslin simplicial complex of P is given by

C−●(P )(−) = C●(P )(−) ∶= PST(k,R)(L(∆●
k × −), P ),

where ∆●
k is the standard algebraic cosimplicial object in Sm/k, i.e.

∆n
k = Spec(k[x0, x1, . . . , xn]/

n

∑
i=0

xi = 1) ,

for [n] ∈ ∆, with evident face and degeneracy morphisms, see [Voe98, §.3]. Then, for

X ∈ Sm/k, one has

C−●(P )(X) = PST(k,R)(L(∆●
k ×X), P ) ≅ P (∆●

k ×X).

Since one has an isomorphism ∆n
k ≅ An

k for every integer n ≥ 0, the complex C−●(P )
has homotopy invariant cohomology sheaves h●(F ) ∶= H (C−●(P )), see [Voe00, 3.2.1].

Moreover, if P is a presheaf (resp. Nisnevich sheaf) with transfers, then C−●(P ) is

a complex of presheaves (resp. Nisnevich sheaves) with transfers, whose cohomology

sheaves are homotopy invariant, see [Voe00, Th.3.1.12].

Let P ∈ PST(k,R), then one has a canonical isomorphism

P ≅ colim
El(P )

L ○ π,
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where El(P ) is the category of elements of P , and π ∶ El(P ) → Sm/k is the evident

projection. Hence, the canonical morphism

⊕
(X,φ)∈Ob(El(P ))

L(X) → P

is a surjection of presheaves with transfers. There exists a canonical left resolution

L(P ) of P in PST(k,R), whose morphisms are the canonical surjections with

L1(P ) ∶= ⊕
(X,φ)∈Ob(El(P ))

L(X) and Ln+1(P ) ∶= L1(Ln(P )) for n ≥ 1.

The monoidal structure on PST(k,R) is defined by L(X) ⊗ L(Y ) ∶= L(X × Y ) for

X,Y ∈ Sm/k, and

P ⊗G ∶= h0(L(F ) ⊗L(G)) for P,Q ∈ PST(k,R).

In fact, PST(k,R) is monoidal closed with internal Hom given by

Hom(P,Q)(−) ∶= PST(k,R)(P ⊗L(−),G) for P,G ∈ PST(k,R).

In particular, C−●(P ) ≅ Hom(L(∆●
k), P ), for every P ∈ PST(k,R). Moreover, if Q is a

Nisnevich sheaf with transfers, so is Hom(P,Q), for any presheaf with transfers P .

On the other hand, the Suslin simplicial complex extends to a functor

C−● ∶ ShvNis(SmCor(k,R)) → DMeff(k,R),

with a right derived functor

RC−● ∶ D− (ShvNis(SmCor(k,R))) → DMeff(k,R),

that is a left adjoint of the inclusion DMeff(k,R) ⊂ D− (ShvNis(SmCor(k,R))), see

[Voe00, Prop.3.2.3]. This functor is particularly useful in lifting the monoidal structure

of PST(k,R) to DMeff(k,R), whose monoidal product is given by

P ● ⊗Q● ∶= RC−●(P ● ⊗R Q●) for P ●,Q● ∈ DMeff(k,R).

Also, it induces an embedding of geometric motives into effective motivic complexes,

for a perfect field k.

Theorem 2.5.10. Let k be a perfect field. The functor

L ∶ Kb(SmCor(k,R)) → D− (ShvNis(SmCor(k,R))),

induced by the Yoneda embedding, has a fully faithful symmetric monoidal triangulated

right derived functor RL, with a dense image, that makes the square

Kb(SmCor(k,R)) L //

Q♮

A1
k
,MV

��

D− (ShvNis(SmCor(k,R)))

RC−●

��
DMeff

gm(k,R) RL // DMeff(k,R),

of symmetric monoidal triangulated functors, commute.

Proof. See [Voe00, Th.3.2.6]. �
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The Hurewicz functor. Let A be an abelian category, the Dold-Kan Theorem im-

plies that the Moore’s normalisation functor

CN ∶∆opA → Ch≥0(A )

is an equivalence of categories, with a quasi-inverse K, called the Dold-Kan correspon-

dence, see [Wei94, Th.8.4.1]. In fact, the adjunctions K ⊣ CN and CN ⊣ K are Quillen

equivalences with respect to the standard model structures on both categories.

The Dold-Kan correspondence gives rise to a monoidal triangulated adjunction

Hu ∶ SHs(k) ⇄ DMeff(k) ∶ H. (17)

The functor Hu is called the Hurewicz functor, it sends the S1-symmetric spectrum

Σ∞S1 X+ to the effective geometric motive Mgm(X) for every X ∈ Sm/k. The right

adjoint H to Hu is called the Eilenberg-Mac Lane spectrum functor, see the discussion

in [AH11, §.2.1]. Moreover, for a perfect field k, the adjunction (17) induces an

equivalence of the Q-localised triangulated categories

HuQ ∶ SH(k,Q) ⇄ DM(k,Q) ∶ HQ, (18)

see [Mor06, Th.4.1 and Rem.1.5].



CHAPTER 3

Motivic Measures

Motivic measures are connected to fundamental questions in algebraic geometry.

For instance, the motivic measure of counting points over a finite field gives rise to

the Hasse-Weil zeta function through applying it to symmetric powers, as it was first

shown by Kapranov in [Kap00]. Also, Larsen-Lunts motivic measure, introduced in

[LL03], has important applications in birational algebraic geometry, see [GS14]. Other

important questions are tackled through the universal motivic measures, called the

Grothendieck ring of varieties, see [NS11] and [DL04].

In this chapter we recall the basics of motivic measures, then we restrict our atten-

tion to the classical motivic measure of counting points over a finite field.

Throughout this chapters, let S be a Noetherian scheme. Recall the conventions

and notations in §.0.2. In particular, the category of schemes of finite type over S is

denoted by Sch
ft/S, and its subcategory of reduced such schemes is denoted by Var/S.

An S-scheme (resp. S-variety) refers to an object in Sch
ft/S (resp. Var/S).

Definition 3.0.1 (Euler-Poincaré characteristic). Let (G,+) be a group. A gener-

alised Euler-Poincaré characteristic over S with values in (G,+) is a map

χ ∶ Ob(Sch
ft/S) → G

that is invariant under isomorphisms and respects the scissors relations, i.e.

χ(x) = χ(z) + χ(u), (19)

if there exists a closed immersion z ↪ XÐ→ x in Sch
ft/S with complementary open immersion

u ↪ ○Ð→ x, see [Mus13, p.73] and [DL01, p.5].

In particular, the scissors relations imply that χ(∅S) = 0G, and

χ(z) = χ(x) (20)

if there exits a surjective closed immersion z ↪ XÐ→ x in Sch
ft/S.

The relation (20) shows one may equivalently define generalised Euler-Poincaré

characteristics over S to be maps from Ob(Var/S) that are invariant under isomorphisms

and respect the scissors relations.

88
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Recall that the category Sch
ft/S admits a Cartesian product given by the fibre

product over S, i.e. for S-schemes x ∶ X → S and y ∶ Y → S in Sch
ft/S, the Cartesian

product x × y is the S-scheme X ×S Y , with the canonical structure morphism over S.

Definition 3.0.2 (Motivic Measure). Let (R,+,0) be a commutative ring. A mo-

tivic measure (or multiplicative Euler-Poincaré characteristic) over S with values in

(R,+,0) is a generalised Euler-Poincaré characteristic

µ ∶ Ob(Sch
ft/S) → R

with value in (R,+) that respects the Cartesian product of Sch
ft/S, i.e. µ(x×y) = µ(x) ⋅

µ(y), for every x, y ∈ Sch
ft/S. In particular, when µ is surjective, one has µ(idS) = 1R.

Similarly, since the category Var/S admits a Cartesian product given by the reduced

induced structure on the fibre product over S, one may equivalently define motivic

measures as generalised Euler-Poincaré characteristics from Ob(Var/S) that respect the

Cartesian product of Var/S, due to the relation (20).

Example 3.0.3 (Counting points). Let Fq be a finite field with q elements, for every

finite field extension Fqs of Fq, there exists a motivic measure µs# ∶ Ob(Sch
ft/k) → Z,

given by µs#(X) ∶= #X(Fqs), it is called the counting Fqs-point motivic measure, see

§.3.2. In particular, for s = 1, the motivic measure µs# is the counting rational points

motivic measure, and it is denoted by µ#.

Definition 3.0.4 (Kapranov Motivic Zeta Functions). Let k be a field, and let

µ ∶K0(Sch
ft/k) → R

be a motivic measure, and let X be a quasi-projective k-variety. The motivic zeta-

function of X with respect to µ is the formal power series

ζµ(X, t) =
∞
∑
n=0

µ (SymnX) tn ∈ RJtK,

where Symn x is the nth-symmetric power of X.

Example 3.0.5. The Hasse-Weil zeta function is the motivic zeta-function with

respect to the counting rational points motivic measure over a finite field, see [Kap00].

3.1. Grothendieck Ring of Varieties

Let K0(Sch
ft/S) (resp. K0(Var/S)) be the abelian group generated by isomorphism

classes of S-schemes (resp. S-varieties) module the scissors relations

{ [x]=[z]+[u] there exists a closed immersion z ↪ XÐ→ x in Sch
ft/S (resp.

Var/S) with complementary open immersion u ↪ ○Ð→ x
} ,

where [y] denotes the isomorphism class of an S-scheme (resp. an S-variety) y. The

group K0(Sch
ft/S) (resp. K0(Var/S)) is called the Grothendieck group of S-schemes (resp.
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S-varieties). We abuse notations, and we also use [y] to refer to the element in the

Grothendieck group that is represented by the isomorphism class of the S-scheme y.

The Cartesian product of the category Sch
ft/S (resp. Var/S) defines a commutative

ring structure on the group K0(Sch
ft/S) (resp. K0(Var/S)), whose multiplication ⋅ is

given by

[x] ⋅ [y] ∶= [x × y],

for every x, y ∈ Sch
ft/S (resp. x, y ∈ Var/S). The resulting ring is called Grothendieck

ring of S-schemes (resp. S-varieties).

The rings K0(Sch
ft/S) and K0(Var/S) are isomorphic, in which one has 0 = [∅S],

1 = [idS], and [z] = [x] if there exits a surjective closed immersion z ↪ XÐ→ x of S-schemes.

For a field k, one may show using Noetherian induction that the ring K0(Var/k) is

isomorphic to the subring generated by quasi-projective k-varieties.

The canonical map

[−] ∶ Ob(Sch
ft/S) → K0(Sch

ft/S)
x ↦ [x]

is an initial universal generalised Euler-Poincaré characteristic over S. In fact, it is an

initial universal motivic measure over S. Hence, one might abuse notation and call any

ring homomorphism from K0(Sch
ft/S) a motivic measure over S.

The Grothendieck ring of varieties was first introduced by Grothendieck in a letter

to Serre in 1964. Yet, it was not until 2002, when it was shown to contain zero divi-

sors over a field of characteristic zero, see [Poo02]. Also, the class of the affine line

was not proven to be a zero divisor until recently. In 2014, Borisov constructed two

smooth Calabi-Yau varieties over the complex numbers, and showed that a multiple of

the difference between their classes annihilate the class of the affine line, see [Bor15,

Th.2.12]. That, in particular, answers negatively the cut-and-past question of Larsen

and Lunts, proposed in [LL03, Question 1.2].

3.1.1. Grothendieck Ring of Varieties in Characteristic Zero. For a field k

of characteristic zero, the ring K0(Sch
ft/k) admits alternative presentations as quotients

with better-behaved generators.

Lemma 3.1.1. Let k be a field of characteristic zero. Then, the group K0(Sch
ft/k) is

isomorphic to the abelian group generated by isomorphism classes of smooth connected

projective k-varieties modulo the scissors relations.

Proof. See [Mus13, Lem.7.9]. �
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Theorem 3.1.2. Let k be a field of characteristic zero. Then, the group K0(Sch
ft/k)

is isomorphic to the abelian group generated by isomorphism classes of smooth con-

nected projective (resp. proper) k-varieties modulo the relations

● [∅] = 0; and

● [BlY X]−[E] = [X]−[Y ] for every smooth connected projective (resp. proper)

k-variety X and a closed smooth subvariety Y ↪ XÐ→ X, where BlY X is the

blow-up of X along Y with an exceptional divisor E.

Proof. See [Bit04, Th.3.1]. �

3.1.2. The Modified Grothendieck Ring of Varieties. In several situations,

it is rather difficult to utilise the Grothendieck Ring of varieties. In these cases, it is

usually more convenient to consider a modified version, see [NS11] and [Har16].

Definition 3.1.3. Let Iuh
S

be the ideal in K0(Sch
ft/S) generated by the set

{ [x]-[y] there exists a universal homeomorphism of S-schemes between x and y } .

The modified Grothendieck ring of S-schemes, denoted by Kuh
0 (Sch

ft/S) is the quotient

ring

Kuh
0 (Sch

ft/S) ∶= K0(Sch
ft/S)/Iuh

S
. (21)

Proposition 3.1.4. Let f ∶ x → y be a universal homeomorphism of Q-schemes.

Then, f is a piecewise isomorphism. Thus, for a Q-scheme S, the quotient projection

µ
uh
∶ K0(Sch

ft/S) → Kuh
0 (Sch

ft/S)

is an isomorphism.

Proof. See [NS11, Prop.3.10 and Cor.3.11]. �

3.2. Counting Points over a Finite Field

Let K/k be an algebraic field extension. The cardinality of the set of K-points in

a k-scheme X is given by

#X(K) = #Sch
ft/k(SpecK,X) = # ⊔

x∈X
k-Alg(κ(x),K),

which is finite for a finite extension K/k of a finite field k, see [Mus13, Prop.2.1,

Rem.2.2 and Rem.2.3].

Fix a finite field Fq, of characteristic p with q = pr elements, and fix an algebraic

closure Fq ⊂ Fq. Then, for an integer s ≥ 1, fix a field Fq ⊂ Fqs ⊂ Fq of degree s over
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Fq. The corepresentable functor

hSpecFqs ∶ Sch
ft/Fq Ð→ FSet

X z→ X(Fqs)

f ∶X → Y z→ f(Fqs) ∶ X(Fqs) → Y (Fqs)

x ↦ f ○ x

(22)

defines a map µs# ∶ Ob(Sch
ft/Fq) → Z, given for an Fq-scheme X by

µs#(X) ∶= #X(Fqs) = # ⊔
x∈X

deg(x)∣s

Fq-Alg(κ(x),Fqs),

where deg(x) = [κ(x) ∶ Fq], because the residue field of an Fqs-point is an intermediate

field extension between Fq and Fqs .

Remark 3.2.1. Notice that, for an Fq-scheme X, every closed point x ∈ X with

κ(x) ≅ Fqt corresponds to t different Fqt-points in X over Fq, given by the t different

Fq-automorphism of Fqt . Moreover, the group Gal(Fqt/Fq) is cyclic, generated by the

restriction of the arithmetic Frobenius automorphism to Fqt , whose tth-power fixes Fqt .

Since functors preserve isomorphisms, the map µs# is invariant under isomorphisms.

The scheme-theoretic image of an Fqs-point is a closed point. Then, for a closed

immersion i ∶ Z ↪ XÐ→ X in Sch
ft/Fq with complementary open immersion j ∶ U ↪ ○Ð→ X,

each Fqs-point in X factorises either through the closed immersion i or through the

open immersion j, and hence µs# respects the scissors relations. For a locally small

category with Cartesian product, the definition of the Cartesian product implies that

corepresentable functors are strong symmetric monoidal, with respect to the Cartesian

monoidal structure. In particular, for Fq-schemes X0 and X1, we have a bijection

(X0 ×X1)(Fqs) = Sch
ft/Fq(SpecFqs ,X0 ×X1) ≅X0(Fqs) ×X1(Fqs),

and hence

µs#(X0 ×X1) = #(X0 ×X1)(Fqs) = #(X0(Fqs) ×X1(Fqs)) = µs#(X0) ⋅ µs#(X1)

Thus, the map µs# is a motivic measure. The notation µs# is also used to denote the

induced ring homomorphism

µs# ∶ (K0(Sch
ft/Fq),+, ⋅) → (Z,+, ⋅). (23)

For s = 1, we write µ# ∶= µ1
#.

Counting points over a finite field can be realised using the Frobenius endomor-

phism, by means of the trace formula. That is of a particular interest in §.3.2.1, to

extend counting points to effective Chow motives.
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Counting points and the Frobenius Endomorphism. Hereby, we briefly recall the

Frobenius endomorphism, the arithmetic Frobenius, and recall how it gives the number

of points of a given degree.

Recall that for an Fq-scheme X, the Frobenius endomorphism FrX ∶X →X of X is

such an endomorphism of schemes whose underlying continuous map ∣FrX ∣ ∶ ∣X ∣ → ∣X ∣
is the identity map, with comorphisms

Fr#
X,U ∶ OX(U) → OX(U),

a ↦ aq

for every open affine subset U ⊂ X. Iterating the Fermat-Euler Theorem shows that

aq = a for every a ∈ Fq, and hence FrX is a morphism of Fq-schemes. Also, for every

point x ∈X, one has induced morphisms

Fr#
X,x ∶ OX,x → OX,x and Fr#

κ(x) ∶ κ(x) → κ(x)

over Fq, sending elements to their qth-power.

Recall that the absolute Galois group Gal(Fq/Fq) is generated as a topological

group by an Fq-automorphism over Fq sending each element to its qth-power, called the

arithmetic Frobenius automorphism. For a closed point x ∈X, the extension κ(x)/Fq is

algebraic because tr.deg(κ(x)/k) = dimx = 0. Then, the group Gal(κ(x)/Fq) is cyclic

of order [κ(x) ∶ Fq], and it is generated by the restriction of the arithmetic Frobenius

automorphism to κ(x), that is Fr#
κ(x).

For a integer s ≥ 1, the sth-power of the arithmetic Frobenius automorphism gener-

ates a subgroup in Gal(Fq/Fq), and hence determines a unique subextension of Fq in

Fq of degree s, namely Fqs = {a ∈ Fq ∣ aqs = a}. Hence, for a closed point x ∈ X, the

field κ(x) is fixed by the [κ(x) ∶ Fq]th-power of Fr#
κ(x), but not by any smaller power.

In general, an Fq-scheme X may have infinity many geometric points. However,

the lemma below shows that only finitely many of them are fixed by a given power of

the Frobenius endomorphism.

Lemma 3.2.2. Let X be an Fq-scheme and let s ≥ 1 be an integer. Then, the set

X(Fqs) of Fqs-points in X over Fq is in bijection with the set of all Fq-points in X

over Fq that are fixed by the sth-power of the Frobenius endomorphism, i.e. X(Fqs)
is in bijection with the set (equi

Sch
ft/Fq

(FrsX , idX)) (Fq), and hence

µs#(X) = #{x ∈X(Fq) ∣ FrsX ○ x = x = idX ○ x},

where equi
Sch

ft/Fq
(FrsX , idX) is the equaliser of FrsX and idX in Sch

ft/Fq.

Proof. Consider the map

Φ ∶X(Fqs) → {x ∈X(Fq) ∣ FrsX ○ x = x = idX ○ x}
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given by precomposition with the morphism SpecFq → SpecFqs over Fq, induced by

the fixed embeddings Fq ↪ Fqs ↪ Fq.

The map Φ is well-defined. To see that, let x ∶ SpecFqs → X be an Fqs-point

in X over Fq, and let x be its scheme-theoretic image. Since the sth-power of the

arithmetic Frobenius automorphism fixes Fqs , it fixes κ(x) for having field extensions

Fqs/κ(x)/Fq. The endomorphism Fr#
κ(x) is the restriction of the arithmetic Frobenius

automorphism to κ(x). Hence, one has

(Frsκ(x))
# = (Fr#

κ(x))
s = idκ(x) , i.e. x#

κ(x) ○ (Frsκ(x))
# = x#

κ(x).

Since x is the scheme-theoretic image of x, one has FrsX ○ x = x. Let x be the precom-

position of x with the canonical morphism SpecFq → SpecFqs , then FrsX ○ x = x.

Since SpecFq → SpecFqs is an epimorphism, the map Φ is injective. To show

the surjectivity of Φ, let x ∶ SpecFq → X be an Fq-point in X over Fq that is fixed by

FrsX , and let x be its scheme-theoretic image, then one has field extensions Fq/κ(x)/Fq.
Since FrsX fixes x, one has

x#
κ(x) ○ (Frsκ(x))

# = x#
κ(x).

The homomorphism x#
κ(x) is an immersion of fields, and hence a monomorphism. Thus,

one has (Fr#
κ(x))

s = idκ(x), and the restriction of the sth-power of the arithmetic Frobe-

nius automorphism fixes κ(x). Since the sth-power of the arithmetic Frobenius auto-

morphism only fixes subfields of Fqs , one has field extensions Fq/Fqs/κ(x)/Fq, and x

factors through the canonical morphism SpecFq → SpecFqs . �

For an Fq-scheme X, let X ∶=X ×SpecFq SpecFq. There is a bijection Φ ∶X(Fq) →
X(Fq), between the sets of Fq-points in X over Fq and Fq-points in X over Fq, given

by the composition with the projection X → X. Define the relative Frobenius endo-

morphism FrX,q of X over SpecFq to be FrX ×SpecFq id
SpecFq

. Then, Lemma 3.2.2 can

be restated as follows.

Corollary 3.2.3. Let X be an Fq-scheme and let s ≥ 1 be an integer. Then, the

set X(Fqs) of Fqs-points in X over Fq is in bijection with the set of all Fq-points in X

over Fq that are fixed by the sth-power of the relative Frobenius endomorphism FrX,q,

i.e. the set X(Fqs) is in bijection with the set (equi
Sch

ft/Fq
(Frs

X,q
, idX)) (Fq), and hence

µs#(X) = #{x ∈X(Fq) ∣ Frs
X,q

○ x = x = idX ○ x}.

The main advantage of the corollary above is that geometric points in X coincide

with its closed points, and hence one counts closed points in X fixed by powers of the

relative Frobenius endomorphism.
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One may would like to consider the absolute Frobenius endomorphism of X over

Fq, given by

FrX ∶= FrX ×SpecFq Fr
SpecFq

,

instead of FrX,q. However, the corollary above does not hold for FrX .

3.2.1. Counting Points on Effective Chow Motives. Kleiman extended count-

ing point to the category of contravariant effective Chow motives with coefficients in

a ring R, in his survey on the theory of motives [Kle72]. Combined with the work of

Gillet and Soulé, in [GS09], this extends the motive measure of counting points over a

finite field to the Grothendieck ring of effective Chow motives with rational coefficients.

Let R be a ring of characteristic zero. Recall that SmProj/Fq denotes the category

of smooth projective Fq-varieties and that CHMR
eff(Fq) denotes the category of con-

travariant effective Chow motives with R-coefficients over Fq, as in §.2.5.2.1. There

exists a functor

− ∶ (SmProj/Fq)op → CHMR
eff(Fq)

X ↦ (X, idX)
f ∶X → Y ↦ f ∶= [Γf ]⊺,

where Γf is the scheme-theoretic image of the graph morphism associated to f in X×Y .

Proposition 3.2.4. Let X be a smooth projective Fq-variety. Then, the scheme-

theoretic intersection ΓFrsX ⋂∆X in X ×X is reduced, and the set X(Fqs) is in bijection

with the set of all geometric Fq-points in ΓFrsX ⋂∆X over Fq. Moreover, the algebraic

cycles FrsX and idX = [∆X]⊺ intersect properly in the group of algebraic cycles C∗(X ×
X); and hence

µs#(X) = ⟨(FrsX ⋅ idX)⟩, (24)

where the intersection product is taken in the Chow ring CH∗(X ×X), and ⟨−⟩ is the

degree morphism over Fq.

Proof. Consider the solid commutative diagram

X

≅
��

idX

��

FrsX

��

ΓFrsX

��
≅

{{ ##
X ′
s

pFr

11

p∆

--

prFr

00

pr∆ ..

< X X ×Fq X //oo X.

∆X

OO
≅

cc

≅

::

X

≅
OO

idX

SS

idX

JJ

(25)
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of Fq-schemes defining the intersection X ′
s ∶= ΓFrsX ⋂∆X . Since X is smooth over Fq, it is

a reduced Noetherian scheme whose irreducible components coincide with its connected

components. Hence, there exists a finite covering family {Ui ∣ i ∈ I} of connected open

affine subschemes of X. In particular, the ring OX(Ui) is an integral domain for

every i ∈ I. The diagonal morphism ∆X and the graph morphism ΓFrsX
are induced

respectively by the ring homomorphisms

∆#
X(Ui) ∶ OX(Ui) ⊗Fq OX(Ui) → OX(Ui)

a⊗ b ↦ a ⋅ b
and

Γ#FrsX
(Ui) ∶ OX(Ui) ⊗Fq OX(Ui) → OX(Ui)

a⊗ b ↦ a ⋅ bqs

for every i ∈ I. Since the ring OX(Ui) is integral, one has

ker∆#
X(Ui) ≅ (a⊗ 1 − 1⊗ a)(OX(Ui) ⊗Fq OX(Ui)) and

ker Γ#FrsX
(Ui) ≅ (aqs ⊗ 1 − 1⊗ a)(OX(Ui) ⊗Fq OX(Ui)).

Thus, the closed subschemes ∆X and ΓFrsX
in X×X are given respectively by the unions

∆X ≅ ⋃
i∈I

∆X(Ui) and ΓFrsX
≅ ⋃
i∈I

ΓFrsX
(Ui)

in X ×X, where ∆X(Ui) and ΓFrsX
(Ui) are the closed subschemes in X ×X given by

∆X(Ui) = SpecOX(Ui) ⊗Fq OX(Ui)/(a⊗ 1 − 1⊗ a) and

ΓFrsX
(Ui) = SpecOX(Ui) ⊗Fq OX(Ui)/(aqs ⊗ 1 − 1⊗ a),

for every i ∈ I. Hence, the scheme-theoretic intersection X ′
s = ΓFrsX ⋂∆X is given by the

union ⋃i∈I X ′
s,i in X ×X, where X ′

s,i is the closed subscheme

Spec (OX(Ui) ⊗Fq OX(Ui)/(a⊗ 1 − 1⊗ a)⊗OX(Ui)⊗FqOX(Ui)
OX(Ui) ⊗Fq OX(Ui)/(aqs ⊗ 1 − 1⊗ a))

≅ SpecOX(Ui) ⊗Fq OX(Ui)/(aqs ⊗ 1 − 1⊗ a,a⊗ 1 − 1⊗ a) ≅ SpecOX(Ui)/(aqs − a).

in X ×X, for every i ∈ I. Since OX(Ui) is an Fq-algebra and aq
s − a has only simple

roots over Fq, the scheme X ′
s,i is reduced for every i ∈ I, and so is the union ΓFrsX ⋂∆X .

The morphisms labelled with ≅ in diagram (25) are isomorphisms of schemes. There-

fore, there exist the dotted morphisms pFr, p∆ ∶ X ′
s → X over Fq that make the whole

diagram commute, which in turn implies that pFr = p∆. Chasing diagram (25), one

sees that the scheme-theoretic intersection of ΓFrsX
and ∆X in X ×X coincides with the

equaliser of FrsX , idX ∶X →X in the category of Fq-schemes. Then, one has the desired

bijection, by Lemma 3.2.2.

The bijection between the set X(Fqs) and the set of all Fq-points in ΓFrsX ⋂∆X

over Fq shows, in particular, that ΓFrsX ⋂∆X has finitely many Fq-points over Fq, as

µs#(X) is finite. Thus, the scheme ΓFrsX ⋂∆X is zero-dimensional, has finitely many
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closed points, and the residue field of each of these points is a finite field extension of

Fq. Therefore, the algebraic cycles FrsX and idX intersect properly in X ×X, and hence

their intersection product is given by

FrsX ⋅ idX = [ΓFrsX⋂∆X]⊺.

Since X is projective over Fq, the structure morphism p ∶ X ×X → SpecFq induces a

well-defined degree morphism ⟨−⟩ = p∗ ∶ CH0(X×X)⊗R → CH0(SpecFq)⊗R ≅ R. The

morphism p∗ sends each integral component x of ΓFrsX ⋂∆X to [κ(x) ∶ Fq]1CH0(SpecFq).

Since R is of characteristic zero and [κ(x) ∶ Fq] is the number of Fq-points in ΓFrsX ⋂∆X

over Fq with the scheme-theoretic image x, the equality (24) holds. �

Extending the base field to its algebraic closure allows a reformulation of the propo-

sition above using closed points and powers of the relative Frobenius endomorphism.

Corollary 3.2.5. Let X be a smooth projective Fq-variety. Then, the scheme-

theoretic intersection ΓFrs
X,q
⋂∆X in X×X is reduced, and the set X(Fqs) is in bijection

with the set of all Fq-points (equivalently closed points) in ΓFrs
X,q
⋂∆X over Fq. More-

over, the algebraic cycles Frs
X,q

and idX = [∆X]⊺ intersect properly in the group of

algebraic cycles C∗(X ×X); and hence

µs#(X) = ⟨Frs
X,q

⋅ idX⟩,

where the intersection product is taken in the Chow ring CH∗(X ×X), and ⟨−⟩ is the

degree morphism over Fq.

For an effective Chow motive M = (X,Ξ) over Fq, both FrsX and Ξ⊺ belong to the

group of Chow correspondences

CorCH
R (X,X) = ⊕

Xi∈irr(X)
CHdimXi

R (Xi ×X)
ψ
≅ ⊕
Xi∈irr(X)

⊕
Xj∈irr(X)

CHdimXi
R (Xi ×Xj).

Let FrsXi,j
and Ξ⊺

i,j be the (i, j)-components of the images of FrsX and Ξ⊺, respectively,

along ψ. Since the underlying continuous map of FrsX is the identity map, FrsXi,j
van-

ishes for i ≠ j and FrsXi,i
= FrsXi , for every Xi,Xj ∈ irr(X). Therefore, the intersection

product FrsX ⋅Ξ⊺ in CH∗
R(X ×X) is given by

FrsX ⋅Ξ⊺ = ψ-1( ∑
Xi∈irr(X)

FrsXi ⋅Ξ
⊺
i,i),

as the intersection product vanishes cross different connected components. Then, in

particular, FrsX ⋅ Ξ⊺ is the Chow class of a zero-cycle in X ×X, i.e. it is contained in

CH0,R(X ×X). There exists a well-defined degree ring homomorphism

⟨−⟩ = p∗ ∶ CH0,R(X ×X) → CH0,R(SpecFq) ≅ R,
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induced by the proper structure morphism p ∶X ×X → SpecFq. Define the function

µs#,M ∶ Ob(CHMR
eff(Fq)) → R

M = (X,Ξ) ↦ µs#,M(M ) ∶= ⟨FrsX ⋅Ξ⊺⟩ = ∑Xj∈irr(X)⟨FrsXi ⋅Ξ
⊺
i,i⟩.

(26)

Following Kleiman’s [Kle72], we recall that µs#,M defines a ring homomorphism

from the additive Grothendieck ring K⊕ (CHMR
eff(Fq)) to R, as in Corollary 3.2.10.

Lemma 3.2.6. Let X be an irreducible smooth projective Fq-variety of dimension

n, and let Z be an integral closed subscheme in X of dimension m. Then,

(FrX)∗(FrX)∗(Γ) = qnΓ and (FrX)∗(Γ) = qmΓ,

where Γ is the Chow class in CH∗(X) of the fundamental cycle of Z.

Proof. Let η be the unique generic point of the integral scheme X. Then, the

local ring homomorphism

Fr#
X,η ∶ OX,η → OX,η

a ↦ aq

is a monomorphism of local rings. Moreover, the local ring OX,η is a field isomorphic

to the function field of X, and hence it is of transcendental degree n over Fq. Thus, the

image of the morphism Fr#
X,η, denoted Oq

X,η, is a subfield of OX,η. Since Fq is perfect,

deg(FrX) = [OX,η ∶ Oq
X,η] = q

n,

by [Kle68, Lem.4.3]. Then, one has (FrX)∗([X]) = qn[X]. Applying the projection

formula [Ful98, Ex.8.1.7], one has

(FrX)∗(FrX)∗(Γ) = (FrX)∗ ((FrX)∗(Γ) ⋅ [X]) = ((FrX)∗([X])) ⋅ Γ = qn[X] ⋅ Γ = qnΓ.

Also, since [R(Z) ∶ R(Z)q] = qm, one has (FrX)∗(Γ) = qmΓ. �

Lemma 3.2.7. Let X and Y be smooth projective Fq-varieties, and let Γ ∶ X ⊢ Y
be a Chow correspondence with R-coefficients of degree zero. Then, one has

Γ ○ FrX = FrY ○ Γ

in CorCH
R (Fq).

Proof. One may first prove the statement for irreducible Fq-varieties, and use it

to deduce the general statement.

