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Abstract

In this thesis we introduce the notion of a cdp-functor on the category of proper
schemes over a Noetherian base, and we show that cdp-functors to Waldhausen cate-
gories extend to factors that satisfy the excision property. This allows us to associate
with a cdp-functor an Euler-Poincaré characteristic that sends the class of a proper
scheme to the class of its image. Applying this construction to the Yoneda embed-
ding yields a monoidal proper-fibred Waldhausen category over Noetherian schemes,
with canonical cdp-functors to its fibres. Also, we deduce a motivic measure to the
Grothendieck ring of finitely presented simplicially stable motivic spaces with the

cdh-topology.
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Introduction

A motivic measure is a map from the classes of varieties over a field to a ring that
satisfies the scissors relations (19) and respects products. To each motivic measure
one associates a zeta function, by applying the motivic measure to symmetric powers
of algebraic varieties. For instance, counting points over a finite field gives rise to the
Hasse-Weil zeta function through applying it to symmetric powers, as it was first shown
by Kapranov in [Kap00]. Another example arises from Larsen-Lunts motivic measure
that takes value in the monoid ring of stable birational classes of algebraic varieties over
a field, which has important applications in birational algebraic geometry, see [LLO03]
and [GS14]. The map to the Grothendieck ring of varieties, which is generated by
the isomorphism classes of varieties modulo the scissors relations, provides a universal
motivic measure. There are other important questions in algebraic geometry tackled
through the Grothendieck ring of varieties, see [NS11] and [DL04]. However, this ring
is not fully understood; for instance, the class of the affine line was not shown to be a

zero divisor for a field of characteristic zero until recently, see [Bor15].

More generally, for a category with a set of distinguished sequences (e.g. exact
sequences, cofibre sequences, distinguished triangles), its Grothendieck group is the
group generated by isomorphism classes of objects module splitting the sequences. It
can be though of as a decategorification of the category, with respect to the considered
sequences. For a category with an exact structure, Quillen introduced an algebraic
K-theory, that extends the Grothendieck group, see [Qui73]. That was generalised
by Waldhausen in [Wal85], who defined what is now called a Waldhausen structure,
to which he associated an algebraic K-theory spectrum whose path components group
coincides with its Grothendieck group. Functors that respect these structures induce

maps of spectra, and hence homomorphisms between the Grothendieck groups.

Most Waldhausen categories one is familiar with arise from model structures. A
notion first developed by Quillen in [Qui67], and recently it gained more attention due
to its extensive use in Morel-Voevodsky motivic homotopy theory of schemes.  For
a field of characteristic zero, there exists a surjective motivic measure to the path
components of a Waldhausen spectrum of a subcategory of motivic spaces, due to
Rondigs, see [R6n16]. However, we are not aware of the existence of such measures in
positive characteristic, unless one inverts the Tate sphere.

1



2

The motivation for this thesis is the idea to lift the Hasse-Weil zeta function to
motivic spaces, suggested by Vladimir Guletskii. This can be split into the following

two questions.

(1) Is there a non-trivial motivic measure that takes value in a Waldhausen sub-
category of motivic spaces, over a finite field?
(2) Does the motivic measure of counting points factorise through such a motivic

measure, if it exists?

Regarding the first question, the Yoneda embedding and Kan extensions provide
a functor form the category of schemes, over a Noetherian base, to pointed motivic
spaces. However, sending a smooth scheme to its pointed motivic space does not induce
a motivic measure, as it does not respect the scissors relations. Then, one may consider

altering motivic spaces to induce a functor that gives rise to a motivic measure.

Some motivic measures, like the Hodge measure and the /-adic measure arise from
cohomology theories with proper! support, i.e. they satisfy the excision property, (E).
Such a cohomology theory arises from a plain cohomology theory (that does not satisfy
the excision property), and both versions coincide for proper schemes, over the base.
Then, it becomes natural to ask if motivic spaces are a plain theory, that admits a
properly supported counterpart. This question is not restricted to motivic spaces, and
it can be asked in a greater generality. That is, for a scheme S, when does a weak
monoidal functor F : Prop/S — ¥, from proper S-schemes to a symmetric monoidal
Waldhausen category, define a weak monoidal functor F: Sch” " /S — € that satisfies

the excision property?

On the one hand, when S = Speck, for a field k of characteristic zero, the motivic
measure to the simplicially stable motivic homotopy category, introduced in [R6n16],
relies on a presentation of the Grothendieck group of varieties, in which the generators
are classes of smooth projective varieties and the relations are induced by blow up
squares, recalled in Theorem 3.1.2. On the other hand, the aforementioned cohomology
theories send edp-squares? of proper schemes to (homotopy) pushout squares. That led
us to distinguish functors to a Waldhausen category that satisfy the properties (PS1)-
(PS3), the most relevant of which is sending cdp-squares of proper schemes to pushout
squares, which accounts to independence of compactifications. We call a functor that
satisfies these properties a cdp-functor, and we use Nagata’s Compactification Theorem
to show that such functors give rise to motivic measures. The below theorem is our

main result.

1They are usually called cohomology theories with compact support. However, the term ‘compact’
referees to a notion of smallness that we use, and we prefer to use ‘proper support’ to avoid confusion.
2A generalisation of blow up squares, see Definition A.4.28.
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THEOREM (4.1.32). Let S be a Noetherian scheme of finite Krull dimension, and let
F: (Prop/S,x,S) = (€¢,A,1) be a weak monoidal cdp-functor to a symmetric monoidal
Waldhausen category. Then, there exists a functor

ft Prop

F©: (Schomn/S,%,S) = (€,A,1),

open

prop . )
where Scﬁopen/S 1s the category of separated schemes of finite type over S whose mor-
phisms are finite compositions of proper morphisms and formal inverses of open im-

mersions, such that

e there exists a natural isomorphism ¢ : F = Fli .
rop,
o F° satisfies the excision property, i.e. for every closed immersion i: v <> x

mn SCﬁ/S with complementary open immersion j : u <> x, the sequence
i !
FC(v) —> F(z) - F°(u).

is a cofibre sequence in €; and

o ['° is weak monoidal, i.e. there exist natural transformations
¢ F°AF° - F°(x) and ¢g:1 - F(S)

that satisfy the associativity and unitality azioms, whose components are weak

equivalences in € .

Therefore, there exists a motivic measure
ft
pr :Ko(Sch/S) — Ko(6),
that sends the class of a proper S-scheme x to the class of F(x).

The (pointed) Yoneda embedding is not a edp-functor. Therefore, we provide a brief
account of how to associate a motivic measures to functors that are not a cdp-functor.
In particular, in §.4.2.2, we apply the above theorem to a properly supported version
of the Yoneda embedding, and we obtain motivic spaces with proper support, with the

cdh-topology.

Regarding question 2, we distinguish a Quillen adjunction that counts points for
A'-rigid schemes, which we expect to factorise the classical motivic measure of counting

points.

It became expected that a Grothendieck group of a category is a shadow of a richer
structure, a K-theory, that encodes deeper information about the category one started
with. However, the category of varieties does not admit a Waldhausen structure, due
to the lack of enough cokernels. Recently, Zakharevich introduced, in [Zak17], the
notion of an assembler, and used it to define a spectrum whose path components coin-
cide with the Grothendieck group of varieties. Then, Campbell defined a variation of a

Waldhausen structure, called a semi-Waldhausen structure, on the category varieties,
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in which closed immersions play the role of cofibrations, resulting in an F-ring spec-
trum with the same property, see [Cam17|. Applying Theorem 4.1.32 to the properly
supported Yoneda embedding in §.4.2, we recover a spectrum that we expect its path
components to be isomorphic to the modified Grothendieck ring of varieties. In fact,
such spectrum arises from a fibre of a monoidal proper-fibred Waldhausen category

over Noetherian schemes.

0.1. Thesis Outline

The thesis consists of an introduction, four chapters, and an appendix. The first
three chapters review known materials that are needed for our constructions; whereas,

in Chapter 4, we present our constructions and results.

The development of motivic homotopy theory depends on the well-established the-
ory of model categories and their localisations. Therefore, we devote Chapter 1 to
review the main notions of homotopy categories, needed to work in the realm of mo-
tivic homotopy theory. It starts with the notion of localisation of categories and the
general theory of model categories. In particular, we focus on certain types of model
structures that are particularly relevant to motivic homotopy theory, namely proper,
cellular, simplicial and monoidal model structures. Then, we move to the central notion
of localisation of model categories, especially Bousfield localisation. Since we need to
consider stable homotopy categories, we recall stabilisation using symmetric spectra,
followed by a brief account of triangulated categories. Finally, we conclude the chapter

with a review of algebraic K-theory.

In Chapter 2, we review motivic homotopy theory and geometric motives. We
began by recalling the standard model structures of simplicial (pre)sheaves. Then,
we review the motivic spaces, motivic spectra, and motivic complexes. we recall the
main constructions of motivic spaces (spectra) and complexes, and recall some of the

relations between them.

Chapter 3 is concerned mainly with the motivic measure of counting points over a
finite field. We also recall with some details how this motivic measure lifts to effective

Chow motives.

Chapter 4 begins with a section on compactifications, needed to extend cdp-functors.
Afterwards, we prove the existence of properly supported extensions for cdp-functors.
We provide a brief outline how to compactify functors that are not cdp-functors, which is
applied to the Yoneda embedding to obtain a monoidal proper-fibred Waldhausen cate-
gory over Noetherian schemes, with canonical cdp-functors to its fibres. Then, we apply

this constriction to obtain properly supported motivic spaces, with the cdh-topology.
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This is followed by calculations to examine a candidate for a functor to realise the

motivic measure of counting points on the motivic homotopy categories.

The thesis assumes the reader’s familiarity with basics of category theory, as in
[ML98]. Yet, in the Appendix A, we briefly recall the main categorical notions used

in the thesis.

0.2. Conventions and Notations

Throughout this thesis, all schemes are assumed to be separated over the ring of
integers, and hence all morphisms of schemes in this thesis are separated. We denote
the category of schemes and their morphisms by Sch. For a scheme S, let

o Sch /S denote the category of schemes of finite type over S;
Var/S denote the full subcategory in Sch /S of reduced S-schemes;
Sm/S denote the full subcategory in Scﬁ/ S of smooth S-schemes;
Prop/S denote the full subcategory in Sch /S of proper S-schemes;

Proj/S denote the full subcategory in Scﬁ/ S of projective S-schemes;
SmProp/S denote the intersection of Sm/S and Prop/S; and
e SmProj/S denote the intersection of Sm/S and Proj/S.

Since we do not use the category Sch/S of all schemes over S, we abuse notation and
refer to an object in SCﬁ/S by an S-scheme. Also, an object in Var/S is called an
S-variety.

For a subcategory ¥ in Sch /S and for sets & and .# of morphisms in Sch /S that
are closed under composition and contain isomorphisms of S-schemes, we denote the
subcategory in Sch /S whose objects belong to Ob(%) and whose morphisms belong
to P by €7, whereas the category (%’] )°P is denoted by € s. Also, we denote the
subcategory in Sch /S whose objects belong to Ob(%¢) and whose morphisms are finite

compositions of morphisms in & and formal inverses of morphisms in .# by ‘@@ .

Also, we let No€ denote the full subcategory in Sch of Noetherian schemes of finite

Krull dimensions.



CHAPTER 1

Homotopy Theory

Many notions in mathematics are invariant with respect to a set of morphisms
between the studied objects. In such situations, the homotopy category with respect
to those morphisms becomes the category of main interest, as a natural framework to
consider such notions. For instance, most invariants of algebraic topology are invari-
ant with respect to homotopy equivalences, which makes topological homotopy types

natural objects to study.

Usually it is difficult to study a homotopy category H directly, and one uses a
presentation of H by a pair of a category € and a set S of its morphisms. That is H is
a localisation of € with respect to S, which presents H as a ‘minimal’ category under
% in which morphisms of S are inverted. However, it is important to emphasise that a
homotopy theory is concerned with a homotopy category rather than its presentations.
In some occasions, different presentations of a homotopy category may possess technical
advantages over the others, and one may consider those more suitable for the given
occasion. Also, one usually favours presentations with additional technical sets of
morphisms, e.g. fibrations or cofibrations, which allow for a simpler description of the

homotopy category, and provide tools to work with homotopy (co)limits.

We commence this chapter with a review of localisation of categories, explaining
the difficulties one may encounter with localisation. Then, following Quillen, we re-
view model categories, which provide a convenient framework to do homotopy theory,

avoiding the technical difficulties that arise with localisation in general.

Some homotopy categories admit a rich structure, providing technical advantages
to work with. To that end, we provide a brief account on stable homotopy categories of
symmetric spectra, in §.1.3, and on triangulated categories, in §.1.4. Then, we conclude

this chapter with algebraic K-theory.

1.1. Localisation of Categories

The notion of localisation of categories generalises localisation of rings, modules,
and topological spaces, in that it ‘universally’ inverts a set of morphisms in a given

category.
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DEFINITION 1.1.1. Let € be a category, and let S be a set of morphisms in €. A
functor F': € — Z is said to be S-local if it sends morphisms in S to isomorphisms in
2. An S-local functor Lg : € — Hsg% is a localisation of € with respect to S if

(1) for every S-local functor F': € — 2 there exists a functor G : Hgé - 2 and
a natural isomorphism ¢ : GgpoLg = F'; and
(2) the functor

LS :Fun(Hs€,2) - Fun(¥, 2),

given by precomposition with Lg, is fully faithful for every category Z.

At first encounter, the definition above may not reflect its intended universality.
It is formulated so that a localisation is unique up to equivalences of categories, if it
exists, see [KS06, Prop.7.1.2]. Hence, by a homotopy category, one may referee to such
a category up to equivalences of categories. However, in our view, a notion deserves to
be called universal if it can be viewed as a universal morphism. To that end, we devote
the following paragraphs, where we use subdivision categories to recognise the property
of being S-local in terms of the existence of certain strong 2-commutative squares, as in
Lemma 1.1.2, which are used to realise a localisation of a large category as a 2-universal
1-morphism, as in Lemma 1.1.3. Readers comfortable with the definition above, and

not interested in such formalities, may skip to §.1.1.1.

We begin by recalling the notion of a subdivision category, as in [ML98, p.224].
For a category €, its subdivision category €% is given by
e the set 0b(%?) := 0b(%) LIMor(%); and
o for each X,Y € 0b(%*), the set of morphisms
* if X =Y,
ENX,Y)={% ifY eMor(%),X €0b(%) and either domY = X or codomY = X;
@ otherwise;
with the canonical composition and identity morphisms, where * and @ are a singleton
and an empty set in the fixed universe, respectively, see §.A.1. When % is a (locally)
small category, so is €. For every morphism f € Mor (%), denote the unique morphisms
dom f - f and codom f — f in €% by a ¢ and [y, respectively. There exists canonical
functors m: €% - € and m: €% — €°P given on objects of €% by

7(C)=C , 7(f)=codom(f)  and T(C)=C | 7 (f)=dom(f)°,
and on the non-identity morphisms of €% by
; (Ckf) = f 9 77— (5f) = idcodomf and % (th) = iddom(}p 9 % (/Bf) = fop’

for every C' € Ob(%) and f € Mor(%).
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LEMMA 1.1.2. Let F': € — 2 be a functor between large categories, let S be a set
of morphisms in ¢, and let iy : ¥/ = € be the subcategory in ¢ generated by S. Then,

F'is S-local if and only if there exists a strong 2-commutative square

y§ iSo; cg
Sqp: T /e“/ F

ISP ——9
J

in CATy, i.e. if there exists a functor j : °P —» 2 and a natural isomorphism e :

. - . <«
Foigom= jom.

PrROOF. Assuming that F' is S-local, the existence of the strong 2-commutative

square Sq, is evident, where the functor j is given by
JXP)=F(X)  and  j(s) = F(s)"
for X°P € Ob(7°P) and s°® in .#°P| whereas the natural isomorphism e is given by
ex =idp(x) and es = F(sf1

for every X € Ob(.¥) and s € Mor(.¥).

On the other hand, assume that the strong 2-commutative square Sq,, exists. Then,
the natural isomorphism e induces a commutative diagram

-1

F(X) 25 j(X°P) 2> F(X)

oo H |r
-1

F(Y) —“> j(XP) ——>F(Y)

| e ]

F(Y) —= j(YP) —= F(YV)

Y
in 2 whose composite horizontal morphisms are identities, for every morphism s: X —
Y in .#. Which implies that F(s) is an isomorphism with an inverse e3! o j(s°P) o ey,

for every morphism s: X — Y in .. Hence, F is S-local. O

Let CAT5™"* denote the strict 2-category of strict 2-functors from the span category
e—e—e t0 CAT2 (i.e. spans of large categories), their pseudo-natural transformations, and
modifications of the latter, see §.A.2.1.2, and let A : CATy — CAT5™""° denote the
evident constant strict 2-functor. Then, a functor F' : ¥ - & between large categories

is S-local, i.e. fits into a strong 2-commutative square Sq,, if and only if it fits into a

1-morphism ((H,G, F), (¢,v)) from the span 7P < 78 5 @ to A(2) in CATS™".

To ease the notation, when v = ¢ = id Foi on W€ denote such a 1-morphism by F.
(o] SO
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LEMMA 1.1.3. Let € be a large category, and let .S be a set of morphisms in %.
Then, an S-local functor Lg: % — Hg% between large categories is a localisation of

¢ with respect to S if and only if Lg is a strict 2-universal 1-morphism from the

P

)

p 3 o?
span ¥ «— % 2, & to the constant strict 2-functor A : CAT, — CAT5™™*, where
iy 1/ = € is the subcategory in € generated by S.

PROOF. For a large category 2, one has Mapcar,(Hs%,2) = Fun(Hs%,2). Then,

T 1o 0T
Definition A.2.7 implies that Lg is a strict 2-universal 1-morphism from .#°P L8 s
to the strict 2-functor A : CATy — CAT5"7* if and only if the induced functor

Ly : Fun(Hs€, 7) —> Mapgary—+- (yop T A A(@)) ,

given by Lg(G) = GoLg, is an equivalence of categories for every large category .
Given the axiom of choice, that is equivalent to Ly being essentially surjective and fully
faithful.

Since a functor € — 2 is S-local if and only if it fits into a 1-morphism from the

pa ioom
span P <— 78 55 ¢ to A(Z) in CAT; "7, the essential surjectivity of Lg for every
large category & is equivalent to Definition 1.1.1.(1).

On the other hand, L is fully faithful if and only if the precomposition with the

natural isomorphism id; induces a bijection of sets
(LY)g.p : Fun(Hs€,2)(G, H) = Mapcars-s-- (yop P2 R A(_@)) (GLs,HLg)

~Fun(¥¢,2)(GLs,HLg)

for every large category 2 and for every pair of functors G, H : Hg% — %. That, in
turn, is equivalent to Definition 1.1.1.(2). O

The lemma above means in particular that a localisation Lg fits into a strict

pas ijorm
2-pushout square of the span .#°P < 78 55 & in the strict 2-category CATs.

1.1.1. Properties of Localisations. For every category ¥ and a set S of its
morphisms, there exists a localisation Lg:% - Hg%, in which Hg% is the (a priori
big) category ‘5[5’-1] of fractions of ¥ with respect to S. The set of objects of ‘5[5—1]
equals the set of objects of €, whereas its morphisms are equivalence classes of zigzags of
morphisms in € with the components directed backwards being elements in S, modulo

the evident equivalence relations, see [GZ67, §.1.1.1].

The construction of the category of fractions has some disadvantages, mainly due to
the ‘size’ of its hom-sets and to the nature of its morphisms. First, the category (5[5'_1]

is not necessarily locally small even when % is, which restricts possible constructions
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on ‘K[S_l], including the hom-bifunctor. Also, morphisms of the category of fractions

are rather formal and hard to work with, compared to those of &.

Some of the difficulties one encounters with the category of fractions can be reme-
died when the localisation is reflective, as in Definition 1.1.4, or when the presenting
category admits an additional structure making the homotopy category more acces-
sible, like left or right calculus of fractions, or a model structure. In the rest of this
section, we briefly recall reflective localisations, and we devote the next section for the

study of model structures and their localisations.

DEFINITION 1.1.4. Let % be a category, let S be a set of morphisms in %, and let
Lg: % — Hg% be a localisation of ¥ with respect to S. If Lg admits a fully faithful
right adjoint Ug, the localisation Lg is said to be reflective.

DEFINITION 1.1.5. Let 4 be a category, let S be a set of morphisms in ¢, and let
Lg: % — Hg% be a localisation of ¥ with respect to S. An object Z € % is said to
be S-local if the induced map

ey, Z2)->%¢(X,2)

is a bijection of sets for every morphism f: X — Y in S, i.e. if the representable functor

hz factorises through L.

REMARK 1.1.6. When the localisation Lg is reflective, with a reflector Ug, the
adjunction Lg 4 Ug implies that Ug(X) is an S-local for every X € Hg%. Also, the
Yoneda lemma implies that a morphism Lg(f) is an isomorphism in Hg% if and only
if the induced map

ey, 2)->%¢(X,%2)
is a bijection for every S-local object Z in €. Therefore, a reflective homotopy category
Hs% is equivalent to the full subcategory of S-local objects in %, which makes a re-

flective homotopy category more accessible, compared to a general homotopy category.

1.2. Model Categories

Model structures were first developed by Quillen in [Qui67] as a framework to
study homotopy theories. The existence of a model structure on a presentation of
a homotopy category addresses some of the issues arising in localisation in general,
and makes the homotopy category more accessible, through realising it using a better

understood quotient category, as in Theorem 1.2.15.

In this section, we recall the basic notions and properties of model categories,
distinguishing special types of model structures that are of a special importance in
motivic homotopy theory, namely left proper, cellular, and simplicial model structures.

Then, we follow by a brief account on left Bousfield localisation.
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1.2.1. Basics of Model Categories. The development of model structures is
motivated by the homotopy theory of (topological and simplicial) spaces, and hence it

relays on generalisations of familiar techniques in topology, which are recalled below.

DEFINITION 1.2.1. Let € be a category, and let f and g be morphisms in 4. The
morphism f is said to be a retract of g if there exist commutative squares D : f — g,

and R:g — f in € such that Ro D =ids in Mor(%), i.e.

ldX

X—>X'—>X — X

Lo b e ]

Yy —Y ——Y Y —Y.
dy 1 idy

DEFINITION 1.2.2. Let € be a category, and let ¢ : U - V and p: X - Y be
morphisms in 4. The morphism i is said to have the left lifting property (LLP) with
respect to p, and p is said to have the right lifting property (RLP) with respect to i, if

for every solid commutative square

U—o x
4
j ,
V- — Y
in ¥, there exists a dotted lift h: V' — X, not necessarily unique, that makes the whole
diagram commute. A morphism f is said to have the LLP (resp. RLP) with respect

to a set I of morphisms in % if it has the LLP (resp. RLP) with respect to every

morphism in I.

EXAMPLE 1.2.3. Let 4 be a category. Every morphism in % have both the RLP
and LLP with respect to the set of isomorphisms in €.

Sets of morphisms defined using the left and right lifting properties are fundamental
in the study of model structures. For a set of morphisms I in %, a morphism in % is
called an I-projective (resp. I-injective) if it has the LLP (resp. RLP) with respect to 1.
The set of I-projective (resp. I-injective) morphisms in % is denoted by I-proj (resp.
I-inj). Then, a morphism in ¥ is called an I-cofibration (resp. I-fibration) if it has
the LLP (resp. RLP) with respect to I-inj (resp. I-proj). The set of I-cofibrations
(resp. I-fibrations) is denoted by I-cof (resp. I-fib).

The sets I-proj and I-inj are closed under retracts and compositions, and they
contain all isomorphisms of &. Also, the set I-proj is closed under pushouts, whereas

I-inj is closed under pullbacks.

Hovey’s definition of model categories, presented in [Hov99], is more restrictive
than the original definition due to Quillen [Qui67], as it requires the existence of

functorial factorisations, recalled below.
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DEFINITION 1.2.4. Let € be a category. A functorial factorisation (c,3) in € is a

pair of functors
a, 5 : Mor(€) — Mor(%)

that form a factorisation system, i.e. for every morphism f: X — Y in %, we have a

commutative diagram

f
~.

a(f) = Z 7 B
in ¢, for Z =domfB(f) = codoma(f). Alternatively, the functorial factorisation («, )

can be given by a functor

X Y

(a,): 6% - €3.

REMARK 1.2.5. The three notions of factorisation, lifting, and retract are interac-
tively connected, and this might be best shown through the retract argument and its

consequences.

LEMMA 1.2.6 (The Retract Argument). Let 4" be a category, and assume that a

morphism f: X — Z factorises in € as

If f has the RLP with respect to ¢, then it is a retract of p. Dually, if f has the LLP

with respect to p, then it is a retract of 7.
PROOF. See [Hov99, Lem.1.1.9]. O

DEFINITION 1.2.7. Let ¥ be a category, let C, F' and W be sets of morphisms in
¢, and let («,) and (7,0) be functorial factorisations in 4. The quintuple .Z =
(C, F, W, (a,B), (7,5)) is called a model structure on € if

CM1 % is bicomplete;

CM2 (Two-out-of-three) morphisms in W satisfy the two-out-of-three property, i.e.
for composable morphisms f and ¢ in €, if two of the morphisms f,g, and
go f belong to W, then so does the third;

CM3 (Stability under retract) the sets C, F, and W are closed under retracts;

CM4 (Lifting) morphisms in C have the LLP with respect to F' N W, and morphisms
in CNW have the LLP with respect to F'; and

CMS5 (Factorisation) for every morphism f: X — Y in %, one has

a) f(f)e FNW, and a(f) € C; and
b) 6(f) e F,and v(f) e CNW.

Then, the pair (¢,.#) is called a model category, and the sets C, F,\W,C W and
FNW are called the sets of cofibrations, fibrations, weak equivalences, weak cofibra-

tions, and weak fibrations, respectively, in .#. More generally, a presentation (%, .S)
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of a homotopy category is called a category with weak equivalences if S contains all

isomorphisms of % and satisfies the two-out-of-three property.

A bicomplete category may admit different model structures, see §.2.1.2 for a dis-
cussion on different model structures on the category of simplicial presheaves on an

essentially small site.

Model structures are used to be called closed model structures, that is to refer to
the relations among the axioms in Definition 1.2.7. For instance, the set of cofibrations
(resp. weak cofibrations) is precisely the set of morphisms with the LLP with respect to
weak fibrations (resp. fibrations); whereas the set of fibrations (resp. weak fibrations)
is precisely the set of morphisms with the RLP with respect to weak cofibrations (resp.
cofibrations), see [Hov99, Lem.1.1.10]. In the presence of the two-out-of-three and
factorisation axioms, we see that any two of the sets C, I, and W, in a model structure,
determine the third. In fact, the retract axiom can be replaced by the requirement that
any two of the sets C, F, and W determine the third, as in [GMO03, Ch.V, §1.4, p293].

For a model category (€,.#'), cofibrations, weak cofibrations, fibrations, and weak
fibrations form subcategories in %, each of which contains all isomorphisms of %
and is closed under retracts. Also, cofibrations and weak cofibrations are closed un-
der pushouts. Dually, fibrations and weak fibrations are closed under pullbacks, see
[Hov99, Cor.1.1.11].

ExaMPLE 1.2.8. There exist model structures on the category of topological spaces

Top, with weak equivalences, cofibrations, and fibrations given by

e weak homotopy equivalences, LLP with respect to weak Serre fibrations, and
Serre fibrations, respectively; it is called the classical model structure or the
Quillen-Serre model structure on Top, see [Qui67, §.11.3.Th.1]; and

e homotopy equivalences, closed Hurewicz cofibrations, and Hurewicz fibrations,

respectively, called the Hurewicz-Strom model structure, see [Str72, Th.3].

ExXAMPLE 1.2.9. Let (¢,.#) be a model category, and let U,Y € . Then, the
faithful (but not full) forgetful functors U | % - €, €1Y - €, and U] €Y - €
induce canonical model structures U | #, .# |Y, and U | .# | Y on the bicomplete
categories U | €, € 1Y, and U | € |Y, respectively. The cofibrations, fibrations, and
weak equivalences in theses canonical model structures are morphisms whose images
are cofibrations, fibrations, and weak equivalences, respectively. The forgetful functor
U | € — € admits a left adjoint given by coproduct with U, whereas ¢ |Y — € admits
a right adjoint given by product with Y.

The category * | % is pointed, and the model structure * | .# satisfies several desired
properties that do not always hold for .#. The category *|% is usually denoted by %,
and the left adjoint (=[] *, *) : € — @, is denoted by —,.
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1.2.1.1. The Homotopy Category of a Model Category. A model category is a par-
ticular presentation of a homotopy category, with an extra structure that enables us
to realise the homotopy category through a better understood quotient category with
respect to a congruence relation induced from the model structure. Hence, model cat-
egories provide useful tools to deal with and understand homotopy theories. In fact,
when Quillen introduced the notion of a model category in [Qui67], it was called “a

category of model for homotopy theory”.

The homotopy category of a model category (¢,.#) is defined to be a localisation
Ly:% - Hy% of € with respect to the set of weak equivalences in .#. Hence,
different model structures with the same set of weak equivalences present equivalent

homotopy categories.

One defines homotopy relations in a model category in an analogous manner to
topological spaces. One starts by axiomatising the cylinder and path spaces, resulting
in the cylinder and path objects, and use the latter to define left and right homotopies,

respectively.

For a space V, since idy is left homotopic to itself, the canonical maps ig,i1: V —
V x I and the universal property of coproducts produce a factorisation pry o (ig [I1)

of the fold map Vy : V[V — V| illustrated by the commutative diagram
VIV

/0 U“\
Y

V —io—=V x [ <<i1— V.
pll

P
Recall that the projection V x [ SV ois a weak equivalence. Moreover, when we
restrict ourselves to the category CGHaus of compactly generated Hausdorff spaces,
we find that the map ig [ 41 is a Hurewicz cofibration, which gives rise to the following

definition.

DEFINITION 1.2.10. Let (€,.#) be a model category, and let V, X € €.
o A cylinder object for V is a factorisation of the fold morphism Vv : V][V -V

C: viv 2Bl eyiv) 2o v

where po is a weak equivalence in ., and ig,i1 : V — Cyl(V') are morphisms
in & for which 79 ][4 is a cofibration in ..
e A path object for X is a factorisation of the diagonal morphism Ax : X - X xX

Poxp1

P: X 7 path(X) P X« X |
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where ip is a weak equivalence in .#, and pg, p; : Path(X) — X are morphisms

in € for which pg x p1 is a fibration in ./Z.

REMARK 1.2.11. The functorial factorisations in a model category provide canonical
functorial cylinder and path objects. In fact, it is sufficient to consider homotopies
defined using these canonical cylinder and path objects, see [Hir03, Prop.7.3.4]. Denote
the canonical cylinder object for V' € € that is induced by the functorial factorisation
(o, B), applied to the fold map Vy, by

Cy viv e e (v) v,

and the canonical path object for X € ¥ that is induced by the functorial factorisation
(7,0), applied to the diagonal map Ay, by
Py X o path ,(X) 2P X x X .
DEFINITION 1.2.12. Let (¢,.#) be a model category, and let fo, f1 : V - X be

morphisms in %.

e A left homotopy from fy to fi is a pair (C, H;), where C' is a cylinder object
for V and H; : Cyl(V) - X is a morphism in ¢ for which fo = H; oy and
f1=Hjoiq, i.e. that makes the following diagram

Ve cyl(V) <AV

commute; if there exists a left homotopy (C, H;) from fy to f1, we say that f
is left homotopic to fi, and we write fy 4 f1-

e A right homotopy from fy to f1 is a pair (P, H,), where P is a path object
for X and H, : V — Path(X) is a morphism in ¢ for which fy = pg o H, and
f1=p10 H,, i.e. that makes the following diagram

R

X < Path(X) —= X
b1 po

commute; if there exists a right homotopy (P, H,) from fy to fi, we say that
fo is right homotopic to f1, and we write fy ~ f1;

e if fy is both left and right homotopic to f;, then we say that fy is homotopic
to f1, and we write fo~ f1; and

e a morphism f:V — X in % is called a homotopy equivalence if there exists a

morphism g : X - V such that fg ~idx and gf ~idy.

For topological spaces, the cylinder functor —x I is a left adjoint to the path functor

~! which allows for the interchange between right and left topological homotopies.
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Also, it explains the terminology of left and right homotopies, where the left homotopy
is the one defined by the left adjoint cylinder functor. However, even the ‘nicest’ cylinder
functor Cyl ,(-) and path functor Path 4 (-), induced by the functorial factorisations
of a model structure .#, do not have to be adjoint, and one needs to distinguish between

left and right homotopies.

In a general model category, neither the left nor the right homotopy defines equiva-
lence relations on hom-sets. In particular, such relations are not necessarily symmetric,
as in Kan-Quillen’s model structure on simplicial sets, see [GJ09, §.1.6]. However,
that can be remedied through restricting attention to the subcategory of fibrant and
cofibrant objects. For a model category (¢,.# ), an object V € € is said to be cofibrant
if the unique morphism @ — V' is a cofibration in .#, and an object X € % is said to
be fibrant if the unique morphism X — * is a fibration in .# . The full subcategories
e, 6, and 6.5 of cofibrant, fibrant, and cofibrant-fibrant objects, respectively, play an
essential role in realising the homotopy category of (¢,.#).

A model structure .# on a category ¢ induces model structures .#., #; and ..y
on the bicomplete categories 6., ¢, and 6.r, respectively, in which a morphism is a
cofibration, a fibration, or a weak equivalence, if and only if it is mapped by the inclusion
functor to a cofibration, a fibration, or a weak equivalence, respectively. Whereas, the

functorial factorisations are given by the restriction of the functorial factorisations of

M .

PROPOSITION 1.2.13. Let (%, .#) be a model category. Then, left and right homo-
topies between cofibrant-fibrant objects in (%,.#) coincide. Moreover, the homotopy

relation is a congruence relation on the category %, of cofibrant-fibrant objects.
PROOF. See [Hov99, Cor.1.2.6 and Cor.1.2.7]. O

PROPOSITION 1.2.14. Let (¢,.#) be a model category, and let f be a morphism
between cofibrant-fibrant objects in . Then, f is a weak equivalence in ./ if and only

if it is a homotopy equivalence.
PROOF. See [Hov99, Prop.1.2.8]. O

THEOREM 1.2.15. Let (¢,.#) be a model category and let Q : 6.y - 7%.; be the
quotient functor of ¢y with respect to the homotopy congruence relation. Then, there

exists an equivalence of categories 76, ; - HC.;.

PROOF. See [Hov99, Cor.1.2.9]. O

Since the inclusion functors induce equivalences of categories
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by [Hov99, Prop.1.2.3], the categories H% and 7%,y are equivalent. In particular, when
% 1is locally small there exists a locally small homotopy category of ¥ with respect to

the weak equivalences of .#, namely 7.

Cofibrant and Fibrant Replacements. Proposition 1.2.14 and Theorem 1.2.15 illus-
trate the importance of the cofibrant and fibrant objects in a model category. The
functorial factorisations of a model category provide a machinery to functorially ‘ap-
proximate’ its objects by cofibrant or fibrant objects, where ‘approximate’ means re-
placing objects by weakly equivalent ones, and hence by isomorphic objects in the

homotopy category.

DEFINITION 1.2.16. Let (%,.#) be a model category. Define a functor Q : ¢ — 6,

that sends each morphism 7: U - V in € to the morphism

U : 1% U : 1%
Q(i) = codomyors T ] = domyors 3 ] T
g—>g (%) 6]

in é,. Since («, () is a functorial factorisation in .Z, the assignment above gives a

well-defined functor Q). It is called the cofibrant replacement functor of A .
For every object V € €, the morphism 8(@ — V) : Q(V) —» V is a weak fibration.

DEFINITION 1.2.17. Let (%, .#) be a model category. Define a functor R: % — €
that sends each morphism p: X - Y in % to the morphism

p p

Y X
l = domyore 6 j
* *

X
R(p) = codomyors ¥ l
*

_ >

in €r. The functor R is called the fibrant replacement functor of .4 .

For every object X € €, the morphism v(X — %) : X - R(X) is a weak cofibration.

The two-out-of-three property shows that both the cofibrant and fibrant replace-
ment functors preserve weak equivalences, which is essential for Definition 1.2.24 of

total derived functors.

REMARK 1.2.18. A model category may admit different cofibrant and fibrant ap-
proximations, see [Hir03, §.14.6]. For instance, in left localisations of model categories,
it is desired to have a cofibrant approximation that maps arbitrary morphisms to cofi-
brations between cofibrant objects, which may be called cofibration cofibrant approxi-
mation. The cofibrant replacement functor ) given in Definition 1.2.16 does not satisfy

this property. However, an evident iteration of ) does.
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1.2.1.2. Quillen Functors. Although morphisms of a mathematical structure are
usually defined to be those preserving that structure, considering only functors pre-
serving the whole model structure is too restrictive, because it excludes motivating
examples of particular interests in the classical homotopy theory, like the identity func-
tor from the Quillen-Serre model category Topgg to the Hurewicz-Strom model category
Topyg. Since one is interested in the homotopy categories rather than their presenta-
tions, one considers functors between the presenting model categories that canonically
induce total derived functors between the homotopy categories. The widely-adopted
notion of a morphism of model categories is what is now called a Quillen adjunction.
It preserves enough aspects of the model structures so that it both induces canoni-
cal adjunction between the homotopy categories and cover the functors one usually is

interested in.

DEFINITION 1.2.19. Let (¢, .#) and (2,.4") be model categories.
o A functor F': ¥ — 2 is called a left Quillen functor if it is a left adjoint and
preserves cofibrations and weak cofibrations.
e A functor G : ¥ — € is called a right Quillen functor if it is a right adjoint

and preserves fibrations and weak fibrations.

Given an adjunction F': € 2 % : G, the functor F' is a left Quillen functor if and
only if G is a right Quillen functor, see [Hov99, Lem.1.2.3]. Such an adjunction is

called a Quillen adjunction.

ExXAMPLE 1.2.20. The adjunction
|| : sSetkq 2 Topgg : Sing

of the geometric realisation and the singular functor, recalled in §.1.2.4.1, is a Quillen
adjunction between Kan-Quillen’s model structure on simplicial sets and Quillen-Serre’s

model structure on topological spaces, see [Hov99, Th.3.6.7 and Th.2.4.23].

ExXAMPLE 1.2.21. For a model category (%¢,.#) and for an object U € ¢, the left
adjoint functor —[[U : € — U | % is a left Quillen functor with respect to the model
structure U | 4, as in Example 1.2.9. Particularly, the adjoining base point functor
-, is a left Quillen functor. Moreover, a Quillen adjunction F : (¢,.#) 2 (2,./) :
G induces a Quillen adjunction Fy : (G, #e) 2 (Ze, Ne) : Go, with Fo(X,) being
canonically isomorphic to F(X), for every X € €, see [Hov99, Prop.1.3.5].

Although Quillen functors are not required to preserve all weak equivalences, Ken
Brown’s Lemma 1.2.22 implies that they preserve just enough weak equivalences to

induce adjoint functors between the homotopy categories.

LEMMA 1.2.22 (Ken Brown’s Lemma). Let (%, .#) be a model category, let (2, W)

be a category with weak equivalences, and let F': € - & be a functor. If I’ sends weak
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cofibrations between cofibrant objects to weak equivalences, then it sends all weak
equivalences between cofibrant objects to weak equivalences. Dually, if F' sends weak
fibrations between fibrant objects to weak equivalences, then it sends all weak equiva-

lences between fibrant objects to weak equivalences.
PROOF. See [Hov99, Lem.1.1.12]. O

COROLLARY 1.2.23. Let F': (¢,.#) 2 (Z,./) : G be a Quillen adjunction. Then,
F preserves all weak equivalences between cofibrant objects, and G preserve all weak

equivalences between fibrant objects.

Therefore, the restrictions
Flg, 6.~ 2 and Glg, : 9y > €

preserve all weak equivalences. Hence, they induce well-defined functors between the

homotopy categories
HF\|g, - HC. > HD and ’HG|_@f tHDp — HE.

These functors, in addition to the cofibrant and fibrant replacements, give rise to an

adjunction HE s HZ between the homotopy categories.

DEFINITION 1.2.24. Let F': (¢, #) s (2,.4") : G be a Quillen adjunction.
e The total left derived functor LF : HE — HZ is the composition

HQ HF

HE HE, HD

where @ is the cofibrant replacement of .#, as in Definition 1.2.16.
e The total right derived functor RG : HY — HE is the composition

HR HG

HD HE

o

where R is the fibrant replacement of .4, as in Definition 1.2.17.

This definition is the main reason to require the factorisation to be fixed for a model
structure, and for it to be functorial, see [Hov99, §.1.3.2]. In fact, one obtains derived
functors for every Quillen adjunction and for every choice of cofibrant and fibrant
approximation functors. That is particularly useful when the functorial factorisations
are given by the small object argument for some large cardinality, as it is the case of
the local model structures of simplicial presheaves, see §.2.1. In which cases, one looks

for more nicely behaved cofibrant and fibrant approximation functors.

ExaMpPLE 1.2.25. The Quillen adjunction of the geometric realisation and the sin-
gular functor, recalled in §.1.2.4.1, induces an equivalence of homotopy categories
L|-|: HsSetkq 2 HTopgg : RSing,
see [Hov99, Th.3.6.7 and Th.2.4.23].
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More generally, a Quillen adjunction F': (¢,.#) 2 (2,.4") : G is called a Quillen
equivalence if the total derived functors L F' and RG are adjoint equivalences of cate-
gories, see [Hov99, §.1.3.3].

1.2.2. Cellular Model Categories. The localisation of a model structure, as in
Definition 1.2.62, possesses some technical challenges, mainly in terms of the existence
of the functorial factorisations for the localised structure. Such challenges may be over-
come when the original model structure is cellular, which is roughly a model structure
that both satisfies some relative smallness conditions and contains a large enough set
of cofibrations that behave like inclusions of sets, see Definition 1.2.40. The Bousfield-
Smith cardinality argument, recalled in Theorem 1.2.67, uses a bounded version of the
small object argument which relies on the aforementioned properties of a cellular model

structure to establish the functorial factorisations for the localised model structure.

Before recalling cellular model structures, one needs to be familiar with the notion
of (presented) relative cell complexes, some relative smallness notions, and the small
object argument. In fact, relative cell complexes and relative smallness are formulated
to express the small object argument. Hence, readers looking for motivations for the
following constructions are encouraged to skim the small object argument, in §.1.2.2.3,

before proceeding from here.

1.2.2.1. Relative I-cell Complexes. Let € be a cocomplete category, and let A be
an ordinal. A A-sequence in € is a colimit-preserving functor Z : A - %. Denote the
image of the unique morphism v - £ along Z by zf, for ordinals v < £ < A, denote z?rl
by z¢, and denote the morphism Z¢ - colimZ, induced by the universal property of

colimits, by zg‘, for every ordinal £ < A.

DEFINITION 1.2.26. Let % be a cocomplete category, and let Z a A-sequence in % .
The transfinite composition of Z is the colimit injection z())‘ : Zy — colimZ. Let I be a
set of morphisms in ¥, a transfinite composition Zy — colimZ is called a transfinite
composition of morphisms in I if z¢ belongs to I, for every {+1 < A. A set of morphisms
I in % is said to be closed under transfinite compositions if it contains all transfinite

compositions of morphisms in 7.

EXAMPLE 1.2.27. Let ¥ be a cocomplete category, let I be a set of morphisms in
%. Then, the set I-proj is closed under transfinite compositions, and so is I-cof. In
particular, (weak) cofibrations in a model category are closed under transfinite compo-

sitions.

DEFINITION 1.2.28. Let % be a cocomplete category, let I be a set of morphisms in
%, and let f: A - B be a morphism in 4. We say that f is a relative I-cell complex
if it is a transfinite composition of pushouts of morphisms in I. That is, a morphism

f:A— Bin % is arelative I- cell complex if there exist an ordinal A and a A-sequence
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Z in A%, where z¢ is a cobase change in ¢ of a morphism g¢ in I, for every ordinal £

with £ + 1 < A, such that f is the transfinite composite of Z, visualised in the diagram

Xo 2> Y, Xe">Ye  Xen o> Yeu

N amvay

A= Zy 7y e Z Zea Zgvg >colimZ = B

20 ze Ze+1

f

The set of relative I-cell complexes in % is denoted by I-cell. A relative I-cell
subcomplex of f : A — B is arelative I- cell complex f’: A - B’ with a monomorphism
f'—=> fin A | €. An object B € € is said to be an I-cell complez if the initial
morphism @& — B is a relative I-cell complex. A monomorphism f: A — B in € that
is a relative I- cell complex between I- cell complexes A and B is called an inclusion

of I-cell -complezxes.

The notion of relative I-cell complexes is an abstraction of gluing of cells in

topology, and hence the name.

Relative I-cell complexes may be expressed in different ways as transfinite com-
positions of pushouts of morphisms in I. However, when I-cell consists of effective
monomorphisms, fixing the presentation for relative I- cell complexes makes them be-
have like inclusions of sets, as in Proposition 1.2.31, which is essential for the Bousfield-

Smith cardinality argument, recalled in Theorem 1.2.67.

DEFINITION 1.2.29. Let € be a cocomplete category, let I be a set of morphisms
in ¢, and let f : A > B be a relative I-cell complex. A presentation P of f is a
pair (Z, (Se, g¢,i¢)e<r), where Z is a A-sequence in A | ¢ for some ordinal A, with a

transfinite composition isomorphic to f, such that for every ordinal £ + 1 < A,

e S¢ is a set (indexing cells);
e g¢ is a function g¢ : S¢ — I (choosing cells); and
e i¢ is a function i¢ : S¢ - O0b(¢' | Z¢) (gluing cells);

with domge(s¢) = domig(s¢), for every s¢ € Se, for which there exists the pushout square
(1) in €, on the next page, where X (s¢) := domi¢(s¢) and Y (s¢) := codomig(s¢). The

set | | Se is called the set of cells of the presentation, and it is cardinality is called the
E<A
size of the presentation. Moreover, the pair (f, P) is called a presented relative I-cell

complex. A presented relative I-cell subcomplex of (f, P) is a pair (f’, P’), where f’
is a relative I- cell subcomplex of f and P’ is a presentation of f’ whose set of cells is

a subset of cells of P, and whose choice and gluing maps are the restrictions of those
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of P.
[T 9¢(se)
SgESg
[1 X(se) [1 Y(se) (1)
S§€S§ S§€S§
[ ie(se)
SgESg
Z = Zen

REMARK 1.2.30. Inclusions of I-cell complexes allow set-theoretic arguments in
abstract cocomplete categories, when I-cell consists of effective monomorphisms, i.e.
equalisers, as it is the case in cellular model categories. In which case, they become
analogous to inclusions of sets, admitting operations similar to the intersection and

union of sets, see Proposition 1.2.31.