Assume that X and Y are irreducible smooth projective Fq-varieties of dimensions n

andm, respectively. Let Γ ⊂X×Y be a generator for the group of Chow correspondences

from X to Y with R-coefficients of degree zero, i.e. an integral closed subscheme of

X × Y of dimension m. Then, by Lemma 3.2.6, one has

(FrX×Y )∗(Γ) = qmΓ and (FrX×Y )∗(Γ) = qnΓ.
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Recall that FrX×Y = FrX × FrY . Indeed, for open affine subsets U ⊂ X and V ⊂ Y , one

has OX×Y (U × V ) = OX(U) ⊗Fq OY (V ), and hence

Fr#
X×Y,U×V ∶ OX(U) ⊗Fq OY (V ) → OX(U) ⊗Fq OY (V ),

a⊗ b ↦ (a⊗ b)q = (aq ⊗ bq).

Therefore,

(FrX × FrY )∗(Γ) = qmΓ and (FrX × FrY )∗(Γ) = qnΓ. (27)

Since the pushforward along a morphism of schemes coincide with the pushforward

along the Chow correspondence of its graph, applying Lieberman’s Lemma [MNP13,

Lem.2.1.3] and [Ful98, Prop.16.1.1] to (27) one has

qmΓ = (FrX × FrY )∗(Γ) = ([Γ(FrX×FrY )]) (Γ) = ([ΓFrX ] ⊠ [ΓFrY ]) (Γ) = (FrX
⊺ ⊠ FrY

⊺) (Γ)

= (prXYXYXY )∗ ((prXYXYY Y )∗(FrY
⊺) ⋅ (prXYXYXX )∗(FrX

⊺) ⋅ (prXYXYXY )∗(Γ))

= FrY
⊺ ○ Γ ○ FrX .

Also, the pullback along a morphism of schemes is given by the pushforward along the

transpose of the correspondence of its graph, and hence

qnΓ = (FrX × FrY )∗(Γ) = ([Γ(FrX×FrY )]⊺) (Γ) = ([ΓFrX ]⊺ ⊠ [ΓFrY ]⊺) (Γ) = (FrX ⊠ FrY ) (Γ)

= FrY ○ Γ ○ FrX
⊺.

Since the group CorCH
R (X,Y ) is R-linearly generated by fundamental classes of integral

closed subschemes of X × Y , the relations above extend R-linearly, and one has

qmΓ = FrY
⊺ ○ Γ ○ FrX and qnΓ = FrY ○ Γ ○ FrX

⊺, (28)

for every Chow correspondence Γ ∶X ⊢ Y with R-coefficients of degree zero.

In particular, for Γ = [∆X] = [∆X]⊺ = idX , one has

qnidX = FrX
⊺○idX○FrX = FrX

⊺○FrX and qnidX = FrX○idX○FrX
⊺ = FrX○FrX

⊺,

i.e. FrX and FrX
⊺/qn are mutually inverses in the ring CorCH

R (Fq)(X,X). Then, com-

posing the first equality in (28) with FrY /qm or precomposing the second equality in (28)

with FrX/qn yields

Γ ○ FrX = FrY ○ Γ, (29)

for every Chow correspondence Γ ∶X ⊢ Y with R-coefficients of degree zero.

More generally, for any smooth projective Fq-varieties X and Y , not necessarily

irreducible, one has

FrX = ∑
Xi∈irr(X)

FrXi and FrY = ∑
Yj∈irr(Y )

FrYj .
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A Chow correspondence Γ ∶X ⊢ Y with R-coefficients of degree zero decomposes as

Γ = ∑
Xi∈irr(X)
Yj∈irr(Y )

Γi,j for Γi,j ∈ CorCH
R (Fq)(Xi, Yj).

Since the composition in CorCH
R (Fq) is R-bilinear, applying (29) we have

Γ ○ FrX = ∑
Xi∈irr(X)
Yj∈irr(Y )

Γi,j ○ FrXi = ∑
Xi∈irr(X)
Yj∈irr(Y )

FrYj ○ Γi,j = FrY ○ Γ. (30)

�

Lemma 3.2.8. Let M = (X,Ξ) and N = (Y,Υ) be isomorphic effective Chow

motives over Fq, with R-coefficients. Then,

µs#,M(M ) = µs#,M(N ).

Proof. Let Γ ∶ (X,Ξ) ⊢ (Y,Υ) be an isomorphism of effective Chow motives, with

an inverse Θ = Γ-1. Since Θ ○Γ = Ξ, composing (30) with Θ yields Ξ ○FrX = Θ ○FrY ○Γ,

and hence

Ξ ○ FrsX = Ξ ○ FrX
s = Θ ○ FrY

s ○ Γ = Θ ○ FrsY ○ Γ.

Thus, [Kle72, p.80.Lem] implies

µs#,M(M ) = ⟨FrsX ⋅Ξ⊺⟩ = ⟨(Ξ ○ FrsX) ⋅Ξ⊺⟩ = ⟨(Θ ○ FrsY ○ Γ) ⋅Ξ⊺⟩ = ⟨FrsY ⋅ (Θ⊺ ○Ξ⊺ ○ Γ⊺)⟩

= ⟨FrsY ⋅ (Γ ○Ξ ○Θ)⊺⟩ = ⟨FrsY ⋅ (Γ ○Θ)⊺⟩ = ⟨FrsY ⋅Υ⊺⟩ = µs#,M(N ).

�

Lemma 3.2.8 does not hold if one tries to define µs#,M(M ) to be ⟨FrsX ⋅ Ξ⟩, that

comes down to having to show that Γ⊺ is a morphism of effective Chow motives when

Γ is, which is not the case in general. That, in particular, explains why (26) uses the

transpose Ξ⊺ instead of Ξ.

Lemma 3.2.9. Let M0 = (X0,Ξ0) and M1 = (X1,Ξ1) be effective Chow motives

over Fq, with R-coefficients. Then,

µs#,M(M0 ⊕M1) = µs#,M(M0) + µs#,M(M1) and

µs#,M(M0 ⊗M1) = µs#,M(M0) ⋅ µs#,M(M1).

Proof. Recall that the category CHMR
eff(Fq) of effective Chow motives over Fq,

with R-coefficients, is an additive R-linear category with

M0 ⊕M1 = (X0 ⊕X1,Ξ0 ⊕Ξ1) = (X0⊔X1, i0 ○Ξ0 ○ p0 + i1 ○Ξ1 ○ p1),

where X0 ⊕X1 = X0⊔X1 is the biproduct of X0 and X1 in CorCH
R (Fq), and i0, i1 and

p0, p1 are its injections and projections, respectively. Then,

µs#,M(M0 ⊕M1) = ⟨FrsX0⊔X1
⋅ (Ξ0 ⊕Ξ1)⊺⟩,
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where the intersection product is taken in the LHS ring of the isomorphism

CH∗ ((X0⊔X1) ×Fq (X0⊔X1)) ⊗R ≅ ⊕
0≤i,j≤1

CH∗(Xi ×Fq Xj) ⊗R.

Since intersection product vanishes cross different connected components, calculating

the intersection product in the RHS ring yields

µs#,M(M0⊕M1) = ⟨(FrsX0
+ 0 + 0 + FrsX1

) ⋅ (Ξ⊺
0 + 0 + 0 +Ξ⊺

1)⟩

= ⟨FrsX0
⋅Ξ⊺

0 + 0 + 0 + FrsX1
⋅Ξ⊺

1⟩ = ⟨FrsX0
⋅Ξ⊺

0⟩ + ⟨FrsX1
⋅Ξ⊺

1⟩

= µs#,M(M0) + µs#,M(M1).

Also, the category CHMR
eff(Fq) is symmetric monoidal whose monoidal product is

given by

M0 ⊗M1 = (X0 ×X1,Ξ0 ⊠Ξ1),

where ⊠ is the symmetric monoidal product of morphisms in CorCH
R (Fq). Then,

µs#,M(M0 ⊗M1) = ⟨FrsX0×X1
⋅ (Ξ0 ⊠Ξ1)⊺⟩ = ⟨(FrsX0

⊠ FrsX1
) ⋅ (Ξ⊺

0 ×′ Ξ⊺
1)⟩

= ⟨(FrsX0
⋅Ξ⊺

0) ⊠ (FrsX1
⋅Ξ⊺

1)⟩,

where the intersection product is taken in the LHS ring of the isomorphism

CH∗ ((X0 ×X1) × (X0 ×X1)) ⊗R ≅ CH∗ ((X0 ×X0) × (X1 ×X1)) ⊗R.

Then, calculating the intersection product in the RHS ring yields

µs#,M(M0 ⊗M1) = ⟨(FrsX0
⋅Ξ⊺

0) × (FrsX1
⋅Ξ⊺

1)⟩ = ⟨FrsX0
⋅Ξ⊺

0⟩ ⋅ ⟨FrsX1
⋅Ξ⊺

1⟩

= µs#,M(M0) ⋅ µs#,M(M1).

�

Corollary 3.2.10. The map (26) induces a ring homomorphism

µs#,M ∶ K⊕ (CHMR
eff(Fq)) → R

[M ] = [(X,Ξ)] ↦ µs#,M([M ]) ∶= ⟨FrsX ⋅Ξ⊺⟩.
(31)

3.2.2. Gillet-Soulé Motivic Measure. H. Gillet and C. Soulé used Hironaka’s

resolution of singularities, for a field k of characteristic zero, to define a functor

W ∶ (Varprop/k)op → Kb(CHMeff
Z (k)),

called the contravariant weight complex, which sends a smooth projective k-variety to

the complex concentrated at its effective Chow motive. Using Gersten complexes, they

show in [GS96, Th.2] that the contravariant weight complex functor induces a motivic

measure

µ
GS

∶ Ob(Var/k) → K△ (Kb(CHMeff
Z (k))) ≅ K⊕ (CHMeff

Z (k)) .
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In the sequel [GS09], they use De Jong’s alterations of singularities [dJ97] to define a

covariant weight complex functor

W ∶ (Varprop/k)op → Kb(CHMeff
Q (k)),

for an arbitrary field k, in fact that was achieved even in greater generality. Then,

using the K -theory of coherent sheaves, they show in [GS09, Th.5.9 and Cor.5.13] that

the covariant weight complex functor induces a motivic measure

µ
GS,Q

∶ Ob(Var/k) → K△ (Kb(CHMeff
Q (k))) ≅ K⊕ (CHMeff

Q (k)) ,

for arbitrary field k, we call it Gillet-Soulé motivic measure. Bondarko’s isomorphism

(16) is an isomorphism between the motivic measures µ
GS,Q

and µ
DM,Q

∶= µDM ⊗Q.



CHAPTER 4

Motivic Measures through Waldhausen K -Theories

Several motivic measures arise from (co)homology theories with proper support.

For instance, the Hodge measure and the Hodge characteristic arise from the polarised

mixed Hodge structure on singular cohomology with rational coefficients and proper

support over the complex numbers, see [Sri14]; whereas the `−adic motivic measure

arises from the `-adic cohomology with proper support over a perfect field. The latter,

also gives rise to the classical measure of counting points through the trace formula,

see [Mus13]. Also, the motivic measure (14) is induced from Voevodsky’s geometric

motives with proper support.

Each of these motivic measures can be realised as a decategorification of a coho-

mology theory functor

Gµ ∶ (Sch
ftprop

open/S,×, idS) → (C ,∧,1),

to a symmetric monoidal Waldhausen category, where Sch
ftprop

open/S is the category of

schemes of finite type over a scheme S whose morphisms are finite compositions of

proper morphisms and formal inverses of open immersions1, such that Gµ is weak

monoidal and satisfies the excision property, i.e.

(WM) Gµ is lax monoidal, such that the coherence morphism

Gµ(x) ∧Gµ(y) → Gµ(x × y) (32)

is a weak equivalence for every x, y ∈ Sch
ft/S, and so is the coherence morphism

1→ G(id
S
); and

(E) for every closed immersion i ∶ v ↪ XÐ→ x in Sch
ft/S with complementary open

immersion j ∶ u ↪ ○Ð→ x, the sequence

Gµ(v)
i
!↣ Gµ(x)

j!↠ Gµ(u) (33)

is a cofibre sequence in C , where i
!
∶= G(i) and j! ∶= G(jop).

In fact, every weak monoidal functor

G ∶ (Sch
ftprop

open/S,×, idS) → (C ,∧,1),

1The category Sch
ftprop

open/S is not a subcategory of the localisation of Sch
ft

/S with respect to open
immersions, as for a closed open immersion j ∶ u ↪ ○Ð→ x we do not ask for jop to be an inverse of j in

Sch
ftprop

open/S. However, Example 4.1.19 shows that we may impose the relation jop
○ j = idu, without

affecting the argument, but we may not impose j ○ jop
= idx, see Example 4.1.28.

103
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that satisfies the excision property, induces a motivic measure µG ∶ K0(Sch
ft/S) → K0(C )

that sends the class of an S-scheme x to the class of G(x). For the motivic measure

µG to exist, it suffices that the weak equivalences in (WM) exist, not necessarily for

the coherence morphisms, and the cofibre sequence in (E) exists, not necessarily for i
!

and j!. Of course, for G to induce a meaningful motivic measure, K(C ) should not be

connected.

The aforementioned cohomology theories have plain versions (do not satisfy the

excision property). Plane and properly supported versions of a cohomology theory

coincide for proper schemes over the base. For a Noetherian scheme S of a finite Krull

dimension, there exists a plain motivic spaces functor M ∶ Sch
ft/S → sShv●,Nis(S)A1 ,

given by the left Kan extension of the functor ∆0
−,+ ∶ Sm/S → sShv●,Nis(S)A1 along

the inclusion Sm/S ↪ Sch
ft/S. Then, one may ask if there exists a properly supported

motivic spaces functor Sch
ftprop

open/S → sShv●,Nis(S)A1 , which coincides with M for proper

schemes and gives rise to a motivic measure

K0(Sch
ft/S) → K0 (sShvc●,Nis(S)A1),

where sShvc●,Nis(S)A1 is a Waldhausen subcategory in sShv●,Nis(S)A1 with a non-

connected K -theory.

When S = Speck for a field k of characteristic zero, Theorem 3.1.2 shows that it is

sufficient for ∆0
−,+ to map blow up squares of smooth projective schemes in Sch

ft/k to

homotopy pushout squares and to map the empty scheme to the zero object, for it to

induces the desired Euler-Poincaré characteristic. In fact the scissors relations (19) show

that these conditions are also necessary. Although ∆0
−,+ does not seem to satisfy these

conditions, its S1-symmetric suspension Σ∞S1 ∆0
−,+ ∶ Sm/k → SptΣS1(sShv●,Nis(Sm/k))A

1

stab

does, see [Voe10b] and [MV99, §.3.Rem.2.30]. Hence, it gives rise to an Euler-Poincaré

characteristic

K0(Sch
ft/S) → K0 (SptΣ,c

S1 (sShv●,Nis(Sm/k))A
1

stab
),

which is surjective as shown in [Rön16, Th.5.2]. The superscript c refers to a suitable

Waldhausen subcategory, with a non-connected Waldhausen K -theory, see [Rön16,

Def.2.9].

For a more general Noetherian base scheme S, the question persists, due to the

absence of an analogue of Theorem 3.1.2 over S. We find it more convenient to consider

a more general question. That is,

when does a weak monoidal functor F ∶ Prop/S → C , to a symmetric monoidal

Waldhausen category, give rise to a weak monoidal functor F c ∶ Sch
ftprop

open/S → C

that satisfies the excision property, with the same restriction to Prop/S, and
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hence defines a motivic measure

µ
F
∶ K0(Sch

ft/S) → K0(C ),

that sends the class of a proper S-scheme x to the class of F (x)?

If such a functor F c exits, the excision property implies that, for a scheme x ∈
Sch

ftprop

open/S and a closed immersion j ∶ z ↪ XÐ→ p in Prop/S with complementary open

immersion i ∶ x ↪ ○Ð→ p, the morphism F (i) ∶ F (z) → F (p) is a cofibration in C and the

cofibre of F (i) is independent of the choice of such a closed immersion i. We refer to this

property by saying that F is independent of compactifications2. Since the restriction of

F c to Prop/S coincides with F , it also implies F (∅) ≅ 0. This, in addition to Theorem

3.1.2 and the constructions in [GS09], led us to distinguish the properties:

(PS1) F maps closed immersions in Prop/S to cofibrations in C ;

(PS2) F maps the empty scheme to a zero object in C ; and

(PS3) F maps cdp-squares in Prop/S to pushout squares3 in C , where a cdp-square

is is a Cartesian square

w q

z p

f f

Ò
i

Ò
i

⌜

in Sch
ft/S, where f is a proper morphism, i is a closed immersion and the

induced morphism (q ∖ i) → (p ∖ i) is an isomorphism, see Definition A.4.28.

Proposition 4.1.5 shows that (PS3) implies that F is independent of compactifications.

Moreover, using Nagata’s compactifications, we show that a (weak monoidal) functor

F ∶ Prop/S → C that satisfies the properties (PS1)-(PS3) induces a (weak monoidal)

functor F c ∶ Sch
ftprop

open/S → C that satisfies the proper support property, see Theorem

4.1.32.

Remark 4.0.1. One may only ask for F to send the empty scheme to an object

weakly equivalent to the zero object in C . Also, when C is induced from a model

category, one may ask for F to send a cdp-square to a homotopy pushout square and

drop the property (PS1). However, in that case, for the statements proven in this

section to hold, one needs to assume that cofiltered limits preserve weak equivalences

in C .

Starting with a functor F ∶ Prop/S → C that does not satisfy the properties (PS1)-

(PS3), one may look for a localising exact functor C → C ′ of Waldhausen categories,

for which the composition F ′ ∶ Prop/S → C → C ′ satisfies the properties (PS1)-(PS3).

2For a justification of the terminology, see Definition 4.1.1.
3Since the cdp-topology is generated by cdp-squares, as in §.A.4.3, the properties (PS2) and (PS3)

imply that F maps cdp-coving sieves to colimit cocones, i.e. F is a cdp-cosheaf.
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We apply this construction to the Yoneda embedding in §.4.2, and we recover

a spectrum that we expect its path components to be isomorphic to the modified

Grothendieck ring of S-schemes. Then, localising the affine line, we recover a motivic

measure to a variant of the simplicially stable motivic homotopy category, with the

cdh-topology. Over a field of characteristic zero, this measure coincides with the motivic

measure defined in [Rön16].

We interpret such a weak monoidal functor F c ∶ Sch
ftprop

/S → C , that satisfies the

excision property, as a mean to provide a minimal compactification of S-schemes in C .

One does not seem to have a good notion of a minimal compactification in the category

of schemes over a field k, for instance each of the Hirzebruch surfaces, particularly P2
k

and P1
k ×P1

k, are good candidates to be minimal compactifications of the affine plane

A2
k, yet none of them is minimal, even in the weakest sense4.

Example 4.0.2. Recall the motivic measure (14), for a perfect field k of exponential

characteristic p. The geometric motive with proper support M c
gm,p induces a motivic

measure

K0(Var/k) → K△ (DMeff
gm(k,Z[1

p
])).

Then, one may think ofM c
gm(A2) as a minimal compactification ofA2 in DMeff

gm(k,Z[1
p]),

as one realises cohomology theories with proper support through M c
gm.

Through this chapter, assume that S is a Noetherian scheme of finite Krull dimen-

sion, and recall the conventions and notations in §.0.2. In particular, the category of

schemes of finite type over S is denoted by Sch
ft/S, and an S-scheme refers to an ob-

ject in Sch
ft/S. Also, the full subcategory in Sch

ft/S of proper S-schemes is denoted by

Prop/S. We use small Latin letters to denote S-schemes, and capital letters to denote

their underlying schemes.

4.1. Properly Supported Extensions

The aim of this section is to show that a weak monoidal functor F ∶ Prop/S → C ,

to a symmetric monoidal Waldhausen category, admits a properly supported extension

F c ∶ Sch
ftprop

open/S → C , when it satisfies the properties (PS1)-(PS3). In which case, it

defines a motivic measure to K0(C ), given by sending the class of a proper S-scheme

to the class of its image along F , see Theorem 4.1.32.

In this section, we begin by defining compactifications of S-schemes, and we show

the category of compactifications to be cofiltered5, as in Corollary 4.1.7, which is the

main ingredient used to define properly supported functors on morphisms. Then, in

§.4.1.2, we define the extension F c, and study its properties leading to the construction

4I have learnt about this example from [vDdB16].
5Our notion of a morphism of compactifications differs from that usually used in the literature.
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of the desired motivic measure in §.4.1.2.7. Finally, we describe how one may proceed

when F is not weak monoidal or does not satisfy the properties (PS2)-(PS3).

4.1.1. Compactifications. A compactification of an S-scheme x ∶ X → S is usu-

ally defined as factorisation (j, p) of x in Sch
ft/S as a (dominant) open immersion j

followed by a proper morphism p, as in [CD13, §.2.2.8]; whereas a morphism of com-

pactifications (j, p) → (l, q) is usually defined to be a commutative square

x p

Y q

gf

○
j

○
l

in Sch
ft/S. In an early version of this thesis, morphisms of compactifications were re-

stricted to Cartesian such squares, which was motivated by the argument in [GS96],

Corollary 4.1.7, and Definition 4.1.15. However, after becoming aware of [Cam17], we

adopt a different notion inspired by subtraction sequences, loc.cit., which both strength-

ens our result and simplifies the proofs.

Definition 4.1.1. Let x be an S-scheme, a compactification of x is a closed immer-

sion i ∶ z ↪ XÐ→ p of proper S-schemes, with complementary open immersion ji ∶ x ↪ ○Ð→ p.

Let i ∶ z ↪ XÐ→ p and l ∶ w ↪ XÐ→ q be a pair of compactifications of S-schemes x and y,

respectively. A morphism of compactifications (f, g) ∶ i → l is a solid commutative

square

w ×q p

z

p

w q

⌜
g

Ò
l

Ò
i

f

Ò

Ò

(34)

in Sch
ft/S, for which the unique morphism z ↪ XÐ→ w ×q p of S-schemes, induced by the

universal property of pullbacks, is surjective.

In particular, the morphisms f and g are proper, by [Gro61, Cor.5.4.3(i)]. Com-

pactifications of S-schemes and their morphisms form a category, with the evident

composition and identity maps, and we denote it by Comp
S
. For an S-scheme x, let

Comp
S
(x) denote the subcategory in Comp

S
whose objects are compactifications of x

and whose morphisms are morphisms of compactifications that restrict to isomorphisms

on x. That is, a morphism (f, g) ∶ i′ → i of compactifications of x belongs to Comp
S
(x)

if and only if idx is a base change in Sch
ft/S of g along ji . The restriction imposed on the



108

morphisms of Comp
S
(x) is needed for Corollary 4.1.7, and for the cofibres in Remark

4.1.11 to be independent of the choice of compactifications.

For a morphism of compactifications (f, g) ∶ i → l, the morphism f is uniquely

determined by g, when it exists, due to l being a monomorphism in Sch
ft/S. Therefore,

when no confusion arise, we may denote this morphism of compactifications by g ∶ i→ l.

A compactification i ∶ z ↪ XÐ→ p of an S-scheme x induces a complementary open

immersion x ↪ ○Ð→ p, which is unique up to isomorphisms, and we denote by ji . Since

open complements are closed under pullbacks and both z and w ×q p in (34) have the

same open complement in p, the morphism of compactifications (f, g) ∶ i→ l induces a

Cartesian square

x p

y q

⌜
gg

∣x

○
ji

○
jl (35)

in Sch
ft/S. One may alternatively define the morphism of compactifications (f, g) ∶ i→ l

to be the solid outer square in (34) that induces the Cartesian square (35).

Remark 4.1.2. Although, the existence of the Cartesian square (35) does not imply

the existence of a morphism of compactifications (f, g) ∶ i→ l, it defines a morphism of

compactifications i
red
→ l, where i

red
is the composition of i with the surjective closed

immersion z
red
↪ XÐ→ z. One may be tempted to define a morphism of compactifications

as a Cartesian square, without invoking the additional surjective closed immersion.

However, our need to induce a morphism of compactifications from the Cartesian square

(35), to prove Proposition 4.1.5 and Proposition 4.1.6, is the reason for the adopted

notion of a morphism of compactifications.

Before we proceed, we need to recall the following technical result that we need to

utilise on multiple occasions.

Lemma 4.1.3. Let i ∶ v ↪ XÐ→ x be a closed immersion and j ∶ x ↪ ○Ð→ q be an open

immersion of S-schemes, and let i′ ∶ p ↪ XÐ→ q be the scheme-theoretic image of the

immersion j○i. Then, the unique morphism j′ ∶ v → p of S-schemes for which j○i = i′○j′

is an open immersion. Moreover, the square

p

x q

v

Òi′Òi

○
j

○
j′

(36)
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is Cartesian in Sch
ft/S.

Proof. Consider the commutative diagram

px ×q p

x q

v

⌜
Òi′

○
j

Òi′

○
j

l

Òi

j′

in Sch
ft/S, where l is the unique morphism v → x ×q p of S-schemes that makes the

diagram commute. Since j ○ i is an immersion, so is j′. All the underlying schemes

of the S-schemes in the diagram above are Noetherian; hence the immersion j′ = j ○ l
is quasi-compact, see [Sta17, Tags 01OX and 01T6], and it factorises in Sch

ft/S as an

open immersion followed by a closed immersion, see [Sta17, Tag 01QV]. Then, j′ is

an open immersion, as i′ is the scheme-theoretic image of j ○ i = i′ ○ j′. Hence, l is also

an open immersion. On the other hand, since i and i′ are closed immersions, so is l,

which is also surjective because i′ the scheme-theoretic image of j ○ i. Therefore, l is a

surjective open immersion, and hence an isomorphism. �

The Category of Compactification. Since the notions of compactifications and their

morphisms used here differ from those in the literature, we need to prove that the cat-

egory Comp
S
(x), and certain subcategories of which, are cofiltered, for every S-scheme

x. This is the main tool used to extend a functor F ∶ Prop/S → C , that satisfies the

properties (PS1)-(PS3), to a functor F c ∶ Sch
ftprop

open/S → C that satisfies the excision

property.

Recall that a category J is cofiltered if it is nonempty and

● for every X0,X1 ∈ J there exists a span X0 ←X →X1 in J ; and

● for every parallel morphisms f0, f1 ∶ X0 ⇉ X1 in J , there exists a refining

morphism f ∶X →X0 in J for which f0 ○ f = f1 ○ f .

For every S-scheme x, we start by showing the category Comp
S
(x) to be nonempty,

then Proposition 4.1.5 provides the existence of the desired spans, and Proposition 4.1.6

gives the refining morphisms.

Remark 4.1.4. Due to Nagata’s Compactification Theorem, as in [Nag62] and

[Nag63], every S-scheme x admits an open immersion j ∶ x ↪ ○Ð→ p into a proper

S-scheme p. Let ij ∶ z ↪ XÐ→ p be the complementary closed immersion of j, endued

with the reduced induced structure. Then, ij is a compactification of x, and hence

Comp
S
(x) ≠ ∅. In particular, when p is a proper S-scheme, the category Comp

S
(p) has

an initial object, namely ∅p ∶ ∅S ↪ XÐ→ p.
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Proposition 4.1.5. Assume that f ∶ x → y is a proper morphism in Sch
ft/S, and

let i ∶ z ↪ XÐ→ p and l ∶ w ↪ XÐ→ q be compactifications of x and y, respectively. Then, there

exists a compactification i′ ∶ z′ ↪ XÐ→ p′ of x and morphisms of compactifications h′ ∶ i′ → i

and g′ ∶ i′ → l, such that idx (resp. f) is a base change in Sch
ft/S of h′ (resp. g′) along

ji (resp. j
l
), where ji ∶ x ↪ ○Ð→ p and j

l
∶ y ↪ ○Ð→ q are complementary open immersions of i

and l, respectively.

Proof. In line with the argument of [GS96, §.2.3,p.141] and [Sta17, Tags 0ATU

and 0A9Z], consider the solid commutative diagram

x p

Γf Γf

x × y p × q

y q,

h

g

f

○
ji

○
jl

○
ji × jl

Òc

○
j

Òc′

h′

g′

(37)

in Sch
ft/S that is induced by the existence of Cartesian products in Sch

ft/S and the

definition of the graph Γf of f . Since open immersions are closed under pullbacks

and compositions, the morphism ji × jl is an open immersion. Let h (resp. g) be the

composition of the Cartesian product projection x × y ↠ x (resp. x × y ↠ y) with the

closed immersion c ∶ Γf ↪ XÐ→ x × y, let c′ ∶ Γf ↪ XÐ→ p × q be the scheme-theoretic image of

(ji × jl) ○ c, and let h′ (resp. g′) be the composition of the Cartesian product projection

p × q↠ p (resp. p × q↠ q) with the closed immersion c′ ∶ Γf ↪ XÐ→ p × q.

There exists an open immersion j for which (ji × jl) ○ c = c′ ○ j, by Lemma 4.1.3.

The composition h ∶ Γf ↪ XÐ→ x × y ↠ x is an isomorphism, see [Gro60, p.134]. Thus,

there exists a compactification i′ ∶ z′ ↪ XÐ→ Γf of x, where i′ is a complementary closed

immersion of j ○ h-1 ∶ x ↪ ○Ð→ Γf , endued with the reduced induced structure.

Consider the commutative diagram (38), on the next page, induced by the universal

property of pullbacks in Sch
ft/S. Since j ○ h-1

is an open immersion, so is j′. The mor-

phism g′ is proper, and so is g′, by [Gro61, Prop.5.4.2]. Since f is also proper, [Gro61,

Cor.5.4.3(i)] implies that the immersion j′ is proper, and hence a closed immersion, by

[Gro67, Cor.18.12.6]. Since c′ is the scheme-theoretic image of (ji×jl)○c○h
-1

and j′ is a

closed immersion, j′ is also surjective. Thus, j′ is an isomorphism for being a surjective

open immersion. Therefore, g′ defines a morphism of compactifications g′ ∶ i′ → l, as in

Remark 4.1.2, because the underlying scheme of z′ is reduced. Moreover, f is a base
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change in Sch
ft/S of g′ along j

l
.

x

Γf

y q

Γf ×q y
⌜

f

g′g′

○
j ○ h-1

○
jl

○
jl

j′

(38)

Similarly, one sees that there exists a morphism of compactifications h′ ∶ i′ → i such

that idx is a base change in Sch
ft/S of h′ along ji . �

Proposition 4.1.6. Let x and y be S-schemes, let i ∶ z ↪ XÐ→ p and l ∶ w ↪ XÐ→ q

be compactifications of x and y, respectively, and suppose that (f0, g0), (f1, g1) ∶ i →
l are parallel morphisms of compactifications. Then, there exist an S-scheme x′, a

compactification i′ ∶ z′ ↪ XÐ→ p′ of x′, and a morphism of compactifications (f, g) ∶ i′ → i

for which

(f0, g0) ○ (f, g) = (f1, g1) ○ (f, g).

Moreover, when g0∣x = g1∣x , the S-scheme x′ can be chosen to be x, and the morphism

g can be chosen such that idx is a base change in Sch
ft/S of g along ji .

Proof. Let ji ∶ x ↪ ○Ð→ p and j
l
∶ y ↪ ○Ð→ q be the complementary open immersions

of i and l, respectively, and let gk ∣x ∶ x → y be a base change in Sch
ft/S of gk along j

l
,

for k = 0,1. Consider the solid diagram (39) of S-schemes, on the next page, which is

induced by the definition of the graphs Γgk ∣x and Γgk of gk ∣x and gk, respectively, for

k = 0,1. In the solid diagram (39), the side subdiagrams are commutative, but the

front and back faces are not necessarily commutative. The morphisms hk and hk are

the unique morphisms that factorise (idx, gk ∣x) and (idp, gk) in Sch
ft/S as ik ○ hk and

ik ○ hk, respectively, for k = 0,1. Whereas, the morphisms πy and πq are the Cartesian

products projections.

The proof is based on basic constructions on this solid diagram, and follows through

commutative subdiagrams chase; yet we spell it out for the reader’s convenience.

The morphisms hk and hk are isomorphisms with inverses πx ○ik and πp ○ik, respec-

tively, for k = 0,1. Hence, in particular, we have an open immersion jk ∶ Γgk ∣x ↪ ○Ð→ Γgk ,

given by jk = hk ○ ji ○h
-1

k , for k = 0,1. Then, the horizontal square containing j0 and the

vertical square containing j1 are commutative, i.e. ik ○ jk = (ji × jl) ○ ik, for k = 0,1.
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Let x′ be the fibre product Γg0 ∣x
×x×y Γg1 ∣x

, with the fibre product projections i′0
and i′1, and let p′ be the fibre product Γg0 ×p×q Γg1 , with the fibre product projections

i
′
0 and i

′
1. Then, there exists a unique morphism x′ → p′ of S-schemes, induced by the

universal property of fibre products, making the squares containing it commute, which

we denote by j′.

p

Γg1

Γg0 p × q

p′

⌜

q

x

Γg1 ∣x

Γg0 ∣x
x × y

x′
⌜

y

h0

h1

πq

Òi1

Ò
i0

Òi′1

Ò
i
′

0

πy

h0

h1

Òi1

Ò
i0

Òi′1

Ò
i′0

○
ji × jl

○
ji

○
jl

○
j0

○ j1○
j′

(39)

In fact the two squares that contain the morphism j′ are Cartesian in Sch
ft/S. To see

that, fix k ∈ {0,1}, let u be an S-scheme and suppose that αk ∶ u→ Γgk ∣x and β ∶ u→ p′

are morphisms in Sch
ft/S for which jk ○ αk = i

′
1−k ○ β. To establish the desired unique

morphism γk ∶ u → x′ of S-schemes for which αk = i′1−k ○ γk and β = j′ ○ γk, we first

deduce the existence of a morphism δk ∶ u→ Γg1−k ∣x
satisfying some uniqueness property,

and we use it to establish the desired morphism γk ∶ u→ x′.