Let & be a cocomplete category, let I be a set of morphisms in % such that I-cell
consists of monomorphisms. Assume that B is an I-cell complex, and let S be the
set, of cells of a presentation of the initial morphism @ - B in %. Then, every inclusion
of I-cell complexes f: A - B is determined up to isomorphisms by a subset of cells,
that is a subset of S, see [Hir03, Prop.10.6.10]. Moreover, every subset of S, that is
compatible with the choice and gluing maps, determines uniquely up to isomorphisms

an inclusion of I-cell complexes f: A - B, see [Hir03, Prop.10.6.11].

ProrosiTiON 1.2.31. Let C be a cocomplete category, let I be a set of morphisms in
% such that I-cell consists of effective monomorphisms, let B be an I-cell complex,
and let S be the set of cells of a presentation of the initial morphism @ - B in %.
Assume that f; : By & B and fs : Bs & B are inclusions of I-cell complexes, with
subsets of cells S; ¢ S and S ¢ S, respectively. Then, the subsets S1NS2cS1US2c S

of cells determine up to isomorphisms inclusions of I-cell complexes
i1:B1 < Bi|JBs ) ig: By = B1|JBs ) i:B1| B~ B,

jliBlmBQQBl and jQ:BlmBQQBQ,
for objects B1 N By, B1 U By € €. Moreover, the square

J2

B1N B By
jll Liz
By B1UB,

1
is bicartesian in %, and the pullback of the span By < B < By exists in € and is
isomorphic to B1 M Bo.

PROOF. See [Hir03, Prop.12.2.3 and Th.12.2.6]. O
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1.2.2.2. Relative Smallness. Obtaining a functorial factorisation usually comes down
to some objects being ‘small’ with respect to certain colimits, that is morphisms from
those objects to the colimits factorise through the colimits cocones. There are several
such smallness notions, which are influenced by the considered colimits and the desired
properties of the factorisation. We recall briefly the smallness notions needed for the

small object argument and the Bousfield-Smith cardinality argument.

The notion of k-small relative objects, as in Definition 1.2.33, is modelled over
factorisations in the category Set of small sets and their maps, and it captures smallness
with respect to transfinite compositions, which are the colimits that arise in the small

object argument, see §.1.2.2.3.

Let Z be a A-sequence in Set, and let f : A - colimZ be a map. Then, being
able to factorise f through Z, for some ordinal £ < A, depends on the relation between
the cardinality of A and the ordinal A, provided the axiom of choice. A sufficient and
necessary condition for such a factorisation to occur, for any such map f, is axiomatised

in the following definition.

DEFINITION 1.2.32. Let x be a cardinal. An ordinal X is said to be k-filtered if it is

a limit ordinal and for every set A € A with | A |[< k one has sup A < \.

For a finite cardinal , one has sup A € A, and hence all limit ordinals are finitely
filtered. However, when « is an infinite cardinal, x-filtered ordinals are limit ordinals

that are greater than or equal to k*.

DEFINITION 1.2.33. Let & be a cocomplete category, let I be a set of morphisms
in €, and let k be a cardinal. An object K € % is said to be k-small relative to I, if

for every k-filtered ordinals A, the induce map
colim%(K,Z) - €¢(K,colimZ)
is an isomorphism, for every A-sequence Z : A\ - € of morphisms in I. Also. K is said

to be small relative to I if it is k-small relative to I for some cardinal k.

Small objects relative to I are closed under retracts and small colimits, see [Hir03,
Prop.10.4.7 and Prop.10.4.8].

EXAMPLE 1.2.34. A set A is |A]-small relative to any set of morphisms in Set.

ExaMPLE 1.2.35. Finite CW-complexes are Rp-small relative to the set of inclusions
of CW-complexes, see [Hir03, Ex.10.4.3]. On the other hand, topological spaces that
are small relative to Mor(Top) are precisely the discrete topological spaces, see [Bou77,
Ex.4.4].

A stronger variation of relative k-smallness, recalled in the following definition,

constitutes the main technical ingredient for the Bousfield-Smith cardinality argument.
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DEFINITION 1.2.36. Let € be a cocomplete category, let I be a set of morphisms
in ¢, and let k be a cardinal. An object K € ¥ is said to be k-compact relative to I,
if for every presented relative I-cell complex (f: A — B, P), every morphism K - B
factorises through a presented relative I-cell subcomplex of (f: A — B, P) of size at
most k. K is said to be compact relative to I if it is k-compact relative to I for some

cardinal k.

When I-cell consists of monomorphisms, compact objects relative to I are small
relative to I, see [Hir03, Prop.10.8.7]. Also, they are closed under retracts and small
colimits, see [Hir03, Prop.10.8.4 and Prop.10.8.8].

EXAMPLE 1.2.37. Let I be the set of the canonical inclusions
{10 : |10A™ = |A™ | n > 0}

of the boundaries of the standard topological simplices, see §.1.2.4.1. Then, finite
CW-complexes are Rg-compact relative to I. Also, for an infinite cardinal s, every

CW-complex of size k is k-compact relative to I, see [Hir03, Ex.10.8.3].

1.2.2.3. The Small Object Argument. The small object argument became the stan-
dard technique to obtain functorial factorisations, since a countable version of which
was first used by Quillen in [Qui67, §.I1.3.Lem.3] to show that any continuous map
of topological spaces admits a factorisation as a cofibration followed by a weak Serre
fibration.

We believe that it is more profitable for a non-specialised reader if we present an
explanation of the main idea behind the small object argument, which links the fac-

torisation with small relative objects, before stating the argument in Definition 1.2.38.

Since fibrations (resp. weak fibrations) have the RLP with respect to weak cofibra-
tions (resp. cofibration), the question of finding a functorial factorisation for a model
structure on a category % follows from being able to find a functorial factorisation
(o,7) with o(f) € I and 7(f) € I-inj for every morphism f in ¢, for a suitable set of

morphisms 1.

Let ¥ be a cocomplete category, let I be a set of morphisms in % and let f be a

morphism in 4. When f does not belong to I-inj, there exists a commutative square

K-2.x

| e |

L——Y,

€1
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with g € I, called an I-lifting problem for f, that does not admit a lift. When the

desired factorisation exists, the square admits a partial lifting

K —- X,
|

a(f)

]

g Z |f

7

h

T (f)

L——v,
€1

for having 7(f) € I-inj. Hence, given a morphism f, as a first step in finding the
desired factorisation, one may look for a factorisation of f satisfying the necessary
condition of providing partial liftings for all I-lifting problems for f. Let Iy be the set
of I-lifting problems for f, and consider the solid commutative square

H €0,FE

Eely
[ K& X (2)

Bely \

7
N
L[gE 7¢Z f

Ly Y
E]e_}f [ene
EEIf

in ¥. Notice that all I-lifting problems for f admit partial liftings when the dotted
morphisms in (2) exist, and make the whole diagram commute. In particular, such

dotted morphisms exist for (7,4, h) being the pushout of the span

H g H €0,.E

LI EGIf LI EGIf
Lg Kg
E€If EGIf

X

)

and p being induced by the universal property of pushouts, in which case ¢ € I- cell.

Since not all lifting problems for p arise from those of f, the morphism p does not
necessarily belong to I-inj. Let Xg =X, Xy =2, fo = f, f1 = p, and let x¢y = i.

Iterating the preceding argument yields a sequence X, in X | ¥ and a commutative

diagram
Xo—> X1 — Xp —> Xpa1,
fol y I
Y Jre1

for every integer k > 0. For every non-negative integer k¥’ < k, one has x;s € I- cell. Also,
all I-lifting problems for f;+ are solved for fj, for every k > &k, i.e. they admit partial
liftings at fj. Taking the colimit of the sequence X, yields a factorisation f;, = f,, oz,
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where x§ + X}, - X, is the colimit injection for every integer k£ >0, and f, : X, =Y is
the morphism induced by the universal property of colimits. Similarly, for an integer
k >0, all I-lifting problems for f are solved for f,, and x} € I-cell as I-cell is closed
under transfinite compositions. Having established the initial, successor!, and the limit
cases, one may iterate the construction for any ordinal A to obtain a factorisation
fe=fao xé\ in which mg‘ € I-cell and all I-lifting problems for f¢ are solved for fy, for

every ordinal £ < .

The argument above shows that, for ordinals £ < A, the factorisation f = feoxgo---oxq
can be refined into a factorisation f = f) ox) o---oxg in which f, admits lifts for more
I-lifting problems than f¢. The transfinite composition xy o---0x¢ g 0x¢ 00z always
belongs to I- cell, by it very construction. The main point of the small object argument
is to show that, under smallness conditions on I, halting the aforementioned iterative

process at a big enough ordinal A guarantees that fy belongs to I-inj.

When there exists some cardinal x for which domains of morphisms in I are xk-small
relative to I-cell, it suffice to choose A to be a k-filtered ordinal for f) to belong to

I-inj. That is, for an I-lifting problem

K2 X,

|

L——Y
e1

for fy, since domains of morphisms in I are x-small relative to I-cell, ey factorise at

X¢ for an ordinal £ < A, inducing the solid I-lifting problem

K5 X,
£73
X§+1
4
g xg‘ﬂ fe
he X,
S h
L Y

€1

for f¢, where eg = xé‘ oeg¢. Such I-lifting problem admits the dotted partial lifting by
the very construction of x¢ and f¢i 1. Then, h = zg‘ﬂ o he is a lift for F, and f) € I-inj.

DEFINITION 1.2.38. Let ¥ be a cocomplete category. A set I of morphisms in
is said to admit the small object argument if the domains of morphisms in I are small

relative to I- cell.

1The same argument used for integers greater than zero applies for any successor ordinal.
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THEOREM 1.2.39 (The Transfinite Small Object Argument). Let @ be a cocomplete
category, and let I be a small set of morphisms in % that admits the small object
argument. Then, there exists a functorial factorisation (o,7) on € such that every
morphism f in € factorises as f = 7(f) oo (f), where o(f) € I-cell and 7(f) € I-inj.

PROOF. See [Hir03, Prop.10.5.16]. O

The sets I-cof and I-cell are defined through different concepts, the former is
given by lifting properties whereas the latter is given by transfinite compositions and
pushouts. Yet, when I admits the small object argument, I-cofibrations coincide with
retracts of relative I- cell complexes, and I-cofibrant objects coincide with retracts of
I-cell complexes, see [Hir03, Lem.10.5.25].

1.2.2.4. Cellular Model Structures.

DEFINITION 1.2.40. A cofibrantly generated model structure is a triple (A4, 1,J),
where . is a model structure on a category %, and I and J are small sets of morphisms

in ¢ that admit the small object argument, such that

(1) the set of fibrations in .# coincides with the set J-1inj; and
(2) the set of weak fibrations in .Z coincides with the set I-inj.

Then, I and J are called the sets of generating cofibrations and generating weak cofi-
brations, respectively. Moreover, a cofibrantly generated model structure (., 1,J) is

said to be cellular if

(3) the domains and codomains of morphisms in I are compact relative to I;
(4) the domains of morphisms in J are small relative to I- cell; and

(5) cofibrations in .# are effective monomorphisms.

Since I and J admit the small object argument, cofibrations and weak cofibrations
in . coincide with retracts of relative I- cell complexes and retracts of relative J- cell

complexes, respectively, see [Hir03, Prop.11.2.1].

THEOREM 1.2.41 (Recognising Cellular Model Structures). Let (¢, .#) be a model
category, and let I and J be small sets of morphisms in ¢". Then, (4,1, J) is a cellular

model structure on % if and only if
(1) the set of weak fibrations in .# coincides with I-inj;
2

(2) the set of fibrations in .# coincides with J-1inj;

(3) the domains and codomains of morphisms in I are compact relative to I;
(4)

(5)

4) the domains of morphisms in J are small relative to I-cell; and

5) relative I-cell complexes are effective monomorphisms.

PROOF. See [Hir03, Th.12.1.8]. O
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The following theorem is the main result about cellular model structures that is par-
ticularly useful for Bousfield localisation, §.1.2.6, in addition the boundedness technical
result presented in [Hir03, Prop.12.5.3].

THEOREM 1.2.42. Let (.#,1,J) be a cellular model structure on . Then, cofibrant

objects in .# are small relative to the set of all cofibrations.

PROOF. See [Hir03, Th.12.4.3]. O

1.2.3. Proper Model Categories. Gluing of (pointed) topological spaces, i.e.
pushing-out along cofibrations, is invariant under weak equivalences, and hence it
presents homotopy pushouts, see [Hir03, Th.13.1.10 and Th.13.3.10]. The same is not
true for a general model category. Proper model structures guarantee that pushouts
(resp. pullbacks) along cofibrations (resp. fibrations) present homotopy pushouts (resp.

homotopy pullbacks).

DEFINITION 1.2.43. A model structure .# is said to be

(1) left proper if weak equivalences are closed under pushouts along cofibrations;
(2) right proper if weak equivalences are closed under pullbacks along fibrations;
and

(3) proper if it is both left and right proper.

Left proper model categories admit homotopy pushouts given by pushouts of cofi-
brant factors of the spans in question. In particular, pushouts along cofibrations present
homotopy pushouts, as seen below.

LEMMA 1.2.44. Let (¢,.#) a model category. Assume that .Z is

e left proper, then for every solid commutative diagram

U . 1%
\ |
J ’\_f\ I xg\
U/ Z’ I V/
' [
, v |
g i Y |
| =7 Liyr

in which 7 and ¢ are cofibrations and the solid diagonal morphisms are weak
equivalences, the induced morphism Z — Z’ is a weak equivalence, for Z :=
W1y V and Z":= W' [ V'; and
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e right proper, then for every solid commutative diagram

Y P X
\, N
L ERAN AN
Y/ p | X/
' A
, 17X I
a S |
J<———|—=-"W | Tx7
[
\h “h. I
N\ N
gl W —W,

in which p and p’ are fibrations and the solid diagonal morphisms are weak
equivalences, the induced morphism W — W' is a weak equivalence, for W :=
Zxy X and W= Z" xyr X',

PROOF. See [Hir03, Prop.13.3.10]. O

1.2.4. Simplicial Model Categories. Homotopy categories of model structures
are enriched over Kan-Quillen’s homotopy category of simplicial sets HsSetkq, and
hence the latter influences the considered homotopy theory, see [Hov99, §.6]. Simplicial
model structures allow one to take advantage of the well-studied simplicial methods to
do homotopy in abstract categories. Moreover, simplicial methods have proven fruitful

in other areas, for instance see Deligne’s influential paper [Del74].

1.2.4.1. The Simplex Category. Let A denote the simplex category, i.e. the skeleton
of the category of non-empty finite ordered sets and order-preserving maps between
them. The morphisms in A are generated by the sets of coface and codegeneracy

maps, recalled below.

For integers n > 1, 0 < i < n, the i"-coface map & : [n - 1] — [n] is the unique
injective such map in A skipping the value i, i.e.
icoN_ ) for j < 4;
a”(])_{ j+1 forj>i.
Whereas, for integers 0 < i < n, the i*"-codegeneracy map o’ : [n+1] - [n] is the unique
surjective such map in A repeating the value i, i.e.
s ) J for j <1
‘7”(3)‘{ j—1 for j>i.

Any morphism p: [m] - [n] in A is a composition of faces and degeneracies, and can

be expressed uniquely as a composition

Jt Jt-1 J1
400 o..o0) |,

_ i1 @9 is
= 871 ° 8'n,—l ©...0 8n—s+1 o m—t+1 ~ °

m

where n—m =s—t,n>i1 >i2>...>is >0, and m—12>j; > jo > ... > j; > 0, see [May92].
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Let € be a category, the category of simplicial objects (resp. cosimplicial objects)
in ¢ is the functor category A°P% = Fun(A°P, %) (resp. A% = Fun(A,%)). For a
simplicial object X : A°? » ¥ and a cosimplicial object R: A — €, it is conventional

to denote X ([n]) and R([n]) by X,, and R", respectively, and one usually writes

d? = X (0") , sii= X (o) , d., = R(9}) and st = R(ab).
Simplicial Set. The category sSet of simplicial (small) sets is the category of sim-
plicial objects in Set. It is common to denote the Yoneda embedding h_ : A — sSet
by A~. Then, the Yoneda lemma implies the existence of a canonical isomorphism

X_ 2 sSet(A™, X), for every simplicial set X. For an integer n > 0, the simplicial set

A" represented by [n], is called the standard n-simplex.
Since the category Set is bicomplete, so is sSet. In fact, sSet is Cartesian closed,
as it admits an internal Hom-functor
Hom : sSet°? x sSet — sSet,

called the function complex, which is given by Hom(—, ——). = sSet(— x A®, —-).

Let Af,, : A — Top be the standard cosimplicial topological space, given on an object

[n] € A by the standard topological n-simplex
n
AL, ={(to,t1, o tn) € R D= 1,8 > 0},
i=0

and on a morphism p: [m] - [n] in A by the map

Ap): ARy — A
u +— t, witht; = Z u; for 0 <@ < n.

Jep=1(i)
There exists a tensor-Hom adjunction
|-| : sSet 2 Top : Sing,

associated with the functor A as in Example A.3.8. The functor Sing is the sin-

[ ]
top»
L]

gular simplicial functor given by Sing(-)e = Top(A,,, —), whereas |-| is the geometric

realisation functor given by the left Kan extension of A along the Yoneda embedding

top
A®: A - sSet, see [Kan58, §.2-3]. The geometric realisation functor can be given for

a simplicial set X by the space

X[ ('il) (X, x A?0p>)/ - 3)

where ~ is the smallest equivalence relation that identifies (xm,u) € Xy, x AfY, and

(n,t) € Xy x AL, whenever there exists a morphism p: [m] — [n] in A for which
T = X, (20) and t=Af,(u),

and for a morphism f: X — Y of simplicial sets by | f | ([(2n,t)]) = [(fu(zn),1)].
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In addition to the standard simplices and the adjunction |-| 4 Sing, the boundary
simplices, horns, and simplicial circle play an essential role in the homotopy theories of
simplicial sets, and hence of simplicial (pre)sheaves. For an integer n, the boundary of

the standard n-simplex OA™ is a simplicial subset in A™ given on an object [p] by
0A; ={a:[p] = [n] | is not surjective},

and the quotient S™ := A" sa" is called the n-simplicial circle. For integers 0 < r < n,
the 7-horn A" is the smallest simplicial subset in A" that contains 0! € A" ; for
0 <i#r <n. Moreover, the geometric realisation of A" A", and S™ is A{,,, 0Af,,,

and Si,,, respectively.

Kan-Quillen’s Model Structure on Simplicial Sets. The category of simplicial sets ad-

mits a left proper cellular model structure, cofibrantly generated by sets
L= {0 : 0A™ > A" [n € Zyx} and J={\N':A > A" |neZs,0<r<n}

of generating cofibrations and generating weak cofibrations, respectably, called Kan-
Quillen’s model structure on simplicial sets, see [Hov99, §.3]. In this model structure, a
morphism of simplicial sets is a weak equivalence if and only if its geometric realisation
is a weak equivalence of topological spaces, and is a cofibration if and only if it is an
injection, see [Qui67, §.11.3.Prop.2]. Recall Example 1.2.25, the geometric realisation-
singular simplicial adjunction is a Quillen equivalence between Kan-Quillen’s model

structure on simplicial sets and Quillen-Serre’s model structure on topological spaces.

The fibrations in Kan-Quillen’s model structure are morphisms of simplicial sets
with the RLP with respect to J, they are called Kan fibrations. A simplicial set K is

said to be a Kan complex if the terminal morphism K — = is a Kan fibration.

THEOREM 1.2.45 (Quillen). The geometric realisation of a Kan fibration is a Serre
fibration.

PROOF. See [Hov99, Cor.3.6.2]. O

However, there are far more Serre fibrations than realisations of Kan fibrations. For
instance, every topological space is a Hurewicz fibrant object, and hence a Serre fibrant

object.

On the other hand, a map of topological spaces is a Serre fibration if and only if
its mapped to a Kan fibration by the singular simplicial functor, see [May92, §.III].
In particular, for every topological space X, the singular simplicial set S(X) is a Kan
complex. Hence, the endofunctor S(|-|) is a fibrant approximation functor. However,
the cardinality S(|X]) is much bigger than the cardinality of X, and S(|-|) is difficult

to use in model structures induced by sSetkq.
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Kan introduced a better behaved fibrant replacement functor in [Kan57], known
as Kan’s Ex* functor, prior to Quillen’s introduction of the notion of model structures.
Although the construction of the functor Ex* bears a resemblance to the small object
argument, it relays heavily on the specificity of the simplex category A, particularly on

the barycentric subdivision functor, recalled below.

Let Path : Cat — Cat be the path functor, that sends a small category to the poset
of its nonempty (finite) paths, partially ordered by inclusion, and let N : Cat — sSet
be the fully faithful nerve functor, as in Example A.3.8.(2). The tensor-Hom adjoint
functors associated with the composite functor NoPatho[-]: A — sSet, as in Example

A.3.8, are called the barycentric subdivision sd and Kan’s extension functor Ex,

A L Cat PLth; Cat — '~ sSet,

idCat
A_l /
sd
sSet x
see [Kan57]. Then, one has

Ex(X)e 2 sSet(A® Ex(X)) 2 sSet(sd A®, X).

In particular, the functor Ex preserves 0-simplices. On the other hand, the composite
functor No[-] : A — sSet coincides with the dense Yoneda embedding A~, and hence its
tensor-Hom adjoint functors may be given by the identity functors, see §.A.3.3. There
exist natural transformations i : [-] 2 Patho[-]: p given component-wise, for [n] e A,
by

in(k) = [k] e Path([n]) and pn(P) =codom P € [n],

for every k € [n] and P € Path([n]). One has poi =id[_j, and hence i (resp. p) is a
natural split monomorphism (resp. epimorphism). The natural transformation j := Np

lifts to a natural split epimorphism and a natural split monomorphism
Jx : 8d — idsset and J* ridsset — EX,

respectively. Moreover, the components of j, and j* are weak equivalences of simplicial
sets, see [Kan57, Lem.7.4 and Lem.7.5]. Then, the functor Ex* : sSet - sSet is defined

to be the colimit of the injective system

j* JE T2 I3
. J E E E
idgset Ex — Ex? — Ex3 —

The induced natural monomorphism Rg.y : idsset =~ EX* is a fibrant replacement for
the model category sSetkq, see [Kan57, Th.4.2].
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2

1.2.4.2. Simplicial Categories. Simplicial categories® are sSet-enriched categories

that are bitensored over sSet, i.e.

e for every object X € ¢, the functor Map(X,-) : ¥ — sSet has a sSet-enriched
left adjoint
X ®-:s8Set - %; and
e for every object Y € &, the functor Map(—,Y’) : €°P — sSet has a sSet-enriched
left adjoint
Y™ :sSet - ¢".

Thus, there exist isomorphisms
Mapy (X ® K,Y) 2 Mapgge (K, Mapy (X, Y)) 2 Mapyop (Y, X) 2 Map, (X, YE)  (4)
of simplicial sets, natural in XY € ¥ and K € sSet, giving rise to a sSet-adjunction
—9K:¢=2%¢:-K,
for every simplicial set K, see [GJ09, §.1I.Lem.2.2].

REMARK 1.2.46. Every simplicial category ¥ defines a category whose hom-sets
are given for every X,Y € € by €(X,Y) = Map(X,Y)o. It is called the underlying
category of €, and it is denoted by %y. The category % is said to admit the simplicial
structure (Map, ®,—"). Moreover, the Yoneda lemma implies the existence of canonical

isomorphisms
Map(X,Y), 2 Map(A",Map(X,Y))p 2 €¢(X ® A", Y).
for every X,Y € ¥ and n > 0.

The Category of Simplicial Objects. The prototypical example of simplicial cate-
gories is the category of simplicial objects in a bicomplete category, as it admits a
canonical simplicial structure, called the standard simplicial structure, which is recalled
below, see also [GS07, §.4.2].

Let & be a bicomplete category, let ¢ : A — B be a map of small sets, and let
f:+X - Y be a morphism in . The universal properties of coproducts and products

induce canonical morphisms
X =11y ad I 1X-TTY
% A B %) B A
which give rise to functors
®: A% x sSet —» Fun(A°® x A® ¢) and -¥:sSet® x APE — Fun(A%® x A, %),
given on objects, for a simplicial object X in ¥ and a simplicial set K, by

XeE)([-L--D=11X-  and  X*(-)[--])=]]X—,

K __ K_

2Some authors call a simplicial object in the category of small categories a simplicial category. To
avoid confusion, we call a simplicial object in Cat a simplicial small category.
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and similarly on morphisms. Then, precomposing with the diagonal functor A°® —
A% x AP and taking ends, as in [ML98, §.1X.5], yield functors

® : APE x sSet - APE and Hom , : sSet? x AP¢ - €. (5)
In particular, for a simplicial object X in ¥ and a simplicial set K, ons has
(XeK),=][X, and  Hom,(K,X)= f T1X..
K, Kn
[n]eA
see [GS09, §.2]. In fact, Hom (-, X) is the right X-Hom functor, as in Example A.3.8,

i.e. it is the right Kan extension of X along the functor A™°" : A°? — sSet°? and

hence Hom , (A", X') = X,, for every integer n > 0.

The tensor bifunctor of the standard simplicial structure on the category of simpli-

cial objects A°P% is the bifunctor ® in (5); the Map-simplicial sets bifunctor
Map porg @ (APE)°P x A°PE — sSet
is given by
Map porg (=, ——)e = APE (-0 A®, —-);
whereas the cotensor bifunctor ——~ : sSet? x AP¢ - A°P¥ is given by

(==7)e = Hom, (= x A%, —-).

EXAMPLE 1.2.47. For € = Set, the bifunctors ® and Hom 4 coincide with the Carte-
sian product and the hom-set bifunctors of simplicial sets, respectively. Also, the functor

Map coincides with the cotensor bifunctor.

Sitmplicial Model Categories. Simplicial model categories are categories endued with
a simplicial structure and a model structure, that are compatible in the sense of the

following theorem.

THEOREM 1.2.48 (Homotopy Lifting—Extension Theorem). Let & be a simplicial
category, and let .# be a model structure on the category %p. Then, the following

statements are equivalent

e for every cofibration ¢ : U - V and every fibration p : X - Y in .#, the

induced morphism of simplicial sets
Map(i,p) : Map(V, X) — Map(U, X ) xyap(,y) Map(V,Y)

is a Kan fibration; moreover, if either of i or p is a weak equivalence in ./,
then so is Map(i,p);

e for every cofibration i : U — V in .# and every cofibration j : K — L in
sSetkq, the induced morphism

inj:U®L [[VeK->VeL
UoK



35

is a cofibration in .#; moreover, if either of i or j is a weak equivalence in .#
or sSetkq, respectively, then so is 7 O j; and
e for every fibration p: X — Y in .# and every cofibration j : K — L in sSetkq,

the induced morphism
P Xt s XE <y YE

is a fibration in .#; moreover, if either of p or j is a weak equivalence in .#

or sSetkq, respectively, then so is .
PROOF. See [Hir03, Prop.9.3.7]. O

DEFINITION 1.2.49. A simplicial model category is a pair (€,.#), where € is a
simplicial category and .# is a model structure on the category %y, that satisfies any

of the equivalent statements in Theorem 1.2.48.

ExXAMPLE 1.2.50. The pair of the Kan-Quillen’s model structure and the standard

simplicial structure endues the category of simplicial sets with a simplicial model struc-
ture, see [Hir03, Ex.9.1.13].

In a simplicial model categories (¢, .#), the model structure can be determined
on the level of simplicial sets. That is, a morphism i is a cofibration (resp. weak
cofibration) in . if and only if the morphism Map(i,p) is a weak Kan fibration for
every weak fibration (resp. fibration) p in .#, see [Hir03, Prop.9.4.4]. The dual

statement holds for (weak) fibrations.

PROPOSITION 1.2.51 (Detecting Weak Equivalences). Let (¢,.#) be a simplicial
model category, and let f : X — Y be a morphism in the category %,. Then, the

following statements are equivalent

e the morphism f is a weak equivalence in ./

e for every fibrant object Z in .#, the induced morphism

Q)" Map (Q(Y), Z) - Map (Q(X), Z)

is a weak equivalence in sSetkq, where @ is a cofibrant approximation functor
for . ; and
e for every cofibrant object W in .#, the induced morphism

R(f)«:Map (W, R(X)) - Map (W, R(Y))

is a weak equivalence in sSetkq, where R is a fibrant approximation functor

for A .

PROOF. See [Hir03, Th.9.7.4]. O
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1.2.5. Monoidal Model Categories. Most model categories one is interested
in admit monoidal structures that are compatible with the model structures, in an
analogous manner to Theorem 1.2.48. Such monoidal structures descent to monoidal

structures on the homotopy categories.

DEFINITION 1.2.52. A symmetric monoidal model structure on a category € is
a pair (,.) of a model structure .# and a closed symmetric monoidal structure

& = (®,1,Hom, ¥, o, A\, p) such that

(1) for cofibrations i:U - V and j: K - L in .#, the pushout product
inj:U®L [[VeK->VeL
UK
is a cofibration in .#; moreover, if either of 7 or j is a weak equivalence in ./,
then so is 10 7; and

(2) for the cofibrant replacement morphism Q(1) — 1, the morphism
XeQ(1l)-Xelz, X

is a weak equivalence in ., for every cofibrant object X in .Z.

Then, the triple (¢, .#,.7) is called a symmetric monoidal model category.

In a symmetric monoidal model category (¢,.#,.), the adjunction — ® X
Hom(X,-) is a Quillen adjunction, for every cofibrant object X in .#. Hence, the
homotopy category H% admits a canonical closed symmetric monoidal structure, with
a monoidal product and internal Hom bifunctors given by the derived functors ® and
RHom, respectively, see [Hov99, Th.4.3.2]. Axiom (2), in Definition 1.2.52, is needed
for the derived monoidal structure to exist. However, when 1 is cofibrant in .#, (2)
follows from (1), see [Hov99, §.4.2] and [SS03a, §.3.1].

ExaMPLE 1.2.53. The pair of the Kan-Quillen’s model structure and the closed
Cartesian monoidal structure endues the category of simplicial sets with a symmetric

monoidal model structure, see [Hov99, Prop.4.2.8].

A monoidal Quillen adjunction between symmetric monoidal model categories is

defined so that it induces a strong monoidal functor between the homotopy categories.

DEFINITION 1.2.54. A weak monoidal Quillen adjunction F : (€, #,) 2 (D, N, T):
G between symmetric monoidal model categories is a Quillen adjunction F' 4 G, in

which F'is an oplax monoidal functor, such that

(1) for cofibrant objects X,Y € &, the oplax morphism
F(X®Y)->F(X)® F(Y)

is a weak equivalence in A4; and
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(2) the composition of the morphism F(Q(1ly)) — F(1g), induced by the cofi-
brant replacement morphism, with the oplax morphism F' (1) — 14 is a weak
equivalence in ./, see [SS03a, §.3.2].

Moreover, a strong monoidal Quillen adjunction is a Quillen adjunction F' - G, in which
F is strong monoidal, and the morphism F(Q(1ly)) — F (1), induced by the cofibrant

replacement morphism, is a weak equivalence in .4, see [Hov99, Def.4 .2.16].

For a weak monoidal Quillen adjunction F' -4 G, since F' is oplax monoidal, one
finds that G is lax monoidal.

THEOREM 1.2.55. Let F : (¢, .#,%) 2 (2,4 ,7) : G be a weak monoidal Quillen
adjunction between symmetric monoidal model categories. Then, the left derived func-

tor L F' is strong monoidal.
PROOF. See the proof of [Hov99, Th.4.3.3]. O

PROPOSITION 1.2.56. Let (¢,.#,.) be a symmetric monoidal model category,
whose unit 1 is a cofibrant object in .# and coincides with the terminal object *
of €. Then, the pointed category %, admits a closed symmetric monoidal structure
o, making (G,, #., %) into a symmetric monoidal model category, with a unit 1, =
1, = (#]I*,%), a smash product A given for pointed objects (X, z),(Y,y) € €. by the

pushout of the span

XY (idx ®y) LI (z®idy) XoV

|

*

in ¥, with the canonical base-point, and an internal Hom, given for pointed objects
(X, ), (Y,y) € €. by the pullback of the cospan

7.d
Hom(+, V) <) Hom(X,Y)

Hom(w)T
*

in ¥, with the canonical base-point induced by the point y and the morphism X — x.
PROOF. See [Hov99, Prop.4.2.9]. O

EXAMPLE 1.2.57. The smash product endues the pointed model category sSet, kq
with a symmetric monoidal model structure, with pointed internal Hom, given for

pointed simplicial sets (X, zg) and (Y,yg) by
Hom, ((X,z0), (Y, %)), = (sSet.((X, z0) A AT, (Y, 90)), %o OPX),

for every [n] € A, where p, : X — AY is the terminal such morphism in sSet, see
[Hov99, Cor.4.2.10].
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1.2.5.1. Modules over Monoidal Model Categories. A module over a symmetric
monoidal model category (¢,.#,.7) is a model category whose homotopy category

admits an action of the monoidal homotopy category HE .

DEFINITION 1.2.58. Let (¥¢,.#,.) be a symmetric monoidal model category. A
€ -(right) model structure is a pair of a (¢,.7)-enriched category 2 that is bitensored
over (¢,.#) and a model structure .4 on 7, such that

(1) for every cofibration i : U — V in .4 and every cofibration j: K - L in .4,
the induced morphism

inj:U®L [[VeK->VeL
UK

is a cofibration in .4"; moreover, if either of i or j is a weak equivalence in .4
or ./ , respectively, then i 0 j is a weak equivalence in .4"; and

(2) for the cofibrant replacement morphism @Q(1lg) — ¢, the morphism X ®
Q(ly) > X ® 14 is a weak equivalence in .4, for every cofibrant object X in

N
Then, the pair (Z,.4) is called a (¢, .#,.7)-(right) model category.

When no confusion arises, we may abuse notations and refer to (¢, .#,.%)-model

categories by ¥-model categories.

PROPOSITION 1.2.59. Let (¢, .#,.7) be a symmetric monoidal model category, and
let (2,.4) be a ¥-model category. Then, the homotopy category HZ is Hé-enriched

and bitensored over HE .

PROOF. See [Hov99, Th.4.3.4]. O

Every symmetric monoidal model category (¢,.#,.7) is a right model category
over itself. Moreover, if (2,.47) is a €-model category, then (Z., .4, ) is a Ge-model cat-
egory, with respect to the symmetric monoidal model structure (.7, ), see [Hov99,
Prop.4.2.19].

EXAMPLE 1.2.60. A simplicial model category is a sSetkg-model category, and
hence a pointed simplicial model category is a sSets xq-model category, see [Hov99,
p.114].

EXAMPLE 1.2.61. Let ¥ be a pointed simplicial model category, and hence a
sSet,-model category, the derived adjoint functors

- Ab(81,0) : HE = HE : Riom ((S",0), -)
are called the suspension and loop functors, and usually denoted by Z and Q, respectively.

For every object X € ¢, the object £X (resp. QX) admits a canonical cogroup

(resp. group) structure, and it can be used to compute the homotopy groups of the
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Map -simplicial sets, and hence detect weak equivalences in %, similar to pointed topo-

logical spaces, see [Hov99, §.6.1].

1.2.6. Left Bousfield Localisation of Model Structures. A localisation of a
model category presents a localisation of its homotopy category. Let H be a homo-
topy category presented by a model category (%,.#). The localisation of the model
structure .# with respect to a set S of morphisms in %, if it exists, is a ‘minimal’
model structure .#s on ¥ whose weak equivalences contain weak equivalences of .#
and morphisms of S. Then, the homotopy category Hg of (¢, .#s) is a localisation of
the homotopy category H with respect to the image of S in H, i.e. Hg 2 LgH.

DEFINITION 1.2.62. Let (¢,.#) be a model category, and let S be a set of mor-
phisms in %.

(1) A left localisation of .# with respect to S, if it exists, is a pair (Lg.#,ng),
where Lg.# is a model structure on ¢, and ng : (¢,.#) - (¢,Ls . #) is a
left Quillen functor such that

(a) the total left derived functor Lng takes morphisms in L 4(S) to isomor-
phisms; and

(b) any left Quillen functor 6 : (¢, .#) - (Z,./), for which the total left de-
rived functor L : HE — HP takes morphisms in L _,(.S) to isomorphisms
in HZ, factorises uniquely through ng.

(2) A right localisation of .4 with respect to S, if it exists, is a pair (Rg.#Z,€g),
where Rg . is a model structure on %, and €5 : € - Rg % is a right Quillen
functor such that

(a) the total right derived functor Reg takes morphisms in L 4 (.S) to isomor-
phisms; and

(b) any right Quillen functor 0 : (¢,.#) - (2,./"), for which the total right
derived functor RO : HE — HZ takes morphisms in L ,(S) to isomor-
phisms in HZ, factorises uniquely through eg.

In the sequel, we restrict ourself to left localisations, yet most of what comes next
can be easily dualised for right localisations, see [Hir03, Ch.3 and Ch.5]. Also, we find
it convenient to restrict ourselves to simplicial model categories. Readers interested in

the general argument are encouraged to consult [Hir03].

Proposition 1.2.51 imposes restrictions on the fibrant objects and the weak equiv-
alences of the localised model structure, when it exists, giving rise to the following

definition.

DEFINITION 1.2.63. Let (%, .#') be a simplicial model category, let @ be a cofibrant

approximation functor for .#, and let S be a set of morphisms in 4. An object Z € €
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is called an S-local object if Z is a fibrant object in .# for which the induced morphism

Q(i)" : Map(Q(V), Z) - Map(Q(V), 2).

is a weak equivalence in sSetkq, for every morphism ¢ : U — V in S. Whereas, a

morphism i : U — V in € is called an S-local equivalence if the induced morphism

Q(i)" :Map(Q(V), Z) -~ Map(Q(V), Z)

is a weak equivalence in sSetkq, for every S-local object Z € €.

Both weak equivalences in .# and morphisms in S are S-weak equivalences. More-
over, S-weak equivalences satisfy the two-out-of-three property and are closed under
retracts, see [Hir03, Prop.3.2.3 and Prop.3.2.4].

S-local objects (resp. S-weak equivalences) are intended to form the fibrant objects
(resp. weak equivalences) in the localised model structure, if it exists. Their role may

be better illustrated through the following theorem.

THEOREM 1.2.64. Let F': (¢, .4 ) 2 (Z,.4) : G be a Quillen adjunction between
simplicial model categories, and let S be a set of morphisms in 4. Then, the following

statements are equivalent

(1) the total left derived functor LF : H€ — HZ takes morphisms in L 4(S) to
isomorphisms in HZ;

(2) the functor F' takes the cofibrant replacements of morphisms in S to weak
equivalences in .A4;

(3) the functor G takes fibrant objects in 4" to S-local objects in €’; and

(4) the functor F takes S-local equivalences between cofibrant objects to weak

equivalences in 4.
PROOF. See [Hir03, Th.3.1.6]. O

DEFINITION 1.2.65. Let (¢, .#') be a simplicial model category, and let S be a set
of morphisms in €. A left Bousfield localisation of .# with respect to S, if it exists,
is a model structure Lg.#Z on ¥ whose weak equivalences, cofibrations, and fibra-
tions are S-weak equivalences, cofibrations in .#, and S-local fibrations, respectively;
where S-local fibrations are the morphisms in % with the RLP with respect to S-weak

cofibrations.

When a left Bousfield localisation Lg.# exists, the pair (Lg.#,idy) forms a left
localisation of .# with respect to S, see [Hir03, Th.3.3.19]. In which case, the fibrant
objects in Lg.# are S-local objects, but the converse does not always hold. However,
when in addition ./ is left proper, fibrant objects in Lg .# coincide with S-local objects,
see [Hir03, Prop.3.4.1].
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In general, the main obstacle to the existence of a left Bousfield localisation is
the existence of its functorial factorisations, particularly the factorisation as S-weak
cofibrations and S-local fibrations. Since the main tool used to produce functorial
factorisations is the small object argument, it is natural to look for a small set Jg of
S-weak cofibrations that both admits the small object argument and for which the
set Jg-inj coincides with the set of S-local fibrations. In cellular model categories,
inclusions of I-cell complexes play an essential role in obtaining such a small set Jg,

and that is mainly due to their set-theoretic-like nature, seen in Proposition 1.2.31.

LEMMA 1.2.66. Let (., I,.J) be a left proper cofibrantly generated simplicial model
structure on a category €, let S be a set of morphisms in €, and let p: X - Y be a
fibration in .#. Then, the morphism p is an S-local fibration if and only if it has the

RLP with respect to the set of all S-weak inclusions of I-cell complexes.

PROOF. See [Hir03, Prop.4.5.1 and Lem.4.5.2]. O

Since the small object argument applies for small sets, the set of all S-weak inclu-
sions of I-cell complexes needs to be further refined to a small set. The set of all
isomorphism classes of S-weak inclusions of I-cell complexes of size at most x is a
small set, let Jg, be a set of its representatives, and hence a small set. In general,
the set Js.-inj does not coincide with the set of S-local fibrations. However, the
Bousfield-Smith cardinality argument shows that there exists an accessible cardinal for
which the two sets coincide, see [Hir03, §.4.5].

THEOREM 1.2.67. Let (.#,1,J) be a left proper cellular simplicial model structure
on a category %, and let S be a small set of morphisms in . Then, a left Bousfield
localisation Lg.# exists and fibrant objects in Lg.# coincide with S-local objects.
Moreover, Lg.# is a left proper cellular simplicial model structure with generating
cofibrations I and generating weak cofibrations Jg = Jg 4, for a large enough accessible

cardinal k.

PROOF. See [Hir03, Th.4.1.1 and §.4.5-6]. O

1.3. Stable Homotopy Categories

Stable homotopy theories, in which the suspension functor is quasi-inverted, are
better behaved and admit richer structures, allowing for more invariants compared to
unstable homotopy theories. Stabilising a homotopy category can be obtained in dif-
ferent ways, some of which have advantages over others. The universal stabilisation is
given by the Spanier-Whitehead construction, and its main advantage is being applied
on the level of homotopy categories. However, in general, it does not produce cocom-
plete categories. On the other hand, the categories of spectra and symmetric spectra

are constructed on the level of model categories, with the latter inheriting symmetric
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monoidal structures. Since monoidal structures are particularly interesting for us, we

restrict our attention to symmetric spectra.

1.3.1. Symmetric Spectra. Let (%,.”) be a closed symmetric monoidal cate-
gory, and let T'e €. A T-spectrum is a pair (X, e) of a sequence X = {X,, |n € Zsp} of
terms in € and a sequence e = {e, : X, ® T' > X1 | n € Zsp} of assembly morphisms
in €. A morphism of T-spectra f:(X,e) - (Y,c) is a sequence f={f,: X, > Y, |ne¢

Zso} of morphisms in ¢ that commute with the assembly morphisms.

A T-symmetric spectrum (X, T, e) is a T-spectrum (X, e) with a left action 7 of the

symmetric group >, on X, for every integer n > 0, such that the composition
ensp-10--0(€ns1@id g(p-2) )o(€n®id g (p-1) ) Xn BT > X1 @TS P s Xy 1@T > X

is X,4p 2 (X, x ¥p)-equivariant for every pair of integers p,n > 0, where X, acts on TP
by permutation of factors. A morphism of T-symmetric spectra f: (X, 7,e) - (Y,s,d)
is a morphism of T-spectra f : (X, e) - (Y,d) whose n'P-term is ¥,-equivariant. Denote

the category of T-symmetric spectra in € by Spt™ (¢, T ). There exists a full embedding
76 > Spt(%.T),

sending an object X in € to its T-symmetric suspension spectrum £3F X = (X, X®T, X ®

T2 X ® T®3,..), with the canonical left action and the identity assemble morphisms.

Alternatively, the category of T-symmetric spectra in € can by given as a subcat-
egory of symmetric sequences in %. This makes it easier to endue it with a monoidal
structure. Let Y denote the skeleton of the groupoid of finite sets with isomorphisms
between them, and denote objects of ¥ by the cardinality of their representative. The

category ¥ is symmetric monoidal with a canonical monoidal product
®: X x>,

induced by the canonical injection X, x ¥, ¢ 3,4, whose unit is 0. Let the category of
symmetric sequences in € be the functor category €>. When % is (co)complete, the
category € is (co)complete with level-wise (co)limits. Moreover, since € is a closed
symmetric monoidal category, so is the category €>. To see that, one may rerun a
variant of the argument used to established the standard simplicial structure on the
category of simplicial objects. The monoidal product ® and internal Hom in % define

functors
LT X EE > ¢ and hom: (€%)7 x €2 » g5,
given for X,Y € €% and Z € €~ by
(XmY) =X oY _ and hom(X,Z)_ __.=Hom(X_,Z, __),

and similarly on morphisms. One may be tempted to define the monoidal product on

€* through a precomposition with the diagonal functor ¥ - £ x ¥, i.e. (XoY), =
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X, xY, for every X,Y € €*. Although such definition yields a monoidal product on €,
it does not give rise to a closed monoidal structure in general, due to the lack of a dense
canonical functor P — €, compared to A®: A — sSet. Let Hom,, : EEP x> S g
be the functor induced by taking the end of hom, i.e.
Homg (X, 2), = [ Hom(X,, Zu,p),
pex

for every X € €~ and Z € €>**. Then, the monoidal product ® and internal Homg on

€~ are given by

-®-——=Lang -®- - and M®(_)__) = Hﬂn(—,——oﬂa),
i.e.
(p.@)edin
(XoV)a= [ Xp@¥, and  Homg(X,Y)u= [ Hom(X,, Yary),
peX

for every X,Y € €%, with a unit (1,2, @,--) € €, see [May04, §.6]. Expanding the
monoidal product coend formula yields
(XeY),= ]] (( [[1X,0Y,)/%, x zq),
ptg=n \ %,

Hence, a morphism of symmetric sequences X ® Y — Z can be realised by (3, x
Y4)-equivariant morphisms X, ® Y; — Z,.,, for every p,q € ¥, see [Jar00, p.506]. The
symmetric suspension spectrum £¥ 1 = (1,7, 7%, 7®3,--) is a commutative monoid in
€~ and hence the category of T-symmetric spectra Spt™(€,T) can be defined equiv-
alently as the category of right %7 1-module in the category of symmetric sequences
€, see [HSS99, Prop.2.2.1]. Thus, the category of T-symmetric spectra in % is a bi-
complete category, with level-wise (co)limits. Also, it forms a closed monoidal category

with a monoidal product
XAY = coeq(X®Z§'?]l®Y:;X®Y),
where the horizontal morphisms are given by the action of ZF 1 on X and Y, see
[HovO01, §.7].
For every integer n € 3, there exists an n-evaluation functor

Ev, : Spt>(¢,T) - ¢
that sends a T-spectrum to its n'"-term, and a natural transformation

on Ev, ®T - Evp,q,

given by the assembly morphisms, i.e. 0, (x 1) = €n. The functor Ev,, admits a left
adjoint

Fo:% - Spt™(¢,T),
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given on an object X € ¥ by the monoidal product

Fn(X) = (@,@, - UX7®7 ) ®Z§f’ 1
Zn

in €%, where the nontrivial term in (@, @, -, I, X,@,) is centred in level n. Then,

in particular, one has Fy = Z7. Also, Ev,, has a right adjoint
M, : € - Spt>(¢,T),
given on an object X € ¢ by the internal Homg
M,(X) = Homg, (Z7(1), (*, %, -, IZ_IX, %)),

in €*, where the nontrivial term in (%, %, Iy, X, *,-) is centred in level n.