Composing the given relation with πq ○ ik, one has

j
l
○ (πy ○ ik ○ αk) = πq ○ ik ○ jk ○ αk = πq ○ ik ○ i

′
1−k ○ β = (πq ○ i1−k) ○ (i

′
k ○ β).

Since (f1−k, g1−k) ∶ i → l is a morphism of compactifications and h1−k and h1−k are

isomorphisms, the square containing the morphisms πy ○ i1−k and πq ○ i1−k is Cartesian

in Sch
ft/S. Thus, there exists a unique morphism δk ∶ u→ Γg1−k ∣x

of S-schemes for which

πy ○ ik ○ αk = (πy ○ i1−k) ○ δk and i
′
k ○ β = j1−k ○ δk.

Notice that

(ji ×jl)○ i1−k ○δk = i1−k ○j1−k ○δk = i1−k ○ i
′
k ○β = ik ○ i

′
1−k ○β = ik ○jk ○αk = (ji ×jl)○ ik ○αk.

Since ji × jl is a monomorphism in Sch
ft/S, one has i1−k ○ δk = ik ○ αk. Then, by the

universal property of pullbacks, there exists a unique morphism γk ∶ u→ x′ of S-schemes



113

for which αk = i′1−k ○ γk and δk = i′k ○ γk. Thus,

i
′
1−k ○ j′ ○ γk = jk ○ i′1−k ○ γk = jk ○ αk = i

′
1−k ○ β.

Since i
′
1−k is a monomorphism, β = j′ ○ γk. To prove the uniqueness, let γ′k ∶ u → x′

be a morphism of S-schemes for which αk = i′1−k ○ γ′k and β = j′ ○ γ′k. Since i′1−k is a

monomorphism in Sch
ft/S, one has γ′k = γk. Therefore, the squares that contain j′ are

Cartesian in Sch
ft/S.

Then, in particular, j′ is an open immersion, and there exists a compactification

i′ ∶ z′ ↪ XÐ→ p′ of x′, where i′ is a complementary closed immersion of j′, endued with the

reduced induced structure.

To establish the desired morphism of compactifications, notice that

h
-1

1 ○ i′0 = (πx ○ i1 ○h1)○(h
-1

1 ○ i′0) = πx ○ i1 ○ i′0 = πx ○ i0 ○ i′1 = (πx ○ i0 ○h0)○(h
-1

0 ○ i′1) = h
-1

0 ○ i′1,

and similarly, h
-1

1 ○ i
′
0 = h

-1

1 ○ i
′
1. Let g ∶= h

-1

1 ○ i
′
0 = h

-1

0 ○ i
′
1, then the morphism h

-1

1 i
′
0 = h

-1

0 i
′
1

is a base change in Sch
ft/S of g along ji , which we denote by g∣x′ . Since the square

x′ p′

x p

⌜
ÒgÒg

∣x′

○
j′

○
ji

is Cartesian in Sch
ft/S and the underlying scheme of z′ is reduced, there exists a mor-

phism of compactifications (f, g) ∶ i′ → i, for the unique morphism f ∶ z′ → z that

factorises g ○ i′ in Sch
ft/S as i ○ f , see Remark 4.1.2.

Then, one has

g0 ○ g = (πq ○ i0 ○h0) ○ (h
-1

0 ○ i′1) = πq ○ i0 ○ i
′
1 = πq ○ i1 ○ i

′
0 = (πq ○ i1 ○h1) ○ (h

-1

1 ○ i′0) = g1 ○ g,

and

l ○ f0 ○ f = g0 ○ g ○ i′ = g1 ○ g ○ i′ = l ○ f1 ○ f.

Since l is a monomorphism in Sch
ft/S, one has (f0, g0) ○ (f, g) = (f1, g1) ○ (f, g).

Moreover, when g0∣x = g1∣x , the universal property of pullbacks implies the existence

of a morphism x → x′ in Sch
ft/S that factorises the isomorphism h0 = h1. Since i′0 is a

closed immersion, such a morphism x→ x′ is an isomorphism. Pullbacks are determined

up to isomorphisms; thus, we may choose x′ = x, in which case idx is a base change in

Sch
ft/S of g along ji . �

Corollary 4.1.7. Let x be an S-scheme. Then, the category Comp
S
(x) is cofil-

tered.
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Proof. Since S is a Noetherian scheme6, Nagata’s Compactification Theorem im-

plies that Comp
S
(x) is nonempty, as seen in Remark 4.1.4. Then, the statement of the

corollary is a direct result of Proposition 4.1.5, for f = idx, and Proposition 4.1.6. �

Let f ∶ x→ y be a morphism of S-schemes, and let l ∶ w ↪ XÐ→ q be a compactification

of y. Denote by Comp
S
(f, l) the full subcategory in Comp

S
(x) that satisfies the property

a compactification i of x belongs to Comp
S
(f, l) if and only if it admits a

morphism of compactifications g ∶ i→ l such that f is a base change in Sch
ft/S

of g along j
l
.

Also, let Comp
S
(f) denote the full subcategory in Comp

S
(x) of compactifications of x

that belong to Comp
S
(f, l) for some compactification l of y.

Corollary 4.1.8. Assume that f ∶ x→ y is a proper morphism of S-schemes, and

let l ∶ w ↪ XÐ→ q be a compactification of y. Then, the category Comp
S
(f, l) is co-cofinal

in Comp
S
(x), and so is Comp

S
(f). Moreover, the categories Comp

S
(f, l) and Comp

S
(f)

are cofiltered.

Proof. A direct consequence of Proposition 4.1.5, Proposition 4.1.6, and [Tam94,

Ch.0.§.3.2-3]. �

4.1.2. Extensions of Compactifiable Functors. For the rest of this subsection,

let F ∶ Prop/S → C be a functor to a Waldhausen category that satisfies the proper-

ties (PS1)-(PS3). We will show that F extends to a functor F c ∶ Sch
ftprop

open/S → C

that satisfies the excision property (E), as in Proposition 4.1.29. Moreover, for a sym-

metric monoidal Waldhausen category C , if F is weak monoidal, then so is F c, as in

Proposition 4.1.31. The main statement in this subsection is Theorem 4.1.32.

Definition 4.1.9. A functor Prop/S → C to a Waldhausen category that satisfies

the properties (PS1)-(PS3) is called a cdp-functor.

This terminology is motivated by Definition A.4.28 and Proposition A.4.30.

Remark 4.1.10. The properties (PS1)-(PS3) imply that

(PS4) F maps every surjective closed immersion in Prop/S to an isomorphism.

That is, for a surjective closed immersion i ∶ z ↪ XÐ→ p in Prop/S, the square

∅
S

∅
S

z p

⌜
ÒÒ

Ò

Ò
i (40)

6In the light of [Con07], one may generalise most statements in this section for a quasi-compact
quasi-separated base scheme S.
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is a cdp-square in Prop/S, which is mapped by F to a square of cofibrations in C ,

by (PS1). Then, (PS3) and (PS2) imply that i∗
7 is the composite isomorphism

F (z) ≅ F (z)/F (∅
S
) ≅ F (p)/F (∅

S
) ≅ F (p).

Assume that x and y are S-schemes, let i ∶ z ↪ XÐ→ p and l ∶ w ↪ XÐ→ q be compactifica-

tions of x and y, respectively, and let (f, g) ∶ i→ l be a morphism of compactifications,

as in (34). The morphism (f, g) is mapped to the solid commutative square

F (z) F (p) C
F
(i)

F (w) F (q) C
F
(l)

g∗f∗

i∗

l∗

εi

εl

(f∗, g∗)

(41)

in C . Sine F satisfies (PS1), both i∗ and l∗ are cofibrations in C . Let C
F
(i) and C

F
(l)

be the cofibres of i∗ and l∗, respectively. Since the left solid square commutes, there

exists a unique morphism C
F
(i) → C

F
(l) in C that makes the whole diagram commute,

which we denote by (f∗, g∗).

That defines a functor

C
F
∶ Comp

S
→ C , (42)

given on objects and morphisms in (41).

Remark 4.1.11. For every S-scheme x, let C
F,x

be the composition of the functor

C with the inclusion of the subcategory Comp
S
(x) ↪ Comp

S
. For a morphism of

compactifications (f, g) ∶ i′ → i in Comp
S
(x), i.e. a commutative diagram

z ×p p′

z′

p′

z p,

⌜
g

Ò
i

Ò
i′

f
g

Ò
i

Òc

in Sch
ft/S, in which c is a surjective closed immersion. The pullback square, in the

diagram above, is a cdp-square in Sch
ft/S, as g is a proper morphism, i is a closed

immersion, and idx is a base change in Sch
ft/S of g along ji . Since F satisfies (PS1) and

(PS3), the morphism (g∗, g∗) is an isomorphism in C . Also, c∗ is an isomorphism in C ,

as F satisfies (PS4). Hence, (f∗, g∗) is an isomorphism. Therefore, C
F,x

is a diagram

of isomorphisms, and hence limC
F,x

exists in C . For a compactification i ∶ z ↪ XÐ→ p of

x, we denote the limit projection limC
F,x
→ C

F
(i) by ιi .

7For a morphism f in Prop/S, we denote F (i) by f∗. Also, we adopt the same notation for other
(contravariant) functors, when no confusion arises.
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Since limC
F,x

is independent of the choice of compactifications of x and satisfies

the excision property for proper S-schemes, we will define F c on objects by F c(x) ∶=
limC

F,x
. Then, in §.4.1.2.1 and §.4.1.2.3, we define F c on proper morphisms and formal

inverses of open immersions, respectively.

4.1.2.1. Proper Pushforwards. In order to define the desired functor F c on proper

morphisms, one needs to assign for every proper morphism f ∶ x → y of S-schemes a

unique morphism limC
F,x
→ limC

F,y
, that is independent of the choice of compactifica-

tions and morphisms between them. We show below that the canonical choices of such

morphisms coincide, see Corollary 4.1.14.

Lemma 4.1.12. Assume that f ∶ x→ y is a proper morphism of S-schemes, and let

l ∶ w ↪ XÐ→ q be a compactification of y. Then, the morphism

g∗ ○ ιi ∶ limCF,x → C
F
(l) (43)

is independent of the choice of the compactification i ∶ z ↪ XÐ→ p in Comp
S
(f, l) and of

the morphism of compactifications g ∶ i→ l such that f is a base change in Sch
ft/S of g

along j
l
. We denote this morphism by %fl .

Proof. Since f is proper, the category Comp
S
(f, l) is nonempty, by Proposition

4.1.5. Suppose that ik ∶ zk ↪ XÐ→ pk is a compactification in Comp
S
(f, l), and let gk ∶ ik → l

be a morphism of compactifications such that f is a base change in Sch
ft/S of gk along j

l
,

for k = 0,1. Since the category Comp
S
(f, l) is cofiltered, there exists a compactification

i ∶ z ↪ XÐ→ p in Comp
S
(f, l) and a morphism of compactifications g′k ∶ i→ ik such that idx

is a base change in Sch
ft/S of g′k along jik , for k = 0,1. Proposition 4.1.6 implies that i,

g′0, and g′1 can be chosen such that g0 ○ g′0 = g1 ○ g′1. Thus,

g0∗ ○ ιi0 = g0∗ ○ g′0∗ ○ ιi = g1∗ ○ g′1∗ ○ ιi = g1∗ ○ ιi1 .

On the other hand, suppose that i ∶ z ↪ XÐ→ p is a compactification in Comp
S
(f, l)

and let g0, g1 ∶ i → l be parallel morphisms of compactifications such that f is a base

change in Sch
ft/S of gk along j

l
, for k = 0,1. By Proposition 4.1.6, there exists a refining

compactification i′ ∶ z′ → p′ of x and a morphism of compactifications g ∶ i′ → i in

Comp
S
(f, l) such that g0 ○ g = g1 ○ g, by Corollary 4.1.8. Thus,

g0∗ ○ ιi = g0∗ ○ g∗ ○ ιi′ = g1∗ ○ g∗ ○ ιi′ = g1∗ ○ ιi .

�

Lemma 4.1.13. Assume that f ∶ x → y is a proper morphism of S-schemes, let

lk ∶ wk ↪ XÐ→ qk be a compactification of y, for k = 0,1, and let g ∶ l0 → l1 be a morphism

of compactifications in Comp
S
(y). Then,

%fl1 = g∗ ○ %
f
l0
.
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Proof. Since f is proper, the category Comp
S
(f, lk) is nonempty, for k = 0,1. Let

ik ∶ zk ↪ XÐ→ pk be a compactification in Comp
S
(f, lk), and let gk ∶ ik → lk be a morphism

of compactifications such that f is a base change in Sch
ft/S of gk along j

lk
, for k = 0,1.

Since Comp
S
(x) is cofiltered, there exists a compactification i ∶ z ↪ XÐ→ p of x and a

morphism of compactifications g′k ∶ i→ ik in Comp
S
(x), for k = 0,1, by Corollary 4.1.7.

Since g ○ g0 ○ g′0 and g1 ○ g′1 are parallel morphisms of compactifications and f is a

base change in Sch
ft/S of both g ○ g0 ○ g′0 and g1 ○ g′1 along j

l
, Lemma 4.1.12 implies that

%fl1 = g1∗ ○ ιi1 = g1∗ ○ g′1∗ ○ ιi = g∗ ○ g0∗ ○ g′0∗ ○ ιi = g∗ ○ g0∗ ○ ιi0 = g∗ ○ %
f
l0
.

�

Corollary 4.1.14. Assume that f ∶ x → y is a proper morphism of S-schemes.

Then, there exists a unique morphism f
!
∶ limC

F,x
→ limC

F,y
in C for which

ι
l
○ f

!
= %fl , (44)

for every compactification l ∶ w ↪ XÐ→ q of y.

The uniqueness of the morphism f
!

implies the functoriality of pushforward along

proper morphisms. That is, for proper morphisms f ∶ x→ y and g ∶ y → z of S-schemes,

one has

(g ○ f)
!
= g

!
○ f

!
and (idx)!

= id
limC

F,x
. (45)

Definition 4.1.15. The properly supported counterpart of F to be a functor

F c ∶ Sch
ftprop

/S → C (46)

that sends an S-schemes x to limC
F,x

, as in Remark 4.1.11, and sends a proper mor-

phism f ∶ x→ y of S-schemes to the unique morphism f
!
∶ limC

F,x
→ limC

F,y
satisfying

the statement of Corollary 4.1.14.

Remark 4.1.16. When C has cofiltered limits, the functor F c may be defined on

proper morphisms similarly, even when F is not a cdp-functor. However, such a functor

does not necessarily satisfy the excision property.

Example 4.1.17. Assume that p is a proper S-scheme. Since the category Comp
S
(p)

admits an initial object, namely ∅p ∶ ∅S ↪ XÐ→ p, and F satisfies (PS2), one has

F c(p) ≅ C
F
(∅p) ≅ F (p).

The functor F c satisfies generalisations of the properties (PS1)-(PS4) to the cat-

egory Sch
ftprop

/S, as seen in the following proposition.

Proposition 4.1.18. The functor F c ∶ Sch
ftprop

/S → C

(PS1′) maps closed immersions in Sch
ftprop

/S to cofibrations in C ;

(PS2′) maps cdp-squares in Sch
ftprop

/S to pushout squares in C ;



118

(PS3′) maps the empty S-scheme to the zero object in C ; and

(PS4′) maps surjective closed immersions in Sch
ftprop

/S to isomorphisms.

Proof. The statement (PS3′) is evident; whereas (PS4′) follows from the other

statements, as seen in (40).

(PS1′) Assume that i ∶ v ↪ XÐ→ x is a closed immersion of S-schemes. Let l ∶ w ↪ XÐ→ q be

a compactification of x with complementary open immersion j
l
∶ x ↪ ○Ð→ q, and

let i′ ∶ p ↪ XÐ→ q be the scheme-theoretic image of the immersion j
l
○ i. Then,

Lemma 4.1.3 implies the existence of an open immersion j′
l
∶ v ↪ ○Ð→ p for which

the solid square

v zp

x wq

⌜ ⌝
Òi′Òi

○
j′
l

○
jl

Ò
l

Òi

Ò
l

(47)

is Cartesian in Sch
ft/S. Let l be a base change in Sch

ft/S of l along i′. Since

open complements are closed under pullbacks and j
l

is a complementary open

immersion to l, one finds that j′
l

is a complementary open immersion to l.

Hence, l ∶ z ↪ XÐ→ p is a compactification in Comp
S
(i, l) and (i, i′) ∶ l → l is

a morphism of compactifications such that i is a base change in Sch
ft/S of i′

along j
l
.

There exists a pushout of the closed immersions l and i in Prop/S, which

we denote by q. In fact, since the right square in (47) is Cartesian, there exists

a bicartesian square

z p

w q,

Òi Òi′

Ò
l′

Ò
l

⌜

⌟

of closed immersions in Prop/S, see [Sch05, Th.3.11] and [Sta17, Tag 0B7M].

In particular, it is a cdp-square in Prop/S, and hence it is mapped by F to a

pushout square of cofibrations in C . Moreover, the unique morphism k ∶ q → q,

for which k ○ i′ = i′ and k ○ l′ = l, is a closed immersion. Consider the solid

diagram (48) of cofibrations in C , on the next page. Since ε
l
○ l∗ = 0, there

exists a unique morphism γ ∶ F (q) → C
F
(l) in C , for which γ ○ l′∗ = 0 and

γ ○ i′∗ = εl . Since ε
l

is an epimorphism in C , a diagram chase shows that (i∗, i′∗)
is a cobase change in C of k∗ along γ. Recall that ιl ○ i! = (i∗, i′∗) ○ ιl and that

ιl is an isomorphisms in C . Thus, i
!

is a cobase change in C of k∗ along ι
-1

l ○γ.
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Since k∗ is a cofibration in C , as k is a closed immersion, the morphism i
!

is

a cofibration in C .

F (z) F (p) C
F
(l)

F (w) F (q) C
F
(l)

F (q)
⌟

l
∗

l∗

i′
∗

l′
∗

i
∗

i′
∗

k∗

(i
∗
, i′
∗
)

εl

εl

(48)

(PS2′) A cdp-square in Sch
ft/S defines a Cartesian cube, in which the ambient proper

S-schemes fit into a cdp-square. Then, a diagram chase on the Cartesian cube

imply the statement.

�

Example 4.1.19. Assume that jx ∶ x↪ x⊔ y is a closed open immersion of S-schemes

with complementary closed open immersion jy ∶ y ↪ x⊔ y. Then, the square

∅
S

y

x x⊔ y

⌜

⌟
∅x

∅y

jy

jx

is a cdp-square in Sch
ft/S. Hence, by Proposition 4.1.18, one finds that

F c(x⊔ y) ≅ F c(x)∐F c(y).

4.1.2.2. A Comparison Morphism. Let G ∶ Sch
ft/S → C be a functor to a Wald-

hausen category, whose restriction to Prop/S is a cdp-functor. We abuse notation,

and use G to also denote its restrictions to Sch
ftprop

/S and Prop/S. We see below

that there exists a canonical natural transformation from G to its properly supported

counterpart. This natural transformation is particularly useful to define the monoidal

coherence morphisms in §.4.1.2.6.

Lemma 4.1.20. Assume that G ∶ Sch
ft/S → C is a functor to a Waldhausen category,

whose restriction to Prop/S is a cdp-functor. Then, there exists a unique natural

transformation ϕ ∶ G⇒ Gc for which

ιi ○ ϕx = εi ○ ji∗,

for every S-scheme x and for every compactification i ∶ z ↪ XÐ→ p of x.
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Proof. Suppose that x is an S-scheme x, let ik ∶ zk → pk be a compactification of

x with complementary open immersion jik ∶ x ↪ ○Ð→ pk, for k = 0,1, and let g ∶ i0 → i1 be

a morphism of compactifications in Comp
S
(x). Then,

g∗ ○ εi0 ○ ji0 ∗ = εi1 ○ g∗ ○ ji0 ∗ = εi1 ○ (g ○ ji0 )∗ = εi1 ○ ji1 ∗.

Therefore, by the universal property of limits, there exists a unique morphism ϕx ∶
G(x) → Gc(x) in C for which

ιi ○ ϕx = εi ○ ji∗, (49)

for every compactification i ∶ z ↪ XÐ→ p of x.

Suppose that f ∶ x → y is a proper morphism of S-schemes and let l ∶ w ↪ XÐ→ q be

a compactification of y, then the category Comp
S
(f, l) is nonempty, see Proposition

4.1.5. Assume that i ∶ z ↪ XÐ→ p is a compactification of x in Comp
S
(f, l), let g ∶ i → l be

a morphism of compactifications such that f is a base change in Sch
ft/S of g along j

l
,

and consider the diagram

G(x) Gc(x) C
G
(i)

G(y) Gc(y) C
G
(l)

ϕx

ϕy

f∗ f!

ιi

ιl

g∗

in C . The right square, in the diagram above, is commutative due to Corollary 4.1.14.

Then, one has

ι
l
○ ϕy ○ f∗ = εl ○ jl∗ ○ f∗ = εl ○ (jl ○ f)∗ = εl ○ (g ○ ji)∗ = εl ○ g∗ ○ ji∗

= g∗ ○ εi ○ ji∗ = g∗ ○ ιi ○ ϕx = ιl ○ f!
○ ϕx.

By the universal property of limits, one has ϕy ○ f∗ = f
!
○ ϕx. Therefore, there exists

a natural transformation ϕ ∶ G⇒ Gc, whose component at an S-scheme x is given by

the unique morphism ϕx in C that satisfies (49).

Assume that ϕ′ ∶ G⇒ Gc is a natural transformation for which

ιi ○ ϕ′x = εi ○ ji∗ = ιi ○ ϕx

for every S-scheme x and for every compactification i ∶ z ↪ XÐ→ p of x. Then, the universal

property of limits implies that ϕ′x = ϕx, and hence ϕ′ = ϕ. �

Corollary 4.1.21. There exists a unique natural isomorphism

ϕ ∶ F ∼⇒ F c
∣Prop/S

∶ Prop/S → C ,

such that, for every proper S-scheme p and for every compactification i of p, one has

ιi ○ ϕp = εi ○ ji∗.
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4.1.2.3. Open Pullbacks. The functor F c in Definition 4.1.15 can be extended to

the category Sch
ftprop

open/S whose objects are S-schemes and whose morphisms are finite

compositions of proper morphisms and formal inverses of open immersions. We define

below the pullbacks along open immersions, and we show in §.4.1.2.4 the comparability

between proper pushforwards and open pullbacks.

Suppose that f ∶ x ↪ ○Ð→ y is an open immersion of S-schemes, let l ∶ w ↪ XÐ→ q be a

compactification of y with complementary open immersion j
l
∶ y ↪ ○Ð→ q, and let l

red
be

the composition of l with the surjective closed immersion w
red
↪ XÐ→ w.

The open immersion j
l
○ f ∶ x ↪ ○Ð→ q defines a compactification ifl ∶ z ↪ XÐ→ q, that is a

complementary closed immersion of j
l
○ f , endued with the reduced induced structure.

Then, l
red

factorises uniquely in Sch
ft/S as ifl ○ c for a closed immersion c ∶ w

red
↪ XÐ→ z.

The resulting commutative square

z q

w
red q

idqÒc

Ò
if
l

Ò
lred (50)

of closed immersions in Sch
ft/S induces the solid commutative square

F (z) F (q) C
F
(ifl )

F (w
red

) F (q) C
F
(l

red
).

idF (q)c∗

if
l ∗

lred∗

ε
i
f
l

εl
red

f∗
l

of cofibrations in C . Let f∗
l

denote the unique morphism C
F
(l

red
) → C

F
(ifl ), induced

the universal property of cokernels, which makes the diagram commute; and denote

the morphism

f∗
l
○ ι

l
red
∶F c(y) → C

F
(ifl ) (51)

by ρfl . Notice that the square (50) is not a morphism of compactifications unless f is

an isomorphism.

Lemma 4.1.22. Assume that f ∶ x ↪ ○Ð→ y is an open immersion of S-schemes, let

lk ∶ wk ↪ ○Ð→ qk be a compactification of y, for k = 0,1, and let g ∶ l0 → l1 be a morphism

of compactifications in Comp
S
(y). Then, g induces a morphism of compactifications

g ∶ ifl0 → ifl1 in Comp
S
(x) for which

ρfl1 = g∗ ○ ρ
f
l0
. (52)
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Proof. The morphism of compactifications g ∶ l0 → l1 defines a morphism com-

pactifications g ∶ l0red
→ l1red

in Comp
S
(y). Let iflk ∶ zk ↪ XÐ→ qk be a complementary

closed immersion of j
lk
○ f , endued with the reduced induced structure, and hence a

compactification of x, and let ck ∶ wkred
↪ XÐ→ zk be the unique closed immersion for

which lkred
= iflk○ ck, for k = 0,1. Since g ∶ l0red

→ l1red
is a morphism of compactifications

in Comp
S
(y), the morphism idy is a base change in Sch

ft/S of g along j
l1

, and hence

idx is a base change of g along j
i
f
l1

= j
l1
○ f . Therefore, g induces a morphism of com-

pactifications g ∶ ifl0 → ifl1 in Comp
S
(x), see Remark 4.1.2. Consider the commutative

diagram

z0 q0

w0red q0

z1 q1

w1red q1

id

id

g

g

Òc0

Ò
if
l0

Ò
l0red

Òc1

Ò
if
l1

Ò
l1red

in Sch
ft/S, where the commutativity of the left face is a result of the commutativity of

the other faces and having ifl1 a monomorphism in Sch
ft/S. The diagram above induces

the solid commutative diagram

F (z0) F (q0) C
F
(ifl0)

F (w0red
) F (q0) C

F
(l0red

)

F (z1) F (q1) C
F
(ifl1)

F (w1red
) F (q1) C

F
(l1red

).
id

id

g∗

g∗

c0∗

if
l0∗

l0red∗

c1∗

if
l1∗

l1red∗

ε
i
f
l0

εl0red

ε
i
f
l1

εl1red

f∗l0

f∗l1

g∗

g∗

in C . Since ε
l0red

is an epimorphism in C , the universal propriety of cokernels implies

f∗l1 ○ g∗ = g∗ ○ f
∗
l0 ,

i.e. the whole diagram commutes. Then,

ρfl1 = f
∗
l1 ○ ιl1red

= f∗l1 ○ g∗ ○ ιl0red

= g∗ ○ f∗l0 ○ ιl0red

= g∗ ○ ρfl0 .

�
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The proof above, in particular, shows that there exists a faithful (not necessarily

full) functor θf ∶ Comp
S
(y) → Comp

S
(x) that sends a compactification l of y to the

compactification ifl of x, and sends a morphism of compactifications g ∶ l0 → l1 in

Comp
S
(y) to the morphism of compactifications g ∶ ifl0 → ifl1 in Comp

S
(x). Let Cf

F,x
be

the composition of the functor C
F,x

, given in Remark 4.1.11, with the functor θf . The

universal properties of limits induces a canonical morphism ϑf ∶ limC
F,x
→ limCf

F,x
in

C . Since F is a cdp-functor, the morphism ϑf is an isomorphism, which allows us to

deduce the following corollary.

Corollary 4.1.23. Assume that f ∶ x ↪ ○Ð→ y is an open immersion of S-schemes.

Then, there exists a unique morphism f ! ∶ F c(y) → F c(x) in C for which

ι
i
f
l

○ f ! = f∗l ○ ιl
red
, (53)

for every compactification l ∶ w ↪ XÐ→ q of y.

The uniqueness of the morphism f ! implies the functoriality of pullbacks along open

immersions. That is, for open immersions f ∶ x ↪ ○Ð→ y and g ∶ y ↪ ○Ð→ z of S-schemes, one

has

(g ○ f)! = f ! ○ g! and (idx)! = id
limC

F,x
.

Corollary 4.1.24. The functor F c, in (46), extends to a functor

F c ∶ Sch
ftprop

open/S → C

that sends fop, for an open immersion f ∶ x ↪ ○Ð→ y of S-schemes, to the unique morphism

f ! ∶ limC
F,y
→ limC

F,x
satisfying the statement of Corollary 4.1.23.

Remark 4.1.25. In contrast to the pushforwards along proper morphisms, pull-

backs along open immersions do not necessarily exist when F is not a cdp-functor, even

if C is has cofiltered limits. That is because the morphism ϑf is not necessarily an

isomorphism, as the functor θf does not have to be co-cofinal. For instance, when p is

a proper S-scheme and f ∶ p ↪ ○Ð→ q is a non-isomorphic open immersion of S-schemes,

the initial compactification ∅p ∶ ∅S ↪ XÐ→ p does not coincide with ifl for any compaction

l of q.

4.1.2.4. Base Change. The open pullback and proper pushforward satisfy the proper-

base change compatibility formula, as in the following lemma.

Lemma 4.1.26. Let

x′ x

y′ y

⌜
ff ′

○
j′

○
j (54)
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be a Cartesian square in Sch
ft/S in which j is an open immersion and f is a proper

morphism, and hence j′ is an open immersion and f ′ is proper. Then,

j! ○ f
!
= f ′

!
○ j′!. (55)

Proof. Let l ∶ w ↪ XÐ→ q be a compactification of y, since f is proper there exists a

compactification i ∶ z ↪ XÐ→ p of x in Comp
S
(f, l) and a morphism of compactifications

g ∶ i→ l such that f is a base change in Sch
ft/S of g along j

l
. Given that j and j′ are open

immersions, let ijl ∶ w
′ ↪ XÐ→ q (resp. ij

′

i ∶ z′ ↪ XÐ→ p) be the compactification of y′ and (resp.

x′) induced from l (resp. i), as in §.4.1.2.3. The morphism of compactification g ∶ i→ l

defines a morphism compactifications g ∶ i
red
→ l

red
. Since the square (54) is Cartesian

in Sch
ft/S, the morphism f ′ is a base change in Sch

ft/S of g along j
ij
l
= j

l
○ j. Therefore,

The morphism of compactification g ∶ i
red
↪ XÐ→ l

red
defines a morphism compactifications

g ∶ ij
′

i → ijl , see Remark 4.1.2. Then, one has

ι
i
j
l

○j! ○f
!
= j∗

l
○ι
l
red

○f
!
= j∗

l
○g∗ ○ιi

red
and ι

i
j
l

○f ′
!
○j′! = g∗ ○ι

i
j′

i

○j′! = g∗ ○j′i
∗ ○ιi

red
.

Consider the commutative diagram

z
red z′ p

w′w
red q

g

Ò

Ò

Ò
ij
l

Ò
ij
′

i

Ò
ired

Ò
lred (56)

in Sch
ft/S, where the commutativity of the left square is a result of the commutativity

of the other squares and having ijl a monomorphism in Sch
ft/S. The diagram above

induces the solid commutative diagram

F (z′) F (p) C
F
(ij

′

i )

F (z
red

) F (p) C
F
(i

red
)

F (w′) F (q) C
F
(ijl )

F (w
red

) F (q) C
F
(l

red
).

id

id

g∗

g∗

ij
′

i ∗

ired∗

ij
l ∗

lred∗

ε
i
j′

i

εi
red

ε
i
j
l

εl
red

j′
i

∗

j∗
l

g∗

g∗

in C . Since εi
red

is an epimorphism in C , the universal propriety of cokernels implies

j∗
l
○ g∗ = g∗ ○ j′i

∗
.
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Since ι
i
j
l

is an isomorphism, as F is a cdp-functor, one has j! ○ f
!
= f ′

!
○ j′!. �

Example 4.1.27. Assume that i ∶ v ↪ XÐ→ x is a closed immersion of S-schemes with

complementary open immersion j ∶ u ↪ ○Ð→ x. Then, one has a Cartesian square

∅
S v

u x

⌜
ÒiÒ

○

○
j

in Sch
ft/S. Since F c(∅

S
) ≅ F (∅

S
) ≅ 0, one has

j! ○ i
!
= 0.

In fact, we see in §.4.1.2.5 that the sequence

F c(v)
i
!↣ F c(x) j!↠ F c(u)

is a cofibre sequence in C .

Example 4.1.28. Recall Example 4.1.19, and assume that jx ∶ x↪ x⊔ y is a closed

open immersion of S-schemes with complementary closed open immersion jy ∶ y ↪ x⊔ y.

Then, there exists a Cartesian square

x x

x x⊔ y

⌜
idx

idx

jx

jx

in Sch
ft/S, and hence

jx
! ○ jx!