1.3.1.1. Model Structures on Symmetric Spectra. Throughout this section, fix a
left proper cellular symmetric monoidal model category (¢, .#,.7), with sets I and
J of generating cofibration and weak cofibration, respectively. The model structure
(A ,1,J) induces several symmetric monoidal model structures on the category of

T-symmetric spectra in €.

The Projective Model Structure. The functor category €> admits canonical sym-
metric monoidal model structures induced level-wise from (%,.#). These structures
are inhabited by the category Spt>(%,T).

DEFINITION 1.3.1. A morphism f of T-symmetric spectra is called a level (weak)
equivalence, a level cofibration, or a level fibration, if the morphism f,, is a weak equiv-
alence, a cofibration, or a fibration for every n € 3. Moreover, f is said to be an
injective fibration (resp. projective cofibration) if it has the RLP with respect to level

weak cofibrations (resp. LLP with respect to level weak fibrations).

THEOREM 1.3.2. There exists a left proper model cellular structure on Spt™(%,T)
whose weak equivalence, cofibrations, and fibrations are level equivalences, projective
cofibrations, and level fibrations, respectively; it is called the projective model struc-
ture on Spt™(%€,T). Moreover, the sets It = Upes Fnu(I) and Jp = Upes; Fp(J) are
the generating cofibration and weak cofibration, respectively, for the projective model

structure.

PROOF. See [Hov01, Th.8.2]. O

Denote the resulting model category by Spt™ (%, T )proj- Since the functor Ev,, takes
level equivalences and level fibrations to equivalences and fibrations in .Z, it is a right

Quillen functor, and hence F}, is a left Quillen functor, for every n € X.

THEOREM 1.3.3. The pair of the projective model structure and the closed sym-

metric monoidal structure endues the category Sptz(%, T) with a symmetric monoidal
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model structure. Moreover, the functor — A £ T : Spt* (€, T)proj — SP (€, T)proj is

a left Quillen functor.

PROOF. See [Hov01, Th.8.3]. O

The Stable Model Structure. The left Quillen functor — AZF T, in Theorem 1.3.3, is
not necessarily a left Quillen equivalence. Since the model category Spt™ (¢, T )proj 1S
left proper and cellular, it admits Bousfield localisations with respect to small subsets
of its morphisms; and the functor — A Z7 T" becomes a left Quillen equivalence for an

adequate such localisation, see Theorem 1.3.5.

For every X € € and n € 3, let
(X QXxeT=1](QXe®T) — [[(QX®T) = Evys1 F,QX
P

En-¢—1

be the canonical such morphism induced by the inclusion ¥»; c ¥,,.1, where @ is the

cofibrant replacement functor of (¢, .#), and let
QX Fi(QX o T) — F,QX

n

be the preimage of é,?X along the adjunction F,;; 4 Evy1.

DEFINITION 1.3.4. The stable model structure on Spt™(%€,T) is a left Bousfield
localisation of the projective model structure on Sptz(%,T) with respect to the small
set

¢r(D) = { QX F(QX e T) — F,QX | X e dom([) Ucodom([)}.

Denote the resulting model category by Spt™(%,T)stab. The (7 (I)-weak equivalences
and (p([)-fibrations are called T'-stable (weak) equivalences and T-stable fibrations,

respectively.

THEOREM 1.3.5. Assume that the domains of morphisms of I are cofibrant objects
in .. Then, the pair of the stable model structure and the closed symmetric monoidal
structure endues Spt= (%, T ) with a symmetric monoidal model structure. Moreover,
the functor — A 2 T : Spt™ (€, T)stab — Spt™(%, T)stab is a let Quillen equivalence,
i.e. the total left derived functor — Al IF T is an autoequivalence of categories on
HSPt™ (€, T)stab, With a quasi-inverse RHom, (27 T', ).

PROOF. See [Hov01, Th.8.10 and Th.8.11]. O

The total derived functors —ALZ%° T and RHom, (£ T, -) are called the T-suspension
functor and the T-loop functor, respectively, and usually denoted by Zp and Qr, re-

spectively.

The T-suspension functor has a simple description on the stable homotopy category.
Define the left shift functor s; : Spt™(€,T) — Spt*(¢,T) by

si(=) = - F1(1),
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i.e. for X € Spt*(%,T), one has s;(X)o = @ and s;(X)y, =[5, Xn-1/Zn-1, for every
integer n > 1, with the canonical ¥,-action. Let the right shift functor s, : Spt”(€,T) —
Spt¥(%,T) be the right adjoint of s; given by

ST(_) = Hﬂn/\(Fl(]l%_)a

i.e. for X € Spt¥(€,T), one has s,(X), = X1, for every integer n > 0, with the

Y.n-action induced by the canonical inclusion ¥, < ¥,.1.

THEOREM 1.3.6. There exists a natural isomorphism between the total derived
functors — Al Z7 T and Rs,. Also, there exists a natural isomorphism between the total
derived functors RHom, (27 7', —) and Ls;.

PROOF. See [Hov01, Th.8.10]. O

The Additive Structure of the Stable Homotopy Category. The stable homotopy cate-
gory H = HSptE(%, T)stab is an additive category. The abelian group structure on the
set H(X,Y) is induced formally by the abelian cogroup structure on X = 22(Q*X),
for every X,Y € H, see [Hel68, Cor.7.2]. The finite coproduct on Spt™(%,T) induces
a finite coproduct on H, making H into an additive category, by [ML98, §.VIIIL.2].

Moreover, the suspension functor X7 is an additive endofunctor.

The pair (#H,Z7) admits a canonical triangulated structure. Therefore, we devote
the next section to the study of triangulated categories, and we recall such canonical

triangulated structure in Example 1.4.2.

1.4. Triangulated Categories

The study of derived categories led to the formulation of the notion of triangu-
lated categories, which is usually credited to Verdier (1963). The central notion in
triangulated categories is that of distinguished triangles, which play the role of short
exact sequences in abelian categories. Also, distinguished triangles induce long ex-
act sequences of abelian groups allowing the development of the conventional diagram

machinery that is frequently used in homological algebra on abelian categories.

1.4.1. Preliminaries of Triangulated Categories. Fix an additive category
with a suspension (&7,%), i.e. £:.o/ - &/ is an additive autoequivalence of categories,

and let ¢5 be the adjunction induced by the natural isomorphism id, = s os.

A triangle in (&7,%) is a diagram

T: XY —=7—"+3X
in «/. When convenient, we refer to the triangle 7" by the triangle (u, v, w) on (X,Y, Z),
and when no confusion may arise that is shortened to the triangle (u,v,w). A triangle
(u,v,w) is called a candidate triangle if vou =0, wov =0, and Z(u)ow = 0. A morphism

of triangles is a natural transformation between them.
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DEFINITION 1.4.1. A triangulated structure on (&7,Z) is a set 7 of triangles in
(o ,%), called distinguished triangles of 7, subject to the following axioms
TR1 (a) every morphism u: X — Y in & can be completed into a triangle (u,v,w)
on (X, Y, Cone(u)) in .7, for some object Cone(u) € o, which is called a
cone of u in J;
(b) for every object A € .o/ the triangle (id4,0,0) on (A, A, 0) belongs to .7;
(c) every triangle in (&7, %) that is isomorphic to a triangle in .7 is in .7;
TR2 a triangle (u,v,w) is in .7 if and only if the triangle (v, w,—Zu) belongs to
T;
TR3 given two triangles T and 7" in 7 on (X,Y,Z) and (X', Y, Z"), respectively,
and two compatible morphisms f: X - X’ and g : Y — Y, i.e. morphisms
that make the solid diagram

T XYt z-to5X

\ ' \

T X —=Y —= 7 —=3X/,
u v w

commute, the pair (f,g) can be completed into a morphism of triangles
(f.g,h):T > T'; and
TR4 (Verdier’s axiom) for triangles (uq,v1,w1), (ug, v, w2), and (us,vs, ws) in 7,

in which wug = ug o uy, there exists a triangle (u4,v4,wy4) in 7 that makes the

X/\Z/\ Y .
NN TN A
NN A
N

The triple («7,%,.7) is said to be a triangulated category. A triangulated functor
F:(£,9.5) - (,%,7) between triangulated categories is an additive functor that
preserves the triangulated structure, i.e. it is an additive functor F' : & — & with a
natural isomorphism ® : F'oQ - £oF which sends a triangle (u,v,w) in . to a triangle

(F(u), F(v),®x o F(w)) in 7.

Verdier’s axiom asserts the existence of the dotted morphisms making the whole
diagram commute not knowing a priori that the solid diagram is commutative, which

imposes a strong restriction on the set of distinguished triangles. Verdier’s axiom is
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usually called the octahedron axiom based on a possible rearrangement of the diagram
(6) into a three-dimensional octahedron, see [Wei94, p.375]; whereas the diagram (6)
is due to May, given in [May05].

EXAMPLE 1.4.2. Let (¢,.#') be a left proper cellular monoidal model category, let
T ¢ €, and let H = HSpt™ (€, T )stap be the stable homotopy category of T-symmetric
spectra, as in §.1.3.1.1. Then, the additive category with suspension (H,Z7) admits
a canonical triangulated structure, called the cofibration-triangulation, whose distin-
guished triangles are T-symmetric suspension spectra of cofibre sequences in €, see
[Hel68, §.9].

EXAMPLE 1.4.3. Let (&7,£,.7) be a triangulated category, and let </ — o be its
Karoubian envelope, see [BS01, Def.1.2]. Then, the additive structure, the suspension
functor, and the triangulated structure descend to o , making it into a triangulated

category, see [BS01, Th.1.7].

DEFINITION 1.4.4. Let (&/,%,.7) be a triangulated category, let 2 be an abelian
category, and let H : &/ - % be a functor. The functor H is said to be homological on
(o,%,.7) if it maps every triangle (u,v,w) in .7 to a half exact sequence

1) S () S H(2)
in &. A cohomological functors is defined dually.

REMARK 1.4.5. The corepresentable and representable functors h* and hy are ho-
mological and cohomological functors, respectively, for every object A € . This, in
particular, shows that Cone(u) is both a weak cokernel for u and a weak kernel for Zu,

for every morphism u in <.

A candidate triangle is said to be exact if it is mapped to a half exact sequence by

every corepresentable and representable functor.

1.4.1.1. The Diagram Lemmas. A triangulated structure encodes enough informa-

tion to provide the main diagram machinery one usually uses in homological algebra.

LEMMA 1.4.6 (5-Lemma). Let (&7, %, 7 ) be a triangulated category, and let (f, g,h) :
T — T’ be a morphism of exact triangles, such that both f and g are isomorphisms.

Then, A is an isomorphism.

PrOOF. A direct result of the Yoneda lemma and the 5-Lemma for abelian groups,
see [NeeO1, Ex.1.1.15 and Prop.1.1.20]. O

As aresult of the 5-Lemma, the completion of a morphism into a distinguish triangle
in a triangulated structure is unique up to non-canonical isomorphisms. That implies
that a morphism is an isomorphism if and only if its cone is isomorphic to the zero
object, see [Nee01, Cor.1.2.6].
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Direct consequences of the 5-Lemma also include:

e a direct sum of triangles is distinguished if and only if its summands are, see
[NeeO1, Prop.1.2.1 and Prop.1.2.3]; and

e a direct sum of objects is a cone of the zero morphism from the desuspension
of one of the object to the other, see [Nee01, Cor.1.2.7 and Lem.1.2.8].

LEMMA 1.4.7 (3 x 3-Lemma). Let (&/,%,.7) be a triangulated category. Then,

every commutative square

X—tsY

o

X —=Y'

u

in & can be completed into the diagram below

X2 y-"-»7-"535X

R

7

X Yoyt s X
|

| | |
i g
y

fll gu |5
N
X 25y -Hesgz Va5,

that is commutative everywhere apart from the bottom right square, which is anticom-

mutative, with all horizontal and vertical triangles being distinguished in 7.

PROOF. See [May05, Lem.1.7]. O

1.4.2. Homotopy (Co)limits in Triangulated Categories. In general homo-
topy theory, one relays on the extra machinery of the presenting category to present
homotopy (co)limits, which are usually difficult to realise directly on a homotopy cate-
gory. However, triangulated categories, and hence stable homotopy categories, possess
intrinsic and easy-to-express homotopy pullbacks and pushouts. However, that comes
at the expense of not having well-behaved homotopy (co)limits, which means that such

homotopy (co)limits are not functorial.

1.4.2.1. Homotopy Cartesian Squares. Recall that in an abelian category, a com-
mutative square
f

X—1.7 (7)
ol
X 7

f!
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is Cartesian or cocartesian if and only if the sequence

(—gf) (rg)

0 X X'®Z z' 0

is left exact or right exact, respectively. Since distinguished triangles play the role of
exact sequences in a triangulated category, one distinguishes a commutative square (7)

that gives rise to a distinguished triangle

(—gf) (f9)

X'®Zz A

X,

for some morphism § : Z - Z X, and calls it a homotopy Cartesian square. This notion
is self-dual, due to axiom TR2 in Definition 1.4.1. In a homotopy Cartesian square (7),
the pair (f, g) is called a homotopy pullback of (f',g"), and (f',g") is called a homotopy
pushout of (f,g).

Both the homotopy pullbacks and homotopy pushouts always exist in any trian-
gulated category, and they are unique up to non-canonical isomorphisms. This allows
the construction of Verdier’s Quotient of a triangulated category with respect to a

triangulated subcategory, as in §.1.4.3.

When a triangulated category admits certain (co)limits, it provide more general

homotopy (co)limits, see [NeeO1, §.1.6].

1.4.3. Thick Subcategories and Verdier’s Quotient. Verdier’s quotient pro-
vides a universal machinery to contract triangulated subcategories, through localising

the ambient triangulated category with respect to an associated set of morphisms.

DEFINITION 1.4.8. Let (&7,%,.7) be a triangulated category. A full triangulated
subcategory in (o ,Z,.7) is a full subcategory i : 8 — &/ that is closed with respect
to the suspension and desuspension, such that (#,24) is endued with a triangulated

structure with respect to which the functor 7 is triangulated.

The restriction of the definition to full subcategories guarantees the uniqueness of
the triangulated substructure on (%A,2£%) in (7,%,.7), denoted by T, which given
by the set of all triangles in % that are distinguished in 7. Hence, we may abuse the
notation and refer to (%4,Z4, 7) by A.

In practice, one is interested in full triangulated subcategories that are closed under
isomorphisms in the ambient category, called strict full triangulated subcategories, see
[Tho97] and [Nee01, Def.1.5.1]. In such categories, stability with respect to the

suspension becomes a consequence of the other conditions.
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EXAMPLE 1.4.9. Let F': (£,Q,.%) - (&,Z,.7) be a triangulated functor, and let
ker F' be the strict kernel of the additive functor F', i.e. ker F' is the full subcategory
in # with a set of objects

Ob(ker ) = {Be % | F(B)=0y}.
Then, ker F is a strict full triangulated subcategory in (4,Q,.7), see [Nee01, Lem.2.1.4].

In fact, ker F' is not only additive, but also contains all summands of its objects, see
[Nee01, Lem.2.1.5]. A strict full triangulated subcategory that contains all summands
of its objects is called a thick triangulated subcategory, see [Ric89].

DEFINITION 1.4.10. Let & be a strict full triangulated subcategory in a triangulated
category («7,%,.7). A Verdier’s quotient of (&7,Z,.7) with respect to A, if it exists,

is an initial universal triangulated functor
Qo+ (.5, T) > (), Zes 3, Tot )
for which % c ker Q) ».

REMARK 1.4.11. Using Lemma 1.4.6, one shows that a triangulated functor F' from

&/ contracts objects of 4 if and only if it inverts morphisms in the set
W = {u e Mor(«/) | Cone(u) € #}.

Morphisms of Wy are called #-weak equivalences, and they admit several desired
properties that are essential for the construction of Verdier’s quotient. In particular,
W4 satisfies the two-out-of-three property and is closed with respect to homotopy
pushouts and homotopy pullbacks, see [Nee01, Lem.1.5.5-8]. These properties, in
addition to cones being weak cokernels, as in Remark 1.4.5, imply that o/ admits left

and right calculus of fractions with respect to Wy, see [GZ67, §.1].

Let H4 denote a homotopy category of (<7, Wy). The category H4 admits a nat-
ural triangulated structure induced from (<, Z,.7), with respect to which the localisa-
tion functor Ly, is triangulated. Since Ly, is triangulated and inverts the morphisms

of W, it contracts objects of %, by Remark 1.4.11, and hence one has % ¢ kerLy,,.

THEOREM 1.4.12. Let & be a strict full triangulated subcategory in a triangulated
category (/,%,.7). Then, a Verdier’s quotient of (7, %,.7") with respect to Z always
exists, and it is given by the localisation of & with respect to the set of morphisms W.
Moreover, ker Q4 is the full subcategory of summands of objects in . In particular,

when 4 is a thick triangulated subcategory, one has ker Q» = A.
PROOF. See [NeeO1, Lem 2.1.26-33]. O

EXAMPLE 1.4.13. The derived category D(&7) of an abelian category < is a Verdier’s
quotient of the classical homotopy category of complexes I(7) with respect to acyclic

complexes.
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1.4.4. Brown’s Representability. Brown’s Representability for triangulated cat-
egories, recalled in Theorem 1.4.15, provides a criterion for cohomological functors on

‘nice’ triangulated categories to be representable.

Let (7,2, 7) be a triangulated category admitting small coproducts, and let B
be a set of objects in /. The triangulated category («7,Z,.7) is said to be generated
by B if it is the smallest thick subcategory in (<7, Z,.7) that is closed with respect to
coproducts in &7 and contains B. Moreover, (&7, %, 7) is said to be compactly generated
if it is generated by a small set B of compact objects in 7, i.e. for every K € B and for
every small set {X) € &/ | A € A} of objects in &7, the canonical morphism

@JZ{(K,X)\) —>,527(K,®X)\)
AeA AeA

is an isomorphism of abelian groups, c¢f. Definition 1.2.33.

DEFINITION 1.4.14. Let (7,2, .7) be a triangulated category admitting small co-
products. The triangulated category (&7,Z,.7) is said to satisfy the Brown’s Repre-
sentability Theorem if for every cohomological functor F' : &/°? — Ab the following

statements are equivalent

e F'is representable; and

e F' commutes with small products.

THEOREM 1.4.15. Let (&7,Z,.7) be a compactly generated triangulated category.
Then, (&7,%,.7) satisfies the Brown’s Representability Theorem.

PROOF. See [Nee96, Th.3.1] and [SS03b, Lem.2.2.1]. O

In fact, the statement of this theorem holds in a greater generality, see [NeeOl,
Ch.8].

1.4.5. t-Structures and Weight Structures. The axioms of a triangulated cat-
egory capture core properties of the derived category of an abelian category; yet, they
do not provide all the tools available in homological algebra, in particular there is no

canonical choice of cones, compared to the mapping cones for complexes.

1.4.5.1. t-Structures. A t-structure on a triangulated category, first introduced in
[BBD&2, §.1.3|, guarantees that the triangulated category is equivalent to the derived
category of an abelian category, which can be retrieved by means of the t-structure, see
Theorem 1.4.20.

DEFINITION 1.4.16. Let (&7,%,.7) be a triangulated category. A t-structure on
(o7, %,.7) is a pair t = (10, 12°) of subsets of objects of &7 such that
t1 t=0 and 20 are strict, i.e. they contain all objects isomorphic to their elements;
t2 t0c 3 10 and ¥ 20 ¢ £29;
t3 efzf'(’[SO,Z_1 20) = 0, i.e. for every X et<0 and Y e 2%, &7/ (X, s Y) =0; and
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t4 (t-decomposition) for every object X € .o there exists a distinguished triangle
XV X o5 X0 55X,
with X< e t<0 and X0 € 0.

The full subcategory ©t c &7 with objects 0b(91) = t° 120 c Ob(.«7) is called the heart
of the t-structure t = (t=0,20).

EXAMPLE 1.4.17. Let £ be an abelian category. The derived category D(%) admits
a t-structure, given by the pair (Ob(DSO(%’)), Ob(DZO(%))) of the full subcategories of
complexes whose cohomology vanish in positive degrees and negative degrees, respec-
tively; it is called the standard t-structure on the derived category D(%), see [GMO3,
Prop.IV.4.3].

For a t-structure t on a triangulated category (&, %, 7), let t*" and t*" denote full

>0

additive subcategories £ t<0 and £ t2°, respectively.

Although the t-decomposition property does not require the functoriality or unique-
ness of the decomposition, the other axioms imply its uniqueness up to canonical iso-

morphisms.

LEMMA 1.4.18. Let t = (19, 2°) be a t-structure on a triangulated category (&, %, 7).
Then,

e the inclusion (" : =" - & admits an additive right adjoint 75" : &/ — t="; and

e the inclusion ¢ : *" & &/ admits an additive left adjoint 77" : &/ — t*".
Moreover, there exists a t-decomposition
X5 X3 X 550X (8)
for every X € .o/. Also, every t-decomposition for X is canonically isomorphic to (8).
PROOF. See [GMO03, Lem.IV .4.5]. O

The functors 75" and 77" are called the t-structure truncation functors.

EXAMPLE 1.4.19. Let £ be an abelian category, and let t be the standard ¢-structure
on the derived category D(Z), with the standard triangulated structure. Then, the

functors 75" and 7¢" coincide with the canonical truncation functors for complexes in

A.

The functors Tfo and tho are used to construct kernels and cokernels for morphisms
in ©t, which is the main component of the proof of the following theorem, see [GMO03,
§.IV.4.7].

THEOREM 1.4.20. Let t be a t-structure on a triangulated category (</,%,.7).

Then, 0t is an admissible abelian subcategory in 7.

PROOF. See [BBD82, Th.1.3.6]. 0
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1.4.5.2. Co-t-structures or Weight structures. A co-t-structure or weight structure
is a dual notion to a t-structure. It was introduced independently in [Pau08] un-
der the name of a co-t-structure and in [Bon10] under the name of a weight struc-
ture. When it exists, it is used to realise a triangulated category as the classical
homotopy category of complexes in an additive category. Bondarko uses the Chow
weight structure, constructed in [Bonl0, §.6.5], to establish an equivalence of cate-
gories ICb(CHM?QH(k)) - DMggl(k, Q) for a perfect field k, and hence an isomorphism
between the Grothendieck rings K@(CHMaﬁ(k)) and Ka (DM;ﬁl(k, Q)), see [Bon11].

DEFINITION 1.4.21. Let (&7,Z,.7) be a triangulated category. A weight structure
on (7,2, .7) is a pair w = (W<°, w=Y) of subsets of objects of .7 such that

wl w<0 w20

are additive and Karoubi-closed in 7, i.e. they contain all retracts
of their objects;

w2 w9 s w and = w20 c w20,

w3 .Q{(Z_l w20 w<) = 0, i.e. for every X ew®? and Y e w<’, 9<zf(2>1 X,Y)=0; and

w4 (weight decomposition) for every object X € &/ there exists a distinguished
triangle

5X0 L X 5 X0 L5y X320,
with X0 e ws? and X230 e w20,

The full subcategory Yw c o7 with objects Ob(Ow) = w'Nw=’ c Ob(&7) is called
the heart of the weight structure w = (W<0, w=0).

EXAMPLE 1.4.22. Let % be a Karoubian additive category, and let K°(%) be
the bounded classical homotopy category of complexes in Z. Consider the standard
triangulated structure on K°(%), in which cones are isomorphic to the mapping cones.
Then, the sets W< and w?? of complexes that are homotopy equivalent to bounded
complexes concentrated in non-positive and non-negative degrees, respectively, define
a weight structure w on ICb(,%). Moreover, £ is equivalent to ©w, and the weight

decomposition is given by the naive truncation of complexes, see [Bon10].

THEOREM 1.4.23. Let w be a weight structure on a triangulated category (<7, %, 7)
such that

U =" (w®) =ob(«/) and | =7 (W) = Ob(e).

TZEZz() nEZE()

If ow is Karoubian then ©Ow generates o7

PROOF. See [Bon10, Prop.5.2.2|. O

1.5. Algebraic K-Theories

Algebraic K -theory of a category with a structure is a decategorification that gener-

alises its Grothendieck group and emphasises the properties encoded in the structure.
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1.5.1. Quillen Exact Categories. Let o/ be a category, for a short sequence

M5 ME M (9)
in &, i (resp. q) is called the inflation (resp. deflation) of the sequence. Let . be a set
of short sequences in <7, and let M', M" € /. An . -extension of M' by M", if it exists,
is an object M € o/ that fits into a short sequence (9) in .. A subcategory % c &/ is
said to be (essentially) closed under .-extensions in & if for every short sequence (9)
in . in which M', M" are (isomorphic to) objects in %, then M is (isomorphic to) an
object in A.

Quillen exact categories are modelled over a pair (%,&’) of a full additive subcat-
egory % of an abelian category &7, and the set & of all short exact sequences in A
which are also exact in o, where £ is (essentially) closed under &-extensions in <7, see
[Qui73, §.2]. Although every monomorphism in 4 fits as an inflation in a short exact
sequence in &7, it might not be an inflation in a short exact sequence in % that is exact
in o. Inflations (resp. deflations) in & are called admissible monomorphisms (resp. ad-
missible epimorphisms). Admissible monomorphisms (resp. admissible epimorphisms)

will be distinguished by arrows > (resp. —).

LEMMA 1.5.1. Let £ be a full additive subcategory in an abelian category <7, which
is (essentially) closed under extensions in </, and let & be the set of all short exact

sequences in % which are also exact in /. Then,

QE1 e the set & is closed under isomorphisms in %;

e the set & contains all split extensions in 4, i.e. the short sequence
X, 5 X, P X- B X,
in A belongs to & for every X1, Xo € A ; and

e the inflation (resp. deflation) of every sequence in & is the kernel of its
deflation (resp. cokernel of its inflation);
QE2 the set of inflations (resp. deflations) in & is closed under compositions and
pushouts (resp. pullbacks) in #; and
QE3 every morphism M’ — M that has a cokernel in % and factors an inflation
M'" - N in & is an inflation in &. Dually, every morphism M — M" that has

a kernel in & and factors a deflation N — M in & is a deflation in &.
PROOF. See [Qui73] and [Biih10]. O

DEFINITION 1.5.2. Let % be an additive category, and let & be a set of short
sequences in . The set & is called a Quillen exact structure on 2 if it satisfies
the statementsQE1-QE3 in Lemma 1.5.1. Then, the pair (£,&) is called a Quillen
exact category, and sequences in & are called exact sequences. A Quillen exact functor
F:(#,8) - (¢,.7) between Quillen exact categories is an additive functor F': Z - ¢

that maps sequences in & to sequences in .%.
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ExaMPLE 1.5.3. Every additive category admits the split Quillen exact structure,
given by the split exact sequences, which is the smallest Quillen exact structure on
an additive category. On the other hand, an abelian category admits another Quillen

exact structure, given by all short exact sequences.

THEOREM 1.5.4 (Gabriel-Quillen Embedding Theorem). Every small Quillen exact
category (%,&) can be realised as a full additive subcategory in an abelian category

o/, such that A is (essentially) closed under extensions in 7.
PROOF. See [Biih10, App.A]. O

DEFINITION 1.5.5 (Quillen’s Q Construction). Let (%,&) be an essentially small
Quillen exact category. Define the category Qs to be the category with
e the set of objects Ob(Qs %) = 0b(A); and
o for every X,Y € Ob(Qs %), the set homgz(X,Y) is the isomorphism classes of
roofs X 5 Z £ Y with i and p being admissible monomorphism and admissible
epimorphism, respectively;

while the composition is given by pushouts in 4. Then, let
B} = QBN Qs %),

where N is the nerve functor, || is the geometric realisation functor, B is the classifying

space functor, and Q is the loop functor, see [Nee97, §.0].

In fact, By % is a pointed space, whose point is induced from the zero object in 4.

Quillen’s K -groups for (4, &) are the homotopy groups of B,%, i.e. for an integer

n >0, let

KE (B) = m,(BLB).

EXAMPLE 1.5.6. Let (#,&) be a Quillen exact category. Then, it’s Quillen’s
Kﬁv -group is given by the abelian group generated by isomorphism classes of objects in
2% and relations {[Y] = [X]+[Z] | there exists an exact sequence X - Y — Z in éa},

where [U] denotes the isomorphism class of an object U in . Particularly,

e for an additive category A, with the split Quillen exact structure &, the
abelian group Kﬁa(%’) is generated by isomorphism classes of objects in % and
relations {[XEBY] =[X]+[Y]| X, Y € Ob(%’)}, it is denoted by Kg(%); and

e for an abelian category 7, with the short exact sequences structure &, the
abelian group Kg)(;a? ) is generated by isomorphism classes of objects in ./ and
relations {[Y] = [X]+[Z] | there exists a short exact sequence 0 > X —» Y —
Z—>0in };

i.e. in both cases, the Kf -group coincides with the Grothendieck group.
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Since a Quillen exact category (%,&) is additive and all split extensions in 2

belongs to &, there exists a canonical quotient group homomorphism
&
Ke(Z) ~ Ky (£),

which is not injective in general.
1.5.2. Waldhausen K-Theory.

DEFINITION 1.5.7. Let % be a category with a zero object, let c% be a subcategory
in ¢ that contains all isomorphisms in 4. The pair (¢,c%) is called a category with

cofibrations, and c% is called a subcategory of cofibrations in €, if

W1 the initial morphism 0 — U belongs to ¢% for every object U € ¥’; and
W2 the pushout of all morphisms of ¢c% exist in %, and c% is closed under

pushouts.

A cofibration in a category with cofibrations is denoted by a feathered arrow ».

A category with cofibrations is closed under finite coproducts. That is because it
has an initial object 0 € ¥, and for objects U,V € €, the initial morphisms 0 » U
and 0 » V are cofibrations, and hence the coproduct UV = U]loU exists in %.
Moreover, all cofibrations has cokernels in 4, given by pushouts along the terminal
morphisms. Let i : U » V be a cofibration, and denote by V' /U its cokernel V [];; 0.
For a cofibration i : U » V, a cokernel sequence U % V - VU is called a cofibre

sequence of 1.

DEFINITION 1.5.8. Let (%,c‘f) be a category with cofibrations, and let w% be a
subcategory in ¥ that contains all isomorphisms in €. The triple (‘5, c?, w%) is called
a Waldhausen category, and (c%,w%) is called a Waldhausen structure on %, if they

satisfy the glueing axiom, i.e.

W3 for every solid commutative diagram

U ! 1%
AN AN
f g
NN
Uve—>"— | Vv’
I
, v |
J i LY |
Wo— - - —-|- = — =7 | Byr

in ¢, such that the morphisms 4,7’ in ¢4 and the diagonal solid morphisms
belong to w%, then the induced morphism Z — Z’ belongs to w%, for Z :=
Wy Vand Z" =W’ V.
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Then, morphisms in w% are called the weak equivalences of the Waldhausen structure.
If w% also satisfies the two-out-of-three property then the Waldhausen category is said
to be saturated. Moreover, the Waldhausen structure is said to satisfy the extension

aziom if for a morphism of cofibre sequences

U 1% v/U
U —=V —= VU,

having u and ¢ in w% implies that v is in w%.
When no confusion arise, we refer to the Waldhausen category (¢,c%,w%) by &.

For Waldhausen categories ¥ and %, a functor F : € — Z is said to be ezact with
respect to the Waldhausen structures, if it preserves cofibrations, weak equivalences,
and pushouts along cofibrations, i.e. F (c‘f ) cc9, F (w%) c w¥, and for every
cofibration i : U » V in c% the canonical morphism

FV) 1] F(X) > F(V]]X)
F(U) U
is an isomorphism in &, for every morphism f: U — X in ¥. On the other hand, a
natural transformation «: F' = G : ¥ - 2 between exact functors is said to be a weak

equivalence if the components of a belong to w2, see [Wal85, p.330].

EXAMPLE 1.5.9. Let €, be an essentially small site. Then, the category of (finitely
presented objects of) pointed 7-sheaves of sets on € is a Waldhausen category, in
which the cofibrations are the monomorphisms and the weak equivalence are the iso-

morphisms.

ExaMPLE 1.5.10. The full subcategory of cofibrant objects in a pointed model cat-
egory is a category with cofibrations. Moreover, if the model category is left proper,
then the full subcategory of cofibrant objects is a saturated Waldhausen category whose
set of cofibrations is the set of cofibration of the model category, and whose set of weak
equivalences is the set of weak equivalences of the model category. That includes Kan-
Quillen’s model category of (finitely presented objects? of) pointed simplicial sets; and
the local injective model category of (finitely presented objects of) pointed simplicial
(pre)sheaves on an essentially small site. A left Quillen functor between such model
categories is not necessarily an exact functor with respect to the corresponding Wald-
hausen structures. Although a left Quillen functor preserves all cofibrations and all
pushouts (the latter for being left adjoint), it does not necessarily preserve all weak
equivalences. However, since the geometric realisation |-| : sSet, - Top, preserves all

weak equivalences, it is an exact functor with respect to the Waldhausen structure

3An object X € € is said to be finitely presented in € if the corepresentable functor h* preserves
filtered colimits.
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associated to Kan-Quillen’s and Quillen-Serre’s model structures of pointed simplicial

sets and pointed topological spaces, respectively.

ExaMPLE 1.5.11. Let («7,&) be a Quillen exact category, let co/ be the set of
admissible monomorphisms in &, and let w. be the set of all isomorphisms in ..
Then, (%,c;z/,wsz/) is a Waldhausen category, see [TT90, §.1.2.9].

DEFINITION 1.5.12 (Waldhausen S-construction). Let € be an essentially small
Waldhausen category. The simplicial essentially small category S,% : A°P — CAT is the
largest simplicial subcategory S.% of the simplicial functor category Fun(Mor([e]), %)
such that, for every integer n > 0,

e for every functor F' : Mor([n]) — € in 0b(S,%) and for every pair of compos-

able morphisms ¢ :4 < j and 9 :j <k in [n], the sequence
F(id; 0 F(p,id
Fo) "9 P9 o) TS By
is a cofibre sequence; and

e for every natural transformation 7 : F' - G in the category S,%, the compo-

nent morphism 7, : F'(¢) - G(p) is a weak equivalence, for every morphism

@ in [n].

DEFINITION 1.5.13. Let % be an essentially small Waldhausen category. The Wald-
hausen K -theory of € is the spectra

K(%) = Q7 |N(5.%)|-
For every integer n > 0, Waldhausen K -group K, (%) is the homotopy group

Kn(€) = 1 K(%) = mpe1 [N (S €)).

An exact functor F' : € — 2 between essentially small Waldhausen categories
induces a map of spectra K(F') : K(¢) - K(Z), and a weak equivalence o : F' = G
between exact functors induces a homotopy K(F') = K(G), see [Wal85, Prop.1.3.1].

THEOREM 1.5.14. Let (&7, &) be an essentially small Quillen exact category. Then,
there exists a natural homotopy equivalence between Quillen’s K-theory spectra of
(o, &) and Waldhausen’s K-theory spectra of the associated Waldhausen category, as
in Example 1.5.11.

PROOF. See [Wal85, §.1.9]. O

The Waldhausen K group is known to have a simpler expression, given as follows:
Ky(%) is the abelian group generated by isomorphism classes of objects in 4 modulo

the relations

(1) [U] =[V] if there exists a weak equivalence U — V; and
(2) [V]=[U]+[V/]U] for every cofibre sequence U =V — V|U;
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where [X] denotes the isomorphism class of an object X in &, see [TT90, §.1.5.6].
Thus, an exact functor between essentially small Waldhausen categories induces a

canonical group homomorphism between their Waldhausen Ky groups.

For an essentially small Waldhausen category %, there exist cofibre sequences
0~0->»0 and U»U[JV >V,

and hence [0] is the identity in Ky(%') and [UIIV] = [U] + [V], for every U,V € €.

Also, for cofibrations ¢: U = V and j: U » W, there exist a cofibre sequence
U»V][W->V/U][]W/U,
U
which implies [V [ W] =[V]+[W]-[U].

LEMMA 1.5.15 (Eilenberg Swindle). Let € be an essentially small Waldhausen cate-
gory that is closed under countable coproducts. Then, the spectrum K(%') is connected,

i.e. the group Ko(%¢’) vanishes.

PROOF. Let U be an object in €, then there exists [[iyU € €. Since the initial
morphisms 0 - U and 0 - [[y U are cofibrations, the morphism U - [[x U induced
by the pushout square

0—— [InU

|

U—>1InU

in % is a cofibration. Since the composition 0 - U — 0 coincides with the unique
isomorphism idg and a cobase change along a composition is given by the composition

of cobase changes, there exists a cofibre sequence
U~ U U~ H U
N N
in €. Thus, [U]=[VnU]-[VnU]=0¢€Ky(%), and hence Ko(%) = 0. O

In particular, the Waldhausen K-theory spectra of a model category, when de-
fined, is connected. Omne is usually interested in Waldhausen categories that satisfy
some finiteness conditions, which do not admit Eilenberg Swindle. For example, since
finitely presented objects are closed under finite colimits, given a Waldhausen category
(¢,c€,w%), the full subcategory of its finitely presented objects ¢ admits a Wald-
hausen structure (c€°,w%°), given by the restriction of the structure (¢%,w%) to

c°.

EXAMPLE 1.5.16. Let & be the category of spectra of pointed simplicial sets. Then,
Ko(%) =0 and Ko(€°) = Z, see [Bon10, Prop.5.5.1].
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DEFINITION 1.5.17. Let € be an essentially small Waldhausen category. A cylinder
functor on € is a quadruple (Cyl,p,i,7) of a functor Cyl : Mor(%¢) — ¢ and natural
transformations p : Cyl = codom, ¢ : codom = Cyl, and j : dom = Cyl, such that for

every commutative square
f

X——Y
|
X —=Y'
f/
in €, one has
e projs=fand pyoiy=idy;

e the induced diagram

.
Xy —2=Y oMoy

:val Cyl(r,y)l ly

X,I_IY, Cylf’?ﬂyl

g g
commutes;

e jr11iy belongs to c%’;

e if both x and y are in w%', then so is Cyl(zx,y); and

e if both x and y are in ¢%, then so are Cyl(x,y) and the morphism

alf [ X'[JY —aylf.
XY

Moreover, the cylinder functor Cyl is said to satisfy the cylinder axiom if py belongs

to w% for every morphism f in €.

When a cylinder functor exists, following the notation in the classical homotopy

theory of topological spaces, let
Cyl(U)=Cyl(idy) , Conecy1(U):=Cyl(U—>0) and Z¢y U :=Conecy(U)/U,
for every object U € €. Then, one has a cofibre sequence
U — Conecy1(U) = Zcyn (U).

The morphism Conecy1(U) — 0 belongs to w%, and hence [Conecy1(U)] = 0 € Ko(%)
and [Zcy1 U] = -[U] €Ko(%).

ExamMpPLE 1.5.18. The mapping cylinder a morphism of pointed simplicial sets,
that is the pushout of the morphism along the cylinder object of its domain, defines a
cylinder functor for the Waldhausen category of (finitely presented objects of) pointed
simplicial sets, recalled in Example 1.5.10, see [TT90, §.1.3.3]. Also, for a pointed
simplicial set K, the pointed simplicial sets Conecy1 (K) and Zcy1 K coincide with usual

cone and suspension, respectively. In particular, one has Zcyy K = K A (S L0).
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THEOREM 1.5.19 (Localisation Theorem). Let (‘5, ccﬁ) be an essentially small cat-
egory with cofibrations that admits two subcategories v& c w% of weak equivalences
making it into Waldhausen categories (%, ct,v¢€ ) and (Cf, c%?, w%), respectively. Let
&Y be the full subcategory in € of w%-acyclic objects in €, i.e. objects whose initial
morphisms are in w%. Assume that w% is saturated and that every morphism f in %
factorises as f = po j where j € ¢& and p € v(%). Then, the exact inclusions

ide

(‘KW,C‘KW,V%W) > (%,C%,v%) - (Cf,c%,w%)
induce an exact sequence of abelian groups

Ko(VCgW) g Ko(V%) d Ko(W%) - 0.
PROOF. See [Weil3, Th.9.6]. O

The factorisation in the hypothesis of the Localisation Theorem is usually obtained
via a cylinder functor that satisfies the cylinder axiom, c¢f. [Wal85, Th.1.6.4] and
[TT90, §.1.8.1-2).

1.5.2.1. Symmetric Monoidal Waldhausen Categories. Similar to the case of model
categories, a symmetric monoidal Waldhausen category admits a symmetric monoidal
structure and a Waldhausen structure that are compatible. That allows one to endue

the Waldhausen K-theory with a homotopy commutative monoid structure.

DEFINITION 1.5.20. A symmetric monoidal Waldhausen category (¢,.7) is a pair
of a Waldhausen category ¢ and a symmetric monoidal structure .7 = (A, 15,9, a, A, p)
on % such that

(1) the endofunctors X A — and — A X are exact for every X € ¢; and
(2) for cofibrations i: U - V and ¢’ : U’ - V' in €, the pushout product
iai :UAV [ VAU -V AV
UAU'
is a cofibration in ¥.

ExaMPLE 1.5.21. Let FSet, be the Waldhausen category of pointed finite sets whose
cofibrations (resp. weak equivalences) are pointed monomorphisms (resp. isomor-

phisms). Recall that Barratt-Priddy-Quillen Theorem implies
K(FSet,) = S,

where S = (5°,5%,52%,...) is the sphere spectrum, see [Rog10, Th.8.9.3]. The smash
product endues the category FSet, with a symmetric monoidal structure, with a unite
%, = (*]I*,*), making it into a symmetric monoidal Waldhausen category. For a
pointed finite set (X, z), one has [(X,z)] = |X ~{z}|- [*:] € Ko(FSet,), and there

exists an isomorphism

(X,z)z [ *+

X~{z}
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For an essentially small symmetric monoidal Waldhausen category (¢,.7), pro-
vided the axiom of choice, there exists an exact functor of Waldhausen categories
vy : Sety > €, for which

U%((X,w)) = H 1n,

X\{z}

for every pointed finite set (X, x). Therefore, there exists a map of spectra
K(vg) : S 2K(FSet,) - K(%).

On the other hand, the monoidal product defines a paring
K(A) :K(€) AR(E) > K(F),

see [Wal85, p.342]. Then, the coherence natural isomorphisms of the monoidal struc-
ture induce a homotopy commutative monoid structure on the Waldhausen K-theory
spectrum K(%), i.e. it makes K(%) into a ring spectrum, see [BM11, Cor.2.8]. In
particular, Ko(%') is a ring and its ring characteristic Z — Ko(%) is given by the ring

homomorphism Ky (vg).

ExXAMPLE 1.5.22. Recall Example 1.5.9, for an essentially small site %, the Wald-
hausen category of pointed 7-sheaves of sets on € is a symmetric monoidal Waldhausen
category, whose monoidal product is given by the smash product. Similar to Proposi-
tion 1.2.56, the unit of the symmetric monoidal structure is given by *, = (* [] *, *),
whereas the smash product of pointed 7-sheaves (27, z) and (#,y) is given by the
pushout of the span

2V (id g xy) I (zxidey) VW

|

*

in Shv. (%), with the canonical base-point.

An exact functor F': € - 2 between symmetric monoidal Waldhausen categories

is said to be weak monoidal if F' is lax monoidal, such that the coherence morphism
F(X)Ag F(Y)—>F(X AgY)

belongs to w2 for every X,Y € ¢, and so is the coherence morphism 14 - G(1¢).
For a weak monoidal exact functor F': € — & between essentially small symmetric

monoidal Waldhausen categories, the map of spectra
K(F):K(%) > K(2)

is a morphism of ring spectra, with respect to the induced structures.
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1.5.3. Grothendieck Group of Triangulated Categories. Let (¢,Z,.7) be a
triangulated category. The Grothendieck group of (¢,%Z,.7), denoted by Ka (%), is the
abelian group generated by isomorphism classes of objects in 4 and relations

{[Y]=[X]+[Z] | there exists a distinguished triangle X »Y - Z - 2X in 7},

where [U] denotes the isomorphism class of an object U in €. Then, [0] = 0 and
[ZX]=-[X], for every X € F.

EXAMPLE 1.5.23. Let £ be an essentially small additive category, and let le(%’)

be the bounded homotopy category of complexes in Z. Then, the Euler characteristic
X KA(ICb(,%)) — Kg (%)

[C.] = Ynez(-1)"[Cr],
is an isomorphism of groups, see [Ros11]. More generally, let w be a weight structure on
a triangulated category (&7,Z, .7 ), as in Theorem 1.4.23. Then, the inclusion Ow < &
induces an isomorphism
Ko (VW) 2Ka (),
see [Bon10, Th.5.3.1].