= (idx)!
○ (idx)! = idF c(x).

Similarly jy
! ○jy

!
= idF c(y). By Example 4.2.22, one also has jx

! ○jy
!
= 0 and jy

! ○jx!
= 0.

Therefore, when C is additive, F c(x⊔ y) is a direct sum in C of F c(x) and F c(y).

4.1.2.5. Excision. A functor G ∶ Sch
ftprop

open/S → C , to a Waldhausen category, induces

a group homomorphism K0(Sch
ft/S) → K0(C ) only when the evident composition map

Ob(Sch
ftprop

open/S) → Ob(C ) → K0(C ) respects the scissors relations (19). That holds when

G satisfies the excision property (E). We will see below that the functor F c, given in

Corollary 4.1.24, satisfies the excision property, and hence it induces an Euler-Poincaré

characteristic µ
F
∶ K0(Sch

ft/S) → K0(C ).

Proposition 4.1.29. The functor F c, given in Corollary 4.1.24, satisfies the ex-

cision property (E), i.e. for every closed immersion i ∶ v ↪ XÐ→ x of S-schemes with
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complementary open immersion j ∶ u ↪ ○Ð→ x, the sequence

F c(v)
i
!↣ F c(x) j!↠ F c(u) (57)

is a cofibre sequence in C . In particular, j! is an epimorphism in C .

Proof. Assume that i ∶ v ↪ XÐ→ x is a closed immersion of S-schemes with comple-

mentary open immersion j ∶ u ↪ ○Ð→ x, and let l ∶ w ↪ XÐ→ q be a compactification of x

in which the underlying scheme of w is reduced. The open immersion j
l
○ j ∶ u ↪ ○Ð→ q

induces a compactification l′ ∶ w′ ↪ XÐ→ q of u in which the underlying scheme of w′ is

reduced, i.e. l′ = ijl using the notation of §.4.1.2.3. Hence, there exists a unique closed

immersion c ∶ w ↪ XÐ→ w′ for which l = l′ ○ c.

On the other hand, let i′ ∶ p ↪ XÐ→ q be the closed immersion of the scheme-thoracic

image of j
l
○i. Then, Lemma 4.1.3 implies the existence of an open immersion j′

l
∶ v ↪ ○Ð→ p

for which the solid square containing it in the commutative diagram

u x q w′ w

∅
S

⌞
v

⌞
p p′

⌟
z

⌟
Ò∅u Òi Òi′

○
j

○

○
jl

○
j′
l

Ò
l′

Ò
c

Ò
π′p

Ò
e

Òπw′ Òπw

is Cartesian in Sch
ft/S. The leftmost square, in the above diagram, is also Cartesian in

Sch
ft/S, by the definition of u. Let (πw′ , p′, π′p) (resp. (πw, z, πp)) be the pullback of i′

along l′ (resp. l = l′ ○ c). Then, there exists a unique morphism e ∶ z → p′ that makes

the diagram commute, in particular, πp = π′p ○ e. Moreover, e is a closed immersion.

Since open complements are closed under pullbacks and j
l

is a complementary open

immersion to l, one finds that j′
l

is a complementary open immersion to πp. Hence,

πp ∶ z ↪ XÐ→ p is a compactification in Comp
S
(i, l) and (πw, i′) ∶ πp → l is a morphism of

compactifications such that i is a base change in Sch
ft/S of i′ along j

l
. Also, since j

l
○j is a

complementary open immersion to l′, the projection π′p is a surjective closed immersion.

Hence, π′p ∶ p′ ↪ XÐ→ p is a compactification in Comp
S
(∅u, l′) and (πw′ , i′) ∶ π′p → l′ is a

morphism of compactifications such that ∅u is a base change in Sch
ft/S of i′ along j

l′
.

The Pullback Lemma implies that the square

w′

w

p′

z
⌜

ÒcÒe

Ò
πw′

Ò
πw

(58)
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is Cartesian in Prop/S. Since π′p is a surjective closed immersion, the morphism c

induces an isomorphism

w′∖πw′ ≅ (q∖(j
l
○ j))

red
∖πw′ = ((q∖(j

l
○ j))∖i′)

red
= ((q∖j

l
)∖i′)

red
= (q∖j

l
)
red
∖πw ≅ w∖πw.

Therefore, the square (58) is a cdp-square in Prop/S, and hence the functor F sends it

to a pushout square in C .

Since (πw, i′) ∶ πp → l and (πw′ , i′) ∶ π′p → l′ are morphism of compactifications, and

i (resp. ∅u) is a base change of i′ along j
l

(resp. j
l′
= j

l
○ j), there exists a commutative

diagram

F (w′)

F (w)

F (p′)

F (z)

⌟

F (q)

F (q)

F (p)

F (p)

F c(u)

F c(x)

F c(∅
S
)

F c(v)

c∗e∗

πw′∗

πw∗

j!0

0

i!

i′
∗

i′
∗

l∗
πp∗

π′p∗ l′
∗

ε′
l

ε′
πp

ε′
π′p

ε′
l′

in C , where ε′
l
= ι-1

l
○ ε

l
, ε′

l′
= ι-1

l′
○ ε

l′
, ε′

πp
= ι-1

πp
○ επp , and ε′

π′p
= ι-1

π′p
○ ε

π′p
. Since π′p is a

surjective closed immersion of proper S-schemes, the morphism π′p∗ is an isomorphism.

Also, F c(∅
S
) ≅ 0.

Let α ∶ F c(x) → A be a morphism in C for which α ○ i
!
= 0 = β ○ 0, for the unique

morphism β ∶ F c(∅) → A in C . Since the functor F send the square (58) to a pushout

square in C and α ○ ε′
l
○ l∗ ○ πw∗ = β ○ ε′

π′p
○ π′p∗ ○ e∗ = 0, one has α ○ ε′

l
○ l′∗ = 0. Then,

there exists a unique morphism γ ∶ F c(u) → A such that α ○ ε′
l
= γ ○ ε′

l′
= γ ○ j! ○ ε′

l
. The

morphism ε′
l

is an epimorphism in C , and hence α = γ ○ j!. Also, ε′
l′

is an epimorphism,

and so is j!. Thus, for any morphism γ′ ∶ F c(u) → A in C for which γ′ ○ j! = α = γ ○ j!,

one has γ′ = γ. Therefore, the sequence

F c(v)
i
!↣ F c(x) j!↠ F c(u)

is a cokernel sequence in C , and hence a cofibre sequence because i
!

is a cofibration,

by Proposition 4.1.18.(PS1′). �

4.1.2.6. Weak Monoidal. When the Waldhausen category C is symmetric monoidal

and the cdp-functor F ∶ Prop/S → C is weak monoidal with respect to the Cartesian

product in Prop/S, we show that F c is also weak monoidal. The weak monoidality of

the functor F c is a formal consequence of Proposition 4.1.29 and the weak monoidality

of F , which is based on the following lemma.
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Lemma 4.1.30. Let the diagram (59) be a commutative diagram in a Waldhausen

category C , in which the vertical and horizontal sequences are cokernel sequences,

(ς, F, σ) is a pushout of the span F2,1
σ1←Ð F1,1

ς1Ð→ F1,2, and the morphism λ is the

unique morphism F → F2,2 induced by the universal property of pushouts making the

diagram commute. Then, the sequence F
λÐ→ F2,2

πÐ→ F3,3 is a cokernel sequence in C .

F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

F3,3

F
⌟

ς1

ς2

σ3

ς

σ1 σ2

σ

π

λ

π1

π2

π3

(59)

Proof. The proof is an elementary diagram chase; yet we spell it out for the

reader’s convenience.

On the one hand, the universal property of pushouts implies π○λ = 0, due to having

π ○ λ ○ ς = π ○ ς2 = π3 ○ π2 ○ ς2 = 0 and π ○ λ ○ σ = π ○ σ2 = π3 ○ σ3 ○ π1 = 0.

On the other hand, let α ∶ F2,2 → Z be a morphism in C such that α ○ λ = 0. Then,

in particular, α○ς2 = α○λ○ς = 0, and hence there exists a unique morphism β ∶ F2,3 → Z

in C for which α = β ○ π2. Thus,

β ○ σ3 ○ π1 = β ○ π2 ○ σ2 = α ○ λ ○ σ = 0.

Since π1 is an epimorphism in C , one has β ○ σ3 = 0, and hence there exists a unique

morphism γ ∶ F3,3 → Z in C for which β = γ ○ π3. Thus, α = γ ○ π3 ○ π2 = γ ○ π.

Let γ′ ∶ F3,3 → Z be a morphism in C for which α = γ′○π. Since π is an epimorphism

in C , one has γ′ = γ. Therefore, π is a cokernel injection of λ in C . �

Proposition 4.1.31. Let (C ,∧,1) be a symmetric monoidal Waldhausen category,

and suppose that the cdp-functor F ∶ (Prop/S,×, id
S
) → (C ,∧,1) is weak monoidal.

Then, the functor F c ∶ Sch
ftprop

open → C is weak monoidal. Moreover, F c is strong monoidal

when F is.

Proof. Since F is weak monoidal, it coherence morphisms

φp,q ∶ F (p) ∧ F (q) → F (p × q) and φ
S
∶ 1→ F (id

S
)
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are weak equivalences in C , for every pair of proper S-schemes p and q. Let φc
S
∶ 1 →

F c(id
S
) be the composite weak equivalence φc

S
∶= ϕ

S
○ φ

S
in C , where ϕ is the natural

isomorphism asserted by Corollary 4.1.21.

For k = 0,1, assume that xk is an S-scheme, let ik ∶ zk ↪ XÐ→ pk be a compactification

of xk with complementary open immersion jik ∶ xk ↪ ○Ð→ pk. The functors − ∧ C and

C ∧ − preserve cofibre sequences for every object C ∈ C , see Definition 1.5.20. Thus,

Proposition 4.1.29 induces a cofibre sequence

F c(zk) ∧ F c(y) F c(pk) ∧ F c(y) F c(xk) ∧ F c(y)
ik !

j!
ik

in C , for every S-scheme y. Since both pk and zk are proper S-schemes, and ϕ is a

natural isomorphism, the sequence

F (zk) ∧ F (y) F (pk) ∧ F (y) F c(xk) ∧ F (y),
ik∗ j!

ik

is a cofibre sequence in C for a proper S-scheme y.

On the one hand, the monoidal product bifunctor ∧ ∶ C × C → C induces the solid

commutative diagram

F (z0) ∧ F (z1) F (z0) ∧ F (p1) F (z0) ∧ F c(x1)

F (p0) ∧ F (z1) F (p0) ∧ F (p1) F (p0) ∧ F c(x1)

F c(x0) ∧ F (z1) F c(x0) ∧ F (p1) F c(x0) ∧ F c(x1)

F
⌟

i1∗

i1∗

i1∗

i0∗ i0∗ i0∗

π

λ1

λ0

λ

j!
i1

j!
i1

j!
i1

j!
i0

j!
i0

j!
i0

in C , in which horizontal and vertical sequences consist of cofibre sequences. Let

λ ∶ F → F (p0)∧F (p1) be the pushout-product of i0∗ and i1∗, and let π ∶= j!
i0
○ j!

i1
. Since

C is a symmetric monoidal Waldhausen category and i0∗ and i1∗ are cofibrations in

C , the morphisms λ is also a cofibration in C . Thus, Lemma 4.1.30 implies that the

sequence

F
λÐ→ F (p0) ∧ F (p1)

πÐ→ F c(x0) ∧ F c(x1)
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is a cofibre sequence in C .

On the other hand, there exits a pushout in Prop/S of the closed immersions idz0×i1
and i0 × idz1 . In fact, there exists a bicartesian square

z0 × z1 z0 × p1

p0 × z1 z,

Òi0 × idz1 Òi′0

Ò
i′1

Ò
idz0 × i1

⌜

⌟

of closed immersions in Prop/S, see [Sch05, Th.3.11] and [Cam17, §.2]. In particular,

it is a cdp-square in Prop/S, and hence it is mapped by F to a pushout square of

cofibrations in C . Since C is a Waldhausen category and F is weak monoidal, the

unique morphism λ′ ∶ F → F (z), that makes the diagram

F (z0) ∧ F (z1) F (z0) ∧ F (p1)

F (p0) ∧ F (z1) F
⌟

F (z0 × z1) F (z0 × p1)

F (p0 × z1) F (z)
⌟

i′1∗

i′0∗

i1∗

i1∗

i0∗ i0∗

φz0,z1

φp0,z1

φz0,p1

λ′

commute, is a weak equivalence in C . Let p denote the proper S-scheme p0×p1, denote

the closed immersion z ↪ XÐ→ p by i, and denote its complementary open immersion

x0 × x1 ↪ ○Ð→ p by j. The morphism i∗ is a cofibration in C , and φp0,p1 ○ λ = i∗ ○ λ′.
Thus, there exists the solid commutative diagram (60) in C , on the next page, in

which the horizontal sequences are cofibre sequences, and vertical morphisms are weak

equivalences. Thus, the universal property of cokernels implies the existence of the

unique morphism

φc
x0,x1

∶ F c(x0) ∧ F c(x1) → F c(x0 × x1),

that makes the diagram commute; which is a weak equivalence in C , see Definition 1.5.8.

The uniqueness of the morphism φc
x0,x1

implies the existence of a natural transformation

φc ∶ F c ∧ F c ⇒ F c(×), with components φc
x0,x1

for every pair of S-schemes x0 and x1.

Also, a diagram chase of the associativity hexagons and unitality squares shows that

F c is weak monoidal with the coherence natural morphism φc. Moreover, when φ is a
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natural isomorphism, so is φc.

F F (p0) ∧ F (p1) F c(x0) ∧ F c(x1)

F (z) F (p)

F c(z) F c(p) F c(x0 × x1)

λ

i∗

i!

π

j!

φp0,p1λ′

ϕz ϕp

φc
x0,x1

(60)

�

4.1.2.7. Motivic Measures. Theorem 4.1.32 collects the main statements of the ar-

gument in §.4.1.2, which allows one to associate motivic measures to cdp-functors from

proper S-schemes to Waldhausen categories.

Theorem 4.1.32. Assume that F ∶ (Prop/S,×, id
S
) → (C ,∧,1) is a weak monoidal

cdp-functor to a symmetric monoidal Waldhausen category. Then, there exists a functor

F c ∶ (Sch
ftprop

open/S,×, idS) → (C ,∧,1),

where Sch
ftprop

open/S is the category whose objects are S-schemes and whose morphisms

are finite compositions of proper morphisms and formal inverses of open immersions,

defined on proper morphisms in (44) and on open immersions in (53), such that

● there exists a natural isomorphism ϕ ∶ F ∼⇒ F c
∣Prop/S

;

● F c satisfies the excision property, i.e. for every closed immersion i ∶ v ↪ XÐ→ x

of S-schemes with complementary open immersion j ∶ u ↪ ○Ð→ x, the sequence

F c(v)
i
!Ð→ F c(x) j!Ð→ F c(u)

is a cofibre sequence in C ; and

● F c is weak monoidal, i.e. there exist natural transformations

φc ∶ F c ∧ F c ⇒ F c(×) and φc
S
∶ 1⇒ F (id

S
),

which satisfy the associativity and unitality axioms, whose components are

weak equivalences in C .

Therefore, there exists a motivic measure

µ
F
∶ K0(Sch

ft/S) → K0(C ),

that sends the class of a proper S-scheme p to the class of F (p).

Example 4.1.33. Suppose that k is a field. Then, a closed immersion i ∶ Speck ↪ XÐ→
P1
k is an initial object in the category of compactifications Comp

k
(A1

k), and hence

F c(A1
k) = coker i∗.
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Remark 4.1.34. For a field k, Zakharevich introduced the notion an assembler

in [Zak17], and associated to the category of k-varieties a spectrum whose group of

path components is isomorphic to the Grothendieck group K0(Var/k). Then, Campbell

provided an E∞-ring spectrum K(Var/k) whose ring of path components is isomorphic to

the Grothendieck ring K0(Var/k), which is conjectured to be equivalent to Zakharevich’s

spectrum, see [Cam17]. Lemma 4.1.26 and Proposition 4.1.29 imply that a cdp-functor

F ∶ Prop/S → C , to a Waldhausen category, defines a map of spectra

K(F ) ∶ K(Var/k) → K(C )

that sends a point in the class [P ] ∈ K0(Var/k) to a point in the class [F (P )] ∈ K0(C ),
for every proper k-scheme P , see [Cam17, Def.5.2 and Prop.5.3]. This will be explored

further in §.4.2.1.

4.1.3. Functors Compactification. Given a functor F ∶ Prop/S → C to a Wald-

hausen category, that is not a cdp-functor, one may would like to ‘universally’ associate

to F a cdp-functor, and hence define an associated motivic measure that is closely re-

lated to F . Recall that the properties (PS2) and (PS3) imply that cdp-functors are

cdp-cosheaves on Prop/S, as the cdp-topology is generated by cdp-squares, see §.A.4.3.

Hence, a natural choice of such an association is the cdp-cosheafification, when it exists,

which is the dual of the cdp-sheafification, see [Pra16]. We will restrain ourself from

discussing the general process here, and only focus on the aspects relevant to §.4.2.

Assume that F satisfies (PS1), i.e. it sends closed immersions of proper S-schemes

to cofibrations in C . Then, for a cdp-square

z p

w q

f f

Ò
i

Ò
i

⌜

in Prop/S, the morphism i∗ is a cofibration, and the pushout of i∗ along f∗ exists

in C . Denote the canonical morphism F (w)∐F (z) F (p) → F (q) in C induced by the

universal property of pushouts by αi,f , and consider the set of morphisms

Λ ∶= {αi,f ∶ F (w) ∐
F (z)

F (p) → F (q) ∣ (i, f) ∈ Λ}⋃{0→ F (∅)}

in C , where Λ is the set of all cdp-squares in Prop/S. If there exists an exact functor

of Waldhausen categories C → C ′ that sends all morphisms in Λ to isomorphisms in

C ′, the composition F ′ ∶ Prop/S → C → C ′ satisfies the properties (PS1)-(PS3), i.e. it

is a cdp-functor. When the functor C → C ′ is a localisation with respect to Λ, we say

that the induced functor F ′ ∶ Prop/S → C ′ is a cdp-compactification of F .

When C is a symmetric monoidal Waldhausen category and F is only lax monoidal,

one seeks a localisation for which the composite functor is also weak monoidal.
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In the next section, we apply this argument to the most natural functor there is,

that is the Yoneda embedding8.

4.2. Applications

For an essentially small category C , the Yoneda embedding into the category of

presheaves PSh(C ) gives a free cocompletion of C . Whereas, for a Grothendieck topol-

ogy τ on C , the τ -cosheafification of the Yoneda embedding gives a cocompletion

of C in the category of τ -sheaves Shvτ(C ), with the relations imposed by declaring

τ -coving sieves to be colimit cocones, see Remark A.4.7. The category of pointed

τ -sheaves admits a symmetric monoidal Waldhausen structure, whose cofibrations are

monomorphisms, weak equivalences are isomorphisms, and monoidal product is given

by the smash product, recall Example 1.5.22. In particular, when C is the category of

proper S-schemes and τ is a topology on Prop/S, it is interesting to consider when the

τ -cosheafification of the pointed Yoneda embedding is a cdp-functor, and to use such

a cdp-functor, if it exists, to better understand the Grothendieck ring K0(Sch
ft/S), and

probably its higher K -theory.

In this direction, we utilise the cdp-topology to construct a monoidal proper-

fibred Waldhausen category C ω
τ over Noetherian schemes of finite Krull dimensions,

in §.4.2.1.2, for a topology τ that is finer than the cdp-topology. For every Noetherian

scheme T of finite Krull dimension, there exists a cdp-functor hτ ∶ Prop/T → C ω
τ (T ),

given by the τ -cosheafification of the pointed Yoneda embedding, as in (65). This

functor induces, in (66), a surjective motivic measure

µτ ∶ K0(Sch
ft/T ) → K0 (C ω

τ (T )).

On the other hand, giving the role the class of the affine line plays in the study

of the Grothendieck ring K0(Sch
ft/S) and that the category of (simplicial) sheaves is

the home for motivic homotopy theory, it is desired to have motivic measures obtained

from Waldhausen K -theories of models for the (un)stable motivic homotopy categories.

4.2.1. Waldhausen K -Theories of Noetherian Schemes. For the rest of this

subsection, let τ be an additively-saturated pretopology on the category Noetherian

schemes of finite Krull dimensions that is finer than the cdp-pretopology and coarser

than the proper pretopology, cf. Remark A.4.39.

Recall that the category of proper S-schemes is essentially small, and the forgetful

functor PSh●(Prop/S) → PSh(Prop/S), that forgets the base point, admits a faithful

(but not full) left adjoint PSh(Prop/S) → PSh●(Prop/S), given by adjoining a disjoint

8In fact, we need to consider a pointed version of the Yoneda embedding.
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base point, i.e. X+ = (X ∐∗,∗), see [Hov99, p.4]. Let h
−,+ denote the composite

functor

−
+
○ h ∶ Prop/S → PSh●(Prop/S).

The gluing of a pair of closed subschemes of a proper S-scheme, along their scheme-

theoretic intersection, defines a pushout square in Prop/S, which is a cdp-square, see the

proof of Proposition 4.1.18. Then, the functor h
−,+ is not a cdp-functor, as it forgets all

colimits. However, for every closed immersion i ∶ z ↪ XÐ→ p in Prop/S, the morphism hi,+

is a monomorphism. Following the argument in §.4.1.3, we may consider a localisation

of the category PSh●(Prop/S) with respect to the set of morphisms

Λ ∶= {αi,f ∶ hw,+ ∐
hz,+

hp,+ → hp,+ ∣ (i, f) ∈ Λ}⋃{0→ h
∅,+ },

where Λ is the set of all cdp-squares in Prop/S.

The cdp-sheafification functor

−
acdp ∶ PSh●(Prop/S) → Shv

●,cdp
(Prop/S)

provides such a localisation, see Definition A.4.28. That is,

(PS1) the cdp-sheafification functor preserve monomorphisms;

(PS2) the cdp-sheafification of h
∅,+ is isomorphic to 0, as h

cdp

∅,+
(∅) = ∗; and

(PS3) the functor h
acdp

, i.e. the composition of the cdp-sheafification functor with the

the Yoneda embedding, sends cdp-squares to pushout squares, see [Voe10a,

Lem.2.11 and Cor.2.16] and [Voe10b, Th.2.2]; also, the left adjoint functor

−+
acdp

preserves colimits.

Therefore, the functor

h ∶= −acdp ○ h
−,+ ∶ Prop/S → Shv

●,cdp
(Prop/S) (61)

is a cdp-functor. Moreover, Remark A.4.7 shows that the cdp-topology is the coars-

est topology τ on Prop/S for which the composite functor −aτ ○ h
−,+ is a cdp-functor.

The τ -sheafification functor preserves monomorphisms and colimits, and it factorises

through the cdp-sheafification functor, as τ is finer than the cdp-pretopology. Hence,

the functor

hτ ∶= −aτ ○ h
−,+ ∶ Prop/S → Shv

●,τ (Prop/S) (62)

is a cdp-functor. To avoid bulky notations, we let

Cτ(S) ∶= Shv
●,τ (Prop/S).

In particular, when τ is the cdp-pretopology, denote Cτ(S), hτ , and hcτ , by C (S), h,

and hc, respectively.

The functor h
−,+ is strong monoidal, with respect to the Cartesian product of proper

S-schemes and the smash product of pointed presheaves. Since the τ -sheafification

functor is a left exact reflector, it preserves the smash product, as the smash product
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of pointed (pre)sheaves only involves finite limits and colimits, recall Example 1.5.22.

Thus, the functor hτ is also strong monoidal.

Since the Waldhausen category Cτ(S) is cocomplete, its K -theory is connected, i.e.

it has a trivial group of path components, recall Lemma 1.5.15. To establish a non-

trivial motivic measure, we need to consider a Waldhausen subcategory in Cτ(S), with

a non-connected K -theory, which contains the essential image of hτ . We construct this

subcategory by mathematical induction

● Let C 0
τ (S) be the full subcategory in Cτ(S) in which X ∈ C 0

τ (S) if and only

if X ≅ hτ
p

for a proper S-scheme p.

● For an integer n ≥ 1, let C n
τ (S) be the full subcategory in Cτ(S) in which

X ∈ C n
τ (S) if and only if there exists a pushout square

Y ′ Y

X ′ X

ι

⌟

(63)

in Cτ(S), in which X ′,Y , and Y ′ belong to C n−1
τ (S), and ι is a monomor-

phism of pointed τ -sheaves.

One has C n
τ (S) ⊂ C n+1

τ (S) for every n ∈N. Then, the full subcategory

C ω
τ (S) ∶= ⋃

n∈N
C n
τ (S) (64)

in Cτ(S) admits a Waldhausen structure, whose cofibrations (resp. weak equivalences)

are morphisms in C ω
τ (S) that are cofibrations (resp. weak equivalences) in Cτ(S), i.e.

monomorphisms (resp. isomorphisms). Indeed,

● the zero object in Cτ(S) is given by 0 ≅ hτ
∅

and C ω
τ (S) is a full subcategory in

Cτ(S); thus, the category C ω
τ (S) contains a zero object, namely hτ

∅
;

● for every X ∈ C ω
τ (S), the zero morphism hτ

∅
→ X is a monomorphism in

Cτ(S), and hence a monomorphism in the subcategory C ω
τ (S);

● for a pair of a monomorphism ι ∶ U ↣ V and a morphism ϕ ∶ U → X in

C ω
τ (S), there exists an integer n such that ι and ϕ belong to C n

τ (S), and

hence the cobase change of ι along ϕ exists in C n+1
τ (S) ⊂ C ω

τ (S), and it is a

monomorphism; thus, cofibrations in C ω
τ (S) are closed under pushouts; and

● the gluing axiom holds, as pushouts are determined up to isomorphisms.

The inclusion functor C ω
τ (S) ↪ Cτ(S) is an exact functor of Waldhausen categories,

i.e. C ω
τ (S) is a Waldhausen subcategory in Cτ(S). In fact, C ω

τ (S) is a the smallest full

Waldhausen subcategory in Cτ(S) that contains the essential image of hτ . We abuse

notation and denote by hτ the unique cdp-functor

Prop/S → C ω
τ (S) (65)
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that factorises hτ . Since the category Prop/S is essentially small, one can use mathe-

matical induction to show that C ω
τ (S) is also essentially small.

Lemma 4.2.1. The symmetric monoidal structure on Cτ(S), given by the smash

product, restricts to C ω
τ (S), making C ω

τ (S) into a symmetric monoidal Waldhausen

category.

Proof. Since C ω
τ (S) is a full Waldhausen subcategory in Cτ(S) and the unit

1∧ = hτ
id
S

belongs to C ω
τ (S), it is sufficient to show that the smash product restricts to

C ω
τ (S).

For every n ∈ N, we use mathematical induction to show that the smash product

restricts to a functor

∧ ∶ C n
τ (S) ×C n

τ (S) → C 2n
τ (S),

● Let X0 and X1 belong to C 0
τ (S), i.e. there exists a proper S-scheme pk for

which Xk ≅ hτpk , for k = 0,1. Since hτ is a strong monoidal functor, one has

X0 ∧X1 ≅ hτ
p0
∧ hτ

p1
≅ hτ

p0×p1
∈ C 0

τ (S).

● For an integer n ≥ 1, assume that the smash product restricts to a functor

∧ ∶ C n−1
τ (S) ×C n−1

τ (S) → C 2n−2
τ (S),

and let X0 and X1 belong to C n
τ (S), i.e. there exists a pushout square

Y ′
k Yk

X ′
k Xk

ιk

⌟

in Cτ(S), in which X ′
k ,Yk, and Y ′

k belong to C n−1
τ (S), and ιk is a monomor-

phism, for k = 0,1. Since Cτ(S) is a symmetric monoidal Waldhausen category,

the smash product with any object in Cτ(S) preserves such a pushout square,

and hence there exists a pushout square

U ∧Y ′
k U ∧Yk

U ∧X ′
k U ∧Xk

idX ∧ ιk

⌟

in Cτ(S), for every U ∈ Cτ(S). In particular, for k = 0 and U ∈ {X ′
1 ,Y

′
1 ,Y1},

one finds that X0 ∧U ≅ U ∧X0 belongs to C 2n−1
τ (S). Similarly, for k = 1 and

U = X0, one finds that X0 ∧X1 belongs to C 2n
τ (S).

Therefore, the smash product restricts to C ω
τ (S). �
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The functor hτ ∶ Prop/S → C ω
τ (S) is a strong monoidal cdp-functor. Then, by

Theorem 4.1.32, there exists a strong monoidal functor

hcτ ∶ Sch
ftprop

open/S → C ω
τ (S)

that satisfies the excision property, and coincides with hτ for proper S-schemes. Hence,

it induces a motivic measure

µτ ∶ K0(Sch
ft/S) → K0 (C ω

τ (S)), (66)

which sends the class of a proper S-scheme p to the class of hτ
p

. Moreover, for a field

k, the functor hcτ induces a map of spectra

K(hcτ ) ∶ K(Sch
ft/k) → K (C ω

τ (k)),

from the spectrum K(Sch
ft/k) defined in [Cam17].

Lemma 4.2.2. The motivic measure µτ is surjective.

Proof. To show that µτ is surjective, it suffices to show that for every pointed

τ -sheaf X ∈ C ω
τ (S) the class [X ] ∈ K0 (C ω

τ (S)) belongs to the image of µτ , which

follows by mathematical induction.

● For every X ∈ C 0
τ (S), there exists a proper S-scheme p for which X ≅ hτ

p
.

Hence, one has

[X ] = [hτ
p
] = µτ ([p]) ∈ imµτ .

● For an integer n ≥ 1, assume that for every U ∈ C n−1
τ (S), one has [U ] ∈ imµτ ,

and let X belongs to C n
τ (S), i.e. there exists a pushout square (63) in Cτ(S),

in which X ′,Y , and Y ′ belong to C n−1
τ (S), and ι is a monomorphism. Then,

the cofibres X /X ′ and Y /Y ′ are canonically isomorphic, and hence

[X ] − [X ′] = [X /X ′] = [Y /Y ′] = [Y ] − [Y ′],

i.e.

[X ] = [X ′] + [Y ] − [Y ′] ∈ imµτ .

�

Proposition 4.2.3. The modified Grothendieck ring (21) factorises the motivic

measure µτ .

Proof. Let f ∶ x → y be a universal homeomorphism of S-schemes, and let l ∶
w ↪ XÐ→ q be a compactification of y. Recall our conventions, in §.0.2, which require

S-schemes to be of finite type. Hence, the morphism f is finite, universally injective,

and surjective, by [Gro65, Prop.2.4.5]. Since f is proper, the category Comp
S
(f, l)

is nonempty, by Proposition 4.1.5. Suppose that i ∶ z ↪ XÐ→ p is a compactification in

Comp
S
(f, l), and let g ∶ i→ l be a morphism of compactifications such that f is a base
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change in Sch
ft/S of g along j

l
. For simplicity and without loss of generality, we may

choose i that fits into the left Cartesian square

z xp

w yq

⌜ ⌝
g fg

○
ji

○
jl

Ò
l

Ò
i

(67)

in Prop/S. Then, the set {l ∶ w ↪ XÐ→ q, g ∶ p→ q} is a cdp-covering family of q in Prop/S.

Indeed, let k be a field, and let b ∶ Speck → Q be a morphism of schemes in Noe
fd

, where

Q is the underlying scheme of q. Either b lifts along l or j
l
. When b lifts along j

l
, there

exist a morphism a ∶ Speck → Y , where Y is the underlying scheme of y, such that

b = j
l
○ a. Consider the Cartesian square

T X

Speck Y

f f

a

a

⌜

in the category Noe
fd

. The morphism f is a finite universal homeomorphism, and hence T

is a one-point scheme SpecR and f is induced by a finite ring homomorphism ψ ∶ k ↪ R,

to a local ring R of Krull dimension zero. Let m be the maximal ideal of R, and

let κ ∶= R/m. Then, the induced homomorphism k ↪ κ is a finite field extension.

Assuming that [κ ∶ k] ≠ 1, there exist distinct ring homeomorphisms κ → κ over k,

which contradicts with f being universally injective. Thus, one has [κ ∶ k] = 1, i.e. the

residue field of T at its unique point is isomorphic to k. Hence, a lifts along f , which

lifts b along g, and {l, q} is a cdp-covering family.

In order to show that µτ factorises through the modified Grothendieck ring, it

suffices to show that f
!
∶ hcτ

x
→ hcτ

y
is an isomorphism in C ω

τ (S), which isomorphic to

the square

hτ
z

hτ
p

hτ
w

hτ
q

⌜
g∗g

∗

l∗

i∗

(68)

being a pushout square in C ω
τ (S). Since the τ -sheafification functor preserves colimits,

it suffices to show that the canonical morphism Θ ∶ hw,+∐hz,+
hp,+ → hq ,+ of pointed

presheaves is a τ -local isomorphism.