CHAPTER 2

Motivic Spaces and Complexes

Several theories in algebraic geometry are Al-invariant, which made it desirable to
have a homotopy theory for schemes in which the affine line is contractable. Quillen’s
model structures provide a well-established machinery for homotopy theories; however,
they are restricted to (finitely) bicomplete categories. The A'-homotopy theory of
schemes is obtained by first taking the free cocompletion of the considered category
through the Yoneda embedding. This comes at the cost of loosing colimits that already
exist at the level of schemes, for instance a Zariski open covering does not give a
covering of presheaves, due to the Yoneda embedding not preserving colimits. Hence,
the category of presheaves is localised with respect to hypercovers for a topology 7 that

recovers enough colimits needed to obtain a well-behaved theory.

For a base scheme S, the category Shv,(Sm/S) admits a model structure in which
every projection & x A\é - % is a weak equivalence for every 7-sheaf 27, i.e. the affine
line is contracted. The homotopy category H, . AL (S) of Shv,(Sm/S) with respect
to this model structure is Quillen equivalent to the homotopy category of simplicial
T-sheaves sShv,(Sm/S) with respect to some model structure in which the projection
AR A}q - A is a weak equivalence for every simplicial 7-sheaf Z". One may then con-
sider the homotopy category of simplicial 7-sheaves which is technically more feasible,

compared to the homotopy category of sheaves.

The machinery mentioned above can be run for different categories of schemes and
different topologies on them. However, some of the important results, like the Gluing
Theorem 2.3.1 and the Purity Theorem 2.3.3, are obtained only for topologies that are
as fine as the Nisnevich topology on smooth schemes over a Noetherian base of finite

Krull dimension.

2.1. Homotopy Theories of Simplicial (Pre)sheaves

Throughout this section, let € be an essentially small Grothendieck site, see §.A 4.
Let sPSh(%’) denote the category of simplicial presheaves on €, i.e. the functor cat-
egory Fun(A(’p,PSh(%)), where A is the simplex category, see §.1.2.4.1. Since % is

essentially small, there exist canonical isomorphisms

Fun( A, PSh(%)) > Fun(€ x A%, Set) > Fun(%°, sSet), (10)

65
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which allows considering simplicial presheaves as simplicial objects in presheaves on &,

presheaves of sets on € x A, or presheaves of simplicial sets on %

The Yoneda embedding induces full embeddings
sSet - sPSh(%¢) , % < PSh(%) < sPSh(¥) and A®:Ax% < sPSh(%).

Denote the simplicial presheaf represented by ([n],U) € A x € by A},. Then, the

Yoneda lemma implies that for a simplicial presheaf 2" on %, one has a isomorphism
Zm(V) 2sPSh(%)(AV, Z) for [m]eAVe?.
In particular, one has an isomorphism
AR n(V) 2 AL xE(V,U)  and (A = 1" x "

for every [n],[m] e A, U,V € ¢, and morphisms v : [[] > [m] in Aand ¢p: W -V in
%'; thus, A% coincides with the embedding € — sPSh(%).

Let 2 be a simplicial presheaf on ¢, and let Uy : (A* | Z7) — sPSh(%) be the

canonical projection, then there exist an isomorphism

Z 2 colimUgy .
(A2

Boundedness is essential for the existence of model structures on simplicial presheaves.

DEFINITION 2.1.1. Let k be an infinite cardinal. A simplicial presheaf 2 on % is
said to be k-bounded if and only if |2, (U)| < k, for every n >0,U € €.

EXAMPLE 2.1.2. Let x be an infinite cardinal, such that x > olMor ()], Then, A7

is k-bounded, for every n >0,U € €.

The category sShv, (%) of simplicial T-sheaves over &, is the category of simplicial

objects in the category of 7-sheaves Shv.(%).

2.1.1. Symmetric Monoidal Structure. The category of simplicial 7-sheaves
on ¢ admits a closed symmetric monoidal structure, whose monoidal product (resp.
unit object) is the Cartesian product (resp. terminal object), and whose internal Hom is
given for simplicial 7-sheaves %" and 2 by the 7-sheafification of the simplicial presheaf
Hom, (%, Z), given by

mpre(@,g)n(U) =8Shv, (€) (¥ x A, %) for [n]e A,U€%.

Denote the coproduct in the pointed category sShv;.(%) by v, and define the
smash product of pointed simplicial 7-sheaves (£, x) and (#,y) to be the cofibre of
the canonical morphism (2", z) v (% ,y) = (£ ,z) x (#,y) in the category of pointed
simplicial 7-sheaves. The category sShv, .(¢) admits a closed symmetric monoidal

structure, with a monoidal product (resp. a unit object) given by the smash product
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(resp. the pointed simplicial 7-sheaf 1, = %), and whose internal Hom, is induced from

Hom as in Proposition 1.2.56.

2.1.2. The Model Structures on Simplicial (Pre)sheaves. It is well-known
that the category of simplicial presheaves on an essentially small site admits several
model structures. Some of these structures depend on the topology, defined stalk-
wise or using alternative local conditions, and they are said to be local structures;
whereas the others, defined object-wise, and they are said to be global structures. These
structures are usually defined based on Kan-Quillen’s model structure on simplicial
sets. Structures with cofibrations induced directly from cofibrations of simplicial sets
are said to be injective structures; whereas structures with fibrations induced directly

from fibrations of simplicial sets are said to be projective structures.

The global structures considered here are Quillen equivalent to each other. Also,
the local structures are Quillen equivalent, assuming the site has enough points, and
hence they give rise to the same homotopy theory. Moreover, local structures are left

Bousfield localisations of their corresponding global ones.

DEFINITION 2.1.3. A morphism f: .2 — % of simplicial presheaves on % is said
to be an object-wise (or section-wise) weak equivalence, cofibration, or fibration if
fu: Z(U) - #(U) is a weak equivalence, cofibration, or fibration of simplicial sets,

respectively, for every U € €.

The essential difference between local and global structures lies in weak equiva-
lences, local weak equivalences are recalled in §.2.1.3. Assuming the site has enough
points, local weak equivalences are morphisms that induce weak equivalences of sim-

plicial sets stalk-wise.

The category sPSh(%) admits a proper cofibrantly generated simplicial model

structure with weak equivalences, cofibrations and fibrations given by

e object-wise weak equivalences, object-wise cofibrations, RLP with respect to
object-wise weak cofibrations, respectively; called the global injective structure,
see [Hel88];

e object-wise weak equivalences, LLP with respect to object-wise weak fibra-
tions, object-wise fibrations, respectively; called the global projective structure
or Bousfield-Kan model structure, see [BK72, §.XI.8] and [Dug01];

e local weak equivalences, object-wise cofibrations, RLP with respect to local
weak equivalences that are object-wise cofibrations, respectively; called the
local injective structure or the Joyal-Jardine model structure, see [Jar87]; and

e local weak equivalences, LLP with respect to local weak equivalences that
are object-wise fibrations, object-wise fibrations, respectively; called the local

projective structure, see [Bla01].



68

LEMMA 2.1.4. The identity functor is a left Quillen equivalence from the global
projective to the global injective model structures on sPSh(%).

PROOF. See [DHIO4]. O

The category of simplicial 7-sheaves admits model structures corresponding to the
local model structures on simplicial presheaves, with weak equivalences, cofibrations,
fibrations being weak equivalences, cofibrations, fibrations, respectively, in the corre-
sponding local model structure of simplicial presheaves. These structures give equiva-

lent homotopy theories.

The local injective model structure on simplicial presheaves is cofibrantly generated

with sets
I:={0A}, > A, [n>0,U €€} and
J:={j:% - V| jis alocal injective weak cofibration, and ¥ is k-bounded}

of generating cofibrations and generating weak cofibrations, respectively, for a cardinal
Kk > 2Mor(€)l The set of cofibrations in the local injective model structure consists of
inclusions of simplicial presheaves. This structure is a left Bousfield localisation of the

global injective model stricture with respect to 7-hypercovers, see [DHI04].

2.1.3. Local Weak Equivalences. Local weak equivalences should be defined in
a way that accounts for the site’s topology. That can be achieved in different ways, using
different topological and simplicial homotopy sheaves, stalks, or local lifting conditions,
see [DI04].

The definitions due to Jardine in [Jar87] and Morel and Voevodsky in [M'V99]

depend on different functors of homotopy sheaves, and they are recalled below.

2.1.3.1. Joyal’s Homotopy Sheaves. The presheaves of path connected components

functor

b “(=) : sSPSh(%) - PSh (%)
is given on an object 2" € sSPSh(%) by

(2 =P (2 U)),

for U € €; and the 7-sheaves of path connected components functor 7T80p (=) is given by

the the composition of the 7-sheafification with 7§ “(-).

Similarly, for an integer n > 1 and an object U € €, the presheaves of the n'*-homotopy
groups functor
T ¢(~|ir, %) : SPSh(®)y > PShE™® (€ LU)

is given on a pointed simplicial presheaf (2", z) over U by

(2 |y, 2)(V) = mp®(| 2 (V)] @),
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for every V € €| U; and the 7-sheaves of the n'*-homotopy groups functor 7/ (=|r7, *)

is given by the composition of the T-sheafification with 7} “(~|y, *).

DEFINITION 2.1.5. A morphism f: 2 — % of simplicial presheaves on % is called

a topological local weak equivalence if
. 7T60p (f) is an isomorphism of 7-sheaves; and
e for every integer n > 1 and an object U € €, the morphism 7 (f|r,z) is an

isomorphism of 7-sheaves, for all z € 2y(U).

Topological local weak equivalences satisfy the two-out-of-three property, and con-

tain object-wise weak equivalences.

2.1.3.2. Morel and Voevodsky’s Homotopy Sheaves. The main difference between
Joyal’s homotopy sheaves and Morel and Voevodsky’s homotopy sheaves is that the
latter considers all base points at once. That is, it is defined on a bigger site that encodes
both the category ¢ and all the vertices of 2", namely h_ | Z(, where h_ : € — PSh(%)
is the Yoneda embedding, instead of the sites (4| U) for every object U € €.

There exists a bijection between the objects in h_ | Zy and all the vertices of 2",
which sends a morphism f : hyy — 2y of presheaves to the vertex x s = fy(idy) € Zo(U).

DEFINITION 2.1.6. Let 2" be a simplicial presheaf on %. For an integer n > 0, the
n-homotopy presheaf of 2 is defined to be the functor
mere(27) : (ho| Zo)? — Set,, (11)
given on a object f:hy - %2y by
(2 (f) = m P12 (U)], ).
The n-homotopy T-sheaf IIP(2°) of 2 is defined to be the T-sheafification of TIE(2),

with respect to the induced topology on h_ | 2y, that is the coarser topology with

respect to which the projection p’1 th_|% — € is a continuous functor.

Let p: € — (h- | 20)nyr be the continuous map of sites given by p>1. For a
simplicial presheaf 2 on ¥, the direct image p.(2Z") is the presheaf on h_| 2y, given
on an object f:hy — Zp by

p(Z)(f) = Zo(U),

which can be pointed canonically by ;. Hence, it defines a pointed presheaf p.(Zo)«

on h_| %2y, endued with a natural transformation

pa ILP(2) = pu(Z0)T

For a morphism of simplicial presheaves f: 2 — %, the induced functor

Flemholfe(ho) 20) » (h-1%)
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is continuous with respect to the induced topologies, and hence it defines a continuous

map of sites f: (h-{ %) jr > (h-| Z0)nyr- In particular, the direct image
f. : PSh(h_4%) ~ PSh(h- | 27)

preserves T-sheaves, giving rise to a natural transformation
IEP(f)  TEP(27) > £ (ILP(Y)).

For every integer n > 0, the square

P (f)

7 (2) £ (ILP (%)) (12)
pg{j O lp,ﬂy
P (20)Y e (I

of pointed 7-sheaves on (h-| .2()n - commutes. In fact, the square above is Cartesian
in Shvy - (h_ | 23) if and only if Joyal’s morphism of sheaves i (f|U,zoy) is an
isomorphism for every U € ¢ and zoy € Zo(U). Therefore, f is a topological local
weak equivalence if and only if for every integer n > 0 the square (12) is Cartesian in
Shvy - (h-| Zp), see [MV99, §.2.Rem.1.3].

2.1.3.3. Stalks of Simplicial Presheaves. Let p be a point of the site %, and let
f:+ & = % be a morphism of simplicial presheaves on ¥. Then, the stalks functor at
p induces a morphism of simplicial sets p*f : p* 2 — p*%'. The morphism f: 2 - %
is called a stalk-wise weak equivalence if p* f is a weak equivalence of simplicial sets for

every point p of %;.

Topological local weak equivalences are point-wise weak equivalences, but the in-

verse is not true in general.

Recall that, for every point p of €, the stalks functor p* is given by filtered colimits,
see §.A.4.2.1. The geometric realisation commutes with colimits as it is a left adjoint,
and the connected component functor mp(—) and homotopy group functors m, (-, *)
commute with filtered colimits. Then, for every morphism f : 2 — #of simplicial

presheaves on %, there exist canonical bijections

P () 2mo(p (N and  piy (P (firsw0)) 2 Iy (i) 20).

for every U € € and for every integer n > 1. Therefore, when the site %, has enough
points, the notions of topological local weak equivalences and stalk-wise weak equiva-

lences coincide.
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2.1.4. The Homotopy Theory of Simplicial Sheaves for Sites with Inter-
vals. The fibrant replacement for Bousfield localised model categories is rather compli-
cated and difficult to work with. Morel and Voevodsky provided in [M'V99] a relatively

simpler fibrant repentance of Bousfield localised model with respect to an interval.

The main idea here is to use the contractability of the interval ‘All in the classical
homotopy theory of topological spaces, or equivalently the contractability of the sim-
plicial set A", for every integer n > 0, and ‘alter’ (simplicial) 7-sheaves ‘replacing’ the
T-sheaf represented by the affine space A" by the simplicial 7-sheaf of the contractable

simplicial set A", for every integer n > 0.

DEFINITION 2.1.7. An interval in the essentially small € is a quadruple (I, u,i9,11),
where I is an 7-sheaf on &, p: I x I - I is a morphism in Shv, (%), and iy and i1 are

two distinct morphisms ig,i; : * — I in Shv.(%’), such that

e for the terminal morphism p: I — * in Shv, (%), one has
po (igxidy) 2 po (idy xig) Zigop and o (ip xidy) 2 po (idy x41) 2 idy; and
e the induced morphism ég 41 : * [ * - I is a monomorphism.

Then, the morphism p is called the multiplication of I.

An interval I in €, defines a cosimplicial 7-sheaf A} : A — Shv.(C), given for an

object [n] € A by the n-fold Cartesian product I*™ in Shv,(C'), with codegeneracies

s AT AT for 0<i<n,
given by projecting out the (i +1)®-term, i.e. s’ =id} x p x id;(n_i), and cofaces
dio AT AT for 0<i<n,
given by
i xid; Y i=0;
d = 117D x5y xid; D 0 < <o
id;(nfl) X 1 1=mn;

where 67 is the diagonal morphism d7: I — I x I. The cosimplicial T-sheaf A} is called
the cubical cosimplicial T-sheaf associated to I. A description of the morphism A‘; for

any morphism g : [m] — [n] in A is given in [Voe96, p.88].

2.1.4.1. Simplified Fibrant Replacement. Assume that 7 is subcanonical on %, let
I be an interval in €,, and let A} : A - Shv.(%¢) be the cubical cosimplicial T-sheaf
associated to the interval I. Since % is subcanonical, the Yoneda embedding h_ : ¥ —
PSh(%’) factorises though the category of 7-sheaves on €, let A} : A - sShv. (%) be
the diagonal of the bicosimplicial simplicial 7-sheaf A} x A®: A x A - sShv, (%), and
let A} _ denote the functor A7 xh_: Ax% — sShv.(%). Since the category sShv, (%)
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is cocomplete, there exists a éi_—tensor and Hom adjunction, given by the left Kan
extensions for the span

N

AxE

A®

sShv. (%)

sShv, (%),
similar to Example A.3.8.

Denote the Aj -tensor and Hom functors by |-| , and Sing . respectively. The
functors HI and Sing, are isomorphic to the functors |-| AsxA® and Sing!, given in

[MV99, p.90 and p.88]. That is, for a simplicial 7-sheaf 2" € sShv, (%), one has
Hom™? (A} _, 2)n(U) = sShv () (A} x A" xhy, Z7)
2 sShv, (6) (A} x hy, Homegy, () (A", 27))
= Shv,(€) (A7 x hy, Homegy, () (A", 2)0)
= Shv, (4) (A7 xhy, Z0) = Homgp, ) (A7, 22) (U)
= Sing, (2)a(U),
for every [n] € A and U € €. On the other hand,

([r],U)eAx®
A ®AxE éi_ = H A? x A" x hy
sShv, (¢) (AL, Z7)
[n]EA Ue¥€
[ ] U apearsmw
Shv- (%) (hy,2n)
[n]EA Ue¥

= fA?xA”xf 11 hy

Shv. (%) (hy, 2)

112

[n]eA
= / A?XATLX%TL:|<%'|A;XA..

Similarly, considering the left Kan extensions for the span

L]
I-

Ax€E

AC

Shv, (%)

sShv.(¥)
yields a A},_—tensor and Hom adjunction. Denote the Ai_-tensor and Hom functors by

|-|; and Sing;, respectively. The functors |-|; and Sing; are isomorphic to the functor

|—|A; and the restriction of the functor Sing!, given in [MV99, p.90 and p.88], to the
category Shv.(%).

The functors Sing T and Sing; preserve filtered colimits, as representable simpli-

cial T-sheaves (resp. representable 7-sheaves) are compact objects in sShv, (%) (resp.
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Shv;(%)). Moreover, the functor Sing, and Sing; commute with limits for being right
adjoints, and hence they are symmetric monoidal. However, neither |—|[ nor |-|; pre-
serves finite product or is symmetric monoidal. That is, for a pair of integers n, m > 0,

[p]eA [pleA
A" x AT, = f (A"xA™), x AP f NN AN L E TN NN

Similar to Kan’s Ex functor in §.1.2.4.1, the split epimorphism é},— - A? induces
a monomorphism
X = Siﬁz(% )
of simplicial presheaves that is also an I-weak equivalence, for every 2" € sShv, (%),
see [MV99, §.2.Cor.3.8]. The functor Sing, takes the projection 2" xI - 2" to alocal
weak equivalence, for every 2 € sShv, (%), see [MV99, §.2.Cor.3.5]. Moreover, for
a fibrant replacement R, for the model category sShv,(%¢)inj and for a large enough

ordinal A, the transfinite composition
(R;o SingI)A o R,

is a fibrant replacement for the left Bousfield localisation of sShv.(%)inj with respect
to the set of projections {2 x I - 2 | Z €sShv.(%)}, see [MV99, §.2.Lem.3.21].

2.2. 7-Local Homotopy of Schemes

Let S be a Noetherian scheme of finite Krull dimension. Recall the conventions and
notations in §.0.2 and suppose that 7 is a subcanonical topology on the category Sm/S
of smooth S-scheme. Let SSth(Sm/S)li‘;fj and SSth,.(Sm/S)ﬁg be the local injective
model categories of simplicial T-sheaves and pointed simplicial 7-sheaves, respectively,

and denote their homotopy categories by H7(.S) and H; ,(S), respectively.

The Cartesian and smash products preserve 7-local weak equivalences, and they
induce derived closed symmetric monoidal structures on the homotopy categories H: (S)

and H; ,(S), respectively.

2.2.1. The B.G.-Property in the Nisnevich Topology. A simplicial presheaf
2 € sPSh(Sm/S) is said to have the B.G.-property if it sends Nisnevich distinguished
squares to homotopy Cartesian squares of simplicial set, see Definition A.4.28. This is

an analogue of Brown and Gersten construction in Zariski topology, as in [BG73].

ExAMPLE 2.2.1. Fibrant simplicial Nisnevich sheaves have the B.G.-property, see
[MV99, §.3.Rem.1.15].

LEMMA 2.2.2. Let f: 2" - % be a morphism of simplicial presheaves on Sm/S that
has the B.G.-property whose Nisnevich sheafification anis(f) : anis(Z") = anis(%) is

a Nisnevich-local weak equivalence. Then, f is an object-wise weak equivalence.

PROOF. See [MV99, §.3.Lem.1.18]. O
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2.2.2. Functoriality. For a morphism f:S — T of Noetherian schemes of finite
Krull dimension, the functor f1 :Sm/T — Sm/S given by base change along f defines
a continuous map of sites f>1 : Sm/SNis & Sm/Tnis. The induced adjunction

[ :sShvnis(Sm/T') =2 sShvyis(Sm/S) : f«
is a Quillen pair, by [M'V99, §.3.Prop.1.20], and hence it induces total derived functors
L™ Hus(S) = Hiio(T) s R fo.

Moreover, for a smooth morphism f:S — T, the functor f* admits a left adjoint f4

given by composing with f, and it induces an adjunction L f» <L f*.

2.3. The Unstable A'-Homotopy of Schemes

The A}-model categories SShVT(Sm/S)A}9 and SSth7.(Sm/S’)A§ are defined to be
the left Bousfield localisation of sShv,(Sm/S)\% and sShv,.(Sm/S)\%, respectively,
with respect to the set of projections {% x AL - X | X e SSth(Sm/S)}. The
resulting local weak equivalences are called A}g—weak equivalences. Then, the unpointed
and (resp. pointed) homotopy category of schemes over S is defined to be the homotopy
category of SShv.r(Sm/S)A}g (resp. SShVﬂ.(Sm/S)A%), and it is denoted by H(S) (resp.
He(S)). Objects of H(S) and H(S) are called unpointed and pointed motivic spaces,

respectively.

These homotopy categories are reflective localisations of the Nisnevich local homo-
topy categories. In particular, for an A}g—ﬁbrant simplicial Nisnevich sheaves 2~ and

% , there exists a bijection
H(S) (2, ) = Hus(5) (27, ).

In fact, the category H(S) is equivalent to the full subcategory HY. .1 (5) of Ag-local
g
simplicial sheaves in Hy;s(S). That is, the inclusion HY. 41 (5) = HY;s(S) admits a
18,85
left adjoint
I“A}g : Hles(S) - HSNiS’A}g(S)a
called the Ag—localisation functor, which sends Ag—weak equivalences to topological

Nisnevich local equivalences.

The Cartesian and smash products also preserve Ag—weak equivalences, and hence
the induce closed symmetric monoidal structures on the categories #; (S) and #; ,(5),

respectively. In particular, for the simplicial sphere
Se=(S"[61]) = (A1, 61)/(A%,id[g)) € sShvnis,« (SM/S),
the Quillen pair

~ A SE:sShv,.(Sm/S) = sShv, .(Sm/S) : Hom, (S, -)
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induces derived functors
Z:Ho(S) > He(S): Q,
called the simplicial suspension and the simplicial loop spaces functors, respectively.

2.3.1. Functoriality. A morphism f:.S — T of Noetherian schemes of finite Krull

dimension induces an adjunction of total derived functors
Lf*: Hia(T) 2 Hio(S) :RYS £,

as the functor f* preserves A\}g-weak equivalences. Moreover, when f is smooth, the

functor L fx preserves A}g—weak equivalences, and it induces an adjunction
Lf# : Hles(S) 2 Hles(T) : Lf*7
see [MV99, §.3.Prop.2.8-9].

THEOREM 2.3.1 (Gluing Theorem). Let S be a Noetherian scheme of finite Krull
dimension, let 7 : Z < S be a closed immersion with an open complement j: U <> S,

and let 2" be a Nisnevich simplicial sheaf on Sm/S. Then, the square
Ligi* 2 x

|

UzLjyj*S —> 8 —=i,Li*S —i,Li* 2,

in H(S), induced by the unit and counit of the adjunctions, is homotopy cocartesian.
PROOF. See [MV99, §.3.Th.2.21]. O

LEMMA 2.3.2. For a proper cdh-square

4

zxxyiﬁi;»y

in Sm/S, its simplicial suspension is a homotopy cocartesian square in H(.S).

PROOF. See [MV99, §.3.Rem.2.30]. O

However, it does not seem to be known whether the square, without suspension, is

a homotopy cocartesian square in H(S), see [VoelOb, p.1406].

THEOREM 2.3.3 (Purity Theorem). Let S be a Noetherian scheme of finite Krull
dimension, let ¢ : Z <> S be a closed immersion, and let 457 — Z be the normal
vector bundle associated to i, with zero sections ig. Then, the quotients X/(x -i(2))

and 5.2 (s, 7 —i0(2)) in H(S) are isomorphic.

PROOF. See [MV99, §.3.Th.2.23]. 0
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2.3.2. Motivic Spheres. The cocartesian square

Gms —— A}S’

.

AL !
S S

in Sm/S induces an isomorphism of pointed Nisnevich sheaves T := A§/Gmg = PL/AL.
After contracting Ak in H.(S), the square above induce isomorphisms T = (P, c0) =
2s(Gmg,1) = SL A (Gmg, 1), see [MV 99, §.3.Cor.2.18] and [Hov99, §.8.1].

The pointed Nisnevich sheaf (Gmg, 1) is called the Tate sphere, and denoted by Stl.

For a pair of integers p, q € Zsg, the mized sphere SP? is defined as
SP9= (ST A (SH™.

In particular, one has (P}, 00) = S>1.

2.4. Stable Motivic Homotopy Theories

2.4.1. Stable A!'-Homotopy Theory of S'-Spectra. Let k be a field, and let
SptSE(k) denote the category of Sl-symmetric spectra of pointed simplicial Nisnevich

sheaves on Sm/k, i.e.
Spt, (k) = Sptr:(sShvyis « (Sm/k), S5),

and let £2° : sShvnis.(Sm/k) < SptZ(k) be the associated Sl-symmetric suspen-
sion spectrum. Model structures on sShvyis.«(Sm/k) induce corresponding level and

Sl.stable model structures on Spt¥(k), as seen in §.1.3.1.

Let SptSE(k‘)Stab be the Sl-stable model category induced by the local injective
model structure on sShvyise(Sm/k). Weak equivalences in SptZ (k)stap are called
Sl-stable weak equivalences. Let SHg1(k) be the homotopy category of Spt= (k)stan,
called the S!-stable homotopy category. Then, the left derived simplicial suspension

L%, : SHgi (k) > SHgi (k) is an equivalence of categories, see Theorem 1.3.5.

Since Sptf?(k)stab is a left proper model category, it admits Bousfield localisations
with respect to small sets of its morphisms. Let Spt?(k)ﬁéb be the left Bousfield
localisation of Spt>(k)stan with respect to the set of projections {E2° U, AZP(A},0) —
XUy | U € Sm/k}, and let SHq(k) be its homotopy category, called the motivic
Sl_stable homotopy category, see [VR@O07, §.2.2]. Weak equivalences in Spt?(k)iéb
are called Ai-stable weak equivalences of Sl-symmetric spectra. Also, the simplicial

suspension Zs induces an equivalence of categories LZ; : SHs(k) — SHs(k).
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2.4.2. Stable A'-Homotopy Theory of P!-Spectra. Let Spt]%,}g(k) denote the
category of (IP/,l€7 oo )-symmetric spectra of pointed simplicial Nisnevich sheaves on Sm/k,
and let Spt]%}c(k)l%17stab be the (IP,IC, oo )-stable model category induced by the A}C—model
structure on sShvyis «(Sm/k), recalled in §.2.3. Its weak equivalences are called motivic
stable weak equivalence. Let SH(k) be the homotopy category of Spt%i (k)Agstab, called

the motivic stable homotopy category.

Alternatively, SH (k) may be defined from SH(k), using bigraded homotopy sheaves.
For a (PP}, o0 )-symmetric spectrum E e Sptﬂzﬂ (k), an Sl-spectrum F e Spt¥(k), and an
k
integer m > 0, there exists a canonical composite morphism
Tm(F, E) =SHy(k)(F *n £2°(Py, 00)", 22 By ) —
SHs(k)(F *n 2Py, 00)™ 1 22 (B A (P, 00))) —
SHs(k)(F *n 22 (P}, 00)™ 1 22 Eppit) = Tomat (F, E),
and hence a sequence mo(F, F) : Zsy — Set. Then, for integers p,q > 0, define the

bigraded homotopy presheaves functor mhy to be the functor Spt%l (k) - PSh(Sm/k)
k
given on an object E ¢ Sptnzﬂ (k) by
k

(B (=) = colimma (E5°(<)s n £ 579, B),

and let the bigraded homotopy Nisnevich sheaves functor m,, be the composition of

the Nisnevich sheafification with 7, .

LEMMA 2.4.1. A morphism f: FE — F in Sptnzﬂ (k) is a motivic stable weak equiv-
k
alence if and only if 7, 4(f) is an isomorphism of Nisnevich sheaves for every pair of

integers p,q > 0.
PROOF. See [VROO07, §.5]. O

hom-sets in SH(k) can be expressed in terms of colimits of hom-sets in SHs(k).

That is, for a k-scheme X € Sm/k and for a symmetric spectrum E € Spt%l (k), there
k

exists a sequence (X, E), : Zsy — Set, given for every integer n > 0 by the canonical

composite morphism

(X, E)p =SH (k) (22 (X4 A S)™) 22 Ey,) -
SHs(k) (22 (X4 A S)™ 1) 22 (B ASE) ) >
SH (k) (22 (Xo A SP™) 22 Epit) = (X, E)man,s

which induces an isomorphism
SH(k)(Z3 X+, E) = colim (X, E).,
k

see [VRO07, Prop.2.13].
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Triangulated Structure. The motivic stable homotopy categories are triangulated,
whose suspensions are always taken to be the simplicial suspensions, and whose dis-
tinguished triangles are symmetric suspension spectra of cofibre sequences of simplicial

sheaves.

2.5. Motivic Complexes

Throughout this section, let k£ be a field and let R be a commutative unitary ring.
Recall the conventions and notations in §.0.2. In particular, the category of schemes
of finite type over k is denoted by Scﬁ/k. Also, the subcategory in Scﬁ/kz of smooth
(resp. smooth projective) schemes over k is denoted by Sm/k (resp. SmProj/k). An
k-scheme (resp. a smooth k-scheme) refers to an object in Scﬁ/ k (resp. Sm/k).

2.5.1. Finite Correspondences. In the construction of pure motives over k, one
considers algebraic correspondences modulo rational equivalence for Chow motives, or
an adequate equivalence relation for other pure motives, in order to obtain a well-
defined composition homomorphism. This approaches depends on the Moving Lemma,
and it is restricted to smooth proper k-schemes. Instead of considering such quotients,
one may restrict correspondences to subgroups that provide a well-defined composition,
i.e. they guarantee proper intersections in the corresponding product schemes. That

has been realised using finite correspondences, as in [VSF00].

DEFINITION 2.5.1. Let S be a smooth k-scheme, and let X — S a morphism of
schemes of finite type. A prime cycle Z € C*(X) is said to be elementary over S if
the composition fz : Supp(Z) < X — S is a finite morphism that is surjective on a
connected component of S. Then, let ¢(X/S) denote the abelian group generated by

elementary cycles on X over S, called the group of finite cycles on X over S.

DEFINITION 2.5.2. Let X and Y be smooth k-schemes. An algebraic correspondence
I': X + Y is said to be finite if it is a finite cycle on X xY over X, along the canonical
projection X xY PZ¥ X. Denote the group of finite correspondences from X to Y by

FCor(X,Y) =c(X xY/X).

When X is irreducible, one has dimSuppI' = dim X. Since connected components of
smooth k-schemes coincide with their irreducible components, on has a decomposition
FCor(X,Y) = @FCor(X;,Y) c @ Cainx, (Xi xY),

iel iel
where {X; | i € I} is the set of connected components of X.
EXAMPLE 2.5.3. Let f: X - Y be a morphism of smooth k-schemes. The morphism

Iy <> X xY - X is an isomorphism, and the algebraic correspondence [T¢]: X Y

is a finite correspondence from X to Y.
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LEMMA 2.5.4. Let X,Y, and Z be smooth k-schemes, and let
I'e FCor(X,Y) and © e FCor(Y,Z2)

be elementary correspondences. Then, the cycles I' x Z and X x © intersect properly

in X xY x Z. Moreover, the pushforward
©ol=(prxz),(T'x2) (X x0O))

is a finite correspondence from X to Z.

PROOF. See  MVWO06, Lem.1.7]. O

Therefore, consecutive elementary correspondences are composable. Extending bi-

linearly, one has a well-defined group homomorphism

o:FCor(Y,Z) x FCor(X,Y) - FCor(X, Z). (13)

DEFINITION 2.5.5. The category of finite correspondences over k with coefficients
in R is defined to be the R-linear category SmCor(k, R), given by
e a set of objects Ob(SmCor(k, R)) = Sm/k;
e for a pair (X,Y") of objects in Ob(SmCor(k, R)), the R-module of finite cor-

respondences with coefficient in R

SmCor(k, R)(X,Y) :=FCor(X,Y) Q) R;
Z

e for atriple (X, Y, Z) of objects in Ob(SmCor(k, R)), the composition R-bilinear
homomorphism induced from (13); and

e for an object X € SmCor(k, R), the R-linear homomorphism of modules
1x: R— SmCor(k,R)(X, X)
sending 1 to T4, | =[Ax]: X + X.
For R =7, write SmCor(k) = SmCor(k, R).

There exists a well-defined covariant faithful (but not full) functor

[-]lk,r: Sm/k — SmCor(k,R)
X — X
fooe [Ty]-
The category SmCor(k, R) is additive, with a direct sum given by disjoint union of
schemes. Also, it is a symmetric monoidal category, with a monoidal product given by

the Cartesian product of smooth k-schemes.

2.5.2. Geometric Motives. Let K°(SmCor;,) be the bounded homotopy category
of complexes in SmCor(k), and let
[-]: Sm/k — SmCor, — K (SmCory,)



80

be the evident functor sending each smooth k-schemes X to the complex concentrated
on X in degree zero, and let T be the set of complexes in le(SmCork) of the form
Tpr
o 50— [XxA}] o] [X]—>0— - for X e Sm/k; and
[Ty ]®lTyy, ] [Ty J®(=[Tiy, 1)
e -0 [UNV] "V Welv] Y — VT [X] >0 > -, for X €
Sm/k and an open covering X =UUV.

Then, let .7 be the thick closure of T in K°(SmCor;,).

DEFINITION 2.5.6. The category DMgffn(k,IR) of effective geometric motives over
k with R-coefficients is defined to be the Karoubian envelope of the the Verdier quo-
tient K°(SmCor;)/.7 of K°(SmCor;) with respect to the tick subcategory 7. The
composition functor
_ T _t
sm/k - K (SmCory) L% Kb(SmCory) /7 —» DMEE. (k) = (K" (SmCory)/.77)!
is denoted by M, r, and called the geometric motive functor. For R = Z, write
DM (k) := DMEE (K, R) and Mgy, = Mg &.
The reduced motive Hgm(X) of X € Sm/k is defined to be the cocone
Mgva(X) := Cocone ( — Mgm . r(X) > Mym r(Speck) — )
of the complex centred in degrees 0 and 1, see [Voe00, p.192]. Let,
R(0) = Mgy r(Speck)  and  R(1) = Myn r(P})[-2].

The geometric motive R(1) is called the Tate motive over k.

The category of effective geometric motives DMEﬂr (k,R) is R-linear additive with a

m

symmetric monoidal structure. Moreover, the functor

. ff ff
~® R(1) : DM (k, R) - DMCE (K, R)

m

is triangulated, and the category DMgym (k, R) of geometric motives over k with R-coefficients
is defined to be the Spanier-Whitehead stabilisation of DMgfn(k:, R) with respect to the
functor - ® R(1), i.e.

DMgu (k, R) = SWRDMEE (£, R).
PROPOSITION 2.5.7 (Gysin Triangles). Let X be a smooth k-scheme, let i : Z <~ X

be a smooth closed immersion that is everywhere of codimension ¢, with complementary
open immersion j : U —e» X. Then, there is a canonical distinguished triangle
Mgm (5) g
M (U) = Mg (X)) —> Mgu(Z)(¢)[2¢] — Mg (U)[1]
in DMSH (k).

PROOF. See [Voe00, Prop.3.5.4]. O
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COROLLARY 2.5.8. Let k be a perfect field of exponential characteristic p. Then, the
triangulated category DMggl[Z[%]](k) is generated by direct summands of geometric

motives for smooth projective k-schemes.

PROOF. See [Kell2, Prop.5.5.3]. O

Motives of Singular Varieties. Let k be a perfect field. The functors
gm,p

1 1
Mg : SM/k DMgﬁm(kz,Z[z—?]) and MPIP: SmProp/k — Sm/k - DM (k, Z[Z—)])

extend to functors
1

;]),

called the geometric motive and geometric motive with proper support functors, re-

t 1 't PrO
Mg p : Sch /k - DMET (£, Z[0)  end Mg, S A Ik - DMCE (&, 2]

gm,p *

spectively, see [Kell2, Lem.5.5.2 and Lem.5.5.6]. These functors satisfy the following
homological properties, among others,
e (Homotopy invariance) the morphism Mgy »(prx) : Mgm p(XxA}) = My »(X)
is an isomorphism for every X ¢ Scﬁ/k, see [Kell2, Cor.5.5.9];

e (Blow-up) there exists a canonical distinguished triangle

Mg p(p7 (Z)) — Mg p(Z) @ Mgm p(X2) = Mgmp(X) > Mgm p(py (Z))[ ]
in DMg;(k, Z[ﬁ])’ for every closed subscheme Z —— X in Sch [k, where py :
Xz — X is the blow-up of X centred at Z, see [Kell2, Cor.5.5.4];

e there exists a canonical isomorphism

Moy p(X) 2 Mgm p(X),

gm,p
for every proper k-scheme X ¢ Sch [k, see [Kell2, Prop.5.5.5];

e there exists a canonical isomorphism

Mgy, p(Y) () [20] > Mgy, ;,(X),

gm,p
for every flat equidimensional morphism f : X — Y in Sch [k, where n =
dimy X, see [Kell2, Prop.5.5.11]; in particular, there exists a canonical iso-
morphism
Mg (X x Ag) 2 Mg, ,(X)(1)[2],
induced by the projection prx : X x Ak - X;

e there exist canonical isomorphisms
Mgﬂhp(X) = Mng)(chd) a‘nd gm p(X) m,p(XI‘Od)7
for every X € Scﬁ/k;

e there exists a canonical distinguished triangle

Mg p(Z) = Mgy, p(X) = My, ,(U) = Mgy, ,(2)[1],

gm,p gm,p gm,p
for every closed immersion Z < X in Scﬁ/ k with complementary open im-
mersion j: U o> X, see [Kell2, Prop.5.5.5]; and
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e (Kiinneth Formula) there exist canonical isomorphisms

Megm p(X xY) 2 Mg p(X) ® Mgmp(Y)

gmp(X XY) (X)® gmp(Y)

for every X,Y ¢ Sch [k, see [Kell2, Prop.5.5.8].

gmp

These results were obtained by Voevodsky, in [Voe00, §.4], with integral coefficients
for fields admitting resolution of singularities, and by S. Kelly, in [Kell2], with Z[%]

coefficients for any perfect field of exponential characteristic p.

In particular, the last three properties imply that the functor Mg, , induces a

motivic measure
tow© Ko(Var/k) — Ka(DM(k,Z[1]))

(X1~ [Mgn,p(X)]-

(14)

2.5.2.1. Chow Motives. Recall the construction of the category of pure Chow mo-
tives with R-coefficients over k, starting with the category of covariant (resp. contravari-
ant) Chow correspondences of degree zero on smooth projective k-schemes, applying
the Karoubian envelope yields the category of covariant (resp. contravariant) effective
Chow motives, then the Spanier-Whitehead stabilisation of effective Chow motives with
respect to the Lefschetz motive L results in the category of covariant (resp. contravari-
ant) pure Chow motives. This was first developed by Grothendieck in 1964, within the

general framework of motives.

The R-linear categories Corp(k) and Cor®(k) of covariant and contravariant Chow
correspondences, respectively, of degree zero over SmProj/k have the same objects of

SmProj/k, and their morphisms are given by the R-modules of Chow correspondences'

Corp(k)(X,Y)= @ CHd”“YJ(XxY)®R
Yjeirr(Y)

and

Corf(k)(X,Y)= @ CH¥"(X; xY)®R
X;eirr(X)

for every pairs (X,Y") of smooth projective k-schemes, with compositions given by the

intersection product on the Chow rings.

There are well-defined functors

SmProj/k — Corr(k) and SmProj/k°P — Corlt(k),

1Algeb]raic correspondences modulo rational equivalence, see [Ful98|.
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sending a morphism f of smooth projective k-schemes to the Chow correspondence [I'¢]
of its graph and to its transpose [I'f]', respectively. Moreover, since connected compo-
nents of smooth k-schemes coincide with their irreducible components, the transpose

defines an isomorphism of categories
Corg(k)°? - Corl(k),

that is the identity on objects and given by the transpose on correspondences.

The categories Corg(k) and Cor®(k) are additive, whose direct sum (resp. zero
object) is given by the disjoint union of schemes (resp. the scheme Spec k). Moreover,
these categories are symmetric monoidal, whose monoidal product is induced by the
Cartesian product of smooth projective k-schemes. However, neither of the categories
Corg(k) and Cor(k) is Karoubian. The categories of covariant and contravariant
effective Chow motives CHMS (k) and CHMZ (k), respectively, are defined to be the
Karoubian completion of Corg(k) and Cor® (k), respectively. In particular, objects of
CHMS (k) are pairs of the form (X, =), for a smooth projective k-scheme X and an
idempotent Chow correspondence =: X + X in Corg(k); and

CHMS! (k) ((X,E), (Y, ¥)) = ¥ o Corp(k)(X,Y) o E.

The categories CHMS (k) and CHMZ%, (k) inherit the R-linear additive and symmetric
monoidal structures of Corg(k) and Cor?(k), respectively.

Lefschetz motive. Let p : IP,lg — Speck be the structure morphism of IP,lg, let x :
Spec k = IP}. be a rational point of P, let e := xop: P} - P}, and let T':= [[.] : P}, + P}
be the idempotent endomorphism in Corg(k) corresponding to e. The endomorphism
T induces an idempotent endomorphism T : (P}, [AIPI]) - (P}, [AIP1]) in CHMSE (k).
Hence, (P;, [AIP}C]) decomposes in CHMSE (k) as
(Pj [8p;]) 2 ker PP imT.

Let T'; = [Speck x P1] and Ty = [P}, x Spec k] be the Chow correspondences spanning

CHM (k) (P}, Py) = Corr(k) (P}, Py) = CHR(P) x Py) = RD R,
then I'y + 'y = [AP1] e CHMYT (k) (PL, L), and T =T'y = [Speck x PL]. Therefore,

kerT'= (P}, [Ap1]-T1) = (PLT2)  and  imD=(PLTy).
The motive (P}, T2) = (P}, [P}, x Speck]) is called the covariant Lefschetz Motive and
it is denoted by IL. Then, one has

(IPIw[A]Pl]) (Speck, [Aspeck] @]L ]1@]14 (15)

in CHMS (k). The contravariant Lefschetz Motive is defined dually in CHMZ (k). The

categories of covariant and contravariant Chow motives CHMg (k) and CHM? (k) are

defined, respectively, to be the Spanier-Whitehead categories
CHMg (k) = SWECHMSE (k) and CHME (k) == SWECHME, (k).
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Embedding of Chow Motives in Geometric Motives. Denote the functor SmProj/k —
CHM®T (k) that sends a smooth projective k-scheme to its covariant effective Chow

motive, with integral coefficients, by Chow.

THEOREM 2.5.9. There exists a functor MgHM : CHMeT (k) — DMgf{l(k) for which

the square
SmProj/k——— Sm/k
ChOWl lMgm
eff eff
CHM®" (k) FyoT) DMgm(k)
gm
commutes.
PROOF. See [Voe00, Prop.2.1.4]. O

This theorem is the main reason beyond using the Karoubian envelope in the con-

struction of the category of geometric motives.

Voevodsky deduced in [Voe00], when k is a field that admits resolutions of sin-
gularities, that the functor Mgcil';'M : CHM (k) — DMgﬁl(k) is a full embedding. Then,
Bondarko used Gabber’s refined uniformisation to prove the existence of such full em-

bedding for a perfect field, but with Z[Z—lj]—coefﬁcients. In fact, in [Bon11, Th.2.2.1.(2)],

Bondarko showed the existence of a bounded weight structure on DMgfn(k, Z[%]), whose

heart is isomorphic to CHMGZH[ 1 ](k), which implies the full faithfulness of the induced
P

functor Mgcn"l'M : CHM () — DMgffn(k). Also, it induces an exact conservative functor

1 b
DMgm(ka[z—j]) - K (CHMZ[%](IC))’
see [Bonl1, Prop.2.3.2.(1)]. Hence, it establishes an isomorphism
1
Ka (DMgm(k:,Z[]—g])) - Ke (CHMZ[%](k:)). (16)
Also, Bondarko showed, in [Bon11, Th.2.2.1.(1)], that DMgm(kz,Z[%] is generated, as

a triangulated category, by summands of objects in CHMerf 1 ](k‘)
p

2.5.3. Motivic Complexes.

2.5.3.1. (Pre)sheaves with Transfers. A presheaf with transfers with coefficients in
R over k is an additive functor F': SmCor;” - R-Mod, and the category of presheaves
with transfers with coefficients in R over k is the full subcategory in the functor cate-
gory Fun(SmCoer , R-Mod), whose objects are presheaves with transfers, it is denoted
by PST(k, R). The category PST(k, R) is abelian and has enough injectives and pro-
jectives, see [MVWO06, Th.2.3].

A presheaf with transfers F': SmCor;” — R-Mod is said to be a Nisnevich sheaf with
transfers, if its restriction to the category Sm/k of smooth k-schemes is a Nisnevich
sheaf. Let Shvyis(SmCor(k, R)) be the category of Nisnevich sheaves with transfers
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with coefficients in R over k. Then, the triangulated category of effective motivic

complexes is defined to be the full triangulated subcategory
DM (k, R) ¢ D™ (Shvnis(SmCor(k, R))),
whose cohomology sheaves are homotopy invariant, i.e. F*® € D~ (SthiS(SmCor(k, R)))
if
H(F*)(X) 2 H'(F*)(X x Ayp),

for every X € Sm/k and n € Z. The triangulated category DM(k, R) inherits the stan-
dard t-structure on D~ (Sthis(SmCor(k‘, R))), given by canonical truncations, whose
heart is the abelian category of homotopy invariant Nisnevich sheaves with transfers
with coefficients in R over k, see [Voe00, p.205].

Let L be the Yoneda embedding functor

L: SmCor(k,R) — Shvyis(SmCor(k,R)) c PST(k,R)
X e L(X) = c(=, X)r.

The category of presheaves with transfers PST(k, R) is symmetric monoidal. How-
ever, its monoidal product differs from the restriction of the Cartesian product of the
category of presheaves of R-modules over k. To recall the symmetric monoidal struc-
ture on PST(k, R), one needs Suslin simplicial complexes. For a presheaf P : Sm/kP —

R-Mod, the Suslin simplicial complex of P is given by
C*(P)(-) = Cu(P)(-) =PST(k, R)(L(A} x -), P),

where A} is the standard algebraic cosimplicial object in Sm/k, i.e.

Z = SpeC (k[wovxlv--wmn]/i T; = 1) ,
iz0

for [n] € A, with evident face and degeneracy morphisms, see [Voe98, §.3]. Then, for
X € Sm/k, one has

C*(P)(X) = PST(k, R)(L(A} x X), P) = P(AL x X).

Since one has an isomorphism A} = A} for every integer n > 0, the complex C™*(P)
has homotopy invariant cohomology sheaves h,(F') = H (Q"(P)), see [Voe00, 3.2.1].
Moreover, if P is a presheaf (resp. Nisnevich sheaf) with transfers, then C™*(P) is
a complex of presheaves (resp. Nisnevich sheaves) with transfers, whose cohomology

sheaves are homotopy invariant, see [Voe00, Th.3.1.12].

Let P € PST(k, R), then one has a canonical isomorphism

Pxcolim Lo,
EI(P)
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where EI(P) is the category of elements of P, and 7 : EI(P) — Sm/k is the evident
projection. Hence, the canonical morphism

L(X)>P
(X,$)<0b(EI(P))

is a surjection of presheaves with transfers. There exists a canonical left resolution

L(P) of P in PST(k, R), whose morphisms are the canonical surjections with

L1(P) = P L(X) and Ln41(P) = L1(L,(P)) for n>1.
(X,¢)€0b(EI(P))

The monoidal structure on PST(k, R) is defined by L(X) ® L(Y) = L(X xY) for
X,Y € Sm/k, and

P& G:=hy(L(F)® L(G)) for P,Q e PST(k, R).
In fact, PST(k, R) is monoidal closed with internal Hom given by
Hom(P,Q)(-) =PST(k,R)(P® L(-),G) for P,G e PST(k,R).
In particular, C™*(P) = Hom(L(A}), P), for every P € PST(k, R). Moreover, if @ is a
Nisnevich sheaf with transfers, so is Hom(P, @), for any presheaf with transfers P.
On the other hand, the Suslin simplicial complex extends to a functor

C™* : Shvyis(SmCor(k, R)) — DM (k. R),

with a right derived functor
RC™*: D™ (Shvyis(SmCor(k, R))) — DM (k, R),

that is a left adjoint of the inclusion DM°¥(k, R) ¢ D~ (SthiS(SmCor(kz,R))), see
[Voe00, Prop.3.2.3]. This functor is particularly useful in lifting the monoidal structure
of PST(k, R) to DM (k, R), whose monoidal product is given by

P*®Q°=RC*(P*e* Q") for P*,Q°* ¢ DM (k, R).
Also, it induces an embedding of geometric motives into effective motivic complexes,
for a perfect field k.
THEOREM 2.5.10. Let k be a perfect field. The functor
L:K*(SmCor(k, R)) — D~ (Shvyis(SmCor(k, R))),

induced by the Yoneda embedding, has a fully faithful symmetric monoidal triangulated

right derived functor RL, with a dense image, that makes the square
Kb (SmCor(k, R)) —~ D~ (Shvyis(SmCor(k, R)))

b
QA}C,]\/IVj jRC’“
RL

ff il
DMG,, (k, R) DM (k, R),

of symmetric monoidal triangulated functors, commute.

PROOF. See [Voe00, Th.3.2.6]. O
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The Hurewicz functor. Let & be an abelian category, the Dold-Kan Theorem im-

plies that the Moore’s normalisation functor
Cy: AP/ — Chyo ()

is an equivalence of categories, with a quasi-inverse K, called the Dold-Kan correspon-
dence, see [Wei94, Th.8.4.1]. In fact, the adjunctions K 4 Cy and Cy - K are Quillen

equivalences with respect to the standard model structures on both categories.

The Dold-Kan correspondence gives rise to a monoidal triangulated adjunction
Hu: SH, (k) = DM (k) : H. (17)
The functor Hu is called the Hurewicz functor, it sends the S'-symmetric spectrum
2% X, to the effective geometric motive Mgy, (X) for every X € Sm/k. The right
adjoint H to Hu is called the Filenberg-Mac Lane spectrum functor, see the discussion
in [AH11, §.2.1]. Moreover, for a perfect field k, the adjunction (17) induces an
equivalence of the Q-localised triangulated categories
Huq : SH(k,Q) 2 DM(k, Q) : Hg, (18)
see [Mor06, Th.4.1 and Rem.1.5].



CHAPTER 3

Motivic Measures

Motivic measures are connected to fundamental questions in algebraic geometry.
For instance, the motivic measure of counting points over a finite field gives rise to
the Hasse-Weil zeta function through applying it to symmetric powers, as it was first
shown by Kapranov in [Kap00]. Also, Larsen-Lunts motivic measure, introduced in
[LLO03], has important applications in birational algebraic geometry, see [GS14]. Other
important questions are tackled through the universal motivic measures, called the
Grothendieck ring of varieties, see [NS11] and [DLO04].

In this chapter we recall the basics of motivic measures, then we restrict our atten-

tion to the classical motivic measure of counting points over a finite field.

Throughout this chapters, let S be a Noetherian scheme. Recall the conventions
and notations in §.0.2. In particular, the category of schemes of finite type over S is
denoted by Scl'f1t/ S, and its subcategory of reduced such schemes is denoted by Var/S.
An S-scheme (resp. S-variety) refers to an object in Sch /S (resp. Var/S).

DEFINITION 3.0.1 (Euler-Poincaré characteristic). Let (G, +) be a group. A gener-

alised Euler-Poincaré characteristic over S with values in (G, +) is a map
x:0b(Sch/S) - G

that is invariant under isomorphisms and respects the scissors relations, i.e.
x(@) = x(2) + x(u), (19)

if there exists a closed immersion z <> z in Sch /S with complementary open immersion
u o> x, see [Musl3, p.73] and [DLO1, p.5].

In particular, the scissors relations imply that y(@s) = 0g, and

x(z) = x(x) (20)

if there exits a surjective closed immersion z —— x in Sch /S.

The relation (20) shows one may equivalently define generalised Euler-Poincaré
characteristics over S to be maps from Ob(Var/S) that are invariant under isomorphisms
and respect the scissors relations.

88
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Recall that the category Sch /S admits a Cartesian product given by the fibre
product over S, i.e. for S-schemes x: X - Sandy:Y — S in SCﬁ/S, the Cartesian

product x x y is the S-scheme X xg Y, with the canonical structure morphism over S.

DEFINITION 3.0.2 (Motivic Measure). Let (R, +,0) be a commutative ring. A mo-
tivic measure (or multiplicative Euler-Poincaré characteristic) over S with values in

(R,+,0) is a generalised Euler-Poincaré characteristic
E Ob(SCﬁ/S) - R
with value in (R, +) that respects the Cartesian product of Sch /S, i.e. plxxy)=p(x)-

u(y), for every z,y € Scﬁ/S. In particular, when p is surjective, one has p(idg) = 15.

Similarly, since the category Var/S admits a Cartesian product given by the reduced
induced structure on the fibre product over S, one may equivalently define motivic
measures as generalised Euler-Poincaré characteristics from Ob(Var/S) that respect the

Cartesian product of Var/S, due to the relation (20).

ExAMPLE 3.0.3 (Counting points). Let I, be a finite field with g elements, for every
finite field extension Fgs of Iy, there exists a motivic measure fj, : Ob(SCﬁ k) = Z,
given by ,us#(X ) = #X(Fys), it is called the counting IFys-point motivic measure, see
§.3.2. In particular, for s = 1, the motivic measure ,uj# is the counting rational points

motivic measure, and it is denoted by fi4.
DEFINITION 3.0.4 (Kapranov Motivic Zeta Functions). Let k be a field, and let
1 Ko(Sch/k) - R

be a motivic measure, and let X be a quasi-projective k-variety. The motivic zeta-

function of X with respect to u is the formal power series
(X 8) = Y p(sym™ X) ¢ € R[],
n=0
where Sym” z is the n*-symmetric power of X.

ExamMpLE 3.0.5. The Hasse-Weil zeta function is the motivic zeta-function with
respect to the counting rational points motivic measure over a finite field, see [Kap00].
3.1. Grothendieck Ring of Varieties

Let KO(SCﬁ /S) (resp. Ko(Var/S)) be the abelian group generated by isomorphism

classes of S-schemes (resp. S-varieties) module the scissors relations

{ b=t

where [y] denotes the isomorphism class of an S-scheme (resp. an S-variety) y. The
group KO(SCﬁ /S) (resp. Ko(Var/S)) is called the Grothendieck group of S-schemes (resp.

there exists a closed immersion z < z in Sch /S (resp.
Var/S) with complementary open immersion u <> z ’
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S-varieties). We abuse notations, and we also use [y] to refer to the element in the

Grothendieck group that is represented by the isomorphism class of the S-scheme y.

The Cartesian product of the category Sch /S (resp. Var/S) defines a commutative
ring structure on the group KO(SCF1t /S) (resp. Ko(Var/S)), whose multiplication - is
given by

[z]- [y] =[x > y],
for every x,y € Sch /S (resp. z,y € Var/S). The resulting ring is called Grothendieck

ring of S-schemes (resp. S-varieties).

The rings KO(SCﬁ/S) and Ko(Var/S) are isomorphic, in which one has 0 = [@g],

1 =[idg], and [z] = [«] if there exits a surjective closed immersion z < x of S-schemes.

For a field k, one may show using Noetherian induction that the ring Ko(Var/k) is

isomorphic to the subring generated by quasi-projective k-varieties.

The canonical map
t t
[-]: Ob(Sch/S) — Ko(Sch/S)
x > [z]
is an initial universal generalised Euler-Poincaré characteristic over S. In fact, it is an
initial universal motivic measure over S. Hence, one might abuse notation and call any

ring homomorphism from KO(SCﬁ /S) a motivic measure over S.

The Grothendieck ring of varieties was first introduced by Grothendieck in a letter
to Serre in 1964. Yet, it was not until 2002, when it was shown to contain zero divi-
sors over a field of characteristic zero, see [Poo02]. Also, the class of the affine line
was not proven to be a zero divisor until recently. In 2014, Borisov constructed two
smooth Calabi-Yau varieties over the complex numbers, and showed that a multiple of
the difference between their classes annihilate the class of the affine line, see [Bor15,
Th.2.12]. That, in particular, answers negatively the cut-and-past question of Larsen
and Lunts, proposed in [LL03, Question 1.2].

3.1.1. Grothendieck Ring of Varieties in Characteristic Zero. For a field k
of characteristic zero, the ring KO(SCﬁ /k) admits alternative presentations as quotients

with better-behaved generators.

LEMMA 3.1.1. Let k be a field of characteristic zero. Then, the group KO(SCﬁ/k) is
isomorphic to the abelian group generated by isomorphism classes of smooth connected

projective k-varieties modulo the scissors relations.

PROOF. See [Mus13, Lem.7.9]. O
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THEOREM 3.1.2. Let k be a field of characteristic zero. Then, the group KO(SCﬁ [k)
is isomorphic to the abelian group generated by isomorphism classes of smooth con-

nected projective (resp. proper) k-varieties modulo the relations

e (] =0; and
e [Bly X|-[E]=[X]-[Y] for every smooth connected projective (resp. proper)
k-variety X and a closed smooth subvariety Y <—— X, where Bly X is the

blow-up of X along Y with an exceptional divisor F.

PROOF. See [Bit04, Th.3.1]. O

3.1.2. The Modified Grothendieck Ring of Varieties. In several situations,
it is rather difficult to utilise the Grothendieck Ring of varieties. In these cases, it is

usually more convenient to consider a modified version, see [NS11] and [Har16].

DEFINITION 3.1.3. Let Ib}‘h be the ideal in KQ(SCﬁ/S) generated by the set
{ [x]-ly] | there exists a universal homeomorphism of S-schemes between z and y }.

The modified Grothendieck ring of S-schemes, denoted by th(Scﬁ/ S) is the quotient
ring
Ki"(Sch/S) = Ko(Sch/S) /1™ (21)

ProproSITION 3.1.4. Let f : x - y be a universal homeomorphism of Q-schemes.

Then, f is a piecewise isomorphism. Thus, for a @)-scheme S, the quotient projection
i Ko(Sch/S) - Ki"(Sch/9)
is an isomorphism.

PROOF. See [NS11, Prop.3.10 and Cor.3.11]. O

3.2. Counting Points over a Finite Field

Let K/k be an algebraic field extension. The cardinality of the set of K-points in
a k-scheme X is given by

#X (K) = #Sch /k(Spec K, X) = # |_)|(k—AIg(/<;(x), K),

which is finite for a finite extension K/k of a finite field k, see [Mus13, Prop.2.1,
Rem.2.2 and Rem.2.3].

Fix a finite field Iy, of characteristic p with ¢ = p" elements, and fix an algebraic

closure I, c IF_q. Then, for an integer s > 1, fix a field I, c IFys ¢ IF_q of degree s over
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IF,. The corepresentable functor

hSPecFor . Sch/F, —  FSet

X — X(Fg) (22)

f . X g Y — f(]Fqs) . X(]Fqs) —> Y(]Fqs)
x » fox
defines a map 4 : Ob(Scﬁ/]Fq) — 7, given for an I -scheme X by

(X)) =#XTg) =4 || TF-Ag(r(z),Fe),
reX
deg()ls
where deg(z) = [k(x) : 4], because the residue field of an IFgs-point is an intermediate

field extension between I, and IFgs.

REMARK 3.2.1. Notice that, for an IFg-scheme X, every closed point x € X with
k(z) 2T,

IF;-automorphism of IF,:. Moreover, the group Gal(IF,:/IF,) is cyclic, generated by the
tth

+ corresponds to t different IF:-points in X over Iy, given by the ¢ different

restriction of the arithmetic Frobenius automorphism to IF;:, whose t""'-power fixes I .

Since functors preserve isomorphisms, the map ,u;ﬁ is invariant under isomorphisms.
The scheme-theoretic image of an IFgs-point is a closed point. Then, for a closed
immersion i : Z <> X in Sch /F4 with complementary open immersion j : U <> X,
each IFgs-point in X factorises either through the closed immersion i or through the
open immersion j, and hence ,u;é respects the scissors relations. For a locally small
category with Cartesian product, the definition of the Cartesian product implies that
corepresentable functors are strong symmetric monoidal, with respect to the Cartesian

monoidal structure. In particular, for IF,-schemes Xy and X5, we have a bijection
(Xo % X1)(Fys) = Sch /I, (Spec Fys, X x X1) = Xo(Fys) x X1 (Fys),
and hence
13 (Xo x X1) = #(Xo x X1)(Fge) = #(Xo(Fgs) x X1(Fge)) = u%(Xo) - e (X1)

Thus, the map ,u; is a motivic measure. The notation ,u; is also used to denote the

induced ring homomorphism
t
3+ (Ko(Seh /). +,) > (Z.+.-). (23)
For s =1, we write p4 = ,u#
Counting points over a finite field can be realised using the Frobenius endomor-

phism, by means of the trace formula. That is of a particular interest in §.3.2.1, to

extend counting points to effective Chow motives.
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Counting points and the Frobenius Endomorphism. Hereby, we briefly recall the
Frobenius endomorphism, the arithmetic Frobenius, and recall how it gives the number

of points of a given degree.

Recall that for an IFj-scheme X, the Frobenius endomorphism Frx : X - X of X is
such an endomorphism of schemes whose underlying continuous map |[Frx| :|X| — |X]|
is the identity map, with comorphisms

Y, Ox(U) - Ox(U),
a > a?
for every open affine subset U c X. Iterating the Fermat-Euler Theorem shows that
a? = a for every a € Iy, and hence Fry is a morphism of IF,-schemes. Also, for every

point z € X, one has induced morphisms
Fr;?x :Oxz = Ox and Frf(x) tk(x) = Kk(x)

over IFy, sending elements to their ¢"P-power.

Recall that the absolute Galois group Gal(TF,/TF,) is generated as a topological
group by an F_q—automorphism over I, sending each element to its ¢"M-power, called the
arithmetic Frobenius automorphism. For a closed point = € X, the extension x(x)/F, is
algebraic because tr.deg(x(z)/k) = dimz = 0. Then, the group Gal(x(x)/F,) is cyclic
of order [k(z) : IF,], and it is generated by the restriction of the arithmetic Frobenius

automorphism to k(x), that is Frﬁ#(m).

For a integer s > 1, the s'-power of the arithmetic Frobenius automorphism gener-
ates a subgroup in Gal(TF,/F,), and hence determines a unique subextension of I, in
IF_q of degree s, namely IFys = {a € IF_q ] a? = a}. Hence, for a closed point z € X, the

field k() is fixed by the [k(z) : IF,]™-power of Frf(x), but not by any smaller power.

In general, an IFj-scheme X may have infinity many geometric points. However,
the lemma below shows that only finitely many of them are fixed by a given power of

the Frobenius endomorphism.

LEMMA 3.2.2. Let X be an IF;-scheme and let s > 1 be an integer. Then, the set
X (Fys) of Fys-points in X over IFy is in bijection with the set of all IE‘_q—points in X
over IF, that are fixed by the sM-power of the Frobenius endomorphism, i.e. X (IFgs)
is in bijection with the set (equiscﬁt /F, (Fr%k, idX)) (F,), and hence
P (X) =#{ze X(F,) |Frk oz =2 =idx o},
where equig g /E, (Fr%,idx) is the equaliser of Fr% and idx in Sch /E,.
ProOOF. Consider the map

®: X(Fps) > {ze X(F,) | Fryor=2=idy oz}
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given by precomposition with the morphism Spec]F_q — SpeclFs over IFy, induced by
the fixed embeddings I, < s — ]F_q.

The map ® is well-defined. To see that, let x : SpecFy;s - X be an Fys-point
in X over Iy, and let T be its scheme-theoretic image. Since the sh-power of the
arithmetic Frobenius automorphism fixes Fys, it fixes £(Z) for having field extensions
Fys/k(Z)/F,;. The endomorphism Frf(f) is the restriction of the arithmetic Frobenius

automorphism to k(Z). Hence, one has
(Fri(f))# = (Frf(g)) =1dy @) ; Le. 53?@) ° (Fri(i))# = xf@)'

Since 7 is the scheme-theoretic image of x, one has Fr§ ox = z. Let z be the precom-

position of x with the canonical morphism SpecIF_q — SpeclFys, then Fri oz = z.

Since SpecIF_q — SpecIFys is an epimorphism, the map ® is injective. To show
the surjectivity of ®, let x : Spec]F_q — X be an ]P_‘q—point in X over I, that is fixed by
Fr¥, and let 7 be its scheme-theoretic image, then one has field extensions F,/x(Z)/F,.
Since Fr¥ fixes x, one has

xf@) o (Frz(f))# = IL‘f(E).
#
K(T)
one has (Frf(j))s = id,(z), and the restriction of the sth-power of the arithmetic Frobe-

The homomorphism z is an immersion of fields, and hence a monomorphism. Thus,
nius automorphism fixes x(Z). Since the s'™-power of the arithmetic Frobenius auto-
morphism only fixes subfields of IFys, one has field extensions ]F_q/]Fqs [k(Z)/Fy, and z

factors through the canonical morphism Spec]F_q — SpecFs. ]

For an I ;-scheme X, let X=X XspecF, SPeC IF_q. There is a bijection ® :Y(IF_Q) -
X(TF,), between the sets of IFy-points in X over I, and Fy-points in X over I, given
by the composition with the projection X - X. Define the relative Frobenius endo-

morphism Frzq of X over SpecIE‘_q to be Fryx Xspecr, id . Then, Lemma 3.2.2 can

Spec]Fiq
be restated as follows.

COROLLARY 3.2.3. Let X be an IFj-scheme and let s > 1 be an integer. Then, the
set X (IF,s) of Fs-points in X over I, is in bijection with the set of all IF,-points in X

over IF_q that are fixed by the s**-power of the relative Frobenius endomorphism Fr+ .

i.e. the set X (IFys) is in bijection with the set (equiSCF{ /IT(FrSY ’ idy)) (F,), and hence
q )
p(X) = #{z e X(Fy) | Fr§ oz =z =idgou}.

The main advantage of the corollary above is that geometric points in X coincide
with its closed points, and hence one counts closed points in X fixed by powers of the

relative Frobenius endomorphism.
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One may would like to consider the absolute Frobenius endomorphism of X over
IF,, given by
Frf = Frx Xspec Fq FrSpecE7

instead of Fr . However, the corollary above does not hold for Fr+.

3.2.1. Counting Points on Effective Chow Motives. Kleiman extended count-
ing point to the category of contravariant effective Chow motives with coefficients in
a ring R, in his survey on the theory of motives [Kle72]. Combined with the work of
Gillet and Soulé, in [GS09], this extends the motive measure of counting points over a

finite field to the Grothendieck ring of effective Chow motives with rational coefficients.

Let R be a ring of characteristic zero. Recall that SmProj/IF, denotes the category
of smooth projective IF -varieties and that CHM #(IFy) denotes the category of con-
travariant effective Chow motives with R-coefficients over IF,, as in §.2.5.2.1. There
exists a functor

—: (SmProj/F,)* - CHM ()
X > (X, idx)
FiX oY e f=[T

where IT'y is the scheme-theoretic image of the graph morphism associated to f in X xY'.

PROPOSITION 3.2.4. Let X be a smooth projective IF,-variety. Then, the scheme-
theoretic intersection T'pys, MAx in X x X is reduced, and the set X (Iy:) is in bijection
with the set of all geometric Fg-points in T'ms MAx over Fy. Moreover, the algebraic
cycles Fr§ and idx = [Ax]" intersect properly in the group of algebraic cycles C*(X x
X); and hence

W5 (X) = ((Fr -idx)), (24)
where the intersection product is taken in the Chow ring CH* (X x X'), and (-) is the

degree morphism over IF,.

PrOOF. Consider the solid commutative diagram

pFrldX/ l \rs

_ Ax
p ) i
A T
X
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of F ;-schemes defining the intersection X/ = T'ms MAx. Since X is smooth over Fy, it is
a reduced Noetherian scheme whose irreducible components coincide with its connected
components. Hence, there exists a finite covering family {U; | i € I'} of connected open
affine subschemes of X. In particular, the ring Ox(U;) is an integral domain for
every i € I. The diagonal morphism Ax and the graph morphism Tgys, are induced

respectively by the ring homomorphisms

AR Ox(Uy) o, Ox(U;) ~ Ox(Up)
a®b > a-b
and
T (U): Ox(Uy) er, Ox(Ui) — Ox(Uy)

S

a®b > a-b?
for every i € I. Since the ring Ox (U;) is integral, one has
ker A% (Up) 2 (a®1-1®a)(Ox(U;) ®p, Ox(U;)) and
ker’I#rg((Ui) 2 (a” ®1-1®a)(Ox(U;) ®r, Ox(U;)).
Thus, the closed subschemes Ay and I'gs, in X x X are given respectively by the unions

Ax EUA)((UZ‘) and rFr} EUFFI&(UZ')
iel iel

in X x X, where Ax (U;) and ].—'Frg((Ui) are the closed subschemes in X x X given by
Ax (U;) = Spec O9x(Ui) ®r, Ox(Ui)[(a®1-18a) and
rpr} (Uz) = Spec Ox (U:) @, OX(Ui)/(aqs ®l1-1®a),
for every i € I. Hence, the scheme-theoretic intersection X = I'ms MAx is given by the
union Uzer X¢; in X x X, where X ; is the closed subscheme
Spec (Ox(Ui) ®r, Ox(Ui)f(ag1-1®a) ®OX(U1‘)®]FqOX(Ui) Ox(Ui) @r, Ox(Ui)[(a" @1-18 a))
~ Spec Ox (Us) ®r, Ox(Ui)f(a®” @ 1-18a,a®1-18a) 2 Spec Ox(Ui/(a? - a).

in X x X, for every i € I. Since Ox(U;) is an Fy-algebra and a?” - a has only simple

roots over IF, the scheme X ; is reduced for every ¢ € I, and so is the union I'ms NAx.

The morphisms labelled with 2 in diagram (25) are isomorphisms of schemes. There-
fore, there exist the dotted morphisms ppy, pa @ X, - X over I, that make the whole
diagram commute, which in turn implies that pp, = pa. Chasing diagram (25), one
sees that the scheme-theoretic intersection of I'ws and Ax in X x X coincides with the
equaliser of Fr%,idx : X — X in the category of IF;-schemes. Then, one has the desired
bijection, by Lemma 3.2.2.

The bijection between the set X (IF,) and the set of all F,-points in I'pes, NAX
over Iy shows, in particular, that I'gs MAx has finitely many IF_q—points over Iy, as

/L‘;:(X ) is finite. Thus, the scheme I'ms NAx is zero-dimensional, has finitely many
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closed points, and the residue field of each of these points is a finite field extension of
IFy. Therefore, the algebraic cycles Fry and idy intersect properly in X x X, and hence

their intersection product is given by

Fri -idx = [Tmes, (Ax]"
Since X is projective over Iy, the structure morphism p: X x X — SpecI, induces a
well-defined degree morphism (-) = p, : CHo(X xX)® R - CHo(SpecF,;)® R = R. The
morphism p, sends each integral component x of I'rs, NAx to [£(2) : I'g]Lcm (specFy)-

Since R is of characteristic zero and [k(z) : IF,] is the number of IFy-points in Tres, NAx

over IF, with the scheme-theoretic image x, the equality (24) holds. O

Extending the base field to its algebraic closure allows a reformulation of the propo-

sition above using closed points and powers of the relative Frobenius endomorphism.

COROLLARY 3.2.5. Let X be a smooth projective IF,-variety. Then, the scheme-
theoretic intersection I"Fr%q NA in X x X is reduced, and the set X (I ) is in bijection
with the set of all IF-points (equivalently closed points) in I"Frsxq N A over IF,. More-
over, the algebraic cycles Fr%q and 1d_y = [AY]T intersect properly in the group of

algebraic cycles C*(X x X); and hence
3 (X) = (B - idg).
where the intersection product is taken in the Chow ring CH*(X x X), and (-) is the

degree morphism over IF,.

For an effective Chow motive .# = (X,E) over Iy, both Fr§ and =T belong to the

group of Chow correspondences

Co$(X,X)= @ CHEN(X,xX)! @ @ CHEIN(X,xX))
X;eirr(X) Xjeirr(X) Xjeirr(X)

S
Let FrXi?j

along 1. Since the underlying continuous map of Fr is the identity map, Fry = van-
—1]

ana =. . be e (7, -components O € 11mages O r and = , respectively,
d ] be the (i, ] ts of the images of Fr% and =7 tively

ishes for ¢ # j and Fr}“, = Fr,, for every X;, X; e irr(X). Therefore, the intersection
product Fr% - =T in CHR(X x X) is given by

Frie -2 =¢ (Y Py -EL),
Xeirr(X) ™

as the intersection product vanishes cross different connected components. Then, in
particular, Fr§ - 27 is the Chow class of a zero-cycle in X x X, d.e. it is contained in

CHp r(X x X). There exists a well-defined degree ring homomorphism

(=) =p« : CHo r(X x X) - CHy r(SpecF,) = R,
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induced by the proper structure morphism p: X x X — SpeclF,. Define the function
M ari Ob(CHMZ(F,)) ~ R

M = (X?E) = M:&,{:,M(‘%) = (Fr:gX ) ET) = ZXJ-Eirr(X)<Fr§(i EI,z)

(26)

Following Kleiman’s [Kle72], we recall that ,u,f#, s defines a ring homomorphism
from the additive Grothendieck ring Kg (CHM:&(IE‘,])) to R, as in Corollary 3.2.10.

LEMMA 3.2.6. Let X be an irreducible smooth projective IF,-variety of dimension

n, and let Z be an integral closed subscheme in X of dimension m. Then,
(Frx),(Frx)* (") =¢"T and (Frx), (T') =4¢™T,

where T is the Chow class in CH*(X) of the fundamental cycle of Z.

PROOF. Let 1 be the unique generic point of the integral scheme X. Then, the

local ring homomorphism

# .
FrX,n : OXJ? - OXJ?
a ~  af

is a monomorphism of local rings. Moreover, the local ring Ox , is a field isomorphic
to the function field of X, and hence it is of transcendental degree n over IF,. Thus, the

image of the morphism Frf(n, denoted (’)gﬁ], is a subfield of Ox ;. Since I, is perfect,
deg(Frx) = [Ox,: 0%, 1=¢",
by [Kle68, Lem.4.3]. Then, one has (Frx),([X]) = ¢"[X]. Applying the projection
formula [Ful98, Ex.8.1.7], one has
(Frx), (Frx)" (D) = (Frx), ((Frx)"(D) - [X]) = (Frx),([X])) - T = ¢"[X]-T = ¢"T.

Also, since [R(Z) : R(Z)?] = ¢, one has (Frx),(T) = ¢"T. O

LEMMA 3.2.7. Let X and Y be smooth projective IFj-varieties, and let I' : X Y
be a Chow correspondence with R-coefficients of degree zero. Then, one has

Folry =Fry ol

in Cor(TF,).

PROOF. One may first prove the statement for irreducible IF,-varieties, and use it

to deduce the general statement.

Assume that X and Y are irreducible smooth projective I -varieties of dimensions n
and m, respectively. Let I' ¢ XxY be a generator for the group of Chow correspondences
from X to Y with R-coeflicients of degree zero, i.e. an integral closed subscheme of

X xY of dimension m. Then, by Lemma 3.2.6, one has

(Frxxy),(T)=¢"T and (Frxxy) (T) =¢"T.
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Recall that Fry.y = Frx x Fry. Indeed, for open affine subsets U ¢ X and V c Y, one
has Oxxy (U x V) =Ox(U) ®r, Oy(V'), and hence
B,y s Ox(U)@r, Oy(V) — Ox(U)®r, Oy(V),
a®b > (a®b)!=(a?®b?).
Therefore,
(Frx xFry), (') =¢™T and (Frx x Fry)"(T') = ¢"T. (27)

Since the pushforward along a morphism of schemes coincide with the pushforward
along the Chow correspondence of its graph, applying Lieberman’s Lemma [MNP13,
Lem.2.1.3] and [Ful98, Prop.16.1.1] to (27) one has

¢"T = (Frx x Fry), (D) = ([Tpvy gy ]) (1) = ([Trey ]9 [Ty 1) (1) = (Frx " m By 7) (D)
= (3 ), () By D) - () @) - ey ) (D)

=&TOI‘OF1"X.

Also, the pullback along a morphism of schemes is given by the pushforward along the

transpose of the correspondence of its graph, and hence

¢"T = (Frx x Fry)"(T) = ([T (myxrry)]") (F) = ([T )" @ [Ty 17) (T) = (Frx @ Fry ) (T)

:Fr_y0F0FrXT.

Since the group CorgH(X ,Y) is R-linearly generated by fundamental classes of integral

closed subschemes of X x Y, the relations above extend R-linearly, and one has
¢"T' =Fry oloFryx and ¢"T'=Fry oo Frx', (28)

for every Chow correspondence I': X + Y with R-coefficients of degree zero.

In particular, for I' = [Ax] = [Ax]" =idx, one has

q"id_XzFrXTOid_XOFrX =Fry oFry and q”id_X=I?‘1rX0id_X0F1rXT =FryoFrx ",

i.e. Frx and Frx"/¢" are mutually inverses in the ring CorSH(F,)(X, X). Then, com-
posing the first equality in (28) with Fry /g™ or precomposing the second equality in (28)
with Frx /g yields

ToFry =Fry ol (29)

for every Chow correspondence I': X + Y with R-coefficients of degree zero.

More generally, for any smooth projective IFj-varieties X and Y, not necessarily

irreducible, one has

Fry = Z Fry, and Fry = Z Fry,.
X;eirr(X) Yjeirr(Y)
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A Chow correspondence I' : X + Y with R-coefficients of degree zero decomposes as

= Y TIy; for  Ty;eCorg(Fy)(X:,Y;).
X eirr(X)
Yjeirr(Y')

Since the composition in Cor%H(IFq) is R-bilinear, applying (29) we have

FoFry = Z I joFry, = Z Fry, ol';j =Fry oT. (30)
X;eirr(X) Xeirr(X) ™
Yjeirr(Y) Yjeirr(Y')
]

LEMMA 3.2.8. Let # = (X,Z) and .4 = (Y,T) be isomorphic effective Chow

motives over IF,, with R-coefficients. Then,
Wyt (M) = g g (N ).

PROOF. Let I': (X,E) + (Y, Y) be an isomorphism of effective Chow motives, with
an inverse © = I'"!. Since © o' = Z, composing (30) with © yields ZoFrx = © oFryol,

and hence

[1]
[1]

oFr =ZoFry’ =OoFry" o[ =00 Frj ol

Thus, [Kle72, p.80.Lem]| implies
ppar(A) = By -ZT) = (Bo Fri) -Z) = (00 By o) - E') = (Brf. - (87 0= o))
= (B} - (FoZ00)T) = (B} - ([0 ©)") = (Fry - T7) = 1 ps ().
O

Lemma 3.2.8 does not hold if one tries to define p ,,(.#) to be (Frk -E), that
comes down to having to show that I'" is a morphism of effective Chow motives when

' is, which is not the case in general. That, in particular, explains why (26) uses the

T

transpose =' instead of Z.

LEMMA 3.2.9. Let 4y = (Xo,Z) and 41 = (X1,Z1) be effective Chow motives
over Iy, with R-coefficients. Then,
1 g (Mo & A0 ) = pp 2 (o) + i (A1) and
i v (Ao ® M) = iy 0 (Ao) - g g (M)

PROOF. Recall that the category CHMZ,(IF,) of effective Chow motives over Ty,

with R-coefficients, is an additive R-linear category with
./%069.//1 = (Xo@Xl,EQEBEl) = (X0|_|X1,i0 OEO ° Po + 171 OEl Opl)7

where Xg ® X7 = Xy X is the biproduct of Xy and X7 in Cor%H(IFq), and ig,7; and

Do, p1 are its injections and projections, respectively. Then,

1 v (Mo & A1) = (Fri, | x, - (B0 ®E1) "),



where the intersection product is taken in the LHS ring of the isomorphism

CH* ((Xo| | X1) xp, (Xo| |X1))®R2 @ CH*(X;xp, X;)®R.

0<i,j<1
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Since intersection product vanishes cross different connected components, calculating

the intersection product in the RHS ring yields

pip ar (M@ A1) = (Fri, +0+0+Fri ) - (Eg+0+0+EZ]))

= (Frﬁ(o -Eg +0+ 0+Fr§(l EI) = (Fr§(0 Eg) + (Frfxl EI)

= iy g (o) + 1 01 ().

Also, the category CHMfﬁ(IFq) is symmetric monoidal whose monoidal product is

given by
My ® M = (XO x X1,Z0 El),

where ® is the symmetric monoidal product of morphisms in CorgH(]Fq). Then,

W g (Mo ® M) = (Frx o, - (SomEr)T) = ((Fry, ®Fry,) - (E0 x'E]))
- ((Frig, - =) @ (Bl -2),
where the intersection product is taken in the LHS ring of the isomorphism
CH* ((Xo x X1) x (X0 x X1)) ® R = CH* ((Xo x Xo) x (X1 x X1)) ® R.
Then, calculating the intersection product in the RHS ring yields
Wy i (Mo ® A1) = (B, -5) x (Fry, -ED) = (B, -5 - (B, -2])
= M%&,M(///O) ’N;&,M(‘//ll)'

COROLLARY 3.2.10. The map (26) induces a ring homomorphism
Wyt Ko (CHME(F,)) — R

[A#]=1(X,B)] = plypn([A])= (Frk-E7).

3.2.2. Gillet-Soulé Motivic Measure. H. Gillet and C. Soulé used Hironaka’s

resolution of singularities, for a field k of characteristic zero, to define a functor

W+ (VarP™P /)P K (CHMSE (k)),

called the contravariant weight complex, which sends a smooth projective k-variety to

the complex concentrated at its effective Chow motive. Using Gersten complexes, they

show in [GS96, Th.2] that the contravariant weight complex functor induces a motivic

measure

figs  Ob(Var/k) - Ka (KP(CHMZ (k))) = Ke (CHME (k).
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In the sequel [GS09], they use De Jong’s alterations of singularities [dJ97] to define a
covariant weight complex functor

W : (VarP™P [k)°P — le(CHMgf(k)),
for an arbitrary field k, in fact that was achieved even in greater generality. Then,
using the K-theory of coherent sheaves, they show in [GS09, Th.5.9 and Cor.5.13] that
the covariant weight complex functor induces a motivic measure

Hasq * Ob(Var/k) - Ka (K'(CHME (k))) = Ka (CHME (K))

for arbitrary field k, we call it Gillet-Soulé motivic measure. Bondarko’s isomorphism

(16) is an isomorphism between the motivic measures fi,4 o, and fip,, o = fioy ® Q.



CHAPTER 4

Motivic Measures through Waldhausen K-Theories

Several motivic measures arise from (co)homology theories with proper support.
For instance, the Hodge measure and the Hodge characteristic arise from the polarised
mixed Hodge structure on singular cohomology with rational coefficients and proper
support over the complex numbers, see [Sril4]; whereas the /—adic motivic measure
arises from the ¢-adic cohomology with proper support over a perfect field. The latter,
also gives rise to the classical measure of counting points through the trace formula,
see [Mus13]. Also, the motivic measure (14) is induced from Voevodsky’s geometric

motives with proper support.

Each of these motivic measures can be realised as a decategorification of a coho-

mology theory functor

ft PTOp

G,uf:(SCh S?X7ids)_)(Cg7/\?j”‘)7

open/

. . prop .
to a symmetric monoidal Waldhausen category, where Scﬁopen/S is the category of
schemes of finite type over a scheme S whose morphisms are finite compositions of
proper morphisms and formal inverses of open immersions!, such that G, is weak

monoidal and satisfies the excision property, i.e.

(WM) G, is lax monoidal, such that the coherence morphism

Gu(z) AGuy) > Gu(z x y) (32)
is a weak equivalence for every x,y € Sch /S, and so is the coherence morphism
1 - G(idy); and
(E) for every closed immersion i : v < z in Sch /S with complementary open
immersion j : u <> x, the sequence
i) j*
G(v) 5 Gula) > Glw) (33)
is a cofibre sequence in €, where i, = G(i) and j' = G(5°P).
In fact, every weak monoidal functor

G (Schonn /S, %,idy) > (€, A1),

ft Prop ft
IThe category Sch open//S 18 not a subcategory of the localisation of Sch /S with respect to open

immersions, as for a closed open immersion j : u —e~ x we do not ask for j°° to be an inverse of j in
£t PTop
SchtOpen /S. However, Example 4.1.19 shows that we may impose the relation j°F o j = id,, without

affecting the argument, but we may not impose j o j°° = id., see Example 4.1.28.

103



104

that satisfies the excision property, induces a motivic measure g : KO(SCﬁ /S) = Ko(%)
that sends the class of an S-scheme z to the class of G(z). For the motivic measure
pe to exist, it suffices that the weak equivalences in (WM) exist, not necessarily for
the coherence morphisms, and the cofibre sequence in (E) exists, not necessarily for ¢,
and j'. Of course, for G to induce a meaningful motivic measure, K(%) should not be

connected.

The aforementioned cohomology theories have plain versions (do not satisfy the
excision property). Plane and properly supported versions of a cohomology theory
coincide for proper schemes over the base. For a Noetherian scheme S of a finite Krull
dimension, there exists a plain motivic spaces functor M : Sch /S — sShve nis(S) 41,
given by the left Kan extension of the functor A(_)7+ : 8Sm/S — sShv, nis(S5) 41 along
the inclusion Sm/S < Sch /S. Then, one may ask if there exists a properly supported
motivic spaces functor Scﬁfj;z[; /S = sShv, nis(S) 41, which coincides with M for proper

schemes and gives rise to a motivic measure
Ko(Sch/S) - Ko (sShvE s (5) 41),

where sShvg \;(S) 41 is a Waldhausen subcategory in sShv, nis(S) 41 with a non-

connected K-theory.

When S = Speck for a field k of characteristic zero, Theorem 3.1.2 shows that it is
sufficient for A(_)7 . to map blow up squares of smooth projective schemes in Sch /k to
homotopy pushout squares and to map the empty scheme to the zero object, for it to
induces the desired Euler-Poincaré characteristic. In fact the scissors relations (19) show

that these conditions are also necessary. Although AQ’ . does not seem to satisfy these
Al

stab
does, see [Voel0b] and [MV99, §.3.Rem.2.30]. Hence, it gives rise to an Euler-Poincaré

characteristic

conditions, its S'-symmetric suspension I3 A97+ :Sm/k - Sptgl (SShv.,NiS(Sm/k))

Ko(Sch/S) — Ko (Spts(sShva nis(Sm/K)) L ),

stab
which is surjective as shown in [R6n16, Th.5.2]. The superscript ¢ refers to a suitable
Waldhausen subcategory, with a non-connected Waldhausen K-theory, see [R6n16,
Def.2.9].

For a more general Noetherian base scheme S, the question persists, due to the
absence of an analogue of Theorem 3.1.2 over S. We find it more convenient to consider

a more general question. That is,

when does a weak monoidal functor F' : Prop/S — %, to a symmetric monoidal
prop

Open/S -4

that satisfies the excision property, with the same restriction to Prop/S, and

Waldhausen category, give rise to a weak monoidal functor F° : Sch
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hence defines a motivic measure
e 1 Ko(Sch/8) Ko (%),

that sends the class of a proper S-scheme x to the class of F'(z)?

If such a functor F° exits, the excision property implies that, for a scheme x €
prop . L . .
open/S and a closed immersion j : z < p in Prop/S with complementary open

Sch
immersion i : x <e> p, the morphism F'(i) : F'(z) - F(p) is a cofibration in ¢ and the
cofibre of F'(7) is independent of the choice of such a closed immersion i. We refer to this
property by saying that F is independent of compactifications?. Since the restriction of
F* to Prop/S coincides with F', it also implies F/(@) = 0. This, in addition to Theorem

3.1.2 and the constructions in [GS09], led us to distinguish the properties:

(PS1) F maps closed immersions in Prop/S to cofibrations in €;
(PS2) F maps the empty scheme to a zero object in %; and
(PS3) F maps cdp-squares in Prop/S to pushout squares® in €, where a cdp-square

is is a Cartesian square

i
w ——dq

I

Z =P
i

in Sch /S, where f is a proper morphism, i is a closed immersion and the

induced morphism (q \ g) - (p \ z) is an isomorphism, see Definition A.4.28.

Proposition 4.1.5 shows that (PS3) implies that F' is independent of compactifications.
Moreover, using Nagata’s compactifications, we show that a (weak monoidal) functor
F : Prop/S — € that satisfies the properties (PS1)-(PS3) induces a (weak monoidal)
functor F*° : SCﬁS:Z/S — € that satisfies the proper support property, see Theorem
4.1.32.

REMARK 4.0.1. One may only ask for F' to send the empty scheme to an object
weakly equivalent to the zero object in 4. Also, when % is induced from a model
category, one may ask for F' to send a cdp-square to a homotopy pushout square and
drop the property (PS1). However, in that case, for the statements proven in this
section to hold, one needs to assume that cofiltered limits preserve weak equivalences
in %.

Starting with a functor F': Prop/S — % that does not satisfy the properties (PS1)-
(PS3), one may look for a localising exact functor ¢ — ¢’ of Waldhausen categories,
for which the composition F’: Prop/S — % — €' satisfies the properties (PS1)-(PS3).

2For a justification of the terminology, see Definition 4.1.1.

3Since the cdp-topology is generated by cdp-squares, as in §.A.4.3, the properties (PS2) and (PS3)
imply that F' maps cdp-coving sieves to colimit cocones, i.e. I is a cdp-cosheaf.



106

We apply this construction to the Yoneda embedding in §.4.2, and we recover
a spectrum that we expect its path components to be isomorphic to the modified
Grothendieck ring of S-schemes. Then, localising the affine line, we recover a motivic
measure to a variant of the simplicially stable motivic homotopy category, with the
cdh-topology. Over a field of characteristic zero, this measure coincides with the motivic

measure defined in [R6n16].

We interpret such a weak monoidal functor F°: Sch’ " /S — €, that satisfies the
excision property, as a mean to provide a minimal compactification of S-schemes in €.
One does not seem to have a good notion of a minimal compactification in the category
of schemes over a field k, for instance each of the Hirzebruch surfaces, particularly IP%
and P}, x P}, are good candidates to be minimal compactifications of the affine plane

Ai, yet none of them is minimal, even in the weakest sense®.

EXAMPLE 4.0.2. Recall the motivic measure (14), for a perfect field & of exponential
characteristic p. The geometric motive with proper support Mg, , induces a motivic
measure

Ro(Var/k) —Ka (DMC (k,Z[%])).

m

Then, one may think of Mgm(Az) as a minimal compactification of A% in DMgfn(k, Z[%]),

as one realises cohomology theories with proper support through Mg,,.

Through this chapter, assume that .S is a Noetherian scheme of finite Krull dimen-
sion, and recall the conventions and notations in §.0.2. In particular, the category of
schemes of finite type over S is denoted by Sch /S, and an S-scheme refers to an ob-
ject in Sch /S. Also, the full subcategory in Scﬁ/ S of proper S-schemes is denoted by
Prop/S. We use small Latin letters to denote S-schemes, and capital letters to denote

their underlying schemes.