Let t ∶ T → S be a proper S-scheme, and let b ∈ hq ,+(t). Either b = ∗, in which case

b belongs to the image of Θt , or b is a morphism t→ q of proper S-schemes. Assuming
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the latter case, consider the Cartesian squares

t
l t

w q

⌜
bbl

Ò
l

Ò
lb

tg t

p q

⌜
bbg

g

gb

in Prop/S. The set {l
b
, g
b
} is a cdp-covering family of t in Prop/S. Let [b

l
] and

[bg] denote the classes of b
l
∈ hw,+(tl) and bg ∈ hp,+(tg) in (hw,+∐hz,+

hp,+ )(t
l
) and

(hw,+∐hz,+
hp,+ )(tg), respectively, then, one has

Θt
l
([b

l
]) = l∗(bl) = l∗b (b) and Θtg

([bg]) = g∗(bg) = g∗b (b).

Since the pretopology τ is finer than the cdp-pretopology, the morphism Θ is a τ -local

epimorphism, by Corollary A.4.11.

On the other hand, suppose that t ∶ T → S is a proper S-scheme, and let a0, a1 ∈
(hw,+∐hz,+

hp,+ )(t) such that Θt(a0) = Θt(a1). When either a0 or a1 coincides with the

base point ∗ in (hw,+∐hz,+
hp,+ )(t), so does the other. Assume that a0 ≠ ∗ and a1 ≠ ∗,

and distinguish the following cases.

(1) There are a′0 and a′1 in hw,+(t) such that a0 = [a′0] and a1 = [a′1]. Then,

l∗(a′0) = Θt(a0) = Θt(a1) = l∗(a′1). Since a0 ≠ ∗ and a1 ≠ ∗, the sections a′0 and

a′1 are morphisms t → w of proper S-schemes such that l ○ a′0 = l ○ a′1, which

implies that a′0 = a′1, as l is a monomorphism of proper S-schemes. Hence,

a0 = a1.

(2) Either there exists a′0 or a′1 in hw,+(t) such that a0 = [a′0] or a1 = [a′1], but

not both. Without loss of generality, assume that the section a′0 (resp. a′1) is

a morphism t → w (resp. t → p) of proper S-schemes, as a0 ≠ ∗ and a1 ≠ ∗.

Then, l ○ a′0 = Θt(a0) = Θt(a1) = g ○ a′1, and hence there exists a morphism

a′ ∶ t → z of proper S-schemes such that a′0 = g∗(a
′) and a′1 = i∗(a′), see (67).

Thus, a0 = [a′0] = [a′1] = a1.

(3) There does not exist a′0 or a′1 in hw,+(t) such that a0 = [a′0] or a1 = [a′1]. As

a0 ≠ ∗ and a1 ≠ ∗, let a′0 and a′1 be morphisms t→ p of proper S-schemes such

that a0 = [a′0] or a1 = [a′1]. Then, g ○ a′0 = Θt(a0) = Θt(a1) = g ○ a′1. Consider

the Cartesian squares (70) in Sch
ft/S, on the next page, for k = 1,0. Since

g ○ a′0 = g ○ a′1, there exist such Cartesian squares with

t
l
∶= t

0,l
= t

1,l
, l ∶= l′0 = l′1 , tj

l
∶= t0,j

l
= t1,j

l
, and j

l
∶= j′

0,l
= j′

1,l
.

Then, one has f ○ a′
0,j
l
= f ○ a′

1,j
l
, which implies the existence of a cdp-cover

σj
l
∶ t′
j
l
→ tj

l
such that

a′
0,j
l
○ σj

l
= a′

1,j
l
○ σj

l
, (69)
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as f∗ ∶ hx → hy is a cdp-local monomorphism, by Proposition A.4.37.

t
k,l

t
k,j
l

t

z xp

w yq

⌜ ⌝

⌜ ⌝

a′k a′
k,j
l

a′
k,l

g fg

○
jk,l

○
ji

○
jl

Ò
lk

Ò
l

Ò
i

(70)

Since σj
l

is proper, the category Comp
S
(σj

l
, l) is nonempty, and there exists a

compactification l′ ∶ t′
l
↪ XÐ→ t′ of t′

j
l

that fits into Cartesian squares

t′
l

t′
j
l

t′

t
l

tj
l

t

⌜ ⌝
σ σj

l
σl

○
j
l′

○
jl

Ò
l

Ò
l′

in Sch
ft/S. Since σj

l
is a cdp-cover, the set {l ∶ t

l
↪ XÐ→ t, σ ∶ t′ → t} is a

cdp-covering family of t in Prop/S. Indeed, let k be a field, and let b ∶ Speck →
T be a morphism of schemes in Noe

fd
, then either b lifts along l or j

l
. In the

latter case, the lift Speck → Tj
l
, where Tj

l
is the underlying scheme of tj

l
, lifts

along the cdp-cover σj
l
, which lifts b along σ. Since l is a monomorphism of

schemes and j
l

is a complementary open immersion to l, one sees that the

morphism σ
l

is a cdp-cover.

Let {iα ∶ tα → t′ ∣ α ∈ A} be the cdp-covering family of t′ in Prop/S by its

integral components, and consider the Cartesian squares

t′
l

t′
j
l

t′

t
α,l

tα,j
l

tα
⌜ ⌝

iα
iα,j

l
iα,l

○
j
l′

○
jlα

Ò
lα

Ò
l′

in Sch
ft/S, for every α ∈ A. Then, {i

α,l
∶ t
α,l
→ t′

l
∣ α ∈ A} is a cdp-covering

family of t′
l

in Prop/S, and hence the set

U ∶= {l ○ σ
l
○ i

α,l
∶ t
α,l
→ t ∣ α ∈ A}⋃{σ ○ iα ∶ tα → t ∣ α ∈ A}

is a cdp-covering family in Prop/S. For every α ∈ A, we distinguish two cases.
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(a) When tα,j
l

is nonempty, the open immersion j
lα

is dominant, and hence

a′
0
○ σ ○ iα = a′

1
○ σ ○ iα , by [Vak15, Reduced-to-Separated Th.10.2.2] and

(69). Thus, one has (σ ○ iα)∗(a0) = [a′
0
○σ ○ iα] = [a′

1
○σ ○ iα] = (σ ○ iα)∗(a1).

(b) When tα,j
l
≅ ∅

S
, the morphism iα factorises through l′, and hence there

exists a′
α,k

in hw,+(tα) with [a′
α,k

] = (σ ○ iα)∗(ak) ∈ (hw,+∐hz,+
hp,+ )(tα), for

k = 0,1. Since Θt(a0) = Θt(a1), one has l∗(a′α,0) = l∗(a′α,1), and hence

a′
α,0

= a′
α,1

as l is a monomorphism of proper S-schemes. Thus,

(σ ○ iα)∗(a0) = (σ ○ iα)∗(a1).

Thus, for every α ∈ A, one has

(σ ○ iα)∗(a0) = (σ ○ iα)∗(a1) and (l ○ σ
l
○ i

α,l
)∗(a0) = (l ○ σ

l
○ i

α,l
)∗(a1).

There always exists a cdp-covering family V of t in Prop/S such that δ∗(a0) = δ∗(a1),
for every δ ∈ V . Thus, the morphism Θ is a τ -local monomorphism, by Corollary

A.4.14.

Therefore, the square (68) is a pushout square in C ω
τ (S), i.e. the morphism f

!
is an

isomorphism in C ω
τ (S), and µτ factorises through the modified Grothendieck ring. �

Conjecture 4.2.4. The motivic measure µ
cdp

is isomorphic to the quotient map

µ
uh
∶ K0(Sch

ft/S) → Kuh
0 (Sch

ft/S).

Let k be a field, recall Example 4.1.33, and consider a closed immersion i ∶ Speck ↪ XÐ→
P1
k with complementary open immersion j ∶A1

k ↪ ○Ð→ P1
k. Then,

hcτ
A1
k

= coker (hτ
Speck

Ð→ hτ
P1
k

) = (h
P1
k

,∞)aτ ,

where ∞ denotes the unique k-rational point in (P1
k∖j(A1

k))
red

.

4.2.1.1. The Commutative Ring Spectrum Structure. The spectrum K (C ω
τ (S)) ad-

mits a canonical commutative ring spectrum structure, i.e. a homotopy commutative

monoid structure in the category of S1-spectra of pointed topological spaces.

The functor ∗ → Prop/S that sends the unique object of ∗ to idS is continuous, with

respect to the indiscrete topology on ∗ and any topology on Prop/S. Hence, it induces

an exact functor of Waldhausen categories

uτ
S
∶ PSh●(∗) ≅ Set● → Cτ(S),

which is a left adjoint to the the global section functor Cτ(S) → Set●, i.e. uτ
S

is given

by sending a pointed sets to its constant pointed τ -sheaf.

The category FSet● of pointed finite sets admits a symmetric monoidal Waldhausen

structure, as in Example 1.5.21. The category C ω
τ (S) contains the unit 1∧ = hτid

S
, admits
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all finite colimits, and the τ -sheafification functor commutes with colimits. Thus, the

functor uτ
S

restricts to an exact functor of Waldhausen categories

υτ
S
∶ FSet● → C ω

τ (S). (71)

The exact functor υτ
S

induces a map of spectra

K(υτ
S
) ∶ S ≅ K(FSet●) → K (C ω

τ (S)),

which induces the ring characteristic K0(υτS ) ∶ Z→ K0 (C ω
τ (S)).

On the other hand, C ω
τ (S) is a symmetric monoidal Waldhausen category, by

Lemma 4.2.1. Hence, there exists a paring

⊗ ∶ K (C ω
τ (S)) ∧ K (C ω

τ (S)) → K (C ω
τ (S)),

see [Wal85, p.342]. That makes K (C ω
τ (S)) into a commutative ring spectrum, see

[BM11, Cor.2.8].

4.2.1.2. Monoidal Proper-Fibred Waldhausen Category. The K -theory commutative

ring spectrum K (C ω
τ (S)), for a Noetherian scheme S of finite Krull dimension, arises

from a fibre of a monoidal proper-fibred Waldhausen category over Noetherian schemes

of finite Krull dimensions9. That is, there exists a strong monoidal pseudofunctor

C ω
τ ∶ Noe

fdop
→Wald∧2 ,

where Wald∧2 is the 2-category of essentially small symmetric monoidal Waldhausen

categories, weak monoidal exact functors between them, and monoidal natural trans-

formations between the latter, such that

● for every scheme S ∈ Noe
fd

the fibre C ω
τ (S) is the symmetric monoidal Wald-

hausen category constructed in (64), as in Lemma 4.2.7;

● for every proper morphism f ∶ S → T in Noe
fd

, the pullback f∗ ∶ C ω
τ (T ) →

C ω
τ (S) admits a left adjoint f# ∶ C ω

τ (S) → C ω
τ (T ), as in Lemma 4.2.12;

● C ω
τ satisfies the proper-base change property, as in Lemma 4.2.20; and

● C ω
τ satisfies the proper-projection formula, as in Lemma 4.2.23.

Then, applying the Waldhausen’s K -theory 2-functor10 induces a monoidal proper-fibred

commutative ring spectrum

K(C ω
τ ) ∶ Noe

fdop
→ CRingSpt2.

In fact, the strong monoidal cdp-functor hτ ∶ Prop/S → C ω
τ (S), given in (65), arises

from the geometric section of C ω
τ , see [CD13, §.1.1.c].

Remark 4.2.5. The statements in the rest of this subsection were motivated by Dan

Petersen’s answer in [Pet14], which recalls Ekedahl’s approach to higher Grothendieck

9See [CD13, §.1] for a treatment of P-fibred categories, for a set P of morphisms of schemes.
10See [FP17, §.1] for the treatment of the 2-categorical Waldhausen’s K-theory.
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groups of varieties. The statements of Lemma 4.2.20 and Lemma 4.2.23 are essentially

consequences of [CD13, Ex.1.1.11 and Ex.1.1.28].

Inverse Image. Recall the canonical proper-fibred category Prop/− ∶ Noe
fd → CAT2,

as in [CD13, Ex.1.1.4 and Ex.1.1.11]. A morphism f ∶ S → T in Noe
fd

induces a functor

f
-1 ∶ Prop/T → Prop/S (72)

that sends a proper T -scheme to its base change along f . That in turn induces a direct

image functor

f∗ ∶ PSh●(Prop/S) → PSh●(Prop/T ),

given by precomposition with (f -1)op, i.e. for a presheaf X ∈ PSh●(Prop/S) and for

a proper T -scheme q, one has f∗(X )(q) = X (f -1(q)). The functor f∗ admits a left

adjoint

f∗pre ∶ PSh●(Prop/T ) → PSh●(Prop/S),

called the inverse image functor along f , and it is given by a left Kan extension along

(f -1)op, see §.A.4.2. The functor −
+

commutes with colimits, for being a left adjoint.

Then, using the coend formula (87), one sees that

f∗pre(hq,+)(p) =
xop∈(Prop/T )op

∫ ∐
(Prop/S)op((f -1)op(xop),pop)

hq,+(x)

≅ (
x∈Prop/T

∫ ∐
Prop/S(p,f -1(x))

hq(x))
+

≅ (
x∈Prop/T

∫ Prop/S(p, f -1(x)) × Prop/T (x, q))
+

≅ (
x∈Prop/T

∫ Prop/S(p, f -1(x)) × Prop/S(f -1(x), f -1(q)))
+

≅ (Prop/S(p, f -1(q)))
+

≅ h
f

-1
(q),+

(p),

for every proper T -scheme q and for every proper S-scheme p, i.e.

f∗pre(hq,+) ≅ h
f

-1
(q),+

.

In fact, this is a defining property for f∗pre, as every object in PSh●(Prop/T ) is a colimit

of a diagram in the essential image of h
−,+ .

Since the base change functor f
-1

commutes with fibre products, it is continuous

with respect to the τ -pretopology, see [SGA73, §.III.Prop.1.6]. Thus, the direct image

functor f∗ preserves τ -sheaves, and it restricts to a functor

f∗ ∶ Cτ(S) → Cτ(T ),
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which admits a left adjoint f∗, given by the composition of f∗pre with the associated

τ -sheaf functor −aτ . Since the τ -sheafification functor commutes with colimits, one has

f∗(hτ
q
) ≅ hτ

f
-1
(q)

, (73)

for every proper T -scheme p.

Lemma 4.2.6. Assume that f ∶ S → T is a morphism in Noe
fd

. Then, the functor f∗ ∶
Cτ(T ) → Cτ(S) is a strong monoidal exact functor of symmetric monoidal Waldhausen

categories.

Proof. The functor f
-1

is Cartesian, as limits commute with each other, and hence

the functor f∗pre is left exact, see [Joh02, A.Ex.4.1.10]. Also both the τ -sheafification

functor and the inclusion functor, of τ -sheaves into presheaves, are left exact. Thus, the

left adjoint functor f∗ is left exact. In particular, the functor f∗ preserves monomor-

phisms, finite colimits, the unit of the monoidal structure, and smash products of

pointed τ -sheaves, as the latter only involves finite limits and colimits of pointed

τ -sheaves. �

Although the functor f∗ ∶ PSh●(Prop/S) → PSh●(Prop/T ) admits a right adjoint

given by the right Kan extension, it is resection f∗ ∶ Cτ(S) → Cτ(T ) does not necessarily

admit a right adjoint. In particular, it is not necessarily exact.

Lemma 4.2.7. Assume that f ∶ S → T is a morphism in Noe
fd

. Then, the functor f∗ ∶
Cτ(T ) → Cτ(S) restricts to a strong monoidal exact functor of Waldhausen categories

f∗,ω ∶ C ω
τ (T ) → C ω

τ (S). (74)

Proof. The statement follows from Lemma 4.2.6, provided the restriction f∗,ω

exists. Since f∗ commutes with pushout squares, it suffices to show that f∗ restricts

to a functor f∗,0 ∶ C 0
τ (T ) → C ω

τ (S), in order to induce a strong monoidal exact functor

f∗,ω ∶ C ω
τ (T ) → C ω

τ (S), which holds by (73). �

When no confusion arises, we abuse notation, and refer to f∗,ω by f∗.

Corollary 4.2.8. Assume that f ∶ S → T is a morphism in Noe
fd

. Then, the there

exists a morphism of commutative ring spectra

f∗ ∶ K (C ω
τ (T )) → K (C ω

τ (S)),

that sends a point in the component [hτ
q
] to a point in the component [hτ

f
-1
(q)

], for every

proper T -scheme q.

Example 4.2.9. Assume that f ∶ S → T is a morphism in Noe
fd

, let y be a T -scheme,

and let l ∶ w ↪ XÐ→ q be a compactification of y. Since f∗ is exact and complementary

open immersions are closed under pullbacks, one has

f∗(hcτ
y

) ≅ coker (f∗(hτ
w
) ↣ f∗(hτ

q
)) ≅ coker (hτ

f
-1
(w)

↣ hτ
f

-1
(q)

) ≅ hcτ

f
-1
(y)
,
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where the S-scheme f
-1(y) is a base change in Sch

ft/T of y along f . Thus, in particular,

π0(f∗)([hcτ
y

]) = [f∗(hcτ
y

)] = [hcτ

f
-1
(y)

]. (75)

Since the motivic measure µ
τ,T

is surjective, by Lemma 4.2.2, one sees that the ring

homomorphisms

π0(f∗) ∶ K0 (C ω
τ (T )) → K0 (C ω

τ (S))

is determined by (75). We may abuse notation and refer to π0(f∗) by f∗.

Suppose that f ∶ S → T and g ∶ T → U are morphisms in Noe
fd

. Since Kan extensions

are determined up to canonical natural isomorphisms, one has canonical monoidal

natural isomorphisms

(g ○ f)∗ ∼⇒ f∗ ○ g∗ and (id
S
)∗ ∼⇒ id

Cω
τ (S)

,

which satisfy the cocycle condition.

Corollary 4.2.10. There exists a pseudofunctor

C ω
τ ∶ Noe

fdop
→Wald∧2 ,

which sends a Noetherian scheme S of finite Krull dimension to the Waldhausen cat-

egory C ω
τ (S), given in (64), and sends fop, for a morphism f ∶ S → T in Noe

fd
, to

the strong monoidal exact functor f∗,ω, as in Lemma 4.2.7. Then, the Waldhausen’s

K -theory 2-functor induces a pseudofunctor

K(C ω
τ ) ∶ Noe

fdop
→ CRingSpt2.

Proper Direct Image. Suppose that f ∶ S → T is a proper morphism in Noe
fd

. Then,

the functor f
-1

, given in (72), admits a left adjoint

f
○
∶ Prop/S → Prop/T, (76)

given by composition with f . Thus, the functor

f ! ∶ PSh●(Prop/T ) → PSh●(Prop/S),

given by precomposition with f
○
, is a left adjoint to f∗ ∶ PSh●(Prop/S) → PSh●(Prop/T ),

and hence f ! is canonically isomorphic to f∗pre. The functor f ! admits a left adjoint

f#,pre, given by a left Kan extension along fop
○

. Since the functor f○ preserves τ -coving

families, f ! restricts to a functor f ! ∶ Cτ(T ) → Cτ(S), which is canonically isomorphic

to f∗. The functor f ! admits a left adjoint

f# ∶ Cτ(S) → Cτ(T ), (77)

called the proper direct image functor along f , and it is given by the τ -sheafification of

f#,pre. Similar to the inverse image functor, for a proper S-scheme p, one has

f#(hτ
p
) ≅ hτ

f
○
(p)
, (78)

which is a defining property of f#.
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Lemma 4.2.11. Assume that f ∶ S → T is a proper morphism in Noe
fd

. Then, the

functor f# ∶ Cτ(S) → Cτ(T ) is an exact functor of Waldhausen categories.

Proof. It is sufficient to show the functor f# commutes with monomorphisms, as

it commutes with colimits for being a left adjoint.

Assume that ι ∶ X → Y is a monomorphism in Cτ(S), let q be a proper T -scheme,

and let t0, t1 ∈ f#(X )(q) such that f#(ι)q(t0) = f#(ι)q(t1).

By the definition of the τ -sheafification functor, as in [Vis08, Def.2.63], there

exists a τ -covering family U = {σi ∶ qi → q ∣ i ∈ I}, and there exists a section

tk,i ∈ f#,pre(X )(qi) such that σ∗i (tk) = tak,i for every i ∈ I, for k = 0,1. For i ∈ I,

pulling back along σi yields

(f#(ι)qi(t0,i))
a = f#(ι)qi(ta0,i) = f#(ι)qi(ta1,i) = (f#,pre(ι)qi(t1,i))

a
.

Thus, there exits a τ -covering family Ui = {σi,j ∶ qi,j → qi ∣ j ∈ Ji} for which

f#,pre(ι)qi,j(σ∗i,j(t0,i)) = σ∗i,j(f#,pre(ι)qi(t0,i)) = σ∗i,j(f#,pre(ι)qi(t1,i))

= f#,pre(ι)qi,j(σ∗i,j(t1,i)).

The functor f#,pre is a left Kan extension along fop
○

. Hence, for a proper T -scheme

q′, the coend formula (87) implies that the underlying set of f#,pre(X )(q′) can be given

by

( ⊔
p∈Prop/S

Prop/T (q′, f ○ p) ×X (p))/ ∼,

where ∼ is the smallest equivalence relation that identifies (g, s) ∈ Prop/T (q′, f ○ p) ×
X (p) and (g′, s′) ∈ Prop/T (q′, f ○ p′) × X (p′) whenever there exists a morphism h ∶
p→ p′ of proper S-schemes for which

g′ = f
○
(h) ○ g and s = h∗(s′);

whereas the point of f#,pre(X )(q′) is given by the unique class [(g,∗)], which is in-

dependent of the choice of the proper S-scheme p and the morphism g ∶ q′ → f ○ p of

proper T -schemes. Also, one has

f#,pre(ι)q′ ([(g, s)]) = [(g, ιp(s))],

for every proper S-scheme p, every morphism g ∶ q′ → f ○ p of proper T -schemes, and

every section s ∈ X (p).

For k = 0,1, for i ∈ I, and for j ∈ Ji, let pk,i,j be a proper S-scheme, let gk,i,j ∶ qi,j →
f ○ pk,i,j be a morphism of proper T -schemes, and let sk,i,j ∈ X (pk,i,j) for which

σ∗i,j(tk,i) = [(gk,i,j , sk,i,j)].
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Since

[(g0,i,j , ιp0,i,j(s0,i,j))] = f#,pre(ι)qi,j([(g0,i,j , s0,i,j)]) = f#,pre(ι)qi,j([(g1,i,j , s1,i,j)])

= [(g1,i,j , ιp1,i,j(s1,i,j))],

there exist a proper S-scheme pi,j , a morphism gi,j ∶ qi,j → f ○ pi,j of proper T -schemes,

and a morphism hk,i,j ∶ pi,j → pk,i,j of proper S-schemes, such that gk,i,j = f○(hk,i,j)○gi,j
and

ιpi,j(h∗0,i,j(s0,i,j)) = h∗0,i,j(ιp0,i,j(s0,i,j)) = h∗1,i,j(ιp1,i,j(s1,i,j)) = ιpi,j(h∗1,i,j(s1,i,j)).

Since ι is a monomorphisms, one has

h∗0,i,j(s0,i,j) = h∗1,i,j(s1,i,j),

and hence

σ∗i,j(t0,i) = [(g0,i,j , s0,i,j)] = [(g1,i,j , s1,i,j)] = σ∗i,j(t1,i).
Thus,

(σi ○ σi,j)∗(t0) = σ∗i,j(t0,i)a = σ∗i,j(t1,i)a = (σi ○ σi,j)∗(t1).
Since {σi ○ σi,j ∶ qi,j → q ∣ i ∈ I, j ∈ Ji} is a τ -covering family in Prop/T , and f#(X ) is a

τ -sheaf, one has t0 = t1. Therefore, f# preserves monomorphisms. �

Lemma 4.2.12. Let f ∶ S → T be a proper morphism in Noe
fd

. Then, the functor

f# ∶ Cτ(S) → Cτ(T ) restricts to an exact functor of Waldhausen categories

fω# ∶ C ω
τ (S) → C ω

τ (T ). (79)

Proof. The proof is essentially the same as of the proof of Lemma 4.2.7, utilising

Lemma 4.2.11 and (78) instead of Lemma 4.2.6 and (73). �

When no confusion arises, we abuse notation, and refer to fω# by f#.

Corollary 4.2.13. Assume that f ∶ S → T is a proper morphism in Noe
fd

. Then,

the functor f# ∶ C ω
τ (S) → C ω

τ (T ) induces a morphism of spectra

f# ∶ K (C ω
τ (S)) → K (C ω

τ (T )),

that sends a point in the component [hτ
p
] to a point in the component [hτ

f
○
(p)

], for every

proper S-scheme p.

Also, we may abuse notation and refer to π0(f#) by f#, if no confusion arises.

Example 4.2.14. Assume that f ∶ S → T is a proper morphism in Noe
fd

, let x be

an S-scheme, and let i ∶ z ↪ XÐ→ p be a compactification of x. Since f# is exact and f
○

preserves complementary open immersions,

f#(hcτ
x

) ≅ coker (f#(hτ
z
) ↣ f#(hτ

p
)) ≅ coker (hτ

f
○
(z)
↣ hτ

f
○
(p)

) ≅ hcτ
f○x

.

Thus, in particular,

f#([hcτ
x

]) = [f#(hcτ
x

)] = [hcτ
f○x

]. (80)
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Suppose that f ∶ S → T and g ∶ T → U are proper morphisms in Noe
fd

. Then, there

exist canonical natural isomorphisms

(g ○ f)#
∼⇒ g# ○ f# and (id

S
)#

∼⇒ id
Cω
τ (S)

,

which satisfy the cocycle condition.

Corollary 4.2.15. The fibred Waldhausen category C ω
τ , given in Corollary 4.2.10,

is in fact a proper-fibred Waldhausen category, i.e. there exists a pseudofunctor

C ω
τ ∶ Noe

fdprop
→Wald2,

where Wald2 is the 2-category of essentially small Waldhausen categories, exact functors

between them, and natural transformations between the latter, which sends a proper

morphism f ∶ S → T in Noe
fd

to the exact functor fω#, as in Lemma 4.2.12. Then, the

Waldhausen’s K -theory 2-functor induces a pseudofunctor

K(C ω
τ ) ∶ Noe

fdprop
→ Spt2.

In contract to the inverse image, the proper direct image is not necessarily strong

monoidal. That is, for a proper morphism f ∶ S → T in Noe
fd

, one has

f#(1
S
) = f#(hτ

id
S
) ≅ hτ

f
○
(id
S
)

≅ hτ
f
,

which is not necessarily isomorphic to 1
T

for a proper morphism f . However, since f#

is a left adjoint to the strong monoidal functor f∗, it is oplax monoidal, see [CD13,

§.1.1.24].

Example 4.2.16. Suppose that p is a proper S-scheme. Then,

[hτ
p
] = [(p# ○ p∗)(1

S
)] ∈ K0 (C ω

τ (S)).

Open Direct Image. For a morphism f ∶ S → T in Noe
fd

, the right adjoint direct

image functor

f∗ ∶ Cτ(S) → Cτ(T )

is not necessarily an exact functor of Waldhausen categories, as it may not commute

with pushout squares. However, when f is an open immersions, the functor f∗ is a

strong monoidal exact functor, as seen in Corollary 4.2.18.

For an open immersion j ∶ S ↪ ○Ð→ T in Noe
fd

, we first show that the functor j
-1

is

almost cocontinuous, as in Definition A.4.17, then we apply Lemma A.4.18 to deduce

that j∗ is a strong monoidal exact functor.

Lemma 4.2.17. Let j ∶ S ↪ ○Ð→ T be an open immersion in Noe
fd

. When τ is the

cdp-pretopology or the proper pretopology, the functor j
-1

is continuous and almost

cocontinuous with respect to the τ -pretopology.
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Proof. The functor j
-1

is continuous with respect to the τ -pretopology for pre-

serving τ -covering families, see [SGA73, §.III.Prop.1.6].

Assume that q ∶ Q → T is a proper T -scheme, let q′ ∶ Q′ → S be a base change of q

along j, and let U = {σi ∶ pi → q′} be a τ -covering family in Prop/S. Recall that schemes

of finite type over Noetherian schemes are Noetherian, by [Sta17, Tag 01T6]. Since

Q′ is Noetherian, the open immersion j′ ∶= q-1(j) is quasi-compact, and hence of finite

type, see [Sta17, Tags 01P0, 01TU, and 01TW]. Thus, for every i ∈ I, the category of

compactifications CompQ(j′ ○σi) is nonempty, by Nagata’s Compactification Theorem.

Hence, there exists a proper Q-scheme zi ∶ Zi → Q which admits an open immersion

ji ∶ j′ ○ σi ↪ ○Ð→ zi in Sch
ft/Q. Consider the commutative diagram

S

T

Q′Zi ×Q Q′

Zi Q

Pi

⌜ ⌜
○ j○ j′○ ji

zi

zi

q

q′
ki

○ji

σi

of Noetherian schemes in Noe
fd

, where Pi is the underlying scheme of pi, and ki is the

unique morphism Pi → Zi ×Q Q′ of schemes, induced by the universal property of fibre

products, that makes the diagram commute.

Since ji is an open immersion, so is ki. Also, ki is proper, as σi is proper. Then, ki

is a closed open immersion, by [Gro67, Cor.18.12.6]. Let li ∶Wi ↪ XÐ→ Zi be the scheme-

theoretic image of the immersion ji, and let j′i ∶ Pi → Wi be the unique morphism of

Q-schemes for which j
i
○ ki = li ○ j′i. Then, j′i is an open immersion, and the square

Wi

Zi ×Q Q′

Zi

Pi
⌜

Ò
li

Ò
ki

○ ji○j′i

is Cartesian, by Lemma 4.1.3.

Let z ∶ Z ↪ XÐ→ Q be a closed immersion complementary to j′ ∶ Q′ ↪ ○Ð→ Q, one may

choose Z to have the reduced induced structure, but such a choice does not affect the

argument. Then, we will see that the set of proper morphisms

V ∶= {zi ○ li ∶Wi → Q ∣ i ∈ I}⊔{z ∶ Z ↪ XÐ→ Q}

is a τ -covering family for Q.
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● When τ is the proper pretopology, it is evident that V is a proper covering

family.

● On the other hand, when τ is the cdp-pretopology, for every field k, every

morphism x ∶ Speck → Q in Noe
fd

lifts either through z or j′. When x lifts

through j′ to a morphism x′ ∶ Speck → Q′, since U is a cdp-covering, there

exists ix ∈ I, such that x′ lifts to through σix . The k-point x lifts through

zix ○ lix . Thus, for every field k, every k-point in Q lifts through a morphism

in V , and hence V is a cdp-covering family.

For every i ∈ I, the morphism j
-1(zi ○ li) is isomorphic to pi, and hence factorises

through it. On the other hand, the empty sieve is a τ -covering sieve for the empty

S-scheme j
-1(z) ≅ ∅

Q′
. Therefore, the functor j

-1
is almost cocontinuous, as in Defini-

tion.A.4.17. �

The proof above shows, in particular, that the functor j
-1 ∶ Prop/T → Prop/S is

essentially surjective, when j ∶ S ↪ ○Ð→ T is an open immersion in Noe
fd

.

Corollary 4.2.18. Let j ∶ S ↪ ○Ð→ T be an open immersion in Noe
fd

. When τ is the

cdp-pretopology or the proper pretopology, the direct image functor j∗ ∶ Cτ(S) → Cτ(T )
is a strong monoidal exact functor, cf. [GK15, Prop.4.5].

Proof. A direct result of Lemma 4.2.17 and Lemma A.4.18. �

Remark 4.2.19. Since j∗ commutes with pushout squares, by Lemma A.4.18, it

suffices to show that it restricts to a functor j0
∗ ∶ C 0

τ (S) → C ω
τ (T ), in order to induce

a strong monoidal exact functor jω∗ ∶ C ω
τ (S) → C ω

τ (T ). However, it is not clear to us

that it induces the functor j0
∗. Also, we intended to use the functor j∗ to extend the

proper direct image to a properly supported direct image for all separated morphisms

of finite type between Noetherian schemes of finite Krull dimension, but it does not

seem to provide an extension independent from the choice of the compactification. We

do not pursue such extension here, and we leave it for a further work.

Proper Base Change. The inverse image and proper direct image functors satisfy

the proper-base change property, as in [CD13, §.1.1.9].

Lemma 4.2.20. Assume that f is a proper morphism in Noe
fd

, and let

S′ S

T ′ T

⌜
ff ′

g′

g (81)
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be a Cartesian square in Noe
fd

. Then, the exchange natural transformation

Θ ∶ f ′# ○ g′∗⇒g∗ ○ f# ∶ C ω
τ (S) → C ω

τ (T ′), (82)

induced by the adjunctions f ′# ⊣ f ′
∗

and f# ⊣ f∗ is an isomorphism, which induces a

canonical homotopy

Θ ∶ f ′# ○ g′∗⇒g∗ ○ f# ∶ K (C ω
τ (S)) → K (C ω

τ (T ′)).