4.1. Properly Supported Extensions

The aim of this section is to show that a weak monoidal functor F : Prop/S — €,
to a symmetric monoidal Waldhausen category, admits a properly supported extension
Fe: Scﬁi;ﬁ/S — €, when it satisfies the properties (PS1)-(PS3). In which case, it
defines a motivic measure to Ko(%), given by sending the class of a proper S-scheme

to the class of its image along F', see Theorem 4.1.32.

In this section, we begin by defining compactifications of S-schemes, and we show
the category of compactifications to be cofiltered®, as in Corollary 4.1.7, which is the
main ingredient used to define properly supported functors on morphisms. Then, in
§.4.1.2, we define the extension F'°, and study its properties leading to the construction

“I have learnt about this example from [vDdB16].
50Our notion of a morphism of compactifications differs from that usually used in the literature.
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of the desired motivic measure in §.4.1.2.7. Finally, we describe how one may proceed

when F' is not weak monoidal or does not satisfy the properties (PS2)-(PS3).

4.1.1. Compactifications. A compactification of an S-scheme z: X — S is usu-
ally defined as factorisation (j,p) of x in Sch /S as a (dominant) open immersion j
followed by a proper morphism p, as in [CD13, §.2.2.8]; whereas a morphism of com-

pactifications (j,p) — (I,q) is usually defined to be a commutative square

J
€T ;o%p

~
s}

Y ——o—4q

in Sch /S. In an early version of this thesis, morphisms of compactifications were re-
stricted to Cartesian such squares, which was motivated by the argument in [GS96],
Corollary 4.1.7, and Definition 4.1.15. However, after becoming aware of [Cam17], we
adopt a different notion inspired by subtraction sequences, loc.cit., which both strength-

ens our result and simplifies the proofs.

DEFINITION 4.1.1. Let x be an S-scheme, a compactification of x is a closed immer-
sion 7 : z < p of proper S-schemes, with complementary open immersion j : x <o p.
Let ¢ : 2z <> p and [ : w <> ¢ be a pair of compactifications of S-schemes x and y,
respectively. A morphism of compactifications (f,g) : ¢ - [ is a solid commutative

square

'wqu C-y- P

g
'[2} —F q

l (34)

in Scﬁ/ S, for which the unique morphism z < w x4 p of S-schemes, induced by the

universal property of pullbacks, is surjective.

In particular, the morphisms f and g are proper, by [Gro61, Cor.5.4.3(i)]. Com-
pactifications of S-schemes and their morphisms form a category, with the evident
composition and identity maps, and we denote it by Comp,. For an S-scheme z, let
Comp, (x) denote the subcategory in Comp, whose objects are compactifications of x
and whose morphisms are morphisms of compactifications that restrict to isomorphisms
on x. That is, a morphism (f, g) : ¢ — i of compactifications of = belongs to Comp, ()

if and only if id,, is a base change in Sch /S of g along j,. The restriction imposed on the
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morphisms of Comp, (z) is needed for Corollary 4.1.7, and for the cofibres in Remark

4.1.11 to be independent of the choice of compactifications.

For a morphism of compactifications (f,g) : i — [, the morphism f is uniquely
determined by g, when it exists, due to [ being a monomorphism in Sch /S. Therefore,

when no confusion arise, we may denote this morphism of compactifications by g : 7 — [.

A compactification i : z < p of an S-scheme x induces a complementary open
immersion x <e- p, which is unique up to isomorphisms, and we denote by j. Since
open complements are closed under pullbacks and both z and w x4 p in (34) have the
same open complement in p, the morphism of compactifications (f,g) : ¢ — [ induces a

Cartesian square

Y ——o——4¢g
Ji (35)
in Sch /S. One may alternatively define the morphism of compactifications (f,g) :i — [
to be the solid outer square in (34) that induces the Cartesian square (35).

REMARK 4.1.2. Although, the existence of the Cartesian square (35) does not imply
the existence of a morphism of compactifications (f,g) : i — [, it defines a morphism of
compactifications ¢

— [, where 4, is the composition of ¢ with the surjective closed

d d

immersion z_, < z. One may be tempted to define a morphism of compactifications

d
as a Cartesian square, without invoking the additional surjective closed immersion.
However, our need to induce a morphism of compactifications from the Cartesian square
(35), to prove Proposition 4.1.5 and Proposition 4.1.6, is the reason for the adopted

notion of a morphism of compactifications.

Before we proceed, we need to recall the following technical result that we need to

utilise on multiple occasions.

LEMMA 4.1.3. Let ¢ : v <> x be a closed immersion and j :  <e> ¢ be an open
immersion of S-schemes, and let ¢’ : p < ¢ be the scheme-theoretic image of the
immersion joi. Then, the unique morphism j’ : v — p of S-schemes for which joi = i'0j’
is an open immersion. Moreover, the square

4

Ve—o—— D

T e—o—q
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is Cartesian in Scﬁ/ S.

PRrOOF. Consider the commutative diagram

j’
d
I‘qu ;o'—>p
r J

in Sch /S, where [ is the unique morphism v - x x4, p of S-schemes that makes the
diagram commute. Since j o4 is an immersion, so is j'. All the underlying schemes
of the S-schemes in the diagram above are Noetherian; hence the immersion j’ = Jol
is quasi-compact, see [Stal7, Tags 010X and 01T6], and it factorises in Sch /S as an
open immersion followed by a closed immersion, see [Stal7, Tag 01QV]. Then, j’ is
an open immersion, as i’ is the scheme-theoretic image of joi =10 j'. Hence, [ is also
an open immersion. On the other hand, since i and i’ are closed immersions, so is [,
which is also surjective because i’ the scheme-theoretic image of j o 7. Therefore, [ is a

surjective open immersion, and hence an isomorphism. O

The Category of Compactification. Since the notions of compactifications and their
morphisms used here differ from those in the literature, we need to prove that the cat-
egory Comp, (), and certain subcategories of which, are cofiltered, for every S-scheme
x. This is the main tool used to extend a functor F' : Prop/S — €, that satisfies the

properties (PS1)-(PS3), to a functor F° : &ﬁﬁi/s — ¢ that satisfies the excision
property.

Recall that a category ¢ is cofiltered if it is nonempty and
o for every Xo, X1 € # there exists a span Xo < X - X in _#; and
o for every parallel morphisms fy, fi : Xo = X1 in _#, there exists a refining
morphism f: X - Xgin _# for which foo f = fio f.
For every S-scheme z, we start by showing the category Comp, (x) to be nonempty,
then Proposition 4.1.5 provides the existence of the desired spans, and Proposition 4.1.6

gives the refining morphisms.

REMARK 4.1.4. Due to Nagata’s Compactification Theorem, as in [Nag62] and
[Nag63], every S-scheme x admits an open immersion j : © <e> p into a proper
S-scheme p. Let i, : z < p be the complementary closed immersion of j, endued
with the reduced induced structure. Then, i; is a compactification of x, and hence
Comp,(x) # @. In particular, when p is a proper S-scheme, the category Comp, (p) has

an initial object, namely @, : @, < p.
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PROPOSITION 4.1.5. Assume that f : x — y is a proper morphism in SCﬁ/S, and
let i:z <—— pand [ : w <> ¢ be compactifications of x and y, respectively. Then, there
exists a compactification i’ : 2’ < p’ of x and morphisms of compactifications b’ : ¢’ — i
and ¢’ : 4" — [, such that id, (resp. f) is a base change in SCﬁ/S of h' (resp. ¢') along
J; (resp. j), where j : x <e>p and j : y —e> ¢ are complementary open immersions of i

and [, respectively.

PROOF. In line with the argument of [GS96, §.2.3,p.141] and [Stal7, Tags 0ATU

and 0A9Z], consider the solid commutative diagram

: [pe---o
f {c
x.xy ——o—— pxq g
B R \
Y- ° q,

g (37)

in Sch /S that is induced by the existence of Cartesian products in Sch /S and the
definition of the graph T'y of f. Since open immersions are closed under pullbacks
and compositions, the morphism j x j, is an open immersion. Let h (resp. g) be the
composition of the Cartesian product projection x x y - z (resp. = x y - y) with the
closed immersion ¢: Ty < x x y, let ¢’ : T <> p x ¢ be the scheme-theoretic image of
(j, xj,)oc, and let A’ (resp. g') be the composition of the Cartesian product projection

pxq—p (resp. pxq— q) with the closed immersion ¢ : Ty < p x q.

There exists an open immersion j for which (j x j) e ¢ = ¢ o j, by Lemma 4.1.3.
The composition h : Ty < x xy - x is an isomorphism, see [Gro60, p.134]. Thus,
there exists a compactification i’ : 2’ < T of z, where i’ is a complementary closed

immersion of j o B ixces Ts, endued with the reduced induced structure.

Consider the commutative diagram (38), on the next page, induced by the universal
property of pullbacks in Sch /S. Since j o K" is an open immersion, so is j'. The mor-
phism g’ is proper, and so is ¢', by [Gro61, Prop.5.4.2]. Since f is also proper, [Gro61,
Cor.5.4.3(i)] implies that the immersion j is proper, and hence a closed immersion, by
[Gro67, Cor.18.12.6]. Since ¢’ is the scheme-theoretic image of (j, xj, ) oco K and j is a
closed immersion, j' is also surjective. Thus, j’ is an isomorphism for being a surjective
open immersion. Therefore, g’ defines a morphism of compactifications ¢’ : ¢’ - [, as in

Remark 4.1.2, because the underlying scheme of 2’ is reduced. Moreover, f is a base
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change in SCﬁ/S of ¢" along j.

Yy———o—4(g
! (38)
Similarly, one sees that there exists a morphism of compactifications b’ : i’ — ¢ such
that id, is a base change in SCﬁ/S of h' along j. O

PROPOSITION 4.1.6. Let x and y be S-schemes, let ¢ : z <> p and [ : w <> ¢
be compactifications of xz and y, respectively, and suppose that (fo,90),(f1,91) : ¢ —
[ are parallel morphisms of compactifications. Then, there exist an S-scheme z’, a
compactification i’ : 2’ —— p’ of &', and a morphism of compactifications (f,g) :i" — i

for which

(fo,90) o (f,9) = (f1,91) o (f,9)-

Moreover, when 90, = 91|, the S-scheme 2’ can be chosen to be z, and the morphism

g can be chosen such that id, is a base change in Sch /S of g along j.

PROOF. Let j : x <> p and j, : y <> ¢ be the complementary open immersions
of ¢ and [, respectively, and let gi|, : © > y be a base change in SCﬁ/S of g along j,
for k =0,1. Consider the solid diagram (39) of S-schemes, on the next page, which is
induced by the definition of the graphs Ty, and Ty, of gg, and g, respectively, for
k =0,1. In the solid diagram (39), the side subdiagrams are commutative, but the
front and back faces are not necessarily commutative. The morphisms hj and hj, are
the unique morphisms that factorise (idy,gk|,) and (idp, gr) in Sch /S as i o hy and
ij, © hy, respectively, for k= 0,1. Whereas, the morphisms 7, and 7, are the Cartesian

products projections.

The proof is based on basic constructions on this solid diagram, and follows through

commutative subdiagrams chase; yet we spell it out for the reader’s convenience.

The morphisms hy, and hy, are isomorphisms with inverses m oiz and Tp oi), respec-
tively, for k = 0,1. Hence, in particular, we have an open immersion j : Lo, == Tgp
given by j = hy, oj, o h;, for £ =0,1. Then, the horizontal square containing jy and the

vertical square containing j; are commutative, i.e. iy o jj, = (j, x j) oig, for k=0,1.
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Let 2’ be the fibre product Tgop, Xaxy Ty, s with the fibre product projections i,
and 47, and let p’ be the fibre product Ty, xpxqIg,, with the fibre product projections
% and le Then, there exists a unique morphism z’ — p’ of S-schemes, induced by the
universal property of fibre products, making the squares containing it commute, which

we denote by j'.

(39)

In fact the two squares that contain the morphism j’ are Cartesian in Scﬁ/ S. To see
that, fix k € {0,1}, let u be an S-scheme and suppose that oy : u — Ty, and B:u— p’
are morphisms in Sch /S for which ji o oy = Ell_k o B. To establish the desired unique
morphism ~y; : u - &’ of S-schemes for which ay =4|_, o7, and 8 = j' o7, we first

deduce the existence of a morphism d; : u > T satisfying some uniqueness property,

91-k|,
and we use it to establish the desired morphism 7 : u — 2.

Composing the given relation with m, o i), one has
. . - . - =/ - =/
Jo(myoipoay)=mgoigojioay=mgoigoi o= (mgoiig)o (i} 0 ).
Since (fi—k,g1-x) : @ — 1 is a morphism of compactifications and hj_j and hi_; are

isomorphisms, the square containing the morphisms 7, 04;_; and 7, 07;_, is Cartesian

in Sch /S. Thus, there exists a unique morphism 0 : u - T of S-schemes for which

I1-k|g
Ty oipoay = (myoij_g) o dg and E;COszl,kak.
Notice that
. . . - . - =/ - =/ = . . . .
(J, % J) 0i1-k 00k = i1 0 J1-, OOk = i1- 00 B = Qg 0dy_g 0 = igofoar = (j xj)oixoay.
Since j, x j, is a monomorphism in SCIf‘tI/S, one has i1_p o dp = i o . Then, by the

universal property of pullbacks, there exists a unique morphism 7, : v — 2" of S-schemes
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for which ay, = 1]_, o and dj = i) o ;. Thus,

=/ ./ . ./ . =/
11_k°J OVk =Jk O U1k ©Vk = Jk © ) = i © B
. =/ . . . .
Since i;_;, is a monomorphism, § = j' o7;. To prove the uniqueness, let 7, : v - 2’
be a morphism of S-schemes for which oy =#]_, o7 and 8 = j' o~,. Since i|_, is a
. t .
monomorphism in Sch /S, one has ~; = ;. Therefore, the squares that contain j" are

Cartesian in Sch /S.

Then, in particular, j' is an open immersion, and there exists a compactification
i' 1 2/ < p' of ', where i’ is a complementary closed immersion of 5/, endued with the

reduced induced structure.

To establish the desired morphism of compactifications, notice that
-1 Ni . -1 ./ . ./ . ./ . -1 ./ -1 N
hy oty = (mzoigohy)o(hy oiy) =Tyoi10iy=mgzoigoiy = (myoigohg)o(hy oiy) = hy oiy,
-1 _ _-1 _ -1 _ _-1 _ _ _
and similarly, i, oy = h, oiy. Let g:=hy oiy=hgy oi,, then the morphism h; i = hy i
is a base change in Sch /S of g along j,, which we denote by g),,- Since the square

-/

I ——o0o— p'

J
T
.
91,{ g

r ———o——pP
Ji

is Cartesian in Sch /S and the underlying scheme of 2’ is reduced, there exists a mor-
phism of compactifications (f,g) : i’ — i, for the unique morphism f : 2z’ - z that

factorises g o’ in SCﬁ/S as io f, see Remark 4.1.2.

Then, one has
9009 = (rq o0 oTo) o (Ry °7) =m0 T o7) =m0t o8y = (myoir o) o () oi) = g1 09,
and
lofoof=googoi'=giogoi'=lofiof.
Since [ is a monomorphism in SCﬁ/S, one has (fo,90)° (f,9) = (f1,91) o (f,9)-

Moreover, when 90, = 91}, the universal property of pullbacks implies the existence
of a morphism z - 2’ in Scﬁ/ S that factorises the isomorphism hg = hy. Since ij is a
closed immersion, such a morphism z — z’ is an isomorphism. Pullbacks are determined
up to isomorphisms; thus, we may choose z’ = z, in which case id, is a base change in
SCﬁ/S of g along j. O

COROLLARY 4.1.7. Let x be an S-scheme. Then, the category Comp,(z) is cofil-
tered.



114

PROOF. Since S is a Noetherian scheme®, Nagata’s Compactification Theorem im-
plies that Comp, () is nonempty, as seen in Remark 4.1.4. Then, the statement of the

corollary is a direct result of Proposition 4.1.5, for f =id,, and Proposition 4.1.6. [

Let f:x — y be a morphism of S-schemes, and let [ : w < ¢ be a compactification

of y. Denote by Comp, ( f,!) the full subcategory in Comp, () that satisfies the property

a compactification i of x belongs to Comp,(f,!) if and only if it admits a
morphism of compactifications g : i — [ such that f is a base change in Sch /S
of g along j,.
Also, let Comp,(f) denote the full subcategory in Comp, (z) of compactifications of x
that belong to Comp, (f,1) for some compactification I of y.

COROLLARY 4.1.8. Assume that f:x — y is a proper morphism of S-schemes, and
let [ : w < q be a compactification of y. Then, the category Comp, (f,!) is co-cofinal
in Comp, (z), and so is Comp, (f). Moreover, the categories Comp, (f,1) and Comp, ( f)

are cofiltered.

PROOF. A direct consequence of Proposition 4.1.5, Proposition 4.1.6, and [Tam94,
Ch.0.§.3.2-3]. O

4.1.2. Extensions of Compactifiable Functors. For the rest of this subsection,
let F': Prop/S — ¢ be a functor to a Waldhausen category that satisfies the proper-
ties (PS1)-(PS3). We will show that F extends to a functor F° : SCﬁS;Zi/S - €
that satisfies the excision property (E), as in Proposition 4.1.29. Moreover, for a sym-
metric monoidal Waldhausen category %, if F' is weak monoidal, then so is F°, as in

Proposition 4.1.31. The main statement in this subsection is Theorem 4.1.32.

DEFINITION 4.1.9. A functor Prop/S — € to a Waldhausen category that satisfies
the properties (PS1)-(PS3) is called a cdp-functor.

This terminology is motivated by Definition A.4.28 and Proposition A.4.30.

REMARK 4.1.10. The properties (PS1)-(PS3) imply that
(PS4) F maps every surjective closed immersion in Prop/S to an isomorphism.
That is, for a surjective closed immersion i : z < p in Prop/S, the square

Gy —+— I

r

2 ——+——DP
' (40)

6In the light of [Con07], one may generalise most statements in this section for a quasi-compact
quasi-separated base scheme S.



115

is a cdp-square in Prop/S, which is mapped by F to a square of cofibrations in &,
by (PS1). Then, (PS3) and (PS2) imply that i,’ is the composite isomorphism
F(z) 2 F(2)/F(2s) 2 F(p)/F(2s) = F(p).

Assume that z and y are S-schemes, let i: z < p and [ : w <~ ¢ be compactifica-
tions of = and vy, respectively, and let (f,g):4 — [ be a morphism of compactifications,

as in (34). The morphism (f,g) is mapped to the solid commutative square
Ty & .
F(z) —— F(p) ---» G.(9)

fx gx (f’hg*)

Fw) —— Flg) > G(1)

* 1 (41)
in €. Sine F satisfies (PS1), both i, and [, are cofibrations in €. Let C. (i) and C, (1)
be the cofibres of ¢, and I, respectively. Since the left solid square commutes, there
exists a unique morphism G, (7) - G, (1) in ¢ that makes the whole diagram commute,

which we denote by (f«,g+).

That defines a functor
G. : Comp, —» €, (42)
given on objects and morphisms in (41).
REMARK 4.1.11. For every S-scheme x, let ¢, be the composition of the functor

C with the inclusion of the subcategory Comp,(z) < Comp,. For a morphism of

compactifications (f,g) :4' - i in Comp,_ (), i.e. a commutative diagram

in Sch /S, in which ¢ is a surjective closed immersion. The pullback square, in the
diagram above, is a cdp-square in Sch /S, as g is a proper morphism, i is a closed
immersion, and id, is a base change in Sch /S of g along j.. Since F satisfies (PS1) and
(PS3), the morphism (g_, g.) is an isomorphism in €. Also, ¢, is an isomorphism in ¢,

as F satisfies (PS4). Hence, (f+,g+) is an isomorphism. Therefore, C,

. 18 a diagram
of isomorphisms, and hence 1im(j, A exists in €. For a compactification i : z < p of
x, we denote the limit projection 1imC, — C.(i) by 4.

"For a morphism f in Prop/S, we denote F'(i) by f«. Also, we adopt the same notation for other
(contravariant) functors, when no confusion arises.
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Since 1lim(, , is independent of the choice of compactifications of z and satisfies
the excision property for proper S-schemes, we will define F'° on objects by F°(x) =
limC,,. Then, in §.4.1.2.1 and §.4.1.2.3, we define F'° on proper morphisms and formal

inverses of open immersions, respectively.

4.1.2.1. Proper Pushforwards. In order to define the desired functor £ on proper
morphisms, one needs to assign for every proper morphism f : x — y of S-schemes a
unique morphism limC; = — 1im(;, , that is independent of the choice of compactifica-
tions and morphisms between them. We show below that the canonical choices of such

morphisms coincide, see Corollary 4.1.14.

LEMMA 4.1.12. Assume that f:x — y is a proper morphism of S-schemes, and let

[ : w <> g be a compactification of y. Then, the morphism
g0y 1imG,  —~ G.(I) (43)

is independent of the choice of the compactification i : 2 < p in Comp,(f,!) and of
the morphism of compactifications g : ¢ — [ such that f is a base change in Scﬁ/ Sofg
along j,. We denote this morphism by glf .

PROOF. Since f is proper, the category Comps(f,l) is nonempty, by Proposition
4.1.5. Suppose that iy : 2, < py is a compactification in Comp, (f,1), and let gy, : i}, > [
be a morphism of compactifications such that f is a base change in Sch /S of g, along j,,
for k=0, 1. Since the category Comp, (f,[) is cofiltered, there exists a compactification
itz <> pin Comp,(f,!) and a morphism of compactifications g, : i — i}, such that id,
is a base change in SCﬁ/S of g, along Ji,» for k=0,1. Proposition 4.1.6 implies that i,
g0, and g7 can be chosen such that gg o g( = g1 © g7. Thus,

A A
gO*OLiO =00+°90.°4L =91+.°391,°4 =gl>+ob7;l'

On the other hand, suppose that i : z < p is a compactification in Comps(f,l)
and let gg, g1 : ¢ = | be parallel morphisms of compactifications such that f is a base
change in Sch /S of gi along j, for k = 0,1. By Proposition 4.1.6, there exists a refining
compactification ' : 2z’ - p’ of x and a morphism of compactifications g : i’ — ¢ in

Comp, (f,1) such that goo g = g1 og, by Corollary 4.1.8. Thus,

90+ %4 =90+ G« L, = g1+ °9gx°L, = g1, 0.

O

LEMMA 4.1.13. Assume that f : £ — y is a proper morphism of S-schemes, let
I - wg, =< q; be a compactification of y, for £ =0,1, and let g : [y - I; be a morphism
of compactifications in Comp, (y). Then,

Qlfl :g*OQl{)-
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PROOF. Since f is proper, the category Comp, (f,l) is nonempty, for k =0,1. Let
it : 2k <> pr be a compactification in Comp, (f,!x), and let g : ix — I be a morphism
of compactifications such that f is a base change in Sch /S of gj along i for k=0,1.
Since Comp,(x) is cofiltered, there exists a compactification i : 2 < p of = and a

morphism of compactifications g; : 7 — 4 in Comp,(z), for k = 0,1, by Corollary 4.1.7.

Since g o go o g{, and g; o g] are parallel morphisms of compactifications and f is a

base change in SCﬁ/S of both gogpog( and g; o g} along j, Lemma 4.1.12 implies that

fo_ _ ! _ / _ _ f
Qll —gl*obil =01+°9914°4 =9+ °090x ° Y04 ° 4 _g*OQO*OLiO _g*oglo'

0

COROLLARY 4.1.14. Assume that f : x — y is a proper morphism of S-schemes.

Then, there exists a unique morphism f, : 1limC, - 1im(, ~in ¢ for which
yofi=of, (44)

for every compactification [ : w < q of y.

The uniqueness of the morphism f, implies the functoriality of pushforward along
proper morphisms. That is, for proper morphisms f:z - y and ¢ : y = 2z of S-schemes,

one has
(9 o f)l =g 0° f! and (idw)! = idlimCFQC . (45)

DEFINITION 4.1.15. The properly supported counterpart of F' to be a functor
Fe:Sch” T /S € (46)

that sends an S-schemes z to 1im(, , as in Remark 4.1.11, and sends a proper mor-
phism f: 2z —y of S-schemes to the unique morphism f, : 1imC, . — lim G,  satisfying
the statement of Corollary 4.1.14.

REMARK 4.1.16. When % has cofiltered limits, the functor F° may be defined on
proper morphisms similarly, even when F' is not a cdp-functor. However, such a functor

does not necessarily satisfy the excision property.

EXAMPLE 4.1.17. Assume that p is a proper S-scheme. Since the category Comp, (p)

admits an initial object, namely @, : @, < p, and F' satisfies (PS2), one has
F(p) = G.(2p) = F(p).

The functor F*° satisfies generalisations of the properties (PS1)-(PS4) to the cat-

« Prop . . "
egory Sch /S, as seen in the following proposition.

« prop
PROPOSITION 4.1.18. The functor F°: Sch /S —> €

(PS1’) maps closed immersions in Sch' " /S to cofibrations in %’

(PS2') maps cdp-squares in Scﬁprop/ S to pushout squares in %’;
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(PS3’) maps the empty S-scheme to the zero object in ¢’; and

. . . . . prop . .
(PS4’) maps surjective closed immersions in Sch /S to isomorphisms.

PROOF. The statement (PS3’) is evident; whereas (PS4’) follows from the other

statements, as seen in (40).

(PS1’) Assume that i:v < z is a closed immersion of S-schemes. Let [ : w < ¢ be
a compactification of x with complementary open immersion j, : <> ¢, and
let 3" : p <> ¢ be the scheme-theoretic image of the immersion j o¢. Then,
Lemma 4.1.3 implies the existence of an open immersion jl’ : v <> p for which

the solid square

AN
|
|
L

-/
¥
—o—— (===

v P 2
r hl r‘
|
! .
i i i
1
T q w

C

g : (47)

is Cartesian in SCﬁ/S. Let [ be a base change in SCH/S of [ along 4'. Since
open complements are closed under pullbacks and j is a complementary open
immersion to [, one finds that jl’ is a complementary open immersion to [.
Hence, [ : z <> p is a compactification in Comp,(i,l) and (i,i") : [ — [ is
a morphism of compactifications such that i is a base change in Sch /S of i’

along j,.

There exists a pushout of the closed immersions [ and 4 in Prop/S, which
we denote by ¢. In fact, since the right square in (47) is Cartesian, there exists

a bicartesian square

L
Z——p

w I g’

of closed immersions in Prop/S, see [Sch05, Th.3.11] and [Stal7, Tag 0B7M].
In particular, it is a cdp-square in Prop/S, and hence it is mapped by F' to a
pushout square of cofibrations in 4. Moreover, the unique morphism & : ¢ - g,
for which koi =4 and kol’ =1, is a closed immersion. Consider the solid
diagram (48) of cofibrations in ¢, on the next page. Since ¢ o[, =0, there
exists a unique morphism v : F(q) - C,(l) in ¢, for which y o[, = 0 and
yoi} = ¢. Since ¢ is an epimorphism in ¢, a diagram chase shows that (4,,1})
is a cobase change in ¢ of k. along 7. Recall that ¢; 04, = (i,,i,) o ¢ and that

1 is an isomorphisms in €. Thus, i, is a cobase change in € of k. along ¢, o7.
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Since k. is a cofibration in ¢, as k is a closed immersion, the morphism 7, is

a cofibration in %.

F(z) NI SN F(p) --------»C.(l)
i, 1 J i (2,,7%)
, Fa)
7k .
F(w) —— F(q)--------»C.()
: (48)

(PS2’) A cdp-square in Sch /S defines a Cartesian cube, in which the ambient proper
S-schemes fit into a cdp-square. Then, a diagram chase on the Cartesian cube

imply the statement.
O

EXAMPLE 4.1.19. Assume that j, : ¢ = x| |y is a closed open immersion of S-schemes

with complementary closed open immersion j, : y < x| |y. Then, the square
QS 4> Yy
x L

is a cdp-square in Sch /S. Hence, by Proposition 4.1.18, one finds that

Fe(z| Jy) 2 Fo(x) [T F(y)

S

<—>

Y

4.1.2.2. A Comparison Morphism. Let G : SCﬁ/S — % be a functor to a Wald-
hausen category, whose restriction to Prop/S is a cdp-functor. We abuse notation,
and use G to also denote its restrictions to Scﬁpmp/S and Prop/S. We see below
that there exists a canonical natural transformation from G to its properly supported
counterpart. This natural transformation is particularly useful to define the monoidal

coherence morphisms in §.4.1.2.6.

LEMMA 4.1.20. Assume that G : Sch /S — € is a functor to a Waldhausen category,
whose restriction to Prop/S is a cdp-functor. Then, there exists a unique natural

transformation ¢ : G = G° for which

Logpz—e ]1*7

for every S-scheme x and for every compactification i : z < p of x.
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PROOF. Suppose that x is an S-scheme z, let iy : z;. — pi be a compactification of
x with complementary open immersion Jyy P T <> pr, for kK =0,1, and let g : iy — i1 be

a morphism of compactifications in Comp, (z). Then,

geo€ 00, =€, °9x0°0, =6 °(g04, ) =€ 4 -
Therefore, by the universal property of limits, there exists a unique morphism ¢, :
G(z) - G°(x) in € for which

L, OYs =600, (49)

for every compactification i : z < p of z.

Suppose that f:x — y is a proper morphism of S-schemes and let [ : w <> ¢ be
a compactification of y, then the category Comp,(f,l) is nonempty, see Proposition
4.1.5. Assume that i: z < p is a compactification of z in Comp,(f,1), let g:i — 1 be
a morphism of compactifications such that f is a base change in Sch /S of g along j,

and consider the diagram

G(z) 25 Go(z) —— (i)
S by hg*

G(y) ——~ G(y) — &)

in €. The right square, in the diagram above, is commutative due to Corollary 4.1.14.

Then, one has
owpyofi=goj, ofi=¢g O(jzof)* ZElO(goji)x— =€00«0°J,
=gx0€ 0], =gx0LOpPy =140 f 0oy
By the universal property of limits, one has ¢, o f. = f, o p,. Therefore, there exists

a natural transformation ¢ : G = G°, whose component at an S-scheme z is given by

the unique morphism ¢, in ¢ that satisfies (49).

Assume that ¢’ : G = G° is a natural transformation for which

4 OQO;:Q 0Jix =4 °Pa
for every S-scheme z and for every compactification i : z < p of x. Then, the universal

property of limits implies that ¢! = ., and hence ¢’ = . O

COROLLARY 4.1.21. There exists a unique natural isomorphism

p: F= : Prop/S —» €,

C
|Prop/S
such that, for every proper S-scheme p and for every compactification i of p, one has

LOPp =69k
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4.1.2.3. Open Pullbacks. The functor F¢ in Definition 4.1.15 can be extended to
the category Scﬁi);[;i/ S whose objects are S-schemes and whose morphisms are finite
compositions of proper morphisms and formal inverses of open immersions. We define
below the pullbacks along open immersions, and we show in §.4.1.2.4 the comparability

between proper pushforwards and open pullbacks.

Suppose that f : x —e> y is an open immersion of S-schemes, let [ : w < ¢ be a
compactification of y with complementary open immersion j, : y <o ¢, and let [, be

the composition of [ with the surjective closed immersion w_, < w.

The open immersion j o f : © <> ¢ defines a compactification zlf 1z <> q, that is a

complementary closed immersion of j o f, endued with the reduced induced structure.

Then, [, factorises uniquely in Sch /S as zlf o ¢ for a closed immersion ¢ : w,

) “red d = Z.
The resulting commutative square
il
Ze——4q
CJ/ ‘idq
wrcd (ﬁl‘;} q
red (50)

of closed immersions in Sch /S induces the solid commutative square

if &f

F(z) —— F(g) ---» C, (i)

Cx ldF(q) f;*

l

red * Te.

F(wrcd) — F(q) 76; - C}(lrcd)'

of cofibrations in ¢". Let f* denote the unique morphism G, (I ,) — C}(zlf ), induced
the universal property of cokernels, which makes the diagram commute; and denote

the morphism
Fron F(y) > Gu(if) (51)
by plf . Notice that the square (50) is not a morphism of compactifications unless f is

an isomorphism.

LEMMA 4.1.22. Assume that f : z <e> gy is an open immersion of S-schemes, let
I : wg, <> g be a compactification of y, for k =0,1, and let g : Iy - [; be a morphism
of compactifications in Comp,(y). Then, g induces a morphism of compactifications

g:if

o~ Zlfl in Comp, () for which

pl =g.0p]. (52)
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PRrROOF. The morphism of compactifications g : [ - [; defines a morphism com-
pactifications g : lo, , — [1,., in Comp,(y). Let z{k ! 2z <> qp be a complementary
closed immersion of jlko f, endued with the reduced induced structure, and hence a
compactification of z, and let ¢y : wy _, < 2z be the unique closed immersion for
which I, = zlJ; ocy, for k=0,1. Since g:1ly_, — [1,, is a morphism of compactifications
in Comp, (y), the morphism id, is a base change in Sch /S of g along j , and hence

id; is a base change of g along j, = Ji,© f. Therefore, g induces a morphism of com-
1l1

pactifications g : 2{0 - Zlfl in Comp, (z), see Remark 4.1.2. Consider the commutative
diagram
il
?1 ¢ qQ
/ /g/
20 4q0
i
o c id
co id
> ll[‘@
wlred ¢ A q
wored ¢ qo
lored

in Sch /S, where the commutativity of the left face is a result of the commutativity of

the other faces and having zlfl a monomorphism in Sch /S. The diagram above induces

the solid commutative diagram

F(a) A F(g) Yo G

*/ Lt gx o B

F(0) i Flgo) =------ Yo Gif)
C1s id i i

€0 id i
F(wlred ) Lred # F(ql) 777777 6llxed 77777 » C;«“ (llred )
/ . v gs
F(wored ) ,Drcd * F(qo) 777777 6Zored 77777 » 6;7' (lored )

in €. Since 6, Isan epimorphism in ¢, the universal propriety of cokernels implies
d

f[; ©gx =Ggx 0 flt)a
i.e. the whole diagram commutes. Then,

Plfl = fzy; OLllred = flj © g O%Ored = G« Oflz OLlOred = G« OPl{)-
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The proof above, in particular, shows that there exists a faithful (not necessarily
full) functor 67 : Comp, (y) — Comp,(x) that sends a compactification I of y to the
compactification zlf of x, and sends a morphism of compactifications ¢ : lg = 1 in
Comp, (y) to the morphism of compactifications g : Z'ZJ; - zlfl in Comp,(z). Let C}fz be
the composition of the functor ¢, ,, given in Remark 4.1.11, with the functor /. The
universal properties of limits induces a canonical morphism ¥/ : 1im G, > lim ijfT in
%. Since F is a cdp-functor, the morphism 9/ is an isomorphism, which allows u’s to

deduce the following corollary.

COROLLARY 4.1.23. Assume that f :x —e> y is an open immersion of S-schemes.

Then, there exists a unique morphism f': F¢(y) - F°(z) in € for which
oo f'=flen (53)
1

for every compactification [ : w < q of y.

The uniqueness of the morphism f' implies the functoriality of pullbacks along open
immersions. That is, for open immersions f : x <>y and ¢ : y <> 2z of S-schemes, one

has
(gof)=feog  and  (idy) =idy, -

COROLLARY 4.1.24. The functor F°, in (46), extends to a functor

¢ Prop
F¢:8chpen/S =€

that sends f°P, for an open immersion f : x —e— y of S-schemes, to the unique morphism

f'elim G, —~ 1im G, satisfying the statement of Corollary 4.1.23.

REMARK 4.1.25. In contrast to the pushforwards along proper morphisms, pull-
backs along open immersions do not necessarily exist when F' is not a cdp-functor, even
if ¢ is has cofiltered limits. That is because the morphism 9/ is not necessarily an
isomorphism, as the functor 7 does not have to be co-cofinal. For instance, when p is
a proper S-scheme and f : p —e> ¢ is a non-isomorphic open immersion of S-schemes,
the initial compactification @, : @, < p does not coincide with zlf for any compaction

[ of q.

4.1.2.4. Base Change. The open pullback and proper pushforward satisfy the proper-

base change compatibility formula, as in the following lemma.

LEMMA 4.1.26. Let

p —o—— x
f !

’;o*)y
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be a Cartesian square in SCF]/S in which j is an open immersion and f is a proper

morphism, and hence j’ is an open immersion and f’ is proper. Then,
ot =fleg". (55)

PROOF. Let [ : w < ¢ be a compactification of y, since f is proper there exists a
compactification i : z < p of x in Comp,(f,l) and a morphism of compactifications
g i — [ such that f is a base change in SCﬁ/S of g along j. Given that j and j" are open
immersions, let z{ sw' <> q (resp. ZZ’ : 2/ < p) be the compactification of y" and (resp.
z') induced from [ (resp. i), as in §.4.1.2.3. The morphism of compactification g : 4 — [
defines a morphism compactifications g :4_, - [_,. Since the square (54) is Cartesian
in SCﬁ/S7 the morphism f’ is a base change in Scﬁ/S of g along ]Z? = j, o j. Therefore,
The morphism of compactification g :4_, < [, defines a morphism compactifications

g: zf’ - i{, see Remark 4.1.2. Then, one has

. x % 7! .! NEs
L,0] of,:j o, of =j og.oy and /,.of'o] =gs0L ,0] =gs0] oL .
zg : ! red ' l red z{ : i z “red

7

Consider the commutative diagram

g
i
Weq (\ui(/ q
lre(l (56)

in Sch /S, where the commutativity of the left square is a result of the commutativity
of the other squares and having z{ a monomorphism in Sch /S. The diagram above

induces the solid commutative diagram

F(w') F(q)------- CREEEEE » Go(i)
/ */ g B
F(2) F(p) T------ b G
id B i
id ji’*
F(wrcd) red % F(q) 7777777 6lred 77777 > F(lrcd)
/9* P
F(Zred) 'imd* F(p) 7777777 6izred 777777 i CI’:‘(ired)

in €. Since ¢ dis an epimorphism in ¢, the universal propriety of cokernels implies

jl*og* :g*oji’*,
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Since L; is an isomorphism, as F' is a cdp-functor, one has j' o f, = f/ o j". O
l
EXAMPLE 4.1.27. Assume that i: v <—— x is a closed immersion of S-schemes with
complementary open immersion j : u <o~ x. Then, one has a Cartesian square

@S C——o——
r

U ——o—— T
J

in Scﬁ/S. Since F°(g,) = F(2y) 2 0, one has
j oi, =0.
In fact, we see in §.4.1.2.5 that the sequence
Fo(0) % F(x) % F(u)
is a cofibre sequence in % .

ExXAMPLE 4.1.28. Recall Example 4.1.19, and assume that j, : x — x| ]y is a closed
open immersion of S-schemes with complementary closed open immersion j, : y < x| ]y.

Then, there exists a Cartesian square

idg

_—

z x
idz‘ }‘1
r——zxlly

Ja

in Sch /S, and hence

Jo' © Ja, = (idg), 0 (idy)' = id e ().
Similarly jy! ©Jy, = idpe(y). By Example 4.2.22, one also has o °Jy, =0 and jy! ©Jz, =0.
Therefore, when % is additive, F°(z|]y) is a direct sum in € of F°(x) and F°(y).

4.1.2.5. Ezcision. A functor G : Scﬁilzzlz/ S — &, to a Waldhausen category, induces

a group homomorphism KO(SCﬁ /S) = Ko(%) only when the evident composition map
Ob(SCﬁop;?:l /S) = Ob(%€) - Ko(%) respects the scissors relations (19). That holds when
G satisfies the excision property (E). We will see below that the functor F°, given in
Corollary 4.1.24, satisfies the excision property, and hence it induces an Euler-Poincaré

characteristic p,, :KO(SCﬁ/S) - Ko(%).

ProproOSITION 4.1.29. The functor F°, given in Corollary 4.1.24, satisfies the ex-

cision property (E), i.e. for every closed immersion i : v < x of S-schemes with
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complementary open immersion j : u <o x, the sequence
i, !
F(v) > F(x) % F(u) (57)
is a cofibre sequence in . In particular, j' is an epimorphism in %.

PROOF. Assume that i : v < x is a closed immersion of S-schemes with comple-
mentary open immersion j : u <> x, and let [ : w < ¢ be a compactification of x
in which the underlying scheme of w is reduced. The open immersion j o j : u <e> ¢
induces a compactification I’ : w’ < ¢ of u in which the underlying scheme of w’ is
reduced, i.e. I = zg using the notation of §.4.1.2.3. Hence, there exists a unique closed

immersion c¢: w < w' for which [ =1’ o c.

On the other hand, let 7' : p < ¢ be the closed immersion of the scheme-thoracic
image of joi. Then, Lemma 4.1.3 implies the existence of an open immersion j "tpcesp

for which the solid square containing it in the commutative diagram

j ) v r.C
U ¢ o T € o q > w > w
AN N
| |
| |
Bu ) i ﬂwr)" 7rw)"
| |
L L a L a L
Gy oV o p ey p -0z
K T €

is Cartesian in Sch /S. The leftmost square, in the above diagram, is also Cartesian in
SCﬁ/S, by the definition of u. Let (myr,p’,7,) (vesp. (mw,z,7p)) be the pullback of i
along I’ (resp. I =1"oc¢). Then, there exists a unique morphism e : z - p’ that makes

the diagram commute, in particular, m, = 7['1,7 o e. Moreover, e is a closed immersion.

Since open complements are closed under pullbacks and j is a complementary open
immersion to [, one finds that jl’ is a complementary open immersion to m,. Hence,
Tt 2 <> p is a compactification in Comp, (i,1) and (7y,i") : 7, = I is a morphism of
compactifications such that 7 is a base change in Sch /S of i’ along j,. Also, since joj is a
complementary open immersion to I’, the projection 771’, is a surjective closed immersion.
Hence, 7, : p’ = p is a compactification in Comp(@y,!") and (myr,i") : 7, - 1" is a

morphism of compactifications such that @, is a base change in SCI’E‘:/ S of i’ along j,.

The Pullback Lemma implies that the square

Tw
2w
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is Cartesian in Prop/S. Since 771’, is a surjective closed immersion, the morphism c

induces an isomorphism

Wt 2 (NG o), = (@3 Go D), = (@) ) = (087, N 2 s

Therefore, the square (58) is a cdp-square in Prop/S, and hence the functor F' sends it

to a pushout square in %.
Since (7, 1") 1 mp = 1 and (myyr,i") : 7w, - 1" are morphism of compactifications, and

i (resp. @) is a base change of i’ along j (resp. j, = j ©j), there exists a commutative

diagram

F(z) KT F(w) )l\
ex F(p HZ F(Q)
F(") KT F(w’) >\N\ \N\» Fe(v)

E FC(;C)

F(p) Hﬁ F(Q) 7
6/
FC(Qj ) 02 Fc(u)
. -1 -1 -1 -1 . .
in ¢, where ¢ = o€, € =1, 0¢,€ =1 o€ ,ande' =1, 0¢€,. Since 7/ is a
1 1 124 T T Tp T 71—;) T p

surjective closed immersion of proper S-schemes, the morphism 7, is an isomorphism.

Also, F°(2,) = 0.

"B

*

Let a: F°(x) - A be a morphism in ¢ for which acod, =0 = 00, for the unique
morphism [ : F°(@) - A in €. Since the functor F' send the square (58) to a pushout
square in ¢ and ao€ ol oy, = o e;, om, oex =0, one has aoe ol =0. Then,
there exists a unique morphism ~ : Fc(u§ — A such that aog =vyoe€ =70 jto ¢'. The
morphism el' is an epimorphism in %, and hence o = yo j ' Also, el', is an epimorphism,
and so is j'. Thus, for any morphism ' : F¢(u) - A in € for which 4" 0 j' = a =y 0 j,

one has v' = 4. Therefore, the sequence
F(v) > F¥(2) % F*(w)

is a cokernel sequence in %, and hence a cofibre sequence because i, is a cofibration,
by Proposition 4.1.18.(PS1’). O

4.1.2.6. Weak Monoidal. When the Waldhausen category % is symmetric monoidal
and the edp-functor F' : Prop/S — % is weak monoidal with respect to the Cartesian
product in Prop/S, we show that F is also weak monoidal. The weak monoidality of
the functor F° is a formal consequence of Proposition 4.1.29 and the weak monoidality

of F', which is based on the following lemma.
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LEMMA 4.1.30. Let the diagram (59) be a commutative diagram in a Waldhausen
category %, in which the vertical and horizontal sequences are cokernel sequences,
(s, F,0) is a pushout of the span Fy; NA Fiq BN Fi, and the morphism A is the
unique morphism F' — F5 9 induced by the universal property of pushouts making the

. A T . .
diagram commute. Then, the sequence F' — F, 9 —> F3 3 is a cokernel sequence in €.

S1 ™1

Fi1 Fi9 Fi3
o
o1 g2 a3
4|
S

N -

Fy, Fyo Fy3

)

N

. T3

Fss (59)

PROOF. The proof is an elementary diagram chase; yet we spell it out for the

reader’s convenience.

On the one hand, the universal property of pushouts implies mo A = 0, due to having

Tolog=mog=mg30m0¢ =0 and mTolog=moogg=m3oogom =0.

On the other hand, let o : F5 2 — Z be a morphism in ¢ such that o A = 0. Then,
in particular, aogy = aoAog¢ =0, and hence there exists a unique morphism 3 : Fp3 - Z
in & for which « = 8 o my. Thus,

Boogom =Bomgoog=aoXoog=0.
Since 71 is an epimorphism in %, one has 3o o3 = 0, and hence there exists a unique

morphism 7y : F33 - Z in € for which 8 =~y om3. Thus, a =yomzomy=yom.

Let 4" : F33 - Z be a morphism in ¢ for which a = 4'orr. Since 7 is an epimorphism

in €, one has 7' = 4. Therefore, 7 is a cokernel injection of A in €. 0

PROPOSITION 4.1.31. Let (¢, A, 1) be a symmetric monoidal Waldhausen category,
and suppose that the cdp-functor F' : (Prop/S,x,idy) - (%,A,1) is weak monoidal.
Then, the functor F°: SC|E1tlDerlD

open — ¢ is weak monoidal. Moreover, F'° is strong monoidal
when F' is.