Proof. The functor f ′# ○g′∗ (resp. g∗ ○f#) is given by the τ -sheafification of a left

Kan extension along (f ′
○
○g′

-1

)op (resp. (g-1 ○f
○
)op), and the natural transformation Θ is

induced from the canonical natural transformation f ′
○
○g′

-1

⇒ g
-1○f

○
∶ Prop/S → Prop/T ′,

by the universal property of Kan extensions.

For a proper S-scheme p ∶ P → S, considering the Cartesian diagram

P ′

P

S′

S

T ′

T,

⌜⌜

f

f ′

g′ g

p

g′
-1

(p)

in Noe
fd

, one sees that the morphism f ′
○
(g′

-1

(p)) → g
-1(f

○
(p)) is an isomorphism in

Prop/T ′, and hence the induced natural transformation

Θ ∶ f ′# ○ g′∗⇒g∗ ○ f#

is a natural isomorphism, cf. [CD13, Ex.1.1.11]. �

Corollary 4.2.21. Let i ∶ S ↪ XÐ→ T be a closed immersion in Noe
fd

. Then, the

functor i# ∶ C ω
τ (S) → C ω

τ (T ) is fully faithful.

Proof. Corollary 4.2.10, Lemma 4.2.12, and Lemma 4.2.20 imply that C ω
τ is a

proper-fibred category over Noe
fd

, see [CD13, §.1]. Then, the statement of the corollary

follows from [CD13, Cor.1.1.20]. �

Example 4.2.22. Assume that i ∶ V ↪ XÐ→ S is a closed immersion in Noe
fd

with

complementary open immersion j ∶ U ↪ ○Ð→ S. Then, one has the Cartesian squares

∅ V

U S

⌜
ÒiÒ∅U

○
∅V

○
j

V V

V S

⌜
ÒiÒidV

Ò
idV

Ò
i

in Noe
fd

. Since Cτ(∅) is isomorphic to the terminal Waldhausen category with one

object and one morphism, one has a natural isomorphism

(j∗ ○ i#)(X ) ≅ hτ∅U = 0
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for every X ∈ C ω
τ (V ) i.e. j∗ ○ i# is naturally isomorphic to the zero functor C ω

τ (V ) →
C ω
τ (U). Also, the adjoint unit idCωτ (V ) ⇒ i∗ ○ i# is a natural isomorphism, and hence

i∗ is essentially surjective.

Proper Projection Formula. The inverse image and proper direct image functors

also satisfy the proper-projection formula property, as in [CD13, §.1.1.26].

Lemma 4.2.23. Assume that f ∶ S → T is a proper morphism in Noe
fd

. Then, f

satisfies the projection formula, i.e. for every pointed τ -sheaves X in C ω
τ (S) and Y

in C ω
τ (T ), the projection natural transformation

f#(X ∧
S
f∗(Y )) ⇒ f#(X ) ∧

T
Y , (83)

induced by the adjunction f# ⊣ f∗, is an isomorphism in C ω
τ (T ), cf. [CD13, Ex.1.1.28]

.Hence, there exists a canonical path

f#(x ⋅ f∗(y)) → f#(x) ⋅ y

in K (C ω
τ (T )), for every x ∈ K (C ω

τ (S)) and y ∈ K (C ω
τ (T )). In particular, for an

S-scheme x and a T -scheme y, one has

f#([hcτ
x

] ⋅ f∗([hcτ
y

])) = f#([hcτ
x

]) ⋅ [hcτ
y

].

Proof. Suppose that p ∶ P → S (resp. q ∶ Q → T ) is a proper S-scheme (resp.

T -scheme). Similar to the proof of Lemma 4.2.20, considering the Cartesian diagram

P ′

P

Q′ Q

S T,

⌜⌜

f

f
-1(q) q

p

in Noe
fd

, one sees that the projection morphism f
○
(p×id

S
f

-1(q)) → f
○
(p) ×id

T
q, induced

by the adjunction f
○
⊣ f

-1
, is an isomorphism in Prop/T , and hence the projection

natural transformation

f#(hτ
p
∧
S
f∗(hτ

q
)) ⇒ f#(hτ

p
) ∧

T
hτ
q

is an isomorphism in C ω
τ (T ). Then, the statement of the proposition follows from the

construction of the symmetric monoidal Waldhausen categories C ω
τ (S) and C ω

τ (T ),
the symmetric product ∧

S
and ∧

T
being biexact, and the functors f# and f∗ being

exact. �

4.2.1.3. Counting Points. The motivic measure of counting rational points over a

finite field is a shadow of a point on the cdp-site of proper schemes over the ground

field, as seen in Corollary 4.2.26.
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Fix a finite field Fq with q elements. Recall that a point on the cdp-site (Prop/Fq, cdp)
is an adjunction

u∗ ∶ Shvcdp(Prop/Fq) ⇄ Set ∶ u∗,

in which u∗ is left exact, see §.A.4.2.1. Since both u∗ and u∗ are left exact, they both

preserve final objects; and hence they induce an adjunction

u∗● ∶ C (Fq) ⇄ Set● ∶ u∗,●,

for having C (Fq) ≅ ∗ ↓ Shvcdp(Prop/Fq) and Set● ≅ ∗ ↓ Set. Moreover, u∗● is also left

exact; thus, it is a strong monoidal exact functor.

Recall that if a functor u ∶ Prop/Fq → Set is flat and continuous with respect to the

cdp-pretopology, it defines a point (u∗, u∗) in the cdp-site, where

u∗ = − ⊗Prop/Fq u and u∗ = HomProp/Fp(u,−)

are the stalks and skyscraper functors associated to u, respectively, see §.A.4.2.1.

Lemma 4.2.24. The functor Γ● ∶ C (Fq) → Set●, induced by the global section

functor Γ ∶ Shvcdp(Prop/Fq) → Set is a strong monoidal exact functor. Moreover, for

every Fq-scheme X, one has an isomorphism of pointed sets

Γ●(hc
X
) ≅X(Fq)+.

Proof. The corepresentable functor u ∶= hSpecFq ∶ Prop/Fq → Set is flat and con-

tinuous with respect to the cdp-pretopology, as seen below.

● Since Prop/Fq is Cartesian, every corepresentable functor is flat, as its category

of elements is cofiltered. In particular, u is flat.

● In the light of [MLM92, §VII.5.Lem.3], to show that u is continuous, it suffices

to show that HomProp/Fp(u,S) is a cdp-sheaf for every set S ∈ Set and that the

sheafification morphism ηP ∶ P → P
acdp

is mapped to a bijection by the

functor − ⊗Prop/Fq u, for every presheaf P ∈ PSh(Prop/Fq).
– For a cdp-square (91) in Prop/Fq, a rational point x ∶ SpecFq → X fac-

torises uniquely though either A or Y , or both (in which case it fac-

torises uniquely through B). Thus, the functor u maps every cdp-square

in Prop/Fq to a pushout square in Set. Then, the functor uop maps

cdp-squares to Cartesian squares in Setop. Since limits commute with each

other and representable functors preserve limits, the presheaf HomProp/Fp(u,S)
maps cdp-squares to pullback squares. Also, it maps the empty Fq-scheme

to a terminal set. Hence, HomProp/Fp(u,S) is a cdp-sheaf, for every set

S ∈ Set, by [Voe10a, Lem.2.9] and [Voe10b, Th.2.2].

– For every presheaf P ∈ PSh(Prop/Fq), one has

P ⊗Prop/Fq u =
P ∈Prop/Fq

∫ PSh(Prop/Fq)(hP ,P) × u(P ) ≅ P(SpecFq).
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Since the cdp-pretopology is completely decomposable, every cdp-covering

family for SpecFq splits. That is, every cdp-covering family U = {σi ∶
Pi → SpecFq ∣ i ∈ I} in Prop/S admits a refinement V = {δj ∶ Qj →
SpecFq ∣ j ∈ J} such that Qj0 = SpecFq and δj0 = idSpecFq for some j0 ∈ J .

Therefore, ηP,SpecFq ∶ P(SpecFq) → P
acdp (SpecFq) is a bijection, and

so is ηP ⊗Prop/Fq u.

Then, there exists a cdp-point

u∗ ∶ Shvcdp(Prop/Fq) ⇄ Set ∶ u∗,

with the stalks and skyscrapers functors

u∗ = − ⊗Prop/Fq u and u∗ = HomProp/Fp(u,−).

In particular, for a cdp-sheaf X on Prop/Fq, one has

u∗(X ) ≅ X (SpecFq) ≅ Shvcdp(Prop/Fq)(h
acdp

SpecFq
,X ) ≅ Shvcdp(∗,X ) ≅ Γ(X ).

Therefore, the induced functor

Γ● ∶ C (Fq) → Set●

is a strong monoidal exact functor, for being a left exact left adjoint functor.

For an Fq-scheme X, the category of compactifications CompFq(X) is nonempty;

let i ∶ Z ↪ XÐ→ P be a compactification of X in Sch
ft/Fq. Since every cdp-covering family

for SpecFq splits, one has

Γ●(hc
X
) ≅ coker (Γ●(hZ) ↣ Γ●(hP )) ≅ coker (h

acdp

Z,+
(Fq) ↣ h

acdp

P,+
(Fq)+)

≅ coker (h
Z,+

(Fq) ↣ h
P,+

(Fq)+) ≅ coker (Z(Fq)+ ↣ P (Fq)+) ≅X(Fq)+.
(84)

�

Lemma 4.2.25. The strong monoidal exact functor Γ● ∶ C (Fq) → Set● restricts to a

strong monoidal exact functor

Γω● ∶ C ω(Fq) → FSet●.

Proof. Since C ω(Fq) is a full symmetric monoidal Waldhausen subcategory in

C (Fq), the statement of the lemma follows from the existence of the restriction Γω● .

Since Γ● commutes with pushout squares, it suffices to show that Γ● restricts to

a functor Γ0
● ∶ C 0(Fq) → FSet●, in order to induce a strong monoidal exact functor

Γω● ∶ C ω(Fq) → FSet●, which is a result of (84), see §.3.2. �

Corollary 4.2.26. The functor Γω● induces a morphism of commutative ring spec-

tra

Γ● ∶ K (C ω(Fq)) → S,



155

that sends a point in the component [hc
X
] to a point in the component [X(Fq)+], for

every Fq-scheme X. Hence, it factorises the classical motivic measure of counting points

over Fq through the motivic measure (66) as

µ# = π0(Γ●) ○ µcdp
. (85)

The homomorphism πn(Γ●), for n ≥ 1, might be thought of as higher point counting

measures, which we investigate in a future work.

Remark 4.2.27. This argument applies for every scheme S in Noe
fd

and for ev-

ery τ -point (u∗, u∗) on Prop/S, whenever the stalks functor u∗● restricts to a functor

C ω
τ (S) → FSet●.

Corollary 4.2.28 ([Cam17, Prop.5.21]). The composition Γω● ○ υFq ∶ FSet● →
FSet● is an exact equivalence of Waldhausen categories, where υFq is the exact functor

in (71). Thus, the map of spectra K(Γω● ○ υFq) ∶ S → S is a homotopy equivalence, and

hence the spectrum K (C ω(Fq)) splits through S. That is,

K (C ω(Fq)) ≅ S ∨ K̃(C ω(Fq)),

where K̃(C ω(Fq)) is a cofibre of K(υFq).

4.2.2. Motivic Spaces with Proper Support.

Recall that some of the statements in motivic homotopy theory are sensitive to the

considered category of schemes and to the topology, like the Gluing Theorem 2.3.1 and

the Purity Theorem 2.3.3. Then, to have an analogous of the compactified Yoneda

embedding for a motivic category, it is convenient to start with a topology that is both

● as fine as the Nisnevich topology, for the such statements to hold; and

● as fine as the cdp-topology, for the Yoneda embedding to define a cdp-functor.

The coarsest such topology is the cdh-topology, see §.A.4.3. Since A1-localisation is

left Bousfield localisation, it preserves colimits, and hence repeating the argument in

§.4.2.1 produces a motivic measure

K0(hc
cdh) ∶ K0(Sch

ft/S) → K0 (Shvc●,cdh(Sch
ft/S)A1), (86)

which sends the class of a proper S-scheme x to the class of hx,+, where Shv●,cdh(Sch
ft/S)A1

is the A1-localised model category of pointed simplicial cdh-sheaves over Sch
ft/S.

For a field k of characteristic zero, the localisation functor

SptΣS1sShv●,Nis(Sm/S)A1,stab → SptΣS1sShv●,cdh(Sch
ft/S)A1,inj

is Quillen equivalence, where SptΣS1sShv●,Nis(Sm/S)A1 is the A1-localised stable model

category of S1-symmetric spectra of pointed simplicial Nisnevich sheaves over Sm/k.

That is due to k admitting resolutions of singularities, see [Voe10b] and [MV99,

§.3.Rem.2.30]. Then, the motivic measure K0(hc
cdh) factorises through the ring

K0 (SptΣS1sShv●,Nis(Sm/S)c
A1,stab

).



156

The resulting motivic measure coincides with the motivic measure defined in [Rön16,

§.5].

4.3. Motivic Measures through Stable Motivic Spaces

Our main motivation to consider functors compactifications is our attempt to fac-

torise the motivic measure of counting points over a finite field through the K -theory

of the unstable motivic homotopy category. We only obtain a partial result in this

direction, and in this section we introduce our candidate for counting points on motivic

spaces, leaving its detailed development to a future work.

For a subcanonical topology τ on the category Sm/Fq, let ∆●
I,s,+ ∶∆→ sShv●,Nis(Sm/Fq)

be the functor given by

∆n
I,s,+ = ∆n

AnFq×SpecFqs ,+
,

and consider the diagram

∆
∆●

I,s,+ //

h
−,+

��

sShv●,Nis(Sm/Fq).

sSet●

Then, there exists a ∆●
I,s,+-tensor and Hom adjunction, see Example A.3.8. For a pointed

simplicial sheaf X one has

Hom∆● (∆●
I,s,+,X )n = sShv●,Nis(Sm/Fq)(∆n

AnFq×SpecFqs ,+
,X )

≅ Shv●,Nis(Sm/Fq)(hAnFq ,+ ∧hSpecFqs ,+,Xn).

Whereas, for a pointed simplicial set S,

(S ∧∆ ∆●
I,s,+)n = Sn ∧ hAnFq ∧hSpecFqs .

Then, in particular, Hom∆● (∆●
I,s,+,−) is monoidal. The tensor functor ∧∆∆●

I,s,+ pre-

serves monomorphisms. Also, it maps weak equivalences of simplicial sets to A1-weak

equivalences of simplicial sheaves, and hence one has a Quillen adjunction

− ∧∆ ∆●
I,s,+ ∶ sSet●,KQ ⇄ sShv●,Nis(Sm/Fq) ∶ Hom∆● (∆●

I,s,+,−).

Example 4.3.1. For an A1-rigid scheme X over Fq, e.g. an abelian Fq-scheme,

one has canonical isomorphisms

Hom∆● (∆●
I,s,+,hX,+)n ≅ Shv●,Nis(Sm/Fq)(hAnFq,+ ∧hSpecFqs ,+,hX,+) ≅X(An

Fq
× SpecFqs)+

≅X(Fqs)+.

Hence, Hom∆● (∆●
I,s,+,hX,+) is a discrete pointed simplicial set with #X(Fqs) elements,

in addition to a disjoint base point.
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The Quillen adjunction above induces derived functors

− ⊗L∆ ∆●
I,s,+ ∶HsSet●,KQ ⇄H●(Fq) ∶ RHom∆● (∆●

I,s,+,−).

Also, since both functors preserve cofibrations and weak equivalences, they define

morphisms of Waldhausen structures associated with the model categories, and induce

group homomorphisms

K0(− ∧∆ ∆●
I,s,+) ∶ K0(sSetc●,KQ) ⇄ K0 (sShvcNis,●(Sm/Fq)A1) ∶ K0 (Hom∆● (∆●

I,s,+,−)),

where K0(− ∧∆ ∆●
I,s,+) is given by the multiplication by [hSpecFqs ].

4.4. Further Research

There are two questions that arise naturally from the constitutions in §.4.2.

On the one hand, we would like to understand the relation between Kuh
0 (Sch

ft/S) and

K0 (C ω(S)) in (66). In particular, we are examining the validity of Conjecture 4.2.4.

While we have partial results pointing in its direction, we do not have a complete proof,

yet. Also, since important geometric questions are addressed through the (modified)

Grothendieck ring of varieties, it is desirable to understand what geometric information

the higher groups of the spectrum K (C ω(S)) curry. Then, we would investigate which

of the known motivic measures arises from exact Waldhausen functor out of C ω(S).

On the other hand, the Grothendieck ring of varieties has zero divisors annihilated

by the class of the affine line, as in [Bor15]. Some of the argument to solve intriguing

questions in algebraic geometry that where originally considered in the ring K0(Var/k)
are obstructed by the class of the affine line being a zero divisor. The functor hc sends

the affine line over a field k to the S1-symmetric suspension of (P1
k,∞), which is inverted

in the P1
k-stable homotopy theory of schemes. That can be used to transport some of

the aforementioned arguments to the Grothendieck ring of the P1
k-stable homotopy

theory of schemes. This idea, among others, is due to Vladimir Guletskĭı.

In order to be able use the machinery available for stable motivic homotopy theory

to consider such questions, we would like to investigate if the motivic measures defined

in §.4.2.2 exists for the Nisnevich topology over smooth schemes. Similar question

for motivic spaces were answered in [Voe00, §.4] using resolutions of singularities for

a field of characteristic zero, and in [Kel12] using alterations of singularities for a

perfect field, after inverting its exponential characteristic. We expect that applying

De Jong alterations of singularities to [Voe10b]’s approach, instead of resolutions of

singularities, may allow to establish the desired measures.



APPENDIX A

Categorical Recollections

Assuming the reader’s familiarity with the basics of category theory, as in [ML98],

we briefly recall the main categorical notions used in this thesis.

A.1. Foundations

There are several possible foundations for categories, which affect the resulting

theory, see [Shu08]. The assumed foundations mainly impact the existence of desired

constructions, like the hom -bifunctor and functor categories, and hence all notions

depending on them, including the Yoneda embedding and Kan extensions, see [ML69].

In this section, we fix the foundations adopted in this thesis.

One possible foundation is Zermelo-Fraenkel set theory with both the axiom of

choice and the one universe axiom, as in [ML69]. Assume and fix a model for Zermelo-

Fraenkel set theory with the axiom of choice (ZFC), see [Jec03]. Then, a set refers

to an object of this model; and a category refers to a pair of sets - of objects and

morphisms - with the source, target, composition, and identity maps, subject to the

associativity and unit axioms, as in [KS06, Def.1.2.1].

The main advantage, in category theory, of adopting the axiom of choice is allowing

universal properties to induce desired functors, as it is the case for the lim and colim

functors. Otherwise, universal properties only produce anafunctors, see [Mak96]. The

axiom of choice also implies the equivalence between a functor admitting a quasi-inverse

and being fully faithful and essentially surjective. It also allows inducing total derived

functors between derived categories.

Following Mac Lane’s proposal in [ML69], we assume and fix an uncountable

Grothendieck universe U, see [SGA73, Exposé I.§.0]. Elements of U are called small

sets, whereas subsets of U are called classes.

The universe U defines a model for ZFC, as ordinary operations on sets can be

carried out internally on small sets. Therefore, one now has two models for ZFC, one

of which - the Grothendieck universe - is an object of the other. One can consider set-

theoretic mathematics internally in U, i.e. on small sets; whereas the remaining sets of

the ambient model may be used to study and describe mathematics in U, see [ML69].
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In particular, there exists a category Set of all small sets and all maps between them,

with Ob(Set) = U.

Definition A.1.1. A category C is said to be

● locally small if C (X,Y ) is a small set, for every pair of objects X,Y ∈ Ob(C );
otherwise, it is said to be a big category;

● small if it is a locally small category such that Ob(C ) is a small set;

● large if it is a locally small category such that Ob(C ) is a class; and

● essentially small if it is a large category that is equivalent to a small category.

Denote the large category of small categories and functors between them by Cat,

and denote the category of large categories and functors between them by CAT.

The adopted foundation allows the construction of the functor category Fun(C ,D)
for every pair of categories C and D , which does not hold for all foundations, as

explained in [ML69, p.193]. For locally small categories C and D , the functor category

Fun(C ,D) does not have to be locally small. However, when C is also essentially small,

the category Fun(C ,D) is locally small.

A.2. Enriched Categories

The hom-sets of some categories admit natural mathematical structures, usually

arising from the structures on the objects. For instance, the hom-set Grp(G,H) has

a natural group structure, for every pair of small groups G and H. Also, in topol-

ogy, if we restrict ourself to compactly generated Hausdorff spaces, then the hom-set

CGHaus(X,Y ) admits a canonical topology for every X,Y ∈ CGHaus, namely the

compact-open topology, see [ML98, §.VII.8]. In these examples, the composition and

the identity maps are compatible with the induced structure on the hom -sets. This

observation naturally gives rise to the notion of enriched categories.

Definition A.2.1. Let M = (⊗,1, α, l, r) be a monoidal structure on a category

M0, see [ML98, §.VII.1]. An M -enriched category C is given by

● a set Ob(C ), called the set of objects of C ;

● for every X,Y ∈ Ob(C ), an object MapC (X,Y ) ∈ M0, called the hom-object

from X to Y ;

● for every X,Y,Z ∈ Ob(C ), a morphism

○X,Y,Z ∶ MapC (Y,Z) ⊗ MapC (X,Y ) → MapC (X,Z)

in M0, called the composition morphism; and

● for every X ∈ Ob(C ), a morphism idX ∶ 1 → MapC (X,X), called the identity

morphism of X;

which satisfy the associativity and unit axioms, as in [Kel05, §.1.2].
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Remark A.2.2. When the monoidal category (M0,M ) admits a faithful strong

monoidal functor U ∶ M0 → Set, with respect to the Cartesian monoidal structure on

Set, setting C (X,Y ) ∶= U(MapC (X,Y )), for every X,Y ∈ C , defines a category, called

the underlying category of C and denoted by C0. Such a category C0 is said to have an

M -enriched structure.

Example A.2.3. Set-enriched categories coincide with locally small categories.

Example A.2.4. A closed symmetric monoidal category is enriched over itself.

Definition A.2.5. Let (M0,M ) be a monoidal category. An M -enriched functor

F ∶ C → D between M -enriched categories C and D is given by

● a function F ∶ Ob(C ) → Ob(D); and

● for every X,Y ∈ Ob(C ), a morphism FX,Y ∶ MapC (X,Y ) → MapD(F (X), F (Y ))
in M0 that commutes with the composition and the identity morphisms.

An M -enriched natural transformation α ∶ F → G between M -enriched functors F,G ∶
C → D is given by a morphism αX ∶ 1D → MapD (F (X),G(X)) in M0 for every

X ∈ Ob(C ) subject to M -naturality, as in [Kel05, §.1.2.(1.7)].

A.2.1. Strict 2-Categories. Recall that the category Cat of small categories is

Cartesian monoidal. Locally small strict 2-categories and strict 2-functors between

them may be defined to be Cat-enriched categories and Cat-enriched functors, respec-

tively. Equivalently, a locally small strict 2-category can be defined by

(1) a set of objects, often called 0-morphisms;

(2) a small set of 1-morphisms for every pair of 0-morphisms, and 1-composition

and 1-identity maps that satisfy the strict associativity and unit axioms; and

(3) a small set of 2-morphisms for every pair of 1-morphisms, and 2-composition

and 2-identity maps that satisfy the interchange law, in addition to the strict

associativity and unit axioms, as in [Bor94a, §.7.1].

Example A.2.6. The category Cat gives rise to the locally small strict 2-category

Cat2 whose objects are small categories, 1-morphisms are functors between them, and

2-morphisms are natural transformations between the latter.

More generally, strict 2-categories can be defined similar to locally small strict

2-categories allowing sets (not necessarily small sets) of 1-morphisms and 2-morphisms

between pairs of 0-morphisms and 1-morphisms, respectively. Then, in particular,

CAT-enriched categories are strict 2-categories, and the category CAT gives rise to the

strict 2-category CAT2.
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A.2.1.1. 2-Universal Morphisms in Strict 2-Categories. Localisations of large cat-

egories are given by (initial) 2-universal morphisms in the strict 2-category CAT2, as

seen in §.1.1. To motivate the definition of (initial) 2-universal morphisms, we first

recall the notion of (initial) universal morphisms in ordinary categories, and study its

generalisation to strict 2-categories.

Let F ∶ C → D be a functor, and let d ∈ D . An (initial) universal morphism from

d to F is defined to be the initial object of the comma category d ↓F , if it exists, see

[ML98, §.III.1]. When it exists, it is a morphism ηd ∶ d → F (cd) for cd ∈ C , such that

for every morphism f ∶ d→ F (c) with c ∈ C , there exists a unique morphism gf ∶ cd → c

in C that makes the triangle below strictly commute

d
ηd //

f !!

F (cd)
F (gf )
��

F←

cd

gf ∃!

��
F (c) c.

In other words, it is a morphism ηd ∶ d→ F (cd) that induces a bijection of sets

η∗d ∶ C (cd, c) → D(d,F (c))

for every c ∈ C . The surjectivity of η∗d is equivalent to the existence of the factorisation,

whereas its injectivity is equivalent to the uniqueness of the factorisation, when it exists.

The (initial) universal morphism ηd is unique up to isomorphisms, if it exists, and the

factorisation of f above is unique, for a given choice of the universal morphism.

Definition A.2.7. Let F ∶ C → D be a strict 2-functor between strict 2-categories,

and let d ∈ D . An (initial) 2-universal 1-morphism from d to F is a 1-morphism

ηd ∶ d→ F (cd) for an object cd ∈ C that induces an equivalence of categories

η∗d ∶ MapC (cd, c) → MapD (d,F (c))

for every c ∈ C .

Remark A.2.8. Since we assume the axiom of choice, the 1-morphism ηd is a

2-universal 1-morphism from d to F if and only if the following two conditions hold

Esse. surj.) for every 1-morphism f ∶ d → F (c) with c ∈ C there exists a 1-morphism

gf ∶ cd → c in C and a 2-isomorphism φf ∶ F (gf) ○ ηd ⇒ f in D ; and

Full. faith.) for every pair of parallel 1-morphisms f, f ′ ∶ d → F (c) with c ∈ C and a

2-morphism ψ ∶ f ⇒ f ′ there exists a unique 2-morphism ξψ ∶ gf ⇒ gf ′ , for the

choice of (gf , φf) and (gf ′ , φf ′), such that

ψ = φf ′ ⋅ F (ξψ) ○ ηd ⋅ φ−1
f .
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That, in particular, implies the uniqueness of (gf , φf) up to 2-isomorphisms.

d ηd //

f

++

F (cd)

F (gf )

��

∼
φf

{�

cd

gf ∃! up to 2-iso.

��

d ηd //

f ′

++

ψ

��

F (cd)

F (gf ′)

��

∼
φf ′

{�

F (ξψ)

��

cd

F
←

gf ′

��

ξψ ∃!

��F (c) c

F (c) c

The 2-universal 1-morphism ηd, when it exists, is unique up to 1-equivalences;

and the factorisation (gf , φf) of the 1-morphism f is unique up to 2-isomorphisms,

for a given choice of the universal morphism ηd; whereas the factorisation ξψ of the

2-morphism ψ is unique, for the choices of the factorisations (gf , φf) and (gf ′ , φf ′) of

the 1-morphisms f and f ′, respectively.

A.2.1.2. Lax Notions. Let F,G ∶ C → D be strict 2-functors between strict 2-

categories. A strict 2-natural transformation α ∶ F → G is given by a 1-morphism

αX ∶ F (X) → G(X) for every X ∈ Ob(C ) subject to 2-naturality, as in [KS74, §.1.4].

In 2-category theory, it so happens that one needs more relaxed notions of the

strict 2-categories, 2-functors, and 2-natural transformations. One obtains a pseudo

notion when replacing equalities (strict commutativity) with isomorphisms, and a lax

notion when replacing it with mere morphisms. We will restrict ourself to reviewing

the notions of pseudofunctors and lax 2-natural transformation, needed for §.4.2.1.2

and §.1.1. The interested reader my consult [KS74].

Definition A.2.9. Let C and D be strict 2-categories. A pseudofunctors F ∶ C → D

is given by

● a function F ∶ Ob(C ) → Ob(D); and

● for every X,Y ∈ Ob(C ), a functor FX,Y ∶ MapC (X,Y ) → MapD(F (X), F (Y ))
that commutes with the composition and the identity morphisms only up to

isomorphisms, see [Vis08, §.3.1.2] and [CD13, §.1.1].

Definition A.2.10. Let F,G ∶ C → D be strict 2-functors between strict 2-categories.

A (lax ) 2-natural transformation α ∶ F → G is given by

● a 1-morphism αX ∶ F (X) → G(X) for every X ∈ Ob(C ); and

● a 2-morphism αf ∶ αY ○F (f) ⇒ G(f) ○αX for every 1-morphism f ∶X → Y in

C ,
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which respect 1-compositions and 1-identities of C , and are natural in 2-morphisms of

C . A 2-natural transformations is said to be a pseudo-natural transformation when the

2-morphism αf is invertible for every 1-morphism f in C .

One recovers the notion of a strict 2-natural transformation from a lax 2-natural

transformation when the 2-morphism αf is the identity morphism for every 1-morphism

f in C .

Definition A.2.11. Let α,β ∶ F ⇒ G ∶ C → D be 2-natural transformations.

A morphism of 2-natural transformations τ ∶ α → β, called a modification, is given

by a 2-morphism τX ∶ αX ⇒ βX for every object X ∈ Ob(C ), which are natural in

1-morphisms of C , i.e. G(f) ○ τX = τY ○ F (f) for every 1-morphism f ∶X → Y in C .

A.3. Kan Extensions

The importance of Kan extensions might be best summarised by [ML98, §.X.7]

title “All Concepts are Kan Extensions”. Kan extensions are present in different areas

of mathematics, and they encode other universal constructions, see Example A.3.4,

Lemma A.3.11, and Example A.3.12.

When they exist, they provide canonical solutions for the easily stated, yet very

important, problem of extending a functor F ∶ C → A along a functor p ∶ C → D up to

natural transformations, see [ML98, §.X].

A.3.1. Weak Kan Extensions.

A.3.1.1. Global Kan Extensions. For any category A , every functor p ∶ C → D

induces a canonical functor

p∗ ∶ Fun(D ,A ) → Fun(C ,A ),

given by precomposition with p. Extending functors C → A along p can be realised if

p∗ is weakly inverted, i.e. admits an adjoint.

Definition A.3.1. Let p ∶ C → D be a functor, and let A be a category. A global

left (resp. right) Kan extension along p is a left (resp. right) adjoint to p∗. When it

exists, denote the global left (resp. right) Kan extension along p by Lanp (resp. Ranp).

A global left Kan extension along p is determined by a functor

Lanp ∶ Fun(C ,A ) → Fun(D ,A )

and a natural transformation F ⇒ Lanp(F ) ○ p for every functor F ∈ Fun(C ,A ) that

forms a universal morphism, which is the unit of the adjunction Lanp ⊣ p∗. Whereas, a

global right Kan extension along p is determined by a functor

Ranp ∶ Fun(C ,A ) → Fun(D ,A )
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and a natural transformation Ranp(F ) ○ p⇒ F for every F ∈ Fun(C ,A ) that forms a

universal morphism, which is the counit of the adjunction p∗ ⊣ Ranp.

Global Kan extensions do not always exist. However, the uniqueness of the left

and right adjunctions up to isomorphisms implies uniqueness of the left and right Kan

extensions up to isomorphisms, when they exist.

Lemma A.3.2. Let p ∶ C → D be a functor, and let A be a category. Assume that

C is essentially small. Then,

● if A is cocomplete, then the left Kan extension Lanp exists; and

● if A is complete, then the right Kan extension Ranp exists.

Proof. Since the category C has a small skeleton and precomposing with co-

cofinal functors preserves colimits, [ML98, §.IX.3.Th.1] and Theorem A.3.5 imply the

first statement. The second statement holds by duality. �

A.3.1.2. Local Kan Extensions. In some occasions, one is interested in extending a

particular functor F ∶ C → A along p ∶ C → D , even if the global extensions do not

exist.

Definition A.3.3 ([ML98, §.X.3.Def]). Let p ∶ C → D and F ∶ C → A be functors.

● A local left Kan extension of F along p, if it exists, is a pair (Lanp F, ηF ) of

a functor Lanp F ∶ D → A and a natural transformation ηF ∶ F ⇒ Lanp F ○ p
that is a universal morphism from F to p∗.

● A local right Kan extension of F along p, if it exists, is a pair (Ranp F, εF ) of

a functor Ranp F ∶ D → A and a natural transformation εF ∶ Ranp F ○ p ⇒ F

that is a universal morphism from p∗ to F .

Example A.3.4 ([Bor94a, Prop.3.7.5]). Let p ∶ C → ∗ be the terminal functor.

● The local left Kan extension of a functor F ∶ C → A along p exists if and only

if the colimit of F exists. When they exist, Lanp F is canonically isomorphic

to colimF .

● The local right Kan extension of a functor F ∶ C → A along p exists if and

only if the limit of F exists. When they exist, Ranp F is canonically isomorphic

to limF .

A.3.2. Point-wise Kan Extensions. Most Kan extensions that arise naturally

can be given object-wise by the (co)limit formula recalled in the following theorem.

Theorem A.3.5. Let p ∶ C → D and F ∶ C → A be functors.

● When all the colimits below exist, there exists a local left Kan extension

(Lanp F, ηF ), with Lanp F given on an object D ∈ D by

(Lanp F )(D) ∶= colim(F ○UD),
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for the canonical projection UD ∶ p↓D → C , and on a morphism f ∶D →D′ in

D by the unique morphism

f∗ ∶ (Lanp F )(D) → (Lanp F )(D′),

induced by the universal property of colimits and by the canonical functor

f∗ ∶ p↓D → p↓D′; whereas the natural transformation ηF is given component-

wise on C ∈ C by the unique morphism F (C) → (Lanp F )(p(C)) factorising

through the evident colimit cocones; and

● when all the limits below exist, there exists a local right Kan extension (Ranp F, εF ),
with Ranp F given on an object D ∈ D by

(Ranp F )(D) ∶= lim(F ○UD),

for the canonical projection UD ∶D↓p→ C , and on a morphism f ∶D →D′ in

D by the unique morphism

f∗ ∶ (Ranp F )(D) → (Ranp F )(D′),

induced by the universal property of limits and by the canonical functor f∗ ∶
D′ ↓ p → D ↓ p; whereas the natural transformation εF is given component-

wise on C ∈ C by the unique morphism (Ranp F )(p(C)) → F (C) factorising

through the evident limit cones.

Proof. See [ML98, §.X.3.Th.1]. �

Definition A.3.6. Let p ∶ C → D and F ∶ C → A be functors. The point-wise left

(resp. right) Kan extension of F along p, if it exists, is the local left (resp. right) Kan

extension (Lanp F, ηF ) (resp. (Ranp F, εF )) given in Theorem A.3.5.

When Kan extensions of F ∶ C → A along p ∶ C → D exist, their morphisms ηF and

εF are not necessarily isomorphisms, i.e. Kan extensions are not necessarily extensions

in the naive sense. That is, one does not necessarily retrieve the functor F , not even

up to isomorphisms, by either of compositions Lanp F ○ p or Ranp F ○ p. For instance,

recall that colimF is a left Kan extension Lanp F of a functor F ∶ C → A along the

terminal functor p ∶ C → ∗, and Lanp F ○p is not isomorphic to F , unless F is essentially

constant, see [Kel05, (4.34)].

Lemma A.3.7. Let p ∶ C → D and F ∶ C → A be functors, such that C is essentially

small.

● Assume that there exists a point-wise left Kan extension (Lanp F, ηF ). Then,

ηF ∶ F ⇒ Lanp F ○ p is an isomorphism if and only if p is fully faithful.

● Assume that there exists a point-wise right Kan extension (Ranp F, εF ). Then,

εF ∶ Lanp F ○ p⇒ F is an isomorphism if and only if p is fully faithful.

Moreover, when p is an inclusion of a subcategory, each of the natural isomorphisms

ηF and εF , if it exists, can be chosen to be the identity morphism idF .



166

Proof. The statement follows from (C, idp(C)) being a terminal object in the cate-

gory p↓p(C) and an initial object in the category p(C)↓p, due to p being fully faithful,

see [Kel05, Prop.4.23], [ML98, §.X.3.Cor.3 and Cor.4] or [Bor94a, Th.3.7.3]. �

Point-wise left (resp. right) Kan extensions along the Yoneda embedding preserve

colimits (resp. limits). However, Kan extensions do not preserve (co)limits in gen-

eral, as it is the case for the nerve functor in the following example. This example is

prototypical of Kan extensions. It is due to Kan, and hence the name, see [Kan58].

Example A.3.8 (The Tensor–Hom or Realisation–Nerve adjunction). Let F ∶ C → D

be a functor from an essentially small category C to a locally small category D . Then,

the left Kan extension LanF h of the Yoneda embedding h ∶ C → PSh(C ) along F exists,

and it is given by the pullback of the Yoneda embedding h ∶ D → PSh(D) along the

opposite functor F op ∶ C op → Dop, i.e.

(LanF h) (−)(−−) = D(F (−−),−).

The functor LanF h is usually called the F -Hom functor (or F -nerve functor), and it

is denoted by HomC (F,−). Moreover, when D is cocomplete, the functor HomC (F,−)
admits a left adjoint given by the left Kan extension Lanh F , called the F -tensor functor

(or F -realisation functor), and it is denoted by −⊗C F , see [Kan58, §.2]. Then, for an

object C ∈ C , one has a canonical isomorphism F (C) ≅ h
C
⊗CF . The functor − ⊗C F

is right exact for being a left adjoint, and the functor F is said to be flat when −⊗C F

is also left exact. For instance, if C is complete and F preserves limits, then F is flat.

Cases of particular interests include:

(1) when F is the standard cosimplicial topological space ∆●
top ∶ ∆ → Top, one

recovers the geometric realisation and simplicial singular functors as the ∆●
top-

tensor and Hom functors, respectively, in which case F is not flat unless re-

stricted to a suitable category of topological spaces, see [Hov99, §.3.1];

(2) when F is the standard cosimplicial category ∆●
Cat ∶ ∆ ↪ Cat, i.e. ∆n

Cat is

the poset [n] for every non-negative integer n, then Hom∆(∆●
Cat,−) is the fully

faithful nerve functor N ∶ Cat↪ sSet, and −⊗∆∆●
Cat is the fundamental category

functor c ∶ sSet→ Cat, which is left exact, see [Joy02, p.208];

(3) when F is the comma categories functor C ↓− ∶ C → Cat, for a small category

C , the tensor functor − ⊗C C ↓− is the category of elements functor El, which

is called the category of simplices functor when C =∆, see [LTW79];

(4) when F is given by the restriction of Moore’s normalized chain functor CN ∶
sSet→ Ch≥0(Ab) to the simplex category ∆, the functor K ∶= Hom∆(CN∣∆ ,−) fac-

torises through the category of simplicial abelian groups ∆opAb, see [Kan58,

§.8]; then, the tensor-Hom adjunction gives rise to the Dold-Kan correspon-

dence, that is the equivalence of categories

CN∣∆opAb
∶∆opAb⇄ Ch≥0(Ab) ∶ K,



167

see [Kan58, Th.8.1 and Th.8.2]; and

(5) when F is given by the two-folded product of the standard cosimplicial sim-

plicial set ∆● × ∆● ∶ ∆ ×∆ → sSet, the ∆● × ∆●-tensor functor coincide with

the diagonal functor for bisimplicial sets. On the other hand, every simplicial

set K defines bisimplicial set Hom∆×∆(∆● ×∆●,K) with

Hom∆×∆(∆● ×∆●,K)p,q = sSet(∆p ×∆q,K),

for every pair of non-negative integers p, q ≥ 0.

Dually, for a functor G ∶ C op → D , the right Kan extension RanG hop of the opposite of

the Yoneda embedding h ∶ C → PSh(C ) along G exists, and is given by

(RanG hop) (−)(−−) = D(−, F (−−)).

When D is complete, the functor RanG hop admits a right adjoint given by the right Kan

extension Ranhop G, called the right G-Hom functor, and it is denoted by HomC (−,G),
see [GS09, p.3097]. Also, for an object C ∈ C , one has a canonical isomorphism

HomC (hop
C
,G) ≅ G(C). The functor HomC (−,G) is left exact for being a right adjoint,

and the functor G is said to be coflat when HomC (−,G) is also right exact.

Realising colimits as quotients of coproducts allows expressing point-wise left Kan

extensions using coends, see [ML98, §.IX.6]. That is, for functors p ∶ C → D and

F ∶ C → A , where C is an essentially small category and A is a cocomplete category,

the left Kan extension Lanp F is given on an object D ∈ D by the coend

Lanp F (D) =
C∈C

∫ ∐
D(p(C),D)

F (C) = Coend( ∐
D(p(−),D)

F (−)), (87)

see [ML98, §.X.4.Th.1]. For instance, the conventional formula (3) for the geometric

realisation of a simplicial set X● is nothing but the coend of the bifunctor X●,dis ×
∆●

top ∶ ∆op × ∆ → Top, obtained from the discrete simplicial space X●,dis associated

to X● and the standard cosimplicial topological space ∆●
top. Coends generalise tensor

products, which justifies the notation used for the tensor functor in Example A.3.8,

see [ML98, §.IX.6]. In fact, for rings R and S, and for an (R,S)-module M ∶ BR →
AddFun(BSop,Ab), the induced M -tensor-Hom adjunction

− ⊗RM ∶ AddFun(BRop,Ab) ⇄ AddFun(BSop,Ab) ∶ HomR(M,−) (88)

is essentially the conventional tensor-Hom adjunction for modules, as the category of

right R-modules is isomorphic to the additive functor category AddFun(BRop,Ab),
where B is the delooping space functor, which sends a ring R to a one-object ringoid

whose set of morphisms is R. Moreover, the (R,S)-module M is flat if and only if the

functor − ⊗RM in (88) is left exact.

Example A.3.9. Let B be an additive category, and let N be the preordered

category corresponding to the ordered set (N,≤). The category Ch(Ch(B)) (resp.
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Ch(B)) is a full subcategory of BNop×Nop
(resp. BNop

). The category Nop admits a

symmetric monoidal structure, with a monoidal product ⊕ ∶Nop ×Nop →Nop, given on

objects by n⊕m = n+m. Then, the total complex functor Tot ∶ Ch(Ch(B)) → Ch(B)
is given by the restriction of the Kan extension Lan⊕ ≅ Ran⊕, i.e. for a double complex

X●,● in B, the total complex Tot●(X) is given for n ∈N by

Totn(X) =
(p,q)∈⊕↓n

∫ Xp,q ≅ ∫
(p,q)∈n↓⊕

Xp,q ≅ ⊕
p+q=n

Xp,q.

Example A.3.10. Let p ∶ C → D and F ∶ C → A be functors, where C is an

essentially small category and D is a cocomplete category. When A = Set, there exist

canonical isomorphisms

Lanp F (D) =
C∈C

∫ ∐
D(p(C),D)

F (C) ≅
Cop∈C op

∫ Dop(Dop, pop(Cop)) × F (C)

≅
Cop∈C op

∫ Dop(Dop, pop(Cop)) × PSh(C op)(h
Cop , F ),

for every D ∈ D . Also, when A = Set●, the category of pointed small sets, one has a

canonical isomorphism

Lanp F (D) ≅
C∈C

∫ ⋁
D(p(C),D)

F (C) ≅
Cop∈C op

∫ ⋁
Dop(Dop,pop(Cop))

(PSh●(C op)(h
Cop ,+, F ),∗), (89)

for every D ∈ D .

Point-wise Kan extensions are characterised by the following representability crite-

rion.

Lemma A.3.11. Let p ∶ C → D and F ∶ C → A be functors. Then,

● a pair (L ∶ D → A , η ∶ F ⇒ L○p) is a point-wise left Kan extension of F along

p if and only if for every D ∈ D and A ∈ A the morphism

A (L(D),A) → Nat(h
D
○pop,h

A
○F op),

sending g ∶ L(D) → A to the natural transformation with the component

h
D
pop(Cop) LÐ→ h

L(D)
Loppop(Cop)

hg(ηop
Cop)
Ð→ h

A
F op(Cop)

for every C ∈ C , is a bijection; and

● a pair (R ∶ D → A , ε ∶ R ○ p ⇒ F ) is a point-wise right Kan extension of F

along p if and only if for every D ∈ D and A ∈ A the morphism

A (A,R(D)) → Nat(hD ○p,hA ○F ),

sending g ∶ A→ R(D) to the natural transformation with the component

hD p(C) RÐ→ hR(D)Rp(C) hg(εC)Ð→ hA F (C)

for every C ∈ C , is a bijection.
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Proof. See [ML98, §.X.5.Cor.4]. �

A.3.2.1. Preserving Kan Extensions. Among the different types of Kan extensions,

point-wise extensions are the most accessible. For they are given by hands-on formulae

that are easy to manipulate and work with. However, not all Kan extensions are point-

wise, and the latter are distinguished by being preserved by corepresentable functors,

as can be seen in Theorem A.3.13.

Let p ∶ C → D , F ∶ C → A and G ∶ A → B be functors, and assume that a local

left Kan extension of F along p exists. We say that G preserves the left Kan extension

(Lanp F, ηF ) if (G ○ Lanp F,G ○ ηF ) is a left Kan extension of G ○ F along p. The dual

notion is also defined for right Kan extensions.

It is well-known that left (resp. right) adjoints preserve colimits (resp. lim-

its). Moreover, they preserve local left (resp. right) Kan extensions, see [Bor94a,

Prop.3.7.4].

Example A.3.12. Let F ∶ C → A be a functor between essentially small categories.

Then, the following conditions are equivalent,

● F admits a right adjoint;

● LanF idC exists and is preserved by every functor C →B; and

● LanF idC exists and is preserved by F .

When any, and hence all, of the three conditions are satisfied, LanF idC is a right adjoint

of F , see [Bor94a, Prop.3.7.6]. Dually, the following conditions are equivalent,

● F admits a left adjoint;

● RanF idC exists and is preserved by every functor C →B; and

● RanF idC exists and is preserved by F .

When any, and hence all, of the three conditions are satisfied, RanF idC is a left adjoint

of F .

Theorem A.3.13. Let p ∶ C → D and F ∶ C → A be functors between locally small

categories, and assume that there exists a local left (resp. right) Kan extension of F

along p. Then, the local Kan extension is a point-wise Kan extension if it is preserved

by the corepresentable functor hA ∶ A → Set for every object A ∈ A .

Proof. See [ML98, §.X.5.Defintion and Theorem.3]. �

A.3.3. Density. Some structures on locally small categories, like model struc-

tures, require the underlying category to be bicomplete. Given a locally small category

that is not bicomplete, one may consider a locally small bicompletion of the given cat-

egory, if it exists, and study such structures on the bicompletion. For an essentially

small category D , one may consider its bicompletion by the locally small category

of presheaves PSh(D), or by a subcategory of τ -sheaves Shvτ(D) for a subcanonical
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topology τ on D , depending on the sought behaviour of colimits, see Remark A.4.7.

However, when the category PSh(D) is not locally small, it is desired to look for dif-

ferent methods of bicompletion. For a functor F ∶ C → D from an essentially small

category C , the F -nerve functor HomC (F,−) ∶ D → PSh(C ), as in Example A.3.8, may

be used as a bicompletion of D when it is fully faithful.

Lemma A.3.14. Let p ∶ C → D be a functor from an essentially small category C

to a locally small category D . Then, the following conditions are equivalent,

● the functor HomC (F,−) is fully faithful; and

● the pair (idD , ididD
) is a point-wise left Kan extension of p along itself.

Proof. See [Kel05, Th.5.1]. �

Definition A.3.15. Let p ∶ C → D be a functor. The functor p is said to be dense

(resp. codense) if (idD , ididD
) is a point-wise left (resp. right) Kan extension of p along

itself, i.e. p is dense if for every object D ∈ D , one has an isomorphism D ≅ colim p○UD,

where UD ∶ p↓D → C is the canonical such projection functor. A subcategory C ↪ D

is said to be dense (resp. codense) if the inclusion functor is dense (resp. codense).

For a dense subcategory i ∶ C ↪ D , since point-wise Kan extensions are preserved

by corepresentable functors, the left Kan extension Lani h
D
∣C of the restriction of hD to

C along i is canonically isomorphic to hD, for every D ∈ D .

Example A.3.16. Let C be a locally small category. Then, the Yoneda embedding

h− ∶ C ↪ PSh(C ) (resp. h− ∶ C ↪ Fun(C ,Set)) is dense (resp. codense), see [ML98,

§.X.6.Cor.3].

A.4. Grothendieck Sites

A Grothendieck topology is a generalisation of topological coverings to abstract cat-

egories, which enables the development of cohomology theories on abstract categories.

Throughout this section, let C be a locally small category. A sieve S on an object

U ∈ C is an inclusion S ⊂ h
U
∶ C op → Set, and a refinement of a sieve S on U is an

inclusion S′ ⊂ S. The map that sends a sieve S on U ∈ C to the set Ob (El(S)) of

objects of its category of elements defines a bijection

{sieves on U} ←→ {right ideals in C , with a common codomain U} ,

where a set of morphism in C is called a right ideal if it is closed with respect to

precompositions with morphisms in C , see [Joh02, p.538]. For a set U of morphisms

with a common codomain in C , let SU denote the sieve corresponding to the right ideal

in C generated by U . The sieve SU is said to be generated by the set U .
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Definition A.4.1. Let S be a sieve on U ∈ C , let T be a sieve on V ∈ C and

let f ∶ T → h
U

be a morphism in the functor category Fun(C op,Set), i.e. a natural

transformation. The restriction of S to V along f is defined to be the sieve on V that

is the image of the pullback projection S ×h
U
T → T in Fun(C op,Set), it is denoted by

f∗S. For a morphism ϕ ∶ V → U in C , we abuse notation and write ϕ∗S for h∗ϕ S.

For a morphism ϕ ∶ V → U in C , the sieve ϕ∗S corresponds to the right ideal

{ψ ∶W → V in C ∣ ϕ ○ ψ ∈ S(W )}.

Definition A.4.2. A (Grothendieck) topology τ on the category C is a set

τ = {Covτ(U) ∣ U ∈ C },

in which Covτ(U) is a set of sieves on U , for every object U ∈ C , such that

● (Stability) the restriction ϕ∗S of S along ϕ belongs to Covτ(V ), for every sieve

S ∈ Covτ(U) and for every morphism ϕ ∶ V → U in C ;

● (Maximal Sieve) the sieve h
U

belongs to Covτ(U), for every object U ∈ C ; and

● (Local Character) a sieve R on an object U ∈ C belongs to Covτ(U) whenever

ϕ∗R belongs to Covτ(V ) for every morphism ϕ ∶ V → U in a sieve S ∈ Covτ(U).

A sieve S on U ∈ C is called a τ -covering sieves if it belongs to Covτ(U), and the pair

(C , τ) is called a (Grothendieck) site, usually denoted by Cτ . Moreover, when C is

essentially small, we say that Cτ is an essentially small site, not be confused with the

notion of essentially small sites in [Joh02].

Example A.4.3. A sieve is said to be effective epimorphic if it forms a colimit

cocone, and it is said to be universally effective epimorphic if all its restrictions are

effective epimorphic. Every category C admits a topology whose covering sieves are

universally effective epimorphic sieves, called the canonical topology on C , see [Joh02,

p.542-543]. A topology that is contained in the canonical topology is said to be sub-

canonical.

The intersection of topologies on the category C is a topology. Hence, given a set

S of sets of sieves on a category C , the intersection of all topologies on C that contain

S is a topology on C , called the topology generated by S . In some occasions, it may

be simpler to specify sieves, and hence topologies, in terms of sets of morphisms that

generate them, as in §.A.4.3.

A Grothendieck pretopology on a category C with pullbacks is a set

τ = {Covτ(U) ∣ U ∈ C },

in which Covτ(U) is a set of families of morphisms with a common codomain that

satisfies closure conditions similar to those of a topology, namely
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● the set {σα ∶ Uα ×U V → V ∣ α ∈ A} belongs to Covτ(V ), for every family

{σα ∶ Uα → U ∣ α ∈ A} in Covτ(U) and for every morphism ϕ ∶ V → U in C ;

● the family {idU} belongs to Covτ(U), for every object U ∈ C ; and

● the family {σα ○ δα,β ∶ Uα,β → U ∣ α ∈ A,β ∈ Bα} belongs to Covτ(U), for every

family {σα ∶ Uα → U ∣ α ∈ A} in Covτ(U) and every family {δα,β ∶ Uα,β → Uα ∣
β ∈ Bα} in Covτ(Uα) for α ∈ A,

see [MLM92, §.III.2.Def.2]. A family U in Covτ(U) is called a τ -covering family of U .

The unique element of a singleton τ -covering family of U ∈ C is called a τ -cover of U .

A refinement of a family of morphisms U = {σα ∶ Uα → U ∣ α ∈ A} is a pair (f,U ′)
of a map f ∶ A′ → A and a family of morphisms U ′ = {σ′α′ ∶ U ′

α′ → U ∣ α′ ∈ A′} such that

σ′α′ factorises through σf(α), for every α′ ∈ A′.

Definition A.4.4. Let C be a locally small category with pullbacks. A pretopol-

ogy τ on C is said to be saturated if every family of morphisms in C with a com-

mon codomain that admits a refinement by a τ -covering family is a τ -covering family.

Assume that C admits finite coproducts, the pretopology τ is said to be additively-

saturated if for every τ -covering family U = {σα ∶ Uα → U ∣ α ∈ A}, the set A is finite

and the singleton

{ ∐
α∈A

σα ∶ ∐
α∈A

Uα → U}

is a τ -covering family.

In particular, a saturated pretopology on a category that admits finite coproducts

is additively-saturated.

Every pretopology admits a saturation, that is a pretopology in which covering

families are precisely families that admit refinements in the given pretopology, see

[Vis08, Def.2.52 and Prop.2.53]. Also, additive-saturations are defined similarly.

In practice, the pretopologies one considers are almost never saturated, and their

saturations allow redundant covering families that does not reflect the intended prop-

erties of the topology. For example, for a pretopology τ and a τ -covering family

U = {σα ∶ Uα → U ∣ α ∈ A}, the set U ⊔{f} is a covering family in the saturation

of τ , for any morphism f ∶ V → U . It is often more practical to consider additively-

saturated pretopologies, as in Example A.4.35.

A pretopology defines a topology, generated by its covering families, and differ-

ent pretopologies may define the same topology. In particular, a pretopology and its

(additive-)saturation define the same topology. For a pretopology τ , we may abuse

notation and use τ to also denote the topology defined by it.
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A.4.1. The Category of Sheaves. A functor P ∶ C op → Set is called a presheaf of

(small) sets on C , the functor category Fun(C op,Set) is called the category of presheaves

on C , and it is usually denoted by PSh(C ).

Axiomatising the properties of sheaves of sections of étale spaces yields the definition

for a sheaf on a site, see [MLM92, §.II.6].

Definition A.4.5. Let Cτ be a site. A presheaf P ∶ C op → Set is said to be a

τ -separated presheaf, a τ -weak sheaf, or a τ -sheaf if for every object U ∈ C and for every

τ -covering sieve S on U , the canonical map

ι∗S ∶ PSh(C )(h
U
, P ) → PSh(C )(S,P ), (90)

induced by the inclusion ιS ∶ S ↪ h
U

, is injective, surjective, or bijective, respectively.

Denote the full subcategory in PSh(C ) of τ -separated presheaves, τ -weak sheaves, and

τ -sheaves on C by Sepτ(C ), WShvτ(C ), and Shvτ(C ), respectively.

Evidently the maximum sieve axiom does not affect the sheaf condition (90), nei-

ther does the local character axiom, see [Joh02, §.C.Lem.2.1.7]. They are merely

closure conditions that are particularly useful in the double plus construction of the

τ -sheafification functor, see [Bor94b, p.205]. Also, as a direct consequence of Defi-

nition A.4.5, one finds that the subcategory of τ -sheaves is closed under limits in the

category of presheaves, and hence it is complete, with limits given object-wise.

When the site is Cτ essentially small, the set Covτ(U) forms an essentially small

cofiltered1 sublattice in the lattice of subobjects of h
U

, for every object U ∈ C , see

[Bor94b, Prop.3.2.5]. That results in the subcategory of τ -sheaves being a Cartesian

reflective subcategory in the category of presheaves, i.e. the inclusion Shvτ(C ) ↪
PSh(C ) admits a left adjoint2 which is left exact, called the τ -sheafification functor or

associated τ -sheaf functor, and it is denoted by −aτ , see [Bor94b, Th.3.3.12]. For a

presheaf P on C , there exists a τ -separated presheaf P +τ , given for an object U ∈ C by

the filtered colimit

P +τ (U) ∶= colim PSh(C )(iU(−), P ),

where iU ∶ Covτ(U) ↪ PSh(C ) is the canonical such inclusion, and Covτ(U) is consider

as a preordered category. Then, the associated τ -sheaf P aτ can be given by

P aτ ∶= P +τ+τ ,

see [Bor94b, §.3.3]. Alternatively, to a presheaf P one defines a τ -separated presheaf

P sτ , given on an object U ∈ C by the quotient

P sτ (U) ∶= P (U)/ ∼,
1We adopt the terminology of [ML98, §.IX.1], where filtered categories generalise directed sets,

and cofiltered categories refer to what is called ‘filtering categories’ in [MLM92, §.VII.6].
2A left adjoint of an inclusion functor is called a reflector.
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where ∼ is the relation on P (U), with p ∼ p′ for p, p′ ∈ P (U) if and only if there exists a

τ -covering sieve on which the restrictions of p and p′ coincide, and given on morphisms

by the universal property of the quotient maps. Then, the associated τ -sheaf P aτ can

be given by

P aτ ∶= (P sτ )+τ ,

see the proof of [Vis08, Th.2.64.(ii)]. Since P sτ is τ -separated, the canonical morphism

P sτ → P aτ is a monomorphism. For a section p ∈ P (U), we denote its image in P sτ (U)
(resp. P aτ (U)) by ps (resp. pa).

For an essentially small Cτ , the category of τ -sheaves on C is bicomplete, with

colimits given by the τ -sheafification of colimits in the category of presheaves, that

the τ -sheafification functor preserves colimits. The category of presheaves PSh(C ) is

Cartesian closed, with internal Hom given by

HomPSh(C )(P,Q) = PSh(C )(P × h−,Q),

for a pair of presheaves P,Q ∈ PSh(C ). Also, the category Shvτ(C ) is also Cartesian

closed, with internal Hom given by

HomShvτ (C ) = −aτ ○ HomPSh(C ) .

In fact, for an essentially small category C , the map that sends each topology on

C to the Cartesian reflective subcategory in PSh(C ) of its sheaves defines a bijection

{ topologies on C } ←→ { relective subcategories in the category of presheaves
PSh(C ) with left exact reflectors

} ,

see [Joh02, C.Cor.2.1.11].

For an essentially small site Cτ , a morphism of presheaves on C is said to be a τ -local

isomorphism if its τ -sheafification is an isomorphism. Then, the category Shvτ(C ) is

a reflective localisation of PSh(C ) with respect to τ -local isomorphisms, and hence

τ -sheaves coincide with τ -local objects in PSh(C ).

Example A.4.6. The component of the τ -sheafification adjunction unit is given for

a presheaf P by a morphism ητP ∶ P → P aτ in PSh(C ) for which there exists a bijection

ητP
∗ ∶ PSh(C )(P aτ , S) → PSh(C )(P,S),

for every τ -sheaf S ∈ Shvτ(C ) ⊂ PSh(C ), and hence ητP is a τ -local isomorphism.

Remark A.4.7. Giving a topology on an essentially small category C is a way of

formally declaring specific cocones to be colimit cocones in the resulting category of

sheaves. Recall that the category of presheaves PSh(C ) is the free cocompletion for C ,

and hence it formally adds all small colimits, forgetting the colimits that already exist

in C . The sheaf condition (90) shows that the cocone of a covering sieve is mapped
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into a colimit cocone in the category of sheaves. That is, for a topology τ on C , for

every τ -sheaf P on C , and for every τ -covering sieve S on U ∈ C , one has

Shvτ(C )(colim(haτ− πS), P ) ≅ PSh(C )(colim(h− πS), P ) ≅ PSh(C )(S,P )

≅ PSh(C )(h
U
, P ) ≅ Shvτ(C )(haτ

U
, P ),

where πS ∶ El(S) → C is the canonical such projection functor, and hence colim(haτ− πS) ≅
haτ
U

in Shvτ(C ). In particular, the canonical topology is the coarsest topology that re-

trieves universal colimits cocones that exist in C .

Example A.4.8. For an essentially small site Cτ , representable presheaves are

τ -sheaves if and only if the composition −aτ ○ h− ∶ C → Shvτ(C ) is fully faithful,

which occurs only when the topology τ is subcanonical, see [Joh02, p.542-543]. More

generally, for any essentially small site Cτ one has a canonical equivalence of categories

Shvτ(C ) ≅ Shvcan(Shvτ(C )),

see [Joh02, §.C.2.2].

A.4.1.1. Local Epimorphisms, Monomorphisms and Isomorphisms. For an essen-

tially small site Cτ , a morphism of presheaves is said to be a τ -local epimorphism (resp.

τ -local monomorphism) if its τ -sheafification is an epimorphism (resp. a monomor-

phism), and hence a morphism of presheaves is a τ -local isomorphism if and only if it

is both τ -local epimorphism and τ -local monomorphism. In particular, epimorphisms

(resp. monomorphisms) are τ -local epimorphisms (resp. τ -local monomorphisms), that

the τ -sheafification functor preserves epimorphisms for being a reflector and preserves

monomorphisms for being left exact. We recall below the characterisation of τ -local

epimorphisms and monomorphisms.

Local Epimorphisms. Every morphism f ∶ P → h
U

of presheaves on C admits a

canonical factorisation as f = ιf ○ f , where ιf ∶ im f ⊂ h
U

is a sieve on U and f is the

canonical epimorphism P → im f . The sheaf condition (90) implies that the inclusion

S ⊂ h
U

is a τ -local isomorphism if and only if S is a τ -covering sieve on U ∈ C , see

[Bor94b, Lem.3.5.1]. Thus, f is a τ -local epimorphism if and only if im f ⊂ h
U

is a

τ -covering sieve.

For every presheaf Q ∶ C op → Set, the Yoneda lemma gives a canonical isomorphism

Q(U) ≅ PSh(C )(h
U
,Q) for every U ∈ C . Then, a morphism f ∶ P → Q of presheaves

on C is a (τ -local) epimorphism of presheaves if and only if the projection ϕ∗P → h
U

is a (τ -local) epimorphism for every morphism of presheaves ϕ ∶ h
U
→ Q.

τ -local epimorphisms retain the essential properties of epimorphisms of presheaves

of sets, as they contain all epimorphisms, stable under composition, left decomposi-

tion, and pullbacks. Also, they are determined by pullbacks along elements of their
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codomains, see [KS06, p.390-391 and Prop.16.1.11]. A set of morphisms of presheaves

that satisfies these properties is called a systems of local epimorphisms. They may be

though of as generalised covering sieves. In fact, the map that sends a topology to the

set of its local epimorphisms defines a bijection

{topologies on C } ←→ {systems of local epimorphisms on C } ,

with an inverse sending a system of local epimorphisms on C to the topology whose

covering sieves are the sieves that are local epimorphisms.

Example A.4.9. The initial (or discrete) topology and terminal (or indiscrete) topol-

ogy on an essentially small category C is defined to be the topology whose local epi-

morphisms are all morphisms and epimorphisms, respectively, see example [KS06,

Ex.16.1.9].

Lemma A.4.10. Let Cτ be an essentially small site, and let f ∶ P → Q be a morphism

of presheaves on C . Then, f is a τ -local epimorphism if and only if for every U ∈ C

and for every morphism of presheaves q ∶ h
U
→ Q, there exists a τ -local epimorphism

S → h
U

that fists into a commutative diagram

P

f

��
S
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// h
U q

// Q

of morphisms of presheaves.

Proof. See [KS06, Lem.16.1.6]. �

While morphisms of τ -sheaves that are surjective object-wise are epimorphisms of

τ -sheaves, the inverse does not hold as can be deduced from the following corollary.

Corollary A.4.11. Let C be an essentially small category with pullbacks, let τ

be a pretopology on C , and let f ∶ P → Q be a morphism of presheaves on C . Then,

f is a τ -local epimorphism if and only if for every object U ∈ C and for every section

q ∈ Q(U), there exists a τ -covering family U = {σα ∶ Uα → U ∣ α ∈ A} and a section

pα ∈ P (Uα) such that σ∗α(q) = fUα(pα), for every α ∈ A.

Proof. See [Jar15, Lem.3.16]. �

Proposition A.4.12. Let Cτ be an essentially small site, let I be an essentially

small category, and let F ∶ I → Mor(PSh(C )) be a functor. Assume that the morphism

F (i) is a τ -local epimorphism for every i ∈ I. Then, the morphism colimF is a τ -local

epimorphism.

Proof. See [KS06, Prop.16.1.12]. �



177

Local Monomorphisms. Recall that in a Cartesian category D , the diagonal mor-

phism ∆f ∶ X → X ×Y X is a monomorphism for every morphism f ∶ X → Y in D ,

and a formal diagram chase shows that f is a monomorphism if and only if ∆f is an

epimorphism. Hence, for an essentially small site Cτ , a morphism of presheaves is a

τ -local monomorphism if and only if its diagonal is τ -local epimorphism.