PROOF. Since F' is weak monoidal, it coherence morphisms

bpq: F(p)ANF(q) > F(pxq) and ¢g 1 - F(idy)
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are weak equivalences in ¢, for every pair of proper S-schemes p and g. Let ¢ : 1 —
F*(idy) be the composite weak equivalence ¢S := g 0 @5 in ¢, where ¢ is the natural

isomorphism asserted by Corollary 4.1.21.

For k = 0,1, assume that xj is an S-scheme, let iy : 2z, < pp be a compactification
of z; with complementary open immersion iy ¢+ Tk <O D The functors — A C' and
C A — preserve cofibre sequences for every object C' € €, see Definition 1.5.20. Thus,

Proposition 4.1.29 induces a cofibre sequence

FO(z1) A Fo(y) »——s F(py) A FO(y) — 25— F*(23,) A FS(y)

in €, for every S-scheme y. Since both p; and zj are proper S-schemes, and ¢ is a

natural isomorphism, the sequence
ik:x— .71‘
F(zp) N F(y) =——— F(pi) A F(y) ———— F(zx) A F(y),
is a cofibre sequence in € for a proper S-scheme y.

On the one hand, the monoidal product bifunctor A : € x € — % induces the solid

commutative diagram

F(z) AF(z1) NELLIEN F(zo)//\ F(p1) Jl% F(zp) A F(x1)

10« / 10+ 104

Fe(xg) A F(z1) >—— F(x0) A F(p1) ——» F°(x0) A F(21)
i1 3
in ¢, in which horizontal and vertical sequences consist of cofibre sequences. Let
A: F - F(po) A F(p1) be the pushout-product of ig, and i1, and let 7 := ]1'0 Ojl_!l. Since
% is a symmetric monoidal Waldhausen category and ig, and iy, are cofibrations in
%, the morphisms A is also a cofibration in ¥. Thus, Lemma 4.1.30 implies that the
sequence
F = F(po) A F(p1) = F(wo) A F(1)
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is a cofibre sequence in % .

On the other hand, there exits a pushout in Prop/S of the closed immersions id,, xi;
and 79 x id,,. In fact, there exists a bicartesian square
idzq x 41

20X 21 & 20 XP1

r

. . -/
g x idz, i

4

Po x 21 7 > 2,
1

of closed immersions in Prop/S, see [Sch05, Th.3.11] and [Cam17, §.2]. In particular,
it is a cdp-square in Prop/S, and hence it is mapped by F' to a pushout square of
cofibrations in ¥. Since % is a Waldhausen category and F is weak monoidal, the

unique morphism A" : F' — F(z), that makes the diagram
F(20) A F(21) »—ir.— F(20) A F(p1)
~ N

$20,21 $z0,p1
N N
F(ZO X 21) —_—T F(ZO Xpl)

104 0%

F(po) AF(21) —f—in—>F
N _

m')\’_v
AN T
F(po x 21) ——i),— F(2)

¢p01zl

commute, is a weak equivalence in €. Let p denote the proper S-scheme pg x p1, denote
the closed immersion z < p by ¢, and denote its complementary open immersion
xo x 1 <> p by j. The morphism i, is a cofibration in ¢, and ¢p,p, © A = i 0 X.
Thus, there exists the solid commutative diagram (60) in %, on the next page, in
which the horizontal sequences are cofibre sequences, and vertical morphisms are weak
equivalences. Thus, the universal property of cokernels implies the existence of the

unique morphism
Dao,ar + F(20) AF(21) = F(20 X 21),

that makes the diagram commute; which is a weak equivalence in %, see Definition 1.5.8.
The uniqueness of the morphism ¢; ., implies the existence of a natural transformation
¢°: F° A F¢ = F°(x), with components Pgy .z, fOr every pair of S-schemes zo and 1.

Also, a diagram chase of the associativity hexagons and unitality squares shows that

F° is weak monoidal with the coherence natural morphism ¢°. Moreover, when ¢ is a
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natural isomorphism, so is ¢°.

A

E F(po) A F(p1) ————— F*(0) A (1)
A Ppo.p1 i
F(z) F(p) 50 0n
Fe(2) F<(p) - Fe(a x 1) -
U

4.1.2.7. Motivic Measures. Theorem 4.1.32 collects the main statements of the ar-
gument in §.4.1.2; which allows one to associate motivic measures to cdp-functors from

proper S-schemes to Waldhausen categories.

THEOREM 4.1.32. Assume that F': (Prop/S, x,id,) — (¢, A, 1) is a weak monoidal

cdp-functor to a symmetric monoidal Waldhausen category. Then, there exists a functor
ft Prop

FC : (SChopen/S7 X7ids) - (%7/\7:[]‘)7

 Prop
where SC|§1

Open/S is the category whose objects are S-schemes and whose morphisms

are finite compositions of proper morphisms and formal inverses of open immersions,

defined on proper morphisms in (44) and on open immersions in (53), such that

e there exists a natural isomorphism ¢ : F' = F‘C :
Prop/S
e F° satisfies the excision property, i.e. for every closed immersion ¢ : v <> x

of S-schemes with complementary open immersion j : u <~ x, the sequence
Fo(v) 5 Fo(r) L F(u)
is a cofibre sequence in %’; and
e F° is weak monoidal, i.e. there exist natural transformations
¢ F°AF° = F°(x) and g5 1 = F(idy),

which satisfy the associativity and unitality axioms, whose components are

weak equivalences in %.
Therefore, there exists a motivic measure

1y +Ko(Sch /S) — Ko (),

that sends the class of a proper S-scheme p to the class of F(p).

EXAMPLE 4.1.33. Suppose that k is a field. Then, a closed immersion i : Spec k <

IP,Ic is an initial object in the category of compactifications Comp, (A}C), and hence

F¢(A}) = cokeri,.
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REMARK 4.1.34. For a field k, Zakharevich introduced the notion an assembler
in [Zak17], and associated to the category of k-varieties a spectrum whose group of
path components is isomorphic to the Grothendieck group Ko(Var/k). Then, Campbell
provided an Fo.-ring spectrum K(Var/k) whose ring of path components is isomorphic to
the Grothendieck ring Ko(Var/k), which is conjectured to be equivalent to Zakharevich’s
spectrum, see [Cam17]. Lemma 4.1.26 and Proposition 4.1.29 imply that a cdp-functor
F :Prop/S — €, to a Waldhausen category, defines a map of spectra

K(F) :K(Var/k) - K(%¥)

that sends a point in the class [P] € Ko(Var/k) to a point in the class [F(P)] € Ko(%),
for every proper k-scheme P, see [Cam17, Def.5.2 and Prop.5.3]. This will be explored
further in §.4.2.1.

4.1.3. Functors Compactification. Given a functor F': Prop/S — % to a Wald-
hausen category, that is not a cdp-functor, one may would like to ‘universally’ associate
to F' a cdp-functor, and hence define an associated motivic measure that is closely re-
lated to F'. Recall that the properties (PS2) and (PS3) imply that cdp-functors are
cdp-cosheaves on Prop/S, as the cdp-topology is generated by cdp-squares, see §.A.4.3.
Hence, a natural choice of such an association is the cdp-cosheafification, when it exists,
which is the dual of the cdp-sheafification, see [Pral6]. We will restrain ourself from

discussing the general process here, and only focus on the aspects relevant to §.4.2.

Assume that F satisfies (PS1), i.e. it sends closed immersions of proper S-schemes

to cofibrations in %. Then, for a cdp-square

i
Z2=7=0Dp

i

w = q
7

in Prop/S, the morphism i, is a cofibration, and the pushout of i, along S, exists
in ¢. Denote the canonical morphism F'(w) [1p(.) F(p) - F(g) in ¢ induced by the
universal property of pushouts by «; r, and consider the set of morphisms

A= {ai,f tF(w) [T F(p) > F(a) | (4, f) EA}U{O*F(@}

F(2)

in &, where A is the set of all edp-squares in Prop/S. If there exists an exact functor
of Waldhausen categories € — %’ that sends all morphisms in A to isomorphisms in
¢, the composition F’: Prop/S — € — ¢ satisfies the properties (PS1)-(PS3), i.e. it
is a cdp-functor. When the functor € — ¢” is a localisation with respect to A, we say
that the induced functor F': Prop/S — ¢” is a cdp-compactification of F.

When % is a symmetric monoidal Waldhausen category and F is only lax monoidal,

one seeks a localisation for which the composite functor is also weak monoidal.
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In the next section, we apply this argument to the most natural functor there is,
that is the Yoneda embedding®.

4.2. Applications

For an essentially small category %, the Yoneda embedding into the category of
presheaves PSh(%) gives a free cocompletion of 4. Whereas, for a Grothendieck topol-
ogy T on ¥, the t-cosheafification of the Yoneda embedding gives a cocompletion
of € in the category of 7-sheaves Shv. (%), with the relations imposed by declaring
T-coving sieves to be colimit cocones, see Remark A.4.7. The category of pointed
T-sheaves admits a symmetric monoidal Waldhausen structure, whose cofibrations are
monomorphisms, weak equivalences are isomorphisms, and monoidal product is given
by the smash product, recall Example 1.5.22. In particular, when % is the category of
proper S-schemes and 7 is a topology on Prop/S, it is interesting to consider when the
T-cosheafification of the pointed Yoneda embedding is a cdp-functor, and to use such
a cdp-functor, if it exists, to better understand the Grothendieck ring KO(SCﬁ /S), and
probably its higher K-theory.

In this direction, we utilise the cdp-topology to construct a monoidal proper-
fibred Waldhausen category ¢~ over Noetherian schemes of finite Krull dimensions,
in §.4.2.1.2, for a topology 7 that is finer than the cdp-topology. For every Noetherian
scheme T of finite Krull dimension, there exists a cdp-functor h” : Prop/T — €~ (T),
given by the 7-cosheafification of the pointed Yoneda embedding, as in (65). This

functor induces, in (66), a surjective motivic measure

1, :Ko(Sch/T) - Ko (€2(T)).

On the other hand, giving the role the class of the affine line plays in the study
of the Grothendieck ring KO(SCﬁ /S) and that the category of (simplicial) sheaves is
the home for motivic homotopy theory, it is desired to have motivic measures obtained

from Waldhausen K-theories of models for the (un)stable motivic homotopy categories.

4.2.1. Waldhausen K-Theories of Noetherian Schemes. For the rest of this
subsection, let 7 be an additively-saturated pretopology on the category Noetherian
schemes of finite Krull dimensions that is finer than the cdp-pretopology and coarser

than the proper pretopology, ¢f. Remark A.4.39.

Recall that the category of proper S-schemes is essentially small, and the forgetful
functor PSh,e(Prop/S) — PSh(Prop/S), that forgets the base point, admits a faithful
(but not full) left adjoint PSh(Prop/S) — PShe(Prop/S), given by adjoining a disjoint

8In fact, we need to consider a pointed version of the Yoneda embedding.
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base point, i.e. 2, = (2 1I*,%), see [Hov99, p.4]. Let h , denote the composite
functor

-, oh:Prop/S — PSh,(Prop/S).
The gluing of a pair of closed subschemes of a proper S-scheme, along their scheme-
theoretic intersection, defines a pushout square in Prop/.S, which is a cdp-square, see the

proof of Proposition 4.1.18. Then, the functor h_, is not a cdp-functor, as it forgets all

N
colimits. However, for every closed immersion i : z < p in Prop/S, the morphism h, ,
is a monomorphism. Following the argument in §.4.1.3, we may consider a localisation

of the category PShe(Prop/S) with respect to the set of morphisms
A {aivf :hw,+ U hp,+ = Op,+ | (Z’f) € A}U{O - hg’+ }7
h .
where A is the set of all edp-squares in Prop/S.

The cdp-sheafification functor
—* . PSh,(Prop/S) - Shv, ., (Prop/S)
provides such a localisation, see Definition A.4.28. That is,

(PS1) the cdp-sheafification functor preserve monomorphisms;

(PS2) the cdp-sheafification of h, , is isomorphic to 0, as hzf (@) = *; and

(PS3) the functor h*", i.e. the composition of the cdp-sheafification functor with the
the Yoneda embedding, sends cdp-squares to pushout squares, see [VoelOa,
Lem.2.11 and Cor.2.16] and [VoelOb, Th.2.2]; also, the left adjoint functor

a,

cdp . .
—+  preserves colimits.

Therefore, the functor
h:=-%doh  :Prop/S - Shy, , (Prop/S) (61)

is a cdp-functor. Moreover, Remark A.4.7 shows that the cdp-topology is the coars-
est topology 7 on Prop/S for which the composite functor -3 oh_, is a cdp-functor.
The 7-sheafification functor preserves monomorphisms and colimits, and it factorises
through the cdp-sheafification functor, as 7 is finer than the cdp-pretopology. Hence,
the functor

h" :=—% oh , :Prop/S — Shy,  (Prop/S) (62)
is a cdp-functor. To avoid bulky notations, we let

- (S) =Shy, , (Prop/S).

In particular, when 7 is the cdp-pretopology, denote €, (S), h™, and h®", by €(S), h,

and h°, respectively.

The functor h_ is strong monoidal, with respect to the Cartesian product of proper
S-schemes and the smash product of pointed presheaves. Since the 7-sheafification

functor is a left exact reflector, it preserves the smash product, as the smash product
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of pointed (pre)sheaves only involves finite limits and colimits, recall Example 1.5.22.

Thus, the functor h” is also strong monoidal.

Since the Waldhausen category %, (S) is cocomplete, its K-theory is connected, i.e.
it has a trivial group of path components, recall Lemma 1.5.15. To establish a non-
trivial motivic measure, we need to consider a Waldhausen subcategory in €, (5), with
a non-connected K-theory, which contains the essential image of h”. We construct this

subcategory by mathematical induction

o Let ©9(S) be the full subcategory in €,(S) in which 2 € €°(S) if and only
if 2 = 1_1: for a proper S-scheme p.

e For an integer n > 1, let €J'(S) be the full subcategory in %,(S) in which
Z € €l(9) if and only if there exists a pushout square

L

Y —

PAg—
(63)
in €,(S), in which 2”,%, and Z’ belong to €"1(S), and ¢ is a monomor-
phism of pointed 7-sheaves.

One has €7(S) c €71 (S) for every n € IN. Then, the full subcategory
()= | €2(5) (64)

nelN
in €-(S) admits a Waldhausen structure, whose cofibrations (resp. weak equivalences)

are morphisms in € (S) that are cofibrations (resp. weak equivalences) in €-(5), i.e.
monomorphisms (resp. isomorphisms). Indeed,
e the zero object in 7 (S) is given by 0 =h’” and 77(S) is a full subcategory in
¢7(S); thus, the category €7(S) contains a zero object, namely h;
o for every 2" € €°(S5), the zero morphism h’ — 2" is a monomorphism in
¢-(5), and hence a monomorphism in the subcategory €= (.5);
e for a pair of a monomorphism ¢ : % » ¥ and a morphism ¢ : Z - 2 in
¢ (S), there exists an integer n such that ¢ and ¢ belong to €' (S), and
hence the cobase change of ¢« along ¢ exists in €7*(S) c €¥(S), and it is a
monomorphism; thus, cofibrations in € (.S) are closed under pushouts; and

e the gluing axiom holds, as pushouts are determined up to isomorphisms.

The inclusion functor € (S) < ¢,(5) is an exact functor of Waldhausen categories,
i.e. €¥(S) is a Waldhausen subcategory in €, (S). In fact, €~ (.S) is a the smallest full
Waldhausen subcategory in %, (.S) that contains the essential image of h™. We abuse

notation and denote by h”™ the unique cdp-functor

Prop/S — € (S) (65)
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that factorises h”. Since the category Prop/S is essentially small, one can use mathe-

matical induction to show that €(.S) is also essentially small.

LEMMA 4.2.1. The symmetric monoidal structure on %;(.5), given by the smash
product, restricts to €~ (5), making ¢(S) into a symmetric monoidal Waldhausen

category.

PROOF. Since €(S) is a full Waldhausen subcategory in %;(S) and the unit

1, =h" belongs to €7'(5), it is sufficient to show that the smash product restricts to
—¢s

For every n € IN, we use mathematical induction to show that the smash product
restricts to a functor
N E(S) x E(S) > E2(S),
o Let 2y and 27 belong to €°(S), i.e. there exists a proper S-scheme py for

which %2}, }—1;’ for k=0,1. Since h” is a strong monoidal functor, one has

ZoNZ = I_1PT0/\ I_1PT1; h” 1G%TO(S).

~POXP

e For an integer n > 1, assume that the smash product restricts to a functor
AEH(S) x €H(S) - €F(S),

and let 2y and 27 belong to €(.5), i.e. there exists a pushout square

Lk

@k/

P,

P pa—

in €,(S), in which 2}/,%, and %/ belong to €1 (S), and ¢ is a monomor-
phism, for k£ = 0,1. Since %, (S) is a symmetric monoidal Waldhausen category,
the smash product with any object in %, (S) preserves such a pushout square,
and hence there exists a pushout square

idg Ak

U NY, ——— U N,

U N — U N D,

in €, (9), for every % € €,(S). In particular, for k =0 and % € {27, %/, %},
one finds that 2o A% =% A Zy belongs to €2"71(S). Similarly, for k£ = 1 and
U = %y, one finds that 2o A 27 belongs to €2"(S9).

Therefore, the smash product restricts to €= (.5). O
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The functor h” : Prop/S — €~(S) is a strong monoidal cdp-functor. Then, by
Theorem 4.1.32, there exists a strong monoidal functor

ft PTOP

h®r SChopen/S - Cg:)(s)

that satisfies the excision property, and coincides with h” for proper S-schemes. Hence,

it induces a motivic measure
1 :Ko(Sch/9) = K (€2(9)), (66)

which sends the class of a proper S-scheme p to the class of 1_1: Moreover, for a field

k, the functor h®" induces a map of spectra
K(he) :K(Sch/k) - K (€2 (k)),
from the spectrum K(Scﬁ/k) defined in [Cam17].

LEMMA 4.2.2. The motivic measure p_ is surjective.

Proor. To show that p_ is surjective, it suffices to show that for every pointed
T-sheaf 2 € €~(S) the class [27] € Ko (€~ (S5)) belongs to the image of y,, which

follows by mathematical induction.

e For every 2 € €°(9), there exists a proper S-scheme p for which 2~ = h'.

Hence, one has
[27]=[h7] = p([p]) € imp, .
e For an integer n > 1, assume that for every % € €771(S), one has [#] € imy,,
and let 2" belongs to €*(5), i.e. there exists a pushout square (63) in €, (5),

in which 27, %, and % belong to " '(9), and ¢ is a monomorphism. Then,
the cofibres 2"/ 2" and # /%" are canonically isomorphic, and hence

(Z]-[2" =22 =7 |%"]=[#]-[?"],
(2] =[2"]1+[#]-[#"] ¢ imp,.
O

PROPOSITION 4.2.3. The modified Grothendieck ring (21) factorises the motivic

measure [_.

PrOOF. Let f : x - y be a universal homeomorphism of S-schemes, and let [ :
w —— g be a compactification of y. Recall our conventions, in §.0.2, which require
S-schemes to be of finite type. Hence, the morphism f is finite, universally injective,
and surjective, by [Gro65, Prop.2.4.5]. Since f is proper, the category Comp,(f,/)
is nonempty, by Proposition 4.1.5. Suppose that i : z <> p is a compactification in

Comp, (f,1), and let g :i — [ be a morphism of compactifications such that f is a base
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change in Sch /S of g along j. For simplicity and without loss of generality, we may
choose i that fits into the left Cartesian square

A p >
9‘ g ‘f
w ¢ l q Yy

I (67)

in Prop/S. Then, the set {l:w < q,g:p — q} is a cdp-covering family of ¢ in Prop/S.
Indeed, let k be a field, and let b : Speck — () be a morphism of schemes in Noféi, where
@ is the underlying scheme of ¢. Either b lifts along [ or j. When b lifts along j,, there
exist a morphism a : Speck — Y, where Y is the underlying scheme of y, such that

b =j oa. Consider the Cartesian square

T X
q s
Speck —0 Y

in the category No€. The morphism f is a finite universal homeomorphism, and hence T’
is a one-point scheme Spec R and [ is induced by a finite ring homomorphism ¢ : k > R,
to a local ring R of Krull dimension zero. Let m be the maximal ideal of R, and
let k = B/m. Then, the induced homomorphism k < k is a finite field extension.
Assuming that [k : k] # 1, there exist distinct ring homeomorphisms x — k over k,
which contradicts with f being universally injective. Thus, one has [k:k] =1, i.e. the
residue field of T" at its unique point is isomorphic to k. Hence, a lifts along f, which

lifts b along g, and {l,q} is a cdp-covering family.

In order to show that p_ factorises through the modified Grothendieck ring, it

suffices to show that f, : h" — hyCT is an isomorphism in €% (S), which isomorphic to

the square
i
h" = L h”
= r -P
9, gx

(68)
being a pushout square in €= (.S). Since the 7T-sheafification functor preserves colimits,
it suffices to show that the canonical morphism © : h, . th .h + = h . of pointed

presheaves is a 7-local isomorphism.

Let t: T — S be a proper S-scheme, and let b € h ,(¢). Either b = , in which case

b belongs to the image of ©,, or b is a morphism ¢ — g of proper S-schemes. Assuming
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the latter case, consider the Cartesian squares

b 9%
tl(ﬁ;)t tg—>t
b b b, ‘b
e e

in Prop/S. The set {l,g,} is a cdp-covering family of ¢ in Prop/S. Let [b] and
[b,] denote the classes of b € h, ,(4) and b, € h ,(¢,) in (h, Iy . h . )(t) and
(hw7+ Iy b+ )(tg), respectively, then, one has

0,6 =t(b)=5®)  and 6, ([5])=9:(b) =g ().

Since the pretopology 7 is finer than the cdp-pretopology, the morphism © is a 7-local
epimorphism, by Corollary A.4.11.

On the other hand, suppose that ¢ : T' — S is a proper S-scheme, and let ag,a; €
(h, .+ [y b+ )(t) such that ©,(ag) = ©,(a1). When either ag or a; coincides with the
base point * in (h‘m [y b+ )(t), so does the other. Assume that ag £ * and aq # *,
and distinguish the following cases.

(1) There are a; and aj in h, . (t) such that ay = [a(] and a; = [a]]. Then,
i (ay) = 6,(ap) =6,(a1) =1.(a}). Since ap # * and a; # *, the sections af, and
a} are morphisms ¢t - w of proper S-schemes such that [ o aj = [ o a], which
implies that aj = a}, as [ is a monomorphism of proper S-schemes. Hence,
ap =aj.

(2) Either there exists a; or aj in h, (¢) such that ag = [aj] or a1 = [a]], but
not both. Without loss of generality, assume that the section af, (resp. a) is
a morphism ¢t - w (resp. t - p) of proper S-schemes, as ap # * and a; # *.
Then, [ oaj = ©,(ap) = ©,(a1) = g oaf, and hence there exists a morphism
a’:t — z of proper S-schemes such that ag =g (a') and a} =i.(a’), see (67).
Thus, ag = [ag] = [a]] = a1.

(3) There does not exist a; or a} in h, . (t) such that ag = [ag] or a3 = [a}]. As
ag # +» and a; # *, let a(, and a] be morphisms ¢ - p of proper S-schemes such
that ag = [a(] or a; = [a}]. Then, goaj =©,(ap) = ©,(a1) = goaj. Consider
the Cartesian squares (70) in SCﬁ/S, on the next page, for k = 1,0. Since
goag=goaj, there exist such Cartesian squares with

t=t,=t, , L=ly=1 , t =t =t yand g = 'O’szl’J.

- 7 0,5 1.9

Then, one has foa L =1fo al . » which implies the existence of a cdp-cover
e ot}
o it > t, such that

I J

d oo =d oo (69)

0,5, gy 1.5, 3
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as f.:h, - h is a cdp-local monomorphism, by Proposition A.4.37.

S)
s}
[

: A (70)

Since a, is proper, the category Comps(ajl ,1) is nonempty, and there exists a

compactification I : ¢/ < t' of tj’ that fits into Cartesian squares
()

! jl
t’ C ! t, L > t,
L 2
9 o i,
t < t 5 T,
1 N J;
l J !

in SCﬁ/S. Since 9, is a cdp-cover, the set {l : t, <> t,o : t' - t} is a
cdp-covering family of ¢ in Prop/S. Indeed, let k be a field, and let b : Spec k —
T be a morphism of schemes in Noféi, then either b lifts along [ or j. In the
latter case, the lift Speck — 1}1, where 1;'1 is the underlying scheme of t].l , lifts
along the cdp-cover T, which lifts b along o. Since [ is a monomorphism of
schemes and j is a complementary open immersion to [, one sees that the

morphism o, is a cdp-cover.

Let {i, :t, > t' | a € A} be the cdp-covering family of ¢' in Prop/S by its

integral components, and consider the Cartesian squares

L, &,
L S T
!

a,l

ol ’ia Za,jl

! C b !
tz t' t

4 G K

in SCﬁ/S, for every o € A. Then, {i,, :¢,, >t/ | a € A} is a cdp-covering
family of ¢ in Prop/S, and hence the set

%::{loaloz'a’ :ta,z_’t|a€A}U{00iaita—>t|aeA}

1

is a cdp-covering family in Prop/S. For every a € A, we distinguish two cases.
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(a) When ta’jz is nonempty, the open immersion jla is dominant, and hence
a, 00 oi, =a oo oi,, by [Vakl5, Reduced-to-Separated Th.10.2.2] and
(69). Thus, one has (g 01,)*(a,) = [aocoi,] = [al’oooz'a] =(0o0i,)*(a,).

(b) When tad’z ~ @, the morphism i, factorises through ', and hence there
exists a , inh, (¢,) with [a/ , ]=(c04,)"(a,) € (h, .+ [p , b+ )(t,), for
k =0,1. Since ©,(ag) = ©,(a1), one has l.(a/ ) = l.(a ), and hence

a' =a’  aslisamonomorphism of proper S-schemes. Thus,

(00i,) () = (004,)"(a).

Thus, for every a € A, one has

(001,)(a) =(001,)" (a) and (log,oi,,)" (a)=(oog0i,,) (a).

There always exists a cdp-covering family ¥ of ¢ in Prop/S such that 6*(ag) = 0*(a1),
for every § € ¥. Thus, the morphism © is a 7-local monomorphism, by Corollary
A.4.14.

Therefore, the square (68) is a pushout square in €’(.S), i.e. the morphism f, is an

isomorphism in € (S), and u_ factorises through the modified Grothendieck ring. [

CONJECTURE 4.2.4. The motivic measure 4 is isomorphic to the quotient map
,, Ko(Sch/8) » K™ (Sch /S).

Let k be a field, recall Example 4.1.33, and consider a closed immersion ¢ : Spec k <

IP,Ic with complementary open immersion j : A\,lg —o> IP,1€. Then,

pl’

hXi = coker (lr_ls;ck — %Ti) =(h : o),

where oo denotes the unique k-rational point in (Pj\j(A}))

red

4.2.1.1. The Commutative Ring Spectrum Structure. The spectrum K (‘57“’(5)) ad-
mits a canonical commutative ring spectrum structure, ¢.e. a homotopy commutative

monoid structure in the category of S'-spectra of pointed topological spaces.

The functor = — Prop/S that sends the unique object of * to idg is continuous, with
respect to the indiscrete topology on * and any topology on Prop/S. Hence, it induces

an exact functor of Waldhausen categories
u : PShe(*) = Sety — €7(5),
which is a left adjoint to the the global section functor 7 (S) — Set., i.e. u] is given

by sending a pointed sets to its constant pointed 7-sheaf.

The category FSet, of pointed finite sets admits a symmetric monoidal Waldhausen

structure, as in Example 1.5.21. The category €= (.S) contains the unit 1, = h' , admits
S
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all finite colimits, and the 7-sheafification functor commutes with colimits. Thus, the

functor u] restricts to an exact functor of Waldhausen categories
v : FSety - €7(5). (71)
The exact functor v] induces a map of spectra
K(v;):S=K(FSet,) > K (€2(9)),

which induces the ring characteristic Ko(v]) : Z — Ko (€2(9)).

On the other hand, € (S) is a symmetric monoidal Waldhausen category, by

Lemma 4.2.1. Hence, there exists a paring
®:K(€2(9)) AR(EX(S)) = K(€X(S9)),

see [Wal85, p.342]. That makes K(‘K;" (S)) into a commutative ring spectrum, see
[BM11, Cor.2.8].

4.2.1.2. Monoidal Proper-Fibred Waldhausen Category. The K-theory commutative
ring spectrum K (‘KT“(S )), for a Noetherian scheme S of finite Krull dimension, arises
from a fibre of a monoidal proper-fibred Waldhausen category over Noetherian schemes

of finite Krull dimensions”. That is, there exists a strong monoidal pseudofunctor
fd Op
€¥ :Noe — Wald?,

where Wald) is the 2-category of essentially small symmetric monoidal Waldhausen
categories, weak monoidal exact functors between them, and monoidal natural trans-

formations between the latter, such that

e for every scheme S € No€ the fibre ¢ (S) is the symmetric monoidal Wald-
hausen category constructed in (64), as in Lemma 4.2.7;

e for every proper morphism f : S — T in Noféi, the pullback f*: € (T) -
¢ (S) admits a left adjoint fu : €2 (S) - €2 (T), as in Lemma 4.2.12;

e &Y satisfies the proper-base change property, as in Lemma 4.2.20; and

e ¢ satisfies the proper-projection formula, as in Lemma 4.2.23.

Then, applying the Waldhausen’s K -theory 2-functor'? induces a monoidal proper-fibred

commutative ring spectrum
w £d OP .
K(¢)):Noe — CRingSpt,.

In fact, the strong monoidal cdp-functor h” : Prop/S — € (S), given in (65), arises
from the geometric section of €y, see [CD13, §.1.1.c|.

REMARK 4.2.5. The statements in the rest of this subsection were motivated by Dan

Petersen’s answer in [Pet14], which recalls Ekedahl’s approach to higher Grothendieck

9See [CD13, §.1] for a treatment of &-fibred categories, for a set & of morphisms of schemes.
1056 [FP17, §.1] for the treatment of the 2-categorical Waldhausen’s K-theory.
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groups of varieties. The statements of Lemma 4.2.20 and Lemma 4.2.23 are essentially
consequences of [CD13, Ex.1.1.11 and Ex.1.1.28].

Inverse Image. Recall the canonical proper-fibred category Prop/- : Noe — CAT,,
as in [CD13, Ex.1.1.4 and Ex.1.1.11]. A morphism f:S — T in Noé induces a functor

# " :Prop/T - Prop/S (72)

that sends a proper T-scheme to its base change along f. That in turn induces a direct

image functor
f+ : PShe(Prop/S) — PSh,(Prop/T),

given by precomposition with (f_l)"p, i.e. for a presheaf 2~ ¢ PShe(Prop/S) and for
a proper T-scheme ¢, one has f.(2)(q) = %(fl(q)) The functor f. admits a left
adjoint

fore : PShe(Prop/T') — PSh,(Prop/S),

called the inverse image functor along f, and it is given by a left Kan extension along
( f_l)‘)p, see §.A.4.2. The functor —, commutes with colimits, for being a left adjoint.
Then, using the coend formula (87), one sees that
2°Pe(Prop/T")°P
et )@ = 1 h,.(x)
(Prop/S)op ((f71)°P (aoP) pop )

0 o)
Prop/S(p.f ™ (2))
xzeProp/T

f Prop/S(p, f_l(:c)) x PFOP/T(%Q))

xzeProp/T

zeProp/T

112

+

112

112

Prop/S(p. /() x Prop/S(f~ (z), /" <q>))

+

112

Prop/S(p, f'l(q))) =h, (1),

for every proper T-scheme ¢ and for every proper S-scheme p, i.e.

* ~
fpre (hq,+) = hffl (@).+ .

In fact, this is a defining property for f.., as every object in PSh,(Prop/T’) is a colimit

of a diagram in the essential image of h__ .

Since the base change functor f_1 commutes with fibre products, it is continuous
with respect to the 7-pretopology, see [SGAT73, §.1I1.Prop.1.6]. Thus, the direct image

functor f, preserves T-sheaves, and it restricts to a functor

fo 1€ () = (1),
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*

pre with the associated

which admits a left adjoint f*, given by the composition of
r-sheaf functor — . Since the 7-sheafification functor commutes with colimits, one has
(W) zh" 73
CORT (73)

for every proper T-scheme p.

LEMMA 4.2.6. Assume that f:S — T is a morphism in Noe. Then, the functor f*:

€ (T) - €-(9) is a strong monoidal exact functor of symmetric monoidal Waldhausen

categories.

PRrOOF. The functor f_1 is Cartesian, as limits commute with each other, and hence
the functor fg,. is left exact, see [Joh02, A.Ex.4.1.10]. Also both the 7-sheafification
functor and the inclusion functor, of 7-sheaves into presheaves, are left exact. Thus, the
left adjoint functor f* is left exact. In particular, the functor f* preserves monomor-
phisms, finite colimits, the unit of the monoidal structure, and smash products of
pointed 7-sheaves, as the latter only involves finite limits and colimits of pointed

T-sheaves. O

Although the functor f, : PShe(Prop/S) — PShe(Prop/T) admits a right adjoint
given by the right Kan extension, it is resection f, : €;(S) = %, (T) does not necessarily

admit a right adjoint. In particular, it is not necessarily exact.

LEMMA 4.2.7. Assume that f:S — T is a morphism in Noe. Then, the functor f*:

€r(T) - €, (S) restricts to a strong monoidal exact functor of Waldhausen categories
[0 (T) > €7 (9). (74)

PRrROOF. The statement follows from Lemma 4.2.6, provided the restriction f**%
exists. Since f* commutes with pushout squares, it suffices to show that f* restricts

to a functor f*9:€9(T) - €¥(S), in order to induce a strong monoidal exact functor
[ €2 (T) - €~(S), which holds by (73). O

When no confusion arises, we abuse notation, and refer to f*% by f*.

COROLLARY 4.2.8. Assume that f:.S — T is a morphism in Noe. Then, the there

exists a morphism of commutative ring spectra

R (64(T)) K (62(9)),

that sends a point in the component [lqu] to a point in the component [h” ], for every
(@

proper T-scheme gq.

EXAMPLE 4.2.9. Assume that f:S — T is a morphism in Nofél, let y be a T-scheme,
and let [ : w <> ¢ be a compactification of y. Since f* is exact and complementary
open immersions are closed under pullbacks, one has

*(h°") =2 coker (f*(h") » f*(h")) = coker (h” = h" ~h" |
I Y ) (f &)~ 7 ("’1 )) (_f'l(w) _f’l(q)) )
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where the S-scheme f_1 (y) is a base change in Sch /T of y along f. Thus, in particular,
mo(f)(7]) = [f*(h)] = 0% 1. (75)

)
Since the motivic measure f_,. is surjective, by Lemma 4.2.2, one sees that the ring

homomorphisms
mo(f*) 1Ko (67(T)) = Ko (47°(5))
is determined by (75). We may abuse notation and refer to mo(f*) by f*.

Suppose that f:S — T and g : T — U are morphisms in Noe. Since Kan extensions
are determined up to canonical natural isomorphisms, one has canonical monoidal

natural isomorphisms
(gOf)*;f*og* and (ids)*;)idrgg(sy

which satisfy the cocycle condition.

COROLLARY 4.2.10. There exists a pseudofunctor
op
%< :Noe = — Wald},

which sends a Noetherian scheme S of finite Krull dimension to the Waldhausen cat-
egory €¥(S), given in (64), and sends f°P, for a morphism f: S — T in No€, to
the strong monoidal exact functor f**, as in Lemma 4.2.7. Then, the Waldhausen’s

K-theory 2-functor induces a pseudofunctor

K(4“):Noe = — CRingSpt,.

Proper Direct Image. Suppose that f:S — T is a proper morphism in Noe . Then,
the functor £, given in (72), admits a left adjoint

f, : Prop/S — Prop/T, (76)
given by composition with f. Thus, the functor
'+ PSh,(Prop/T’) — PSh,(Prop/S),

given by precomposition with £, is a left adjoint to f, : PShe(Prop/S) — PSh(Prop/T),
and hence f' is canonically isomorphic to fore- The functor f ' admits a left adjoint
f4 pre, given by a left Kan extension along f°P. Since the functor f, preserves 7-coving
families, f' restricts to a functor f': €-(T) - %,(S), which is canonically isomorphic
to f*. The functor f' admits a left adjoint

f#:%T(S)*%T(T)v (77)

called the proper direct image functor along f, and it is given by the 7-sheafification of

f4 pre- Similar to the inverse image functor, for a proper S-scheme p, one has

IMCOET (78)

which is a defining property of fx.
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LEMMA 4.2.11. Assume that f:S — T is a proper morphism in Noe. Then, the
functor fyu :€;(S) - €-(T) is an exact functor of Waldhausen categories.

PRrROOF. It is sufficient to show the functor fu commutes with monomorphisms, as

it commutes with colimits for being a left adjoint.

Assume that ¢ : 2" - % is a monomorphism in %, (.5), let ¢ be a proper T-scheme,
and let tg,t; € f#(,%)(q) such that f#(L)q(t()) = f#(L)q(tl).

By the definition of the 7-sheafification functor, as in [Vis08, Def.2.63], there
exists a 7-covering family % = {o; : ¢ - q | i € I}, and there exists a section
thi € fupre(Z)(qi) such that o (t) = tzﬂ. for every i € I, for k = 0,1. For i € I,
pulling back along o; yields

(f#(b)qz'(to,i))a = f#(L)qz'(tS,i) = f#(b)qz'(tii) = (f#,pre(/f)qi(tl,i))a'

Thus, there exits a 7-covering family % = {0, ; : ¢;,j = ¢; | j € J;} for which

f#,pre(L)qi,j (sz(t07i)) = UZj(f#vpre(L)qz'(tO,i)) = Uiij(f#vpre(b)qi(tl,i))
= f#vpre(b)qz',j(Uz'*,j(tl,i))‘

The functor fu e is a left Kan extension along f°P. Hence, for a proper T-scheme
¢', the coend formula (87) implies that the underlying set of fu pre(27)(¢") can be given
by

( LI Prop/T(q, fop)x %(p))/ ~
peProp/S
where ~ is the smallest equivalence relation that identifies (g, s) € Prop/T'(¢', f o p) x
Z (p) and (¢',s") € Prop/T(q', f o p’) x Z (p") whenever there exists a morphism A :

p — p' of proper S-schemes for which
g'=f(h)og and s=h"(s");

whereas the point of fu e(2)(¢") is given by the unique class [(g, *)], which is in-
dependent of the choice of the proper S-scheme p and the morphism g : ¢’ - fop of

proper T-schemes. Also, one has

f#,pre(L)q' ([(975)]) = [(gvbp(s))L

for every proper S-scheme p, every morphism g : ¢’ - f o p of proper T-schemes, and

every section s € 2 (p).

For k=0,1, for i € I, and for j € J;, let py; ; be a proper S-scheme, let g ; ;: q;; —
f opr,i; be a morphism of proper T-schemes, and let sy ; ; € 2 (pr,,;) for which

073 (tra) = [(ghigs 1) -
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Since

[(90..3tpo..,; (30.3))] = fpre (D, ; ([(90.155 50.8)1) = St pre (Vg ([(91.0.5: 51.0.4)])
= [(gl’ihj?Lpl,iyj(sl’ihj))]’
there exist a proper S-scheme p; j, a morphism g; ; : ¢; ; = f o p; ; of proper T-schemes,
and a morphism hy; ; : pij = Pr.q,j of proper S-schemes, such that gy ; ; = £, (hk,ij)© i

and

b (10,1,5(50,.9)) = 1o i i (tpose; (50.5)) = B35 (pas,; (51,05)) = iy (P15 (51,5))-
Since ¢ is a monomorphisms, one has
ha,i,j(SO,i,j) = hii,j(sl,m)v
and hence
o7 i (toi) = [(90,i,5:504.4)] = [(91,i551,0.5)] = 07 j(t14)-
Thus,
(0i00i;)"(to) = 07 (toi)®* = 07 ;(t1)* = (gi 004 5) " (t1).
Since {o;005;:qi; > q|iel,jeJ;}is a T-covering family in Prop/T, and f4(2") is a

T-sheaf, one has ¢y = t;. Therefore, f4 preserves monomorphisms. O

LEMMA 4.2.12. Let f:S - T be a proper morphism in Noe. Then, the functor
J# 1€ (S) = € (T) restricts to an exact functor of Waldhausen categories

£4:62(S) ~ €2(T). (79)

PROOF. The proof is essentially the same as of the proof of Lemma 4.2.7, utilising
Lemma 4.2.11 and (78) instead of Lemma 4.2.6 and (73). O

When no confusion arises, we abuse notation, and refer to f% by fx.

COROLLARY 4.2.13. Assume that f:S — T is a proper morphism in Noe. Then,
the functor fyu : € (S) - € (T) induces a morphism of spectra

fu R(€2(S)) > K(€(T)),

that sends a point in the component [1_1;] to a point in the component [h”

7 ], for every

proper S-scheme p.
Also, we may abuse notation and refer to mo(fx) by f, if no confusion arises.

EXAMPLE 4.2.14. Assume that f : S — T is a proper morphism in Nofé7 let = be
an S-scheme, and let i : z < p be a compactification of x. Since fx is exact and f,

preserves complementary open immersions,

f#(h7) = coker (fu (") » f#(l—lpj)) = coker (1—1;;(2) ” I%Z(p)) 2h7

Thus, in particular,

Fa(07]) = [fp ()] =[BT ]. (80)
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Suppose that f: S - T and g: 7T — U are proper morphisms in Noe. Then, there

exist canonical natural isomorphisms

(gof)# :N>g#of# and (lds)# :N>1d(€(7,‘,(s)7

which satisfy the cocycle condition.

COROLLARY 4.2.15. The fibred Waldhausen category ¢, given in Corollary 4.2.10,
is in fact a proper-fibred Waldhausen category, i.e. there exists a pseudofunctor

fd Prop

¢y :Noe  — Waldy,

where Waldy is the 2-category of essentially small Waldhausen categories, exact functors
between them, and natural transformations between the latter, which sends a proper
morphism f:S5 - T in Noé to the exact functor f;;, as in Lemma 4.2.12. Then, the
Waldhausen’s K-theory 2-functor induces a pseudofunctor
£d PTOp
K(€?):Noe  — Spt,.
In contract to the inverse image, the proper direct image is not necessarily strong

monoidal. That is, for a proper morphism f:S5 — T in Nofed7 one has

Fa(l) = Fy(] ) =h] |, =,

which is not necessarily isomorphic to 1. for a proper morphism f. However, since fu

1R

is a left adjoint to the strong monoidal functor f,, it is oplax monoidal, see [CD13,
§.1.1.24].

EXAMPLE 4.2.16. Suppose that p is a proper S-scheme. Then,
(7] = [ 02 )(15)] € Ko (€2(S)).

Open Direct Image. For a morphism f : S — T in Nofél, the right adjoint direct

image functor
fe: €2 (8) > ¢(T)

is not necessarily an exact functor of Waldhausen categories, as it may not commute
with pushout squares. However, when f is an open immersions, the functor f. is a

strong monoidal exact functor, as seen in Corollary 4.2.18.

For an open immersion j : S <e> T in Noféi, we first show that the functor j_1 is
almost cocontinuous, as in Definition A.4.17, then we apply Lemma A.4.18 to deduce

that j, is a strong monoidal exact functor.

LEMMA 4.2.17. Let j : S —e> T be an open immersion in No€. When 7 is the
cdp-pretopology or the proper pretopology, the functor j_1 is continuous and almost

cocontinuous with respect to the 7-pretopology.
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ProoOF. The functor j_1 is continuous with respect to the 7-pretopology for pre-
serving 7-covering families, see [SGAT73, §.1I1.Prop.1.6].

Assume that ¢ : Q — T is a proper T-scheme, let ¢’ : Q" — S be a base change of ¢
along j, and let % = {o; : p; = ¢’} be a T-covering family in Prop/S. Recall that schemes
of finite type over Noetherian schemes are Noetherian, by [Stal7, Tag 01T6]. Since
Q' is Noetherian, the open immersion j’ = q_l( j) is quasi-compact, and hence of finite
type, see [Stal7, Tags 01P0, 01TU, and 01TW]. Thus, for every i € I, the category of
compactifications Comp,, (j'00;) is nonempty, by Nagata’s Compactification Theorem.
Hence, there exists a proper @-scheme z; : Z; - ) which admits an open immersion
ji:j oo; —e> z; in Sch /Q. Consider the commutative diagram

[

P
( .kii ,

Zi XQrQ, = Q/r q S
e[ By B
°J, o3 °J

\ | | |
Zi— Q q T

of Noetherian schemes in Nofél, where P; is the underlying scheme of p;, and k; is the
unique morphism P; - Z; x,, Q' of schemes, induced by the universal property of fibre

products, that makes the diagram commute.

Since j, is an open immersion, so is k;. Also, k; is proper, as o; is proper. Then, k;
is a closed open immersion, by [Gro67, Cor.18.12.6]. Let l; : W; < Z; be the scheme-
theoretic image of the immersion j;, and let j! : P; > W; be the unique morphism of

(Q-schemes for which j; o ki =1; 0 j;. Then, j! is an open immersion, and the square

ki
Pi%ZiXQQI

|
5! oj.

/ l*l
Wi (—l’;’ Z;

I
|

is Cartesian, by Lemma 4.1.3.

Let z : Z < @ be a closed immersion complementary to j' : Q' <> @, one may
choose Z to have the reduced induced structure, but such a choice does not affect the

argument. Then, we will see that the set of proper morphisms
Vi={zioli:W;>Qliel}| {2:Z > Q}

is a T-covering family for Q.
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e When 7 is the proper pretopology, it is evident that ¥ is a proper covering
family.

e On the other hand, when 7 is the cdp-pretopology, for every field k, every
morphism x : Speck — @ in No€ lifts either through z or 5. When =z lifts
through j’ to a morphism z’ : Speck — @', since % is a cdp-covering, there
exists i, € I, such that 2’ lifts to through o;,. The k-point z lifts through

Zi, ©li,. Thus, for every field k, every k-point in @ lifts through a morphism

T

in ¥, and hence ¥ is a cdp-covering family.