Lemma A.4.13. Let Cτ be an essentially small site, and let f ∶ P → Q be a morphism

of presheaves on C . Then, f is a τ -local monomorphism if and only if for every U ∈ C

and for every commutative diagram h
U
⇉ P → Q, there exists a τ -covering sieve S ⊂ h

U

that makes the digram S ⊂ h
U
⇉ P commute.

Proof. See [KS06, Lem.16.2.3.(iii)]. �

Corollary A.4.14. Let C be an essentially small category with pullbacks, let τ

be a pretopology on C , and let f ∶ P → Q be a morphism of presheaves on C . Then, f

is a τ -local monomorphism if and only if for every object U ∈ C and for every pair of

sections p, p′ ∈ P (U) for which fU(p) = fU(p′) ∈ Q(U) there exists a τ -covering family

U = {σα ∶ Uα → U ∣ α ∈ A} such that σ∗α(p) = σ∗α(p′), for every α ∈ A.

Proof. See [Jar15, Lem.3.16]. �

Local Isomorphisms. For an essentially small site Cτ , the set of τ -local isomor-

phisms is closed under pullback and satisfies the two-out-of-three property, see [KS06,

Lem.16.2.4.(i) and (vii)]. A set of morphisms of presheaves that satisfies these proper-

ties is called a system of local isomorphisms. In fact, the map that sends a topology to

the set of its local isomorphisms defines a bijection between topologies on an essentially

small category and systems of local isomorphisms on it, see [Bor94a, Prop.5.6.2].

Proposition A.4.15. Let Cτ be an essentially small site, let I be an essentially

small category, and let F ∶ I → Mor(PSh(C )) be a functor. Assume that the morphism

F (i) is a τ -local isomorphism for every i ∈ I. Then, the morphism colimF is a τ -local

isomorphism.

Proof. See [KS06, Prop.16.3.4]. �

A.4.1.2. Sheaves on Larger Sites. For an essentially small site Cτ , the existence of a

left exact τ -sheafification functor is due to having essentially small filtered categories of

coverings for objects of C , which does not necessarily hold for larger sites. For a site Cτ

that is not essentially small, the categories of presheaves and τ -sheaves are not necessar-

ily locally small, and the τ -sheafification functor does not necessarily exist, and hence

Shvτ(C ) is not necessarily cocomplete, and its Cartesian structure is not necessarily

closed. Although one can define τ -local epimorphism, and hence τ -local isomorphism,

by their characteristic properties, the localisation of the category of presheaves PSh(C )
with respect to τ -local isomorphisms does not have to be reflective on Shvτ(C ). Yet,
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the situation may be remedied when C admits a τ -dense subcategory, see the Compar-

ison Lemma [Joh02, §.C.Th.2.2.3]. Since all sites we consider are essentially small, we

do not pursue the theory of sheaves on larger sites, and we refer the interested reader

to [Joh02, §.C.2.2].

A.4.2. Continuous Maps of Sites. Let Cτ and Dς be essentially small sites. A

functor f -1 ∶ D → C induces a functor

f∗ ∶ PSh(C ) → PSh(D),

given by precomposition with (f -1)op, which is called the direct image functor. The

direct image functor admits a left adjoint f∗pre ∶ PSh(D) → PSh(D), given by the left

Kan extension f∗pre = Lan(f -1)op , and it is called the inverse image functor.

Definition A.4.16. Let Cτ and Dς be essentially small sites. A functor f -1 ∶ D → C

is said to be continuous with respect to the topologies τ and ς if f∗ sends τ -sheaves to

ς-sheaves. A continuous map of sites f ∶ Cτ → Dς is a continuous functor f -1 ∶ D → C .

Since the category of sheaves on an essentially small site is a reflective localisation of

the category of presheaves with left exact reflector, f -1 is continuous if and only if f∗pre

preserves local isomorphisms, recall Remark 1.1.6. Also, the functor f -1 is continuous

if and only if for every ς-sieve S in D , the sieve generated by f -1(S) is a τ -sieve in C ,

see [Joh02, §.C.2.3]. In particular, when f
-1

is Cartesian between Cartesian categories

and the topologies τ and ς are defined by pretopologies, the functor f
-1

is continuous

if it preserves covering families.

For a continuous map of sites f ∶ Cτ → Dς , there exists an adjunction

f∗ ∶ Shvς(D) ⇄ Shvτ(C ) ∶ f∗,

where f∗ is given by the composition of f∗pre with the associated τ -sheaf functor −aτ ,

and it is called the sheaf inverse image functor. Since f∗ is a left adjoint, it preserves

colimits. When, in addition, f∗ is left exact, the continuous map f is called a morphism

of sites.

In addition to the notion of continuous functors, we need to recall the notion of

almost cocontinuous functors, which admits a well-behaved direct image, as recalled

below.

Definition A.4.17 ([Sta17, Tag 04B7]). Let C and D be essentially small cate-

gories with pullbacks, and let τ and ς be pretopologies on C and D , respectively. A

functor f -1 ∶ D → C is said to be almost cocontinuous if for every object V ∈ D and for

every τ -covering family U = {σα ∶ Uα → f
-1(V ) ∣ α ∈ A} there exists a ς-covering family

V = {δβ ∶ Vβ → V ∣ β ∈ B} such that for every β ∈ B either

(1) the morphisms f
-1(δβ) factorises through σα, for some α ∈ A; or
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(2) the empty sieve is a τ -covering sieve for f
-1(Vβ).

Lemma A.4.18. Assume that C and D be essentially small categories, let τ and ς

be pretopologies on C and D , respectively, and let f -1 ∶ D → C be a continuous and an

almost cocontinuous functor. Then, the direct image functor

f∗ ∶ Shvτ(C ) → Shvς(D)

commutes with pushout squares.

Proof. See [Sta17, Tag 04B9]. �

Definition A.4.19. A category that is equivalent to the category of sheaves on a

small Grothendieck site is called a Grothendieck topos. A geometric morphism f ∶ E →
F between Grothendieck topoi is an adjunction

f∗ ∶ F ⇄ E ∶ f∗,

in which f∗ is left exact.

A.4.2.1. Points of Sites. Similar to sheaves on topological spaces, isomorphisms

can be detected on the level of stalks, for sites that have enough points.

Definition A.4.20. Let Cτ be a site. A point of the site Cτ is a geometric morphism

p ∶ Set ≅ Shv(∗) ⇄ Shvτ(C ), where ∗ is the terminal site. The inverse image p∗ ∶
Shvτ(C ) → Set is called the stalks functor at p, whereas the direct image p∗ is called

the τ -skyscraper sheaf functor at p.

Example A.4.21. Let X be a small topological spaces, let C be the category of

open sets in X, and let τ be the topology generated by open covers in X. Then,

every set-theoretic point x ∈ X defines a point px of Cτ , for which p∗x and px∗ are the

conventional stalks and skyscraper sheaf functors, respectively.

For every point p of a subcanonical site Cτ , the composition of the stalks functor

at p with the Yoneda embedding yields a functor

p∗ ○ h− ∶ C → Shvτ(C ) → Set.

In facts, points of an essentially small site Cτ correspond to flat functors C → Set that

are continuous, with respect to τ and the canonical topology on Set, see [MLM92,

§VII.5.Cor.4]. Since the category Set is cocomplete, every functor u ∶ C → Set induces

the u-tensor-Hom adjunction

− ⊗C u ∶ PSh(C ) ⇄ Set ∶ HomC (u,−),

as in Example A.3.8. When u is taken to be the composition p∗pre ○ h− for a point p on

Cτ , there exist canonical isomorphisms

p∗ ≅ − ⊗C u and p∗ ≅ HomC (u,−),
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see [MLM92, p.381.(11)], so in particular − ⊗C u is left exact.

Let C be an essentially small category, recall that a functor u ∶ C → Set is flat if and

only if its category of elements El(u) is cofiltered, see [MLM92, §.VII.6.Th.3]. On the

other hand, since there exists a canonical equivalence of categories Set ≅ Shvcan(Set), a

functor u ∶ C → Set is continuous, with respect to τ and the canonical topology on Set,

if the geometric morphism − ⊗C u ∶ PSh(C ) ⇄ Set ∶ HomC (u,−) factorises through the

τ -sheafification geometric morphism PSh(C ) ⇄ Shvτ(C ), i.e. if HomC (u,S) is a τ -sheaf

for every set S ∈ Set and the τ -sheafification morphism ηP ∶ P → P aτ is mapped to an

isomorphism by − ⊗C u, for every presheaf P ∈ PSh(C ), see [MLM92, §VII.5.Lem.3]

and [Joh02, §.C.Lem.2.3.8].

Definition A.4.22. Let Cτ be a site. Then, a conservative set of points of Cτ is

a set C = {pi ∣ i ∈ I} of points of Cτ , such that a morphism f ∶ P → Q of τ -sheaves

on C is an isomorphism if and only if the morphism of stalks p∗i (f) is a bijection for

every pi ∈ C. The site Cτ is said to have enough points if it admits a conservative set

of points.

A.4.3. Grothendieck Topologies in Algebraic Geometry. In some situa-

tions, one may establish a notion that is well-behaved on stalks at points for a certain

site, in which case, it is convenient to consider sheaves on that site, see the proof of

[MV99, §.3.Th.2.21 and §.3.Th.2.23]. Also, one may have a well-behaved notion, when

certain (homotopy) colimits exist and are represented; which may be forced to hold by

considering sheaves with respect to the topology whose coving sieves are generated by

the desired colimit cocones, as in §.4.2.

In addition to desired behaviours, the choice of the topology may also be influ-

enced by the available machinery. For example, Voevodsky utilised the cdh-topology

to construct (properly supported) geometric motives for singular schemes over fields

of characteristic zero, as the latter admit resolutions of singularities. Whereas, in the

absence of resolutions of singularities, geometric motives for singular schemes were ex-

tended to perfect fields in [Kel12] using the `dh-topology, which is an extension of the

cdh-topology that riles on Gabber’s Local Uniformisation Theorem [ILO16, Th.3.2.1].

We conclude this section by recalling the topologies used in this thesis. For an

elaborative treatment for topologies used in algebraic geometry, see [GK15].

Fix a Noetherian scheme S of finite Krull dimension, and recall the conventions

and notations in §.0.2. In particular, the category of Noetherian schemes of finite Krull

dimensions is denoted by Noe
fd

, whereas the category of schemes of finite type over S

is denoted by Sch
ft/S, and an S-scheme refers to an object in Sch

ft/S. Also, the full
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subcategory in Sch
ft/S of smooth (resp. proper) S-schemes is denoted by Sm/S (resp.

Prop/S).

Definition A.4.23. Assume that U is a Noetherian scheme in Noe
fd

. A finite family

of morphisms {σα ∶ Uα → U ∣ α ∈ A} is said to be an étale (resp. proper) covering family

of U , if

● the morphism σα is étale (resp. is proper) for every α ∈ A; and

● it is jointly surjective, i.e. the underlying map of coproduct morphism∐α∈A σα ∶
∐α∈AUα → U is a surjection of sets.

The étale (resp. proper) pretopology on the category Noe
fd

is the pretopology whose

covering families are

● étale (resp. proper) finite covering families in Noe
fd

; and

● the empty covering family of the empty scheme.

For more general scheme, one needs to consider all such families (not necessarily finite

ones). However, for Noetherian schemes, such coverings always admit finite refinements.

Definition A.4.24. Assume that U is a Noetherian scheme in Noe
fd

. An étale (resp.

a proper) covering family {σα ∶ Uα → U ∣ α ∈ A} is said to be a Nisnevich (resp. cdp3)

covering family if it is completely decomposed, i.e. for every u ∈ U there exists α ∈ A and

uα ∈ Uα such that σα(uα) = u and the induced morphism of residue fields κ(u) → κ(uα)
is an isomorphism4.

The Nisnevich (resp. cdp5) pretopology on the category Noe
fd

is the pretopology

whose covering families are

● Nisnevich (resp. cdp) finite covering families in Noe
fd

; and

● the empty covering family of the empty scheme.

Whereas, the cdh-pretopology on the category Noe
fd

is the pretopology generated by the

Nisnevich and the cdp-pretopologies.

Thus, the Nisnevich (resp. cdp) pretopology is coarser than the étale (resp. proper)

pretopology, and finer than the Zariski (resp. closed) pretopology in which nonempty

covering families consist of open (resp. closed) immersions.

Remark A.4.25. Assume that U is a Noetherian scheme in Noe
fd

, and let U ∶= {σα ∶
Uα → U ∣ α ∈ A} be an étale (resp. a proper) covering family of U . Then, U is a

Nisnevich (resp. cdp) covering family, if and only if the map

( ∐
α∈A

σα)∗ ∶ Noe
fd(Speck,∐

α∈A
Uα) → Noe

fd(Speck,U)

3Remark A.4.25 shows that the cdp-topology coincides with the envelop topology, used in [GS09].
4This condition is also referred to by the Nisnevich condition, as it first appeared in [Nis89].
5The notation cdp appears in [GK15], but some authors use pro cdh instead; others use abs in

reference to abstract blow up squares.
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is surjective for every field k.

Remark A.4.26. All the morphisms in the covering families defined above are of

finite type, and hence all the pretopologies defined above restrict to the category Sch
ft/S.

In fact, for every pretopology τ defined above on the large category category Noe
fd

, the

canonical monoidal finite type-fibred essentially small category Sch
ft/− ∶ Noe

fdop
→ CAT⊗2 ,

as in [CD13, §.1.1.Ex.4, 11, 23, and 28], induces a monoidal finite type-fibred essentially

small site

Sch
ft/−τ ∶ Noe

fdop
→ Site⊗2 ,

where Site⊗2 is the 2-category of symmetric monoidal essentially small sites, weak

monoidal continuous functors between them, and monoidal natural transformations

between the latter. When τ is coarser than the étale (resp. proper) pretopology, there

exists a monoidal smooth (resp. proper)-fibred essentially small site

Sm/−τ ∶ Noe
fdop

→ Site⊗2 (resp. Prop/−τ ∶ Noe
fdop

→ Site⊗2 )

The pseudofunctor Prop/−τ is explored further in §.4.2.1.2.

The étale pretopology is subcanonical on Sch
ft/S (resp. Sm/S), and hence the Nis-

nevich pretopology is subcanonical on the category Sch
ft/S (resp. Sm/S), see [SGA73,

Exposé VII.§.2]. On the other hand, the closed pretopology is not subcanonical on

Sch
ft/S, and hence the cdp-pretopology, cdh-pretopology, and the proper pretopology

are not subcanonical. That is, a surjective closed immersion i ∶ z ↪ XÐ→ x is a closed

cover of x ∈ Sch
ft/S. However, i∗ ∶ hz(x) → hz(z) is not always a bijection. For

example, let S = Speck for a field k, and let i be the surjective closed immersion

Speck[t]/(t2) ↪ XÐ→ Speck[t]/(t3) in Sch
ft/S.

Remark A.4.27. Assume that σ ∶ Y → X is a cdp-cover and that X is reduced.

Then, σ admits a refinement by a birational cdp-cover σ′ ∶ Y ′ → X, i.e. there exists

an open dense immersion j ∶ U ↪ ○Ð→ X such that the base change of σ′ along j is an

isomorphism, see [MVW06, Ex.12.25].

A.4.3.1. Completely Decomposed Structures.

Definition A.4.28. Suppose that x is an S-scheme. Then, a Cartesian square

b y

a x

p′ p

e

e′

⌜

(91)

in Sch
ft/S is called

● a Nisnevich square over x if p is an étale morphism and e is an open immersion,

such that the base change

(y ∖ e′)
red
→ (x ∖ e)

red
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is an isomorphism; and

● a cdp-square6 over x if p is a proper morphism and e is a closed immersion,

such that the base change

(y ∖ e′) → (x ∖ e)

is an isomorphism.

Lemma A.4.29. The Nisnevich (resp. cdp) topology on the category of S-schemes

coincides with the Grothendieck topology generated by the covering families

● {p ∶ y → x, e ∶ a ↪ x}, for every pair of morphisms p ∶ y → x and e ∶ a ↪ x that

fit into a Nisnevich (resp. cdp) square in Sch
ft/S; and

● the empty covering family of the empty S-scheme.

Equivalently, a presheaf of sets P ∈ PSh(Sch
ft/S) is a Nisnevich (resp. cdp) sheaf if and

only if

● P sends every Nisnevich (resp. cdp) square to a Cartesian square; and

● P (∅S) ≅ ∗.

Proof. See [Voe10a, Cor.2.17] and [Voe10b, Th.2.2]. �

Proposition A.4.30. The Nisnevich (resp. cdp) sheafification of the Yoneda em-

bedding takes every Nisnevich (resp. cdp) square of S-schemes to a cocartesian square

of Nisnevich (resp. cdp) sheaves on Sch
ft/S.

Proof. See [Voe10a, Cor.2.16] and [Voe10b, Th.2.2]. �

The analogue of Lemma A.4.29 and Proposition A.4.30 hold for the Nisnevich (resp.

cdp) pretopology on Sm/S (resp. Prop/S), see [Voe10b, Lem.2.3].

A.4.3.2. Splitting Sequences. Assume that f ∶ Y →X is a morphism of schemes. A

splitting sequence for f is a finite sequence of closed embeddings

∅ = Zn+1 ⊂ Zn ⊂ Zn−1 ⊂ ⋯ ⊂ Z0 =X,

such that the base change f
-1(Zi −Zi−1) → (Zi −Zi−1) splits, i.e. it admits a section.

Lemma A.4.31. Let U = {σα ∶ uα → u ∣ α ∈ A} be a Nisnevich (or cdp) covering

family of an S-scheme u. Then, the morphism ∐α∈A fα ∶ ∐α∈A uα → u has a splitting

sequence.

Proof. See [Voe10b, Lem.2.16, Prop.2.17, and Prop.2.18]. �

6Some sources refer to the square (91) by an abstract blow up square, as in [MVW06, Def.12.21];
others reserve the term for a square that satisfies additional properties, as in [SV00, Def.2.2.4].
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τ Pτ
Zariski is a local ring
Closed is a integral domain
Nisnevich is a Henselian local ring
cdh is a Henselian valuation ring

Étale is a Henselian local ring with a separably closed residue field

Table 1. A conservative set of points for the site Sch
ft/Sτ .

A.4.3.3. Points. Some of the aforementioned sites have enough points. That is,

they admit conservative sets of points, such that isomorphisms between sheaves are

determined on the stalks at those points, see §.A.4.22.

The general definition of a point of a topos is rather abstract, and does offer a

scheme-theoretic description that fits with the geometric intuition of points of schemes.

However, on sites that admits some finiteness conditions, like Sch
ft/S and its subcate-

gories, the points of the topos Shvτ(Sch
ft/S), for a pretopology τ on Sch

ft/S, might be

given by some S-schemes. Recall that, for every S-scheme x, since the category Sch
ft/S

is Cartesian and the corepresentable functor hx commutes with limits, the scheme x

gives rise to a point (hx,∗,hx∗) if hx is continuous, which in particular requires the

canonical morphism

∐
α∈A

Sch
ft/S(x,uα) → Sch

ft/S(x,u) (92)

to be surjective, for every τ -covering family {σα ∶ uα → u ∣ α ∈ A} of an S-scheme u, cf.

[GK15, Def.0.1] and [GL01, §.2]. A scheme x, for which (92) is an surjective, does not,

a priori, define a point, as that requires sending all τ -covering sieves to colimits cocones.

However, for most the pretopologies that we are interested in, there exist conservative

sets of points that admits such a scheme-theoretic description, see [GK15, Th.0.2].

Lemma A.4.32. Assume that ϕ ∶ X → Y is a morphism of τ -sheaves on Sch
ft/S,

for a pretopology τ , in the Table 1, on Sch
ft/S. Then ϕ is an isomorphism if and only if

the morphism of stalks ϕSpecR is a bijection, for every ring R (not necessarily of finite

type over S) that satisfies the property Pτ , in the Table 1.

Proof. See [GK15, Th.2.6]. �

Remark A.4.33. The proper and cdp-pretopologies on Sch
ft/S do not admits a

conservative set of points given by affine schemes, see [GK15, p.4673]. However, points

of a site are points of a coarser site. In particular, valuation rings (resp. valuation rings

with algebraically closed fraction fields) define points for the cdp-pretopology (resp.

proper pretopology) on Sch
ft/S, see [GL01, Prop.2.1 and Prop.2.2].
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A.4.3.4. Representable Sheaves. For canonical sites, representable presheaves are

sheaves, and morphisms between them correspond to morphisms in the original cat-

egory. Since some of the pretopologies we are interested in are not subcanonical, we

devote this section to understanding morphisms between their representable sheaves

on the categories Sch
ft/S and Prop/S. The argument below essentially follows [Voe96,

§.3.2], and the statements in the rest of this section are applied in §.4.2.1.

Remark A.4.34. For every (proper) S-scheme p, the representable presheaf hp is

additive, by the very definition of colimits, i.e. for (proper) S-schemes z and w, the

canonical morphism

hp(z∐w) → hp(z) × hp(w)

is an isomorphism. Also, the τ -sheaf h
aτ

p
is additive for every pretopology τ on (proper)

S-schemes that is finer than the closed pretopology. For a (additively-)saturated pre-

topology τ on the category of (proper) S-schemes that is finer than the closed pretopol-

ogy, and for a τ -covering family U = {σα ∶ zα → z ∣ α ∈ A} in Prop/S (resp. Sch
ft/S),

one has a τ -covering family

U ′ ∶= { ∐
α∈A

σα ∶ ∐
α∈A

zα → z}

in Prop/S (resp. Sch
ft/S). The additivity of hp and h

aτ

p
implies that sections of hp and

h
aτ

p
on U correspond to their sections on U ′. Thus, without loss of generality, when

considering hp and h
aτ

p
, one may assume the involved τ -covering families are singletons.

Example A.4.35. Additively-saturated pretopologies on the category of (proper)

S-schemes, that are finer than the closed pretopology, include:

(1) the proper pretopology, see [Sta17, Tags 01T1, 01KH, and 0BX5];

(2) the cdp-pretopology, see Remark A.4.25;

(3) the finite pretopology (resp. cdf -pretopology), which is coarser than the proper

pretopology (resp. cdp-pretopology), whose nonempty covering families con-

sist of finite morphisms, see [Sta17, Tag 0CYI]; and

(4) the unramified proper pretopology (resp. unramified cdp-pretopology), which is

coarser than the proper pretopology (resp. cdp-pretopology), whose nonempty

covering families consist of unramified morphisms, see [Sta17, Tag 02G4].

While the proper pretopology (resp. cdp-pretopology) on the category Prop/S is satu-

rated, as morphisms between proper S-schemes are proper, its counterpart on the cate-

gory Sch
ft/S is not saturated. For instance, let S = Speck, for a field k. Then, for every

S-scheme X that admits an k-rational point, the structure morphism X → S is a cover

in the saturation of the proper pretopology (resp. cdp-pretopology) on Sch
ft/S. Also,

the finite pretopology, the cdf -pretopology, the unramified proper pretopology, and the

unramified cdp-pretopology are not saturated on the category of (proper) S-schemes.
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Lemma A.4.36 ([Voe96, Lem.3.2.2]). Assume that τ is a cover-saturated pretopol-

ogy on (proper) S-schemes that is finer than the closed pretopology, such that τ -covers

are surjective, and let p and q be S-schemes, such that p is reduced. Then,

● the canonical map Sch
ft/S(p, q) → Shvτ(Sch

ft/S)(haτ
p
,h

aτ

q
) is an injection; and

● when p and q are proper S-schemes, the canonical map

Prop/S(p, q) → Shvτ(Prop/S)(haτ
p
,h

aτ

q
)

is an injection.

Proof. Assume that f0, f1 ∶ p → q are morphisms of (proper) S-schemes, such

that p is reduced and suppose that f0,∗ = f1,∗ ∶ h
aτ

p
→ h

aτ

q
. Then, in particular, for the

section ida
p
∈ haτ

p
(p), one has (f0,∗(idp))

a = (f1,∗(idp))
a
, and hence there exists a τ -cover

σ ∶ z → p such that

f0 ○ σ = σ∗(f0,∗(idp)) = σ∗(f1,∗(idp)) = f1 ○ σ ∈ hq(z).

Since p is reduced and τ -covers are surjective, a diagram chase shows that σ is an

epimorphism in the category of (proper) S-schemes, and hence f0 = f1. �

Proposition A.4.37 ([Voe96, Prop.3.2.5]). Assume that τ is a additively-saturated

pretopology on (proper) S-schemes, and let f ∶ p → q be a morphism of (proper)

S-schemes. Then,

(1) the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is an epimorphism if and only if f is a cover in

the saturation of τ ; and

(2) assuming that τ is finer than the closed pretopology, such that τ -covers are

surjective, the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is a monomorphism if and only if f is

universally injective.

Proof.

(1) Assume that f is a cover in the saturation of τ , i.e. there exists a morphism

σ′ ∶ p′ → p of (proper) S-schemes such that σ ∶= f ○ σ′ is a τ -cover. The

morphism σ∗ ∶ hp′ → hq is a τ -local epimorphism because it factorises as an

epimorphism h
p′
→ imσ∗ followed by the inclusion imσ∗ ⊂ hq of the τ -covering

sieve generated by σ. Thus, the morphism f∗ ∶ hp → hq is a τ -local epimorphism,

and hence the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is an epimorphism of τ -sheaves.

On the other hand, assume that f∗ ∶ haτ
p
→ h

aτ

q
is an epimorphism of

τ -sheaves, i.e. f∗ ∶ hp → hq is a τ -local epimorphism. For idq ∈ hq(q), there

exists a τ -cover σ ∶ w → q and a section a ∈ hp(w) such that

f ○ a = f∗(a) = σ∗(idq) = σ,

by Corollary A.4.11. Thus, the morphism f is a cover in the saturation of τ .
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(2) The proof of the if implication essentially follows [And17], which corrects a

mistake in the proof of [Voe96, Prop.3.2.5.(i)].

Assume that f ∶ p→ q is universally injective, let z be a (proper) S-scheme,

and let a0, a1 ∈ hp(z) such that f ○ a0 = f∗(a0) = f∗(a1) = f ○ a1. Consider the

commutative solid diagram

z

p ×q p p

p q,

a0

a1

f

f

⌜

λ

of (proper) S-schemes, and let λ ∶ z → p×q p be the unique such morphism that

makes the whole diagram commute. Since f ∶ p→ q is universally injective, the

diagonal morphism ∆
f
∶ p→ p×q p is a surjective closed immersion, by [Sta17,

Tag 01S4]. Let i ∶ z
red

↪ XÐ→ z be the close immersion of the maximal reduced

closed subscheme in z. The morphism i is a τ -cover, as the τ -pretopology is

finer than the closed pretopology. The morphism λ ○ i factories through every

surjective closed immersion of p ×q p, in particular, it factorises through the

diagonal morphism ∆
f
, which implies that

a0 ○ i = a1 ○ i.

Thus, the morphism f∗ ∶ hp → hq is a τ -local monomorphism, by Corollary

A.4.14, and hence the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is a monomorphism of τ -sheaves.

On the other hand, assume that f∗ ∶ haτ
p
→ h

aτ

q
is a monomorphism of

τ -sheaves, and consider the commutative diagram

p

p ×q p p

p q

idp

idp

f

π1

π0 f

∆f

⌜
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of (proper) S-schemes. Recall that both the Yoneda embedding and the

τ -sheafification functor preserve finite limits. In particular, the morphisms

π0,∗ and π1,∗ are base changes of f∗ along itself, and hence they are monomor-

phisms of τ -sheaves. In fact, the morphisms π0,∗ and π1,∗ are isomorphisms of

τ -sheaves, as idp,∗ is an epimorphism of τ -sheaves and the category of τ -sheaves

of sets is a balanced category. Thus, ∆f,∗ is an epimorphism of τ -sheaves, and

hence ∆f is a cover in the saturation of τ , by (1). In particular, ∆f is surjec-

tive, and f is universally injective, by [Sta17, Tag 01S4].

�

Corollary A.4.38. Let τ be a additively-saturated pretopology on the category

of (proper) S-schemes that is finer than the closed pretopology and coarser than the

proper pretopology, and let f ∶ p → q be a morphism of (proper) S-schemes. Then,

the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is an isomorphism only if the morphism f is a universal

homeomorphism.

Proof. Assume that f∗ ∶ haτ
p
→ h

aτ

q
is an isomorphism, then f is a universally

injective cover in the saturation of τ , by Proposition A.4.37. In particular, there exists

a morphism σ′ ∶ p′ → p of (proper) S-schemes such that σ ∶= f ○ σ′ is a τ -cover. Since

τ is coarser than the proper pretopology, the morphism σ is surjective and universally

closed, and hence a universal topological epimorphism7. This implies that f is also a

universal topological epimorphism, and hence every base change in Sch of f is both

an injection and a topological epimorphism. That is the underlying continuous map of

every base change in Sch of f is a monomorphism and an extremal epimorphism in the

category of topological spaces, and hence a homeomorphism, see [Nak89, §.2.6-§.2.9].

Therefore, f is a universal homeomorphism. �

Remark A.4.39. In the sequel, we restrict our attention to additively-saturated pre-

topologies on the category of proper S-schemes that are finer than the cdf -pretopology

and coarser than the proper pretopology.

Example A.4.40. Pretopologies on the category of proper S-schemes that satisfy

the assumptions of Remark A.4.39 include the finite pretopology, the cdf -pretopology,

the proper pretopology, and the cdp-pretopology.

Proposition A.4.41. Let τ be a pretopology on Prop/S as in Remark A.4.39, and

let f ∶ p → q be a morphism of proper S-schemes. Then, the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is

an isomorphism if and only if f is a universal homeomorphism.

Proof. Since the cdf -pretopology is finer than the closed pretopology, the only if

implication is the statement of Corollary A.4.38.

7A (universal) topological epimorphism f is a morphism of schemes for which the underlying
continuous map (of every base change in Sch) of f is a quotient map, see [Voe96, §.3.1].



189

Assume that f is a universal homeomorphism. Then, f is a surjective universally

injective finite morphism, by [Gro65, Prop.2.4.5]. In particular, for every field k, the

induced map

f∗ ∶ Noe
fd(Speck,P) → Noe

fd(Speck,Q)
is an injection, by [Sta17, Tag 01S4], where P and Q are the underlying schemes for

p and q, respectively. Also, since f is of finite type, the map f∗ is surjective for every

algebraically closed field k. However, we need to show that f∗ is surjective for every

field k.

For a field k, let y ∶ Speck → Q be a morphism of schemes, and consider the

Cartesian square

Z P

Speck Q

f f

y

y

⌜

in the category Noe
fd

. The morphism f is a finite universal homeomorphism, and hence Z

is a one-point scheme SpecR and f is induced by a finite ring homomorphism ψ ∶ k ↪ R,

to a local ring R of Krull dimension zero. Let m be the maximal ideal of R, and

let κ ∶= R/m. Then, the induced homomorphism k ↪ κ is a finite field extension.

Assuming that [κ ∶ k] ≠ 1, there exist distinct ring homeomorphisms κ → κ over k,

which contradicts with f being universally injective. Thus, one has [κ ∶ k] = 1, i.e. the

residue field of Z at its unique point is isomorphic to k. Hence, y lifts along f , and f∗

is surjective for every field k. Therefore, f is a cdf -cover that is universally injective,

and hence a universally injective τ -cover. Therefore, the morphism f∗ ∶ h
aτ

p
→ h

aτ

q
is an

isomorphism, by Proposition A.4.37. �

Corollary A.4.42 ([Voe96, Lem.3.2.1]). Let τ be a pretopology on Prop/S as in

Remark A.4.39, and let i ∶ z → p be a surjective closed immersion of proper S-schemes.

Then, the morphism i∗ ∶ haτ
z
→ h

aτ

p
is an isomorphism. In particular, for the closed

immersion of the maximal reduced closed subscheme i ∶ p
red

↪ XÐ→ p, the morphism

i∗ ∶ h
aτ

p
red
→ h

aτ

p
is an isomorphism.
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Birkhäuser Basel, Basel, 2001. DOI:10.1007/978-3-0348-8268-2 19, MR1905328 (2004c:14037). ↑c.p. 88

[DL04] . On some rational generating series occuring in arithmetic geometry. Geometric Aspects
of Dwork Theory Volume I, 509–526. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
MR2099079 (2005h:11267). ↑c.pp. 1 and 88

[Dug01] Dugger, D. Universal homotopy theories. Advances in Mathematics 164 (2001), no. 1, 144–
176. DOI:10.1006/aima.2001.2014, MR1870515 (2002k:18021). ↑c.p. 67

[FP17] Fiore, T. M., and Pieper, M. Waldhausen additivity: Classical and quasicategorical, 2017.
arXiv:1207.6613v3. ↑c.p. 142

[Ful98] Fulton, W. Intersection Theory, 2nd ed. Springer, New York, NY, 1998. xiii+470 pp.
DOI:10.1007/978-1-4612-1700-8, MR1644323 (99d:14003). ↑c.pp. 82, 98, and 99

[GJ09] Goerss, P. G., and Jardine, J. F. Simplicial Homotopy Theory, reprint of the 1999 ed.
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[Gro67] . Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné):
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