For every i € I, the morphism j_l(zi ol;) is isomorphic to p;, and hence factorises
through it. On the other hand, the empty sieve is a 7-covering sieve for the empty
S-scheme jfl(z) ~ @5 . Therefore, the functor j is almost cocontinuous, as in Defini-
tion.A.4.17. O

The proof above shows, in particular, that the functor j_l : Prop/T — Prop/S is

: . . . : . fd
essentially surjective, when j: .S —e> T is an open immersion in Noe.

COROLLARY 4.2.18. Let j: S <e> T be an open immersion in No€. When 7 is the
cdp-pretopology or the proper pretopology, the direct image functor j, : € (S) = €-(T)
is a strong monoidal exact functor, ¢f. [GK15, Prop.4.5].

PRrROOF. A direct result of Lemma 4.2.17 and Lemma A.4.18. O

REMARK 4.2.19. Since j, commutes with pushout squares, by Lemma A.4.18, it
suffices to show that it restricts to a functor j° : €°(S) - €% (T), in order to induce
a strong monoidal exact functor j¥ : €= (S) —» €¥(T'). However, it is not clear to us
that it induces the functor jO. Also, we intended to use the functor j, to extend the
proper direct image to a properly supported direct image for all separated morphisms
of finite type between Noetherian schemes of finite Krull dimension, but it does not
seem to provide an extension independent from the choice of the compactification. We

do not pursue such extension here, and we leave it for a further work.

Proper Base Change. The inverse image and proper direct image functors satisfy

the proper-base change property, as in [CD13, §.1.1.9].

LEMMA 4.2.20. Assume that f is a proper morphism in Nofg, and let

SlrL, S

! f

TI
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be a Cartesian square in Noe. Then, the exchange natural transformation
O fyog =g o fu: 67 (S) > € (T), (82)

induced by the adjunctions f;# <4 f" and fu = f* is an isomorphism, which induces a

canonical homotopy
O : f%& og'*:>g* o fu K(Cf;}(S)) - K(%ﬁ(T’))
ProoF. The functor f;# og'" (resp. g*o fy) is given by the T-sheafification of a left
Kan extension along (f;’og’_1 )°P (resp. (g of.)°P), and the natural transformation © is

-1 -
induced from the canonical natural transformation f'og’ =g "o f, : Prop/S — Prop/T",

by the universal property of Kan extensions.

For a proper S-scheme p: P — S, considering the Cartesian diagram

P g () g f T

P S T,

in No€, one sees that the morphism fo’(g’—l(p)) - g_l(j;(p)) is an isomorphism in
Prop/T”, and hence the induced natural transformation

O : f;# 0g"=¢g* o fu
is a natural isomorphism, ¢f. [CD13, Ex.1.1.11]. O

COROLLARY 4.2.21. Let i : S <> T be a closed immersion in Noe. Then, the
functor iy : €2 (S) - € (T) is fully faithful.

ProoF. Corollary 4.2.10, Lemma 4.2.12, and Lemma 4.2.20 imply that €% is a
proper-fibred category over Noféi, see [CD13, §.1]. Then, the statement of the corollary
follows from [CD13, Cor.1.1.20]. O

EXAMPLE 4.2.22. Assume that 7 : V <= S is a closed immersion in Nofed with

complementary open immersion j: U <> S. Then, one has the Cartesian squares

v idy
g ——o—V Ve———V
r r
o i idy i
U ;‘(])‘4) S V (ﬁ;) S
(2

in Noe. Since ¢-(2) is isomorphic to the terminal Waldhausen category with one

object and one morphism, one has a natural isomorphism

(" oig)(Z) 2B}, =0
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for every 2" € € (V') i.e. j* oiy is naturally isomorphic to the zero functor €;'(V) —

€7 (U). Also, the adjoint unit idgw () = @* 0 iy is a natural isomorphism, and hence

*

1" is essentially surjective.

Proper Projection Formula. The inverse image and proper direct image functors

also satisfy the proper-projection formula property, as in [CD13, §.1.1.26].

LEMMA 4.2.23. Assume that f : .S — T is a proper morphism in Noe€. Then, f
satisfies the projection formula, i.e. for every pointed 7-sheaves 2" in € (S) and %

in €¥(T), the projection natural transformation

T2 s [1(2) = [(Z) 0 Y (83)
induced by the adjunction fx < f*, is an isomorphism in € (T"), c¢f. [CD13, Ex.1.1.28]
.Hence, there exists a canonical path

Falz 1) = f#(@)y
in K(¢4(T)), for every z € K(€(S)) and y € K(¢“(T)). In particular, for an
S-scheme x and a T-scheme y, one has

Fa(M]- £ (57]) = fa(RS7]) - [B7].

PROOF. Suppose that p: P - S (resp. ¢ : Q — T) is a proper S-scheme (resp.

T-scheme). Similar to the proof of Lemma 4.2.20, considering the Cartesian diagram

P’ Q' Q

r

O q

P—p—5——T.
in Noféi7 one sees that the projection morphism jf)(p Xidg f>1(q)) - f.(p) Xid,. 4 induced
by the adjunction f - f_l, is an isomorphism in Prop/T, and hence the projection

natural transformation

Fa(b A F1(0))) = f(B)) A b
is an isomorphism in €~ (7). Then, the statement of the proposition follows from the
construction of the symmetric monoidal Waldhausen categories ¢'(S) and €~ (T),
the symmetric product A; and A, being biexact, and the functors fyx and f* being

exact. O

4.2.1.3. Counting Points. The motivic measure of counting rational points over a
finite field is a shadow of a point on the cdp-site of proper schemes over the ground

field, as seen in Corollary 4.2.26.
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Fix a finite field I, with ¢ elements. Recall that a point on the cdp-site (Prop/IFy, cdp)
is an adjunction
u” : Shvegp (Prop/F,) = Set: u,,
in which u” is left exact, see §.A.4.2.1. Since both u, and u* are left exact, they both

preserve final objects; and hence they induce an adjunction
’LL: : %(IFQ) 2 Set. : Uy 0,

for having €' (IF,) = * | Shveqp(Prop/IF,) and Set, = * | Set. Moreover, u; is also left

exact; thus, it is a strong monoidal exact functor.

Recall that if a functor u : Prop/IF, — Set is flat and continuous with respect to the
cdp-pretopology, it defines a point (u*, u.) in the cdp-site, where

*

u* =~ ®pyop/F, U and wy, = Hom™P/Fr (4, )

are the stalks and skyscraper functors associated to u, respectively, see §.A.4.2.1.

LEMMA 4.2.24. The functor I'y : €(IF;) — Set,, induced by the global section
functor I' : Shvgq, (Prop/IFy) — Set is a strong monoidal exact functor. Moreover, for

every IFy-scheme X, one has an isomorphism of pointed sets
Lo(hy) = X(IFy).

PROOF. The corepresentable functor u = hS*¢<¥a : Prop/IF, - Set is flat and con-

tinuous with respect to the cdp-pretopology, as seen below.

e Since Prop/IF, is Cartesian, every corepresentable functor is flat, as its category
of elements is cofiltered. In particular, u is flat.

e In the light of [MLIM92, §VII.5.Lem.3], to show that u is continuous, it suffices
to show that Hom™™P/F» (v, S) is a cdp-sheaf for every set S € Set and that the
sheafification morphism 74 : & — PP s mapped to a bijection by the
functor — ®pyop/r, U, for every presheaf & € PSh(Prop/TF,).

— For a cdp-square (91) in Prop/IF,, a rational point z : SpecF, - X fac-
torises uniquely though either A or Y, or both (in which case it fac-
torises uniquely through B). Thus, the functor v maps every cdp-square
in Prop/F, to a pushout square in Set. Then, the functor u°" maps
cdp-squares to Cartesian squares in Set®?. Since limits commute with each
other and representable functors preserve limits, the presheaf Hom™™P/F» (¢, S
maps cdp-squares to pullback squares. Also, it maps the empty IF,-scheme
to a terminal set. Hence, Hom™P/¥7 (4. S) is a cdp-sheaf, for every set
S € Set, by [Voel0Oa, Lem.2.9] and [VoelOb, Th.2.2].

— For every presheaf & € PSh(Prop/IF,), one has

PeProp/IF
P Obrop)F, U = f PSh(Prop/E,)(h,, ) x u(P) = Z(SpecF,).
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Since the cdp-pretopology is completely decomposable, every cdp-covering
family for SpecTF, splits. That is, every cdp-covering family % = {o; :
P; - SpeclF, | i € I} in Prop/S admits a refinement ¥ = {J; : Q; —
SpeclF, | j € J} such that Qj, = SpecIFy and dj, = idspecF, for some jg € J.
Therefore, 12 specr, : P (SpeckFy) — @aCdp(Spec F,) is a bijection, and
S0 1S 12 Oprop/F, U-

Then, there exists a cdp-point
u” : Shvegp (Prop/F,) = Set : .,

with the stalks and skyscrapers functors

*

u" = = ®prop/F, U and wy = Hom™"™P/Fr (4, -).

In particular, for a cdp-sheaf 2" on Prop/IF,, one has

a,

u*(2) = 2 (SpecFy) = Shveap(Prop/Fy) (0" | 27) 2 Shveay(, 27) 2 T(2).

SpecFgq ’
Therefore, the induced functor
I'.,:%¢(F,) - Set,
is a strong monoidal exact functor, for being a left exact left adjoint functor.
For an IFg -scheme X, the category of compactifications Comqu (X) is nonempty;

let i : Z < P be a compactification of X in Sch /. Since every cdp-covering family

for SpecF, splits, one has

I's(h) = coker (F.(}_lz) > Iy (1_1P)) ~ coker ( h;ip (Fy) » hj:ip (Fy)+) (84)
= coker (h, , (Fy) » h,, (F;)+) = coker (Z(Fy). = P(Fq)+) 2 X (F,)-.
O

LEMMA 4.2.25. The strong monoidal exact functor I'y : €' (IF;) — Set, restricts to a

strong monoidal exact functor
ry:¢“(F,) - FSet,.

PRrROOF. Since €“(IF,) is a full symmetric monoidal Waldhausen subcategory in

% (IF,), the statement of the lemma follows from the existence of the restriction I'{.

Since I's commutes with pushout squares, it suffices to show that I'y restricts to
a functor I'0 : ¥°(F,) — FSet,, in order to induce a strong monoidal exact functor
I'Y:¢“(IF,) - FSet,, which is a result of (84), see §.3.2. O

COROLLARY 4.2.26. The functor I'Y induces a morphism of commutative ring spec-

tra

Ty :K(€“(F,)) - S,
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that sends a point in the component [h{ ] to a point in the component [ X (IF,),], for
every IFg-scheme X. Hence, it factorises the classical motivic measure of counting points

over IF, through the motivic measure (66) as
'LL# = WO(F.) o cdp * (85)

The homomorphism 7, (T ), for n > 1, might be thought of as higher point counting

measures, which we investigate in a future work.

REMARK 4.2.27. This argument applies for every scheme S in Noé and for ev-
ery 7-point (u*,u,) on Prop/S, whenever the stalks functor u; restricts to a functor
¢ (S) - FSet,.

COROLLARY 4.2.28 ([Cam17, Prop.5.21]). The composition I'y o vp, : FSet, —
FSet, is an exact equivalence of Waldhausen categories, where v, is the exact functor
in (71). Thus, the map of spectra K(I'; o vp,) : S - S is a homotopy equivalence, and
hence the spectrum K (%W(Fq)) splits through S. That is,

K (¢ (Fy)) = SVvK(E“(F,)),
where K(%“’(]Fq)) is a cofibre of K(vF, ).

4.2.2. Motivic Spaces with Proper Support.

Recall that some of the statements in motivic homotopy theory are sensitive to the
considered category of schemes and to the topology, like the Gluing Theorem 2.3.1 and
the Purity Theorem 2.3.3. Then, to have an analogous of the compactified Yoneda
embedding for a motivic category, it is convenient to start with a topology that is both

e as fine as the Nisnevich topology, for the such statements to hold; and

e as fine as the cdp-topology, for the Yoneda embedding to define a cdp-functor.
The coarsest such topology is the cdh-topology, see §.A.4.3. Since A'-localisation is
left Bousfield localisation, it preserves colimits, and hence repeating the argument in

§.4.2.1 produces a motivic measure
Ko(Bian) *Ko(SO/S) = Ko (SIVE ca (Sch/S) 1), (86)

which sends the class of a proper S-scheme z to the class of h,, ., where Shv.xdh(SCﬁ /S) a1
is the A'-localised model category of pointed simplicial cdh-sheaves over Sch /S.

For a field k£ of characteristic zero, the localisation functor

SPLE:SShVa Nis (SM/S) g1 siap = SPEESSHVe can (SC/S) 41 ins
is Quillen equivalence, where Sptg1 sShv, nis(Sm/S) 41 is the A'-localised stable model
category of S'-symmetric spectra of pointed simplicial Nisnevich sheaves over Sm/k.
That is due to k admitting resolutions of singularities, see [VoelOb] and [MV99,

§.3.Rem.2.30]. Then, the motivic measure Ko(hSy;, ) factorises through the ring

KO (Spt?l SSthNiS(Sm/S)CAl,stab)'
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The resulting motivic measure coincides with the motivic measure defined in [R6n16,

§.5].

4.3. Motivic Measures through Stable Motivic Spaces

Our main motivation to consider functors compactifications is our attempt to fac-
torise the motivic measure of counting points over a finite field through the K-theory
of the unstable motivic homotopy category. We only obtain a partial result in this
direction, and in this section we introduce our candidate for counting points on motivic

spaces, leaving its detailed development to a future work.

For a subcanonical topology 7 on the category Sm/IFy, let A7 (| : A — sShv, nis(Sm/TFy)
be the functor given by

An = Ann

=1,s,+ Fq xSpecFgs,+2

and consider the diagram

.
éI,S,Jr

A

sShv, nis(Sm/IFy).

ho,

sSet,

Then, there exists a éi s,+~tensor and Hom adjunction, see Example A.3.8. For a pointed

simplicial sheaf 2" one has
Hom (A7, . 2 )n = $ShVe Nis (SM/F, ) ( AR, xSpecF e+ )
= Shv, nis(SM/F, ) ( hag .+ ABspectys o+ 23).
Whereas, for a pointed simplicial set S,
(SAAAT In = Sn Ahap Abspeck,s -

Then, in particular, Hom_A(_i& +»—) is monoidal. The tensor functor ApA] ( , pre-
serves monomorphisms. Also, it maps weak equivalences of simplicial sets to Al-weak

equivalences of simplicial sheaves, and hence one has a Quillen adjunction
—Aa QY isSetykq 2 SShva nis(SM/F,) - Hom (A , ., -).

EXAMPLE 4.3.1. For an A'-rigid scheme X over Iy, e.g. an abelian IF;-scheme,

one has canonical isomorphisms
Hﬂ?(é},sw hy  )n ShV-,Nis(Sm/]Fq)(hqu,+ NspecF s+, hx1) 2 X(Af, x SpecFg:),
g X(]Fqs )+.

Hence, Hom:' (A%, . h x,+) is a discrete pointed simplicial set with #X (IFys) elements,

I,s,+>

in addition to a disjoint base point.
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The Quillen adjunction above induces derived functors
- ®IA —;,s,+ : HsSets kg 2 Ha(Fyg) : RH.;HRA(A;,S,% -).

Also, since both functors preserve cofibrations and weak equivalences, they define
morphisms of Waldhausen structures associated with the model categories, and induce

group homomorphisms
Ko(-Aa AT, ) s Ko(sSets xq) 2 Ko (8Shvio (SM/Fy) 41) 1 Ko (Hom (A7, 4, -)),

where Ko(— An é},s,+) is given by the multiplication by [hspeC]FqS].
4.4. Further Research

There are two questions that arise naturally from the constitutions in §.4.2.

On the one hand, we would like to understand the relation between th(Scﬁ /S) and
Ko (¢*(S)) in (66). In particular, we are examining the validity of Conjecture 4.2.4.
While we have partial results pointing in its direction, we do not have a complete proof,
yet. Also, since important geometric questions are addressed through the (modified)
Grothendieck ring of varieties, it is desirable to understand what geometric information
the higher groups of the spectrum K (CK“’(S )) curry. Then, we would investigate which

of the known motivic measures arises from exact Waldhausen functor out of € (.5).

On the other hand, the Grothendieck ring of varieties has zero divisors annihilated
by the class of the affine line, as in [Bor15]. Some of the argument to solve intriguing
questions in algebraic geometry that where originally considered in the ring Ko(Var/k)
are obstructed by the class of the affine line being a zero divisor. The functor h® sends
the affine line over a field k to the S'-symmetric suspension of (IP,IC, o), which is inverted
in the IP,lg-stable homotopy theory of schemes. That can be used to transport some of
the aforementioned arguments to the Grothendieck ring of the IP,i—stable homotopy

theory of schemes. This idea, among others, is due to Vladimir Guletskii.

In order to be able use the machinery available for stable motivic homotopy theory
to consider such questions, we would like to investigate if the motivic measures defined
in §.4.2.2 exists for the Nisnevich topology over smooth schemes. Similar question
for motivic spaces were answered in [Voe00, §.4] using resolutions of singularities for
a field of characteristic zero, and in [Kell2] using alterations of singularities for a
perfect field, after inverting its exponential characteristic. We expect that applying
De Jong alterations of singularities to [VoelOb]’s approach, instead of resolutions of

singularities, may allow to establish the desired measures.



APPENDIX A

Categorical Recollections

Assuming the reader’s familiarity with the basics of category theory, as in [ML98],

we briefly recall the main categorical notions used in this thesis.

A.1. Foundations

There are several possible foundations for categories, which affect the resulting
theory, see [Shu08]. The assumed foundations mainly impact the existence of desired
constructions, like the hom-bifunctor and functor categories, and hence all notions
depending on them, including the Yoneda embedding and Kan extensions, see [ML69].

In this section, we fix the foundations adopted in this thesis.

One possible foundation is Zermelo-Fraenkel set theory with both the axiom of
choice and the one universe axiom, as in [ML69]. Assume and fix a model for Zermelo-
Fraenkel set theory with the axiom of choice (ZFC), see [Jec03]. Then, a set refers
to an object of this model; and a category refers to a pair of sets - of objects and
morphisms - with the source, target, composition, and identity maps, subject to the

associativity and unit axioms, as in [KS06, Def.1.2.1].

The main advantage, in category theory, of adopting the axiom of choice is allowing
universal properties to induce desired functors, as it is the case for the 1im and colim
functors. Otherwise, universal properties only produce anafunctors, see [Mak96]. The
axiom of choice also implies the equivalence between a functor admitting a quasi-inverse
and being fully faithful and essentially surjective. It also allows inducing total derived

functors between derived categories.

Following Mac Lane’s proposal in [ML69], we assume and fix an uncountable
Grothendieck universe Y, see [SGAT3, Exposé 1.§.0]. Elements of 4 are called small

sets, whereas subsets of il are called classes.

The universe 4 defines a model for ZFC, as ordinary operations on sets can be
carried out internally on small sets. Therefore, one now has two models for ZFC, one
of which - the Grothendieck universe - is an object of the other. One can consider set-
theoretic mathematics internally in LI, 7.e. on small sets; whereas the remaining sets of
the ambient model may be used to study and describe mathematics in 4, see [ML69].

158
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In particular, there exists a category Set of all small sets and all maps between them,
with Ob(Set) = 4.

DEFINITION A.1.1. A category ¥ is said to be
e locally small if €(X,Y) is a small set, for every pair of objects X,Y € Ob(%);

otherwise, it is said to be a big category;
e small if it is a locally small category such that Ob(%) is a small set;
e large if it is a locally small category such that Ob(%’) is a class; and

e essentially small if it is a large category that is equivalent to a small category.

Denote the large category of small categories and functors between them by Cat,

and denote the category of large categories and functors between them by CAT.

The adopted foundation allows the construction of the functor category Fun(%’, 2)
for every pair of categories ¥ and %, which does not hold for all foundations, as
explained in [ML69, p.193]. For locally small categories ¢ and Z, the functor category
Fun(%, 2) does not have to be locally small. However, when % is also essentially small,

the category Fun(%, 2) is locally small.

A.2. Enriched Categories

The hom-sets of some categories admit natural mathematical structures, usually
arising from the structures on the objects. For instance, the hom-set Grp(G, H) has
a natural group structure, for every pair of small groups G and H. Also, in topol-
ogy, if we restrict ourself to compactly generated Hausdorff spaces, then the hom-set
CGHaus(X,Y) admits a canonical topology for every X,Y ¢ CGHaus, namely the
compact-open topology, see [ML98, §.VIL.8]. In these examples, the composition and
the identity maps are compatible with the induced structure on the hom-sets. This

observation naturally gives rise to the notion of enriched categories.

DEFINITION A.2.1. Let # = (®,1,a,l,7) be a monoidal structure on a category
My, see [MLI8, §.VIL.1]. An # -enriched category € is given by
a set 0b(%), called the set of objects of €;
for every X,Y € 0b(%), an object Mapy(X,Y) € .#y, called the hom-object
from X to Y
for every XY, Z € 0b(%), a morphism

oX\Y,Z : Map(g(Y, Z) ® Map%(X, Y) - Map%(X, Z)

in .4, called the composition morphism; and

for every X € Ob(%), a morphism idx : 1 — Mapg (X, X), called the identity

morphism of X;

which satisfy the associativity and unit axioms, as in [Kel05, §.1.2].
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REMARK A.2.2. When the monoidal category (., #) admits a faithful strong
monoidal functor U : .#y — Set, with respect to the Cartesian monoidal structure on
Set, setting € (X,Y) = U(Mapcg(X, Y))7 for every X,Y € €, defines a category, called
the underlying category of € and denoted by %y. Such a category % is said to have an

M -enriched structure.
ExaMPLE A.2.3. Set-enriched categories coincide with locally small categories.
ExAaMPLE A.2.4. A closed symmetric monoidal category is enriched over itself.

DEFINITION A.2.5. Let (#y,.#) be a monoidal category. An .# -enriched functor
F:% - 2 between .#-enriched categories 4 and & is given by

e a function F': 0b(%) - Ob(Z); and
e for every X,Y € 0b(%), a morphism Fx y : Mapy(X,Y) - Mapy,(F(X),F(Y))

in .4, that commutes with the composition and the identity morphisms.

An A -enriched natural transformation o : F - G between .# -enriched functors F, G :
¢ — 2 is given by a morphism ax : 1y — Mapy (F(X),G(X)) in 4, for every
X € 0b(%) subject to .Z-naturality, as in [Kel05, §.1.2.(1.7)].

A.2.1. Strict 2-Categories. Recall that the category Cat of small categories is
Cartesian monoidal. Locally small strict 2-categories and strict 2-functors between
them may be defined to be Cat-enriched categories and Cat-enriched functors, respec-

tively. Equivalently, a locally small strict 2-category can be defined by

(1) a set of objects, often called O-morphisms;

(2) a small set of 1-morphisms for every pair of 0-morphisms, and 1-composition
and 1-identity maps that satisfy the strict associativity and unit axioms; and

(3) a small set of 2-morphisms for every pair of 1-morphisms, and 2-composition
and 2-identity maps that satisfy the interchange law, in addition to the strict

associativity and unit axioms, as in [Bor94a, §.7.1].

ExXAMPLE A.2.6. The category Cat gives rise to the locally small strict 2-category
Caty whose objects are small categories, 1-morphisms are functors between them, and

2-morphisms are natural transformations between the latter.

More generally, strict 2-categories can be defined similar to locally small strict
2-categories allowing sets (not necessarily small sets) of 1-morphisms and 2-morphisms
between pairs of O-morphisms and 1-morphisms, respectively. Then, in particular,
CAT-enriched categories are strict 2-categories, and the category CAT gives rise to the

strict 2-category CAT,.
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A.2.1.1. 2-Universal Morphisms in Strict 2-Categories. Localisations of large cat-
egories are given by (initial) 2-universal morphisms in the strict 2-category CAT2, as
seen in §.1.1. To motivate the definition of (initial) 2-universal morphisms, we first
recall the notion of (initial) universal morphisms in ordinary categories, and study its

generalisation to strict 2-categories.

Let F : 4 — 2 be a functor, and let d € 2. An (initial) universal morphism from
d to I is defined to be the initial object of the comma category d| F, if it exists, see
[MIL98, §.II1.1]. When it exists, it is a morphism 74 : d > F(cq) for c¢q € €, such that
for every morphism f:d — F'(c) with c € €, there exists a unique morphism gf:cq - ¢

in ¥ that makes the triangle below strictly commute

d—"5 F(cy) ca
|
7 ¢F(9f) Fooogr|3
F(c) c.

In other words, it is a morphism 7,4 : d — F(¢g) that induces a bijection of sets
ng : € (ca,c) > 2(d, F(c))

for every c € €. The surjectivity of 7 is equivalent to the existence of the factorisation,
whereas its injectivity is equivalent to the uniqueness of the factorisation, when it exists.
The (initial) universal morphism 7, is unique up to isomorphisms, if it exists, and the

factorisation of f above is unique, for a given choice of the universal morphism.

DEFINITION A.2.7. Let F': € — & be a strict 2-functor between strict 2-categories,
and let d € 2. An (initial) 2-universal 1-morphism from d to F is a l-morphism

ng:d — F(cq) for an object ¢4 € € that induces an equivalence of categories

ny : Mapy (cq,¢) > Mapy (d, F(c))

for every c€ %.

REMARK A.2.8. Since we assume the axiom of choice, the 1-morphism 7, is a

2-universal 1-morphism from d to F if and only if the following two conditions hold

Esse. surj.) for every l-morphism f :d — F(c) with ¢ € € there exists a l-morphism
gf:cq— ¢ in € and a 2-isomorphism ¢ : F(gs) ong = f in Z; and

Full. faith.) for every pair of parallel 1-morphisms f, f’ : d - F(c¢) with ¢ € ¥ and a
2-morphism 1 : f = f’ there exists a unique 2-morphism &, : g5 = g, for the
choice of (g¢,¢¢) and (g, ¢sr), such that

b= ¢p-F(Ep)ona- ¢
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That, in particular, implies the uniqueness of (g¢,¢s) up to 2-isomorphisms.

d Na F(cq) Cd

Cq r 3! up to 2-iso.
E \ By
F(c) I
\\
F(c) c

The 2-universal 1-morphism 74, when it exists, is unique up to l-equivalences;
and the factorisation (g¢,¢s) of the 1-morphism f is unique up to 2-isomorphisms,
for a given choice of the universal morphism 74; whereas the factorisation &, of the
2-morphism 1) is unique, for the choices of the factorisations (g¢,¢¢) and (gs,¢¢) of
the 1-morphisms f and f’, respectively.

A.2.1.2. Lax Notions. Let F,G : € — & be strict 2-functors between strict 2-
categories. A strict 2-natural transformation o : F - G is given by a l-morphism
ax : F(X) - G(X) for every X € 0b(%’) subject to 2-naturality, as in [KS74, §.1.4].

In 2-category theory, it so happens that one needs more relaxed notions of the
strict 2-categories, 2-functors, and 2-natural transformations. One obtains a pseudo
notion when replacing equalities (strict commutativity) with isomorphisms, and a lax
notion when replacing it with mere morphisms. We will restrict ourself to reviewing
the notions of pseudofunctors and lax 2-natural transformation, needed for §.4.2.1.2
and §.1.1. The interested reader my consult [KS74].

DEFINITION A.2.9. Let % and 2 be strict 2-categories. A pseudofunctors F: 6 — 9
is given by
e a function F': 0b(%¢) - 0b(2); and
o for every X,Y € 0b(%), a functor Fxy : Mapy(X,Y) - Mapy(F(X),F(Y))
that commutes with the composition and the identity morphisms only up to
isomorphisms, see [Vis08, §.3.1.2] and [CD13, §.1.1].

DEFINITION A.2.10. Let F,G : € - 2 be strict 2-functors between strict 2-categories.
A (laz) 2-natural transformation o: F - G is given by
e a l-morphism ax : FI(X) - G(X) for every X € 0b(%); and
e a 2-morphism ay : ay o F(f) = G(f)cax for every 1-morphism f: X - Y in
v,
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which respect 1-compositions and 1-identities of €’, and are natural in 2-morphisms of
%. A 2-natural transformations is said to be a pseudo-natural transformation when the

2-morphism o is invertible for every 1-morphism f in €.

One recovers the notion of a strict 2-natural transformation from a lax 2-natural
transformation when the 2-morphism oy is the identity morphism for every 1-morphism
fin¥%.

DEFINITION A.2.11. Let o, : F = G : € - & be 2-natural transformations.
A morphism of 2-natural transformations 7 : @ — 3, called a modification, is given
by a 2-morphism 7x : ax = [x for every object X € Ob(%’), which are natural in
1-morphisms of €, i.e. G(f)o7x =7y o F(f) for every 1-morphism f: X - Y in %.

A.3. Kan Extensions

The importance of Kan extensions might be best summarised by [ML98, §.X.7]
title “All Concepts are Kan Extensions”. Kan extensions are present in different areas
of mathematics, and they encode other universal constructions, see Example A.3.4,
Lemma A.3.11, and Example A.3.12.

When they exist, they provide canonical solutions for the easily stated, yet very
important, problem of extending a functor F': ¢ - o/ along a functor p: € — Z up to

natural transformations, see [ML98, §.X].

A.3.1. Weak Kan Extensions.
A.3.1.1. Global Kan FEztensions. For any category &, every functor p : € - &

induces a canonical functor
p*:Fun(2,4) - Fun(¢, <),
given by precomposition with p. Extending functors ¥ — &7 along p can be realised if

p* is weakly inverted, i.e. admits an adjoint.

DEFINITION A.3.1. Let p: % — Z be a functor, and let &7 be a category. A global
left (resp. right) Kan extension along p is a left (resp. right) adjoint to p*. When it
exists, denote the global left (resp. right) Kan extension along p by Lan, (resp. Ran,).

A global left Kan extension along p is determined by a functor
Lan, : Fun(¥¢, <) - Fun(Z2, <)

and a natural transformation F' = Lan,(F') o p for every functor F' € Fun(¥,.</) that
forms a universal morphism, which is the unit of the adjunction Lan, -4 p*. Whereas, a

global right Kan extension along p is determined by a functor

Ran, : Fun(¥¢, <) - Fun(2, <)
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and a natural transformation Ran,(F") o p = F' for every F € Fun(%¢, /) that forms a

universal morphism, which is the counit of the adjunction p* -+ Ran,,.

Global Kan extensions do not always exist. However, the uniqueness of the left
and right adjunctions up to isomorphisms implies uniqueness of the left and right Kan

extensions up to isomorphisms, when they exist.

LEMMA A.3.2. Let p: %€ — 2 be a functor, and let & be a category. Assume that

% is essentially small. Then,

e if &/ is cocomplete, then the left Kan extension Lan,, exists; and

e if &/ is complete, then the right Kan extension Ran,, exists.

PROOF. Since the category ¥ has a small skeleton and precomposing with co-
cofinal functors preserves colimits, [ML98, §.1X.3.Th.1] and Theorem A.3.5 imply the
first statement. The second statement holds by duality. O

A.3.1.2. Local Kan Eztensions. In some occasions, one is interested in extending a
particular functor F' : € — & along p: % — %, even if the global extensions do not

exist.

DEFINITION A.3.3 ([ML98, §.X.3.Def]). Let p: ¢ - Z and F : € — </ be functors.

o A local left Kan extension of F along p, if it exists, is a pair (Lan, F,nr) of
a functor Lan, F': ¥ — &/ and a natural transformation ng : I = Lan, F op
that is a universal morphism from F' to p*.

o A local right Kan extension of F along p, if it exists, is a pair (Ran, F,ep) of
a functor Ran, F' : ¥ - &/ and a natural transformation e : Ran, F op = F

that is a universal morphism from p* to F.

EXAMPLE A.3.4 ([Bor94a, Prop.3.7.5]). Let p: %€ — * be the terminal functor.
e The local left Kan extension of a functor F': € — & along p exists if and only
if the colimit of F' exists. When they exist, Lan, F' is canonically isomorphic
to colim F'.
e The local right Kan extension of a functor F' : ¥ - o along p exists if and
only if the limit of F" exists. When they exist, Ran,, I is canonically isomorphic
to lim F'.

A.3.2. Point-wise Kan Extensions. Most Kan extensions that arise naturally
can be given object-wise by the (co)limit formula recalled in the following theorem.

THEOREM A.3.5. Let p: € - & and F' : ¢ - &/ be functors.

e When all the colimits below exist, there exists a local left Kan extension

(Lan, F',np), with Lan, F' given on an object D € Z by
(Lan, F)(D) = colim(F o Up),
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for the canonical projection Up : p} D - %, and on a morphism f: D — D’ in

2 by the unique morphism
f«: (Lan, F)(D) - (Lan, F)(D'),

induced by the universal property of colimits and by the canonical functor
f« :plD — pl D'; whereas the natural transformation ng is given component-
wise on C € € by the unique morphism F(C) — (Lan, F)(p(C)) factorising
through the evident colimit cocones; and

e when all the limits below exist, there exists a local right Kan extension (Ran, F, ef),

with Ran, F' given on an object D € & by
(Ran, F)(D) :=1lim(F o uP),

for the canonical projection U” : D |p - €, and on a morphism f: D — D’ in

2 by the unique morphism
fe: (Raon)(D) - (Raon)(D/),

induced by the universal property of limits and by the canonical functor f* :
D' | p - D p; whereas the natural transformation er is given component-
wise on C € € by the unique morphism (Ran, F')(p(C)) — F(C) factorising

through the evident limit cones.
PROOF. See [MIL98, §.X.3.Th.1]. O

DEFINITION A.3.6. Let p: ¥ - & and F : € — <&/ be functors. The point-wise left
(resp. right) Kan extension of F' along p, if it exists, is the local left (resp. right) Kan

extension (Lan, F,ng) (resp. (Ran, F,er)) given in Theorem A.3.5.

When Kan extensions of F': € - o along p: % — 2 exist, their morphisms nr and
er are not necessarily isomorphisms, i.e. Kan extensions are not necessarily extensions
in the naive sense. That is, one does not necessarily retrieve the functor F', not even
up to isomorphisms, by either of compositions Lan, F' o p or Ran, F' o p. For instance,
recall that colim F is a left Kan extension Lan, F' of a functor F': ¢ — &/ along the
terminal functor p: 4" — *, and Lan, F op is not isomorphic to F', unless F' is essentially
constant, see [Kel05, (4.34)].

LEMMA A3.7. Let p: € - Z and F : € — o be functors, such that % is essentially

small.

o Assume that there exists a point-wise left Kan extension (Lan, F,nr). Then,

nr : ' = Lan, F' o p is an isomorphism if and only if p is fully faithful.
¢ Assume that there exists a point-wise right Kan extension (Ran, F, ef). Then,

er :Lan, F'op = F' is an isomorphism if and only if p is fully faithful.
Moreover, when p is an inclusion of a subcategory, each of the natural isomorphisms

nr and ep, if it exists, can be chosen to be the identity morphism idg.
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PROOF. The statement follows from (C,id, ) being a terminal object in the cate-
gory pp(C) and an initial object in the category p(C')|p, due to p being fully faithful,
see [Kel05, Prop.4.23], [ML98, §.X.3.Cor.3 and Cor.4] or [Bor94a, Th.3.7.3]. O

Point-wise left (resp. right) Kan extensions along the Yoneda embedding preserve
colimits (resp. limits). However, Kan extensions do not preserve (co)limits in gen-
eral, as it is the case for the nerve functor in the following example. This example is

prototypical of Kan extensions. It is due to Kan, and hence the name, see [Kan58].

EXAMPLE A.3.8 (The Tensor-Hom or Realisation—Nerve adjunction). Let F': € - 2
be a functor from an essentially small category % to a locally small category Z. Then,
the left Kan extension Langh of the Yoneda embedding h : € — PSh(%) along F' exists,
and it is given by the pullback of the Yoneda embedding h : 2 — PSh(Z) along the
opposite functor F°P : €°P — PP j.e.

(Lanph) (=)(—-) = Z2(F(--),-).
The functor Lanph is usually called the F-Hom functor (or F-nerve functor), and it
is denoted by Homcg(F ,—). Moreover, when Z is cocomplete, the functor Hom%(F =)
admits a left adjoint given by the left Kan extension Lany F', called the F'-tensor functor
(or F-realisation functor), and it is denoted by — ®¢ F', see [Kan58, §.2]. Then, for an
object C' € ¢, one has a canonical isomorphism F'(C') 2 h, ®,F. The functor - ®4 F
is right exact for being a left adjoint, and the functor F' is said to be flat when — @4 F'
is also left exact. For instance, if € is complete and F' preserves limits, then F is flat.

Cases of particular interests include:

(1) when F' is the standard cosimplicial topological space Af,, : A — Top, one

recovers the geometric realisation and simplicial singular functors as the Ag, -
tensor and Hom functors, respectively, in which case F' is not flat unless re-
stricted to a suitable category of topological spaces, see [Hov99, §.3.1];

(2) when F' is the standard cosimplicial category Ag, : A — Cat, i.e. AZ, is
the poset [n] for every non-negative integer n, then HomA(Aaat, —) is the fully
faithful nerve functor N : Cat — sSet, and —® A, is the fundamental category
functor c : sSet - Cat, which is left exact, see [Joy02, p.208];

(3) when F' is the comma categories functor | - : % — Cat, for a small category
%, the tensor functor — ®¢ € | — is the category of elements functor El, which
is called the category of simplices functor when € = A, see [LTWT9];

(4) when F' is given by the restriction of Moore’s normalized chain functor Cy :
sSet - Chyo(Ab) to the simplex category A, the functor K = HomA(CNM, -) fac-
torises through the category of simplicial abelian groups A°P?Ab, see [Kan58,
§.8]; then, the tensor-Hom adjunction gives rise to the Dold-Kan correspon-

dence, that is the equivalence of categories

: A°°Ab 2 Chyo(Ab) : K,

CN| aopao
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see [Kan58, Th.8.1 and Th.8.2]; and

(5) when F' is given by the two-folded product of the standard cosimplicial sim-
plicial set A® x A®: A x A — sSet, the A®* x A®-tensor functor coincide with
the diagonal functor for bisimplicial sets. On the other hand, every simplicial
set K defines bisimplicial set Hom**2(A® x A®, K) with

Hom™*?(A® x A®, K),, = sSet(A? x A, K),
for every pair of non-negative integers p,q > 0.

Dually, for a functor G : €°P - Z, the right Kan extension Rang h®? of the opposite of
the Yoneda embedding h: 4 — PSh(%) along G exists, and is given by

(Rang h®) (=) (=) = Z(=, F(--)).
When & is complete, the functor Rang h°? admits a right adjoint given by the right Kan
extension Ranpor G, called the right G-Hom functor, and it is denoted by Hom. (-, G),
see [GS09, p.3097]. Also, for an object C' € %, one has a canonical isomorphism
Hom,, (h°P,G) = G(C). The functor Hom, (-, () is left exact for being a right adjoint,
and the functor G is said to be coflat when Hom. (-, G) is also right exact.

Realising colimits as quotients of coproducts allows expressing point-wise left Kan
extensions using coends, see [MIL98, §.IX.6]. That is, for functors p : € - 2 and
F: % — o, where ¥ is an essentially small category and o/ is a cocomplete category,
the left Kan extension Lan, F' is given on an object D € & by the coend

Ce?

Laon(D)=f 11 F(C)=Coend( 11 F(—)), (87)

-@(p(c)aD) @(p(f)vD)
see [ML98, §.X.4.Th.1]. For instance, the conventional formula (3) for the geometric

realisation of a simplicial set X, is nothing but the coend of the bifunctor X, g x
A.

top - AP x A — Top, obtained from the discrete simplicial space X, g4is associated

L]
top*

products, which justifies the notation used for the tensor functor in Example A.3.8,
see [ML98, §.IX.6]. In fact, for rings R and S, and for an (R, S)-module M : BR —
AddFun(BS°P Ab), the induced M-tensor-Hom adjunction

to X, and the standard cosimplicial topological space A Coends generalise tensor

- ®pM : AddFun(BR°P, Ab) = AddFun(BS°P, Ab) : Hom’ (M, -) (88)

is essentially the conventional tensor-Hom adjunction for modules, as the category of
right R-modules is isomorphic to the additive functor category AddFun(BR°P,Ab),
where B is the delooping space functor, which sends a ring R to a one-object ringoid
whose set of morphisms is R. Moreover, the (R, S)-module M is flat if and only if the
functor - ®r M in (88) is left exact.

ExXaMPLE A.3.9. Let & be an additive category, and let IN be the preordered
category corresponding to the ordered set (IN,<). The category Ch(Ch(%’)) (resp.
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Ch(£)) is a full subcategory of BN N (resp. BR™). The category IN°P admits a
symmetric monoidal structure, with a monoidal product & : IN°? x IN°? — IN°P, given on
objects by n @ m =mn+m. Then, the total complex functor Tot : Ch(Ch(%’)) — Ch(£)
is given by the restriction of the Kan extension Lang ~ Rang, i.e. for a double complex
Xe.o in A, the total complex Tote(X) is given for n € N by

(p.g)c@ln
Tot(X)= [ Xz [ Xpuz @ X

p+g=n
(p,q)eni®

ExAMPLE A.3.10. Let p : ¥ - & and F : € — & be functors, where % is an
essentially small category and & is a cocomplete category. When o7 = Set, there exist

canonical isomorphisms

Ce¥ CoPegOP
Laon(D):f [ F©)= f P°P(D°P, P (C°PY) x F(C)
9(»(C).D)
Copegop

112

f Z°P (D, p°P(C°P)) x PSh(EP) (hop , F),
for every D € . Also, when & = Set,, the category of pointed small sets, one has a

canonical isomorphism
Ce¥ (COP ¢ OP

tan, F(D)= [ F(@z [\ (PSN(E)(Bey F),%), (89)
2(p(C),D) 2°P (DoP,poP (C°P))

for every D € 9.

Point-wise Kan extensions are characterised by the following representability crite-

rion.

LEMMA A.3.11. Let p: € - & and F : ¢ — & be functors. Then,
e apair (L: % - o/,n: F = Lop) is a point-wise left Kan extension of F' along
p if and only if for every D € Z and A € &/ the morphism
o/ (L(D), A) - Nat(h, op, h, oFP),
sending g : L(D) — A to the natural transformation with the component

hg (Uoc%p )

B, 27(C) oty L (C) O, ()

for every C € €, is a bijection; and
e apair (R: %2 - ,e: Rop = F) is a point-wise right Kan extension of F’
along p if and only if for every D € ¥ and A € o/ the morphism

o/ (A,R(D)) - Nat(h” op,h® o F),
sending g : A - R(D) to the natural transformation with the component
h9 (e
h? p(C) 25 nBD) Rp(€) "5 nA F(C)

for every C € €, is a bijection.
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PROOF. See [ML98, §.X.5.Cor.4]. O

A.3.2.1. Preserving Kan Extensions. Among the different types of Kan extensions,
point-wise extensions are the most accessible. For they are given by hands-on formulae
that are easy to manipulate and work with. However, not all Kan extensions are point-
wise, and the latter are distinguished by being preserved by corepresentable functors,

as can be seen in Theorem A.3.13.

Let p: 6 > 9, F:% - o and G : o - % be functors, and assume that a local
left Kan extension of F' along p exists. We say that G preserves the left Kan extension
(Lan, F,nr) if (G oLan, F,G onp) is a left Kan extension of G o F' along p. The dual

notion is also defined for right Kan extensions.

It is well-known that left (resp. right) adjoints preserve colimits (resp. lim-
its). Moreover, they preserve local left (resp. right) Kan extensions, see [Bor94a,
Prop.3.7.4].

ExaMpPLE A.3.12. Let F': € — & be a functor between essentially small categories.

Then, the following conditions are equivalent,

e F' admits a right adjoint;
e Lanpidy exists and is preserved by every functor ¢ — %; and

e Lanpidy exists and is preserved by F'.

When any, and hence all, of the three conditions are satisfied, Lang id¢ is a right adjoint
of F, see [Bor94a, Prop.3.7.6]. Dually, the following conditions are equivalent,

e F' admits a left adjoint;

e Ranpidy exists and is preserved by every functor € — %; and

e Ranypidy exists and is preserved by F'.

When any, and hence all, of the three conditions are satisfied, Rang id is a left adjoint
of F.

THEOREM A.3.13. Let p: % — Z and F : ¥ — &/ be functors between locally small
categories, and assume that there exists a local left (resp. right) Kan extension of F
along p. Then, the local Kan extension is a point-wise Kan extension if it is preserved

by the corepresentable functor h” : &7 — Set for every object A € 7.
PROOF. See [ML98, §.X.5.Defintion and Theorem.3]. O

A.3.3. Density. Some structures on locally small categories, like model struc-
tures, require the underlying category to be bicomplete. Given a locally small category
that is not bicomplete, one may consider a locally small bicompletion of the given cat-
egory, if it exists, and study such structures on the bicompletion. For an essentially
small category &, one may consider its bicompletion by the locally small category

of presheaves PSh(Z), or by a subcategory of T-sheaves Shv,(2) for a subcanonical
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topology 7 on &, depending on the sought behaviour of colimits, see Remark A.4.7.
However, when the category PSh(2) is not locally small, it is desired to look for dif-
ferent methods of bicompletion. For a functor F' : ¥ — & from an essentially small
category €, the F-nerve functor Hom” (F,-): 9 - PSh(%), as in Example A.3.8, may
be used as a bicompletion of 2 when it is fully faithful.

LEMMA A.3.14. Let p: % — Z be a functor from an essentially small category &

to a locally small category Z. Then, the following conditions are equivalent,

e the functor Hom® (F,-) is fully faithful; and

e the pair (idg,idiq,, ) is a point-wise left Kan extension of p along itself.
PROOF. See [Kel05, Th.5.1]. O

DEFINITION A.3.15. Let p: € — % be a functor. The functor p is said to be dense
(resp. codense) if (idg,idiq,,) is a point-wise left (resp. right) Kan extension of p along
itself, i.e. pis dense if for every object D € &, one has an isomorphism D = colimpoUp,
where Up : p} D — € is the canonical such projection functor. A subcategory ¢ — &

is said to be dense (resp. codense) if the inclusion functor is dense (resp. codense).

For a dense subcategory i : ¢ — 2, since point-wise Kan extensions are preserved
by corepresentable functors, the left Kan extension Lan; hfg of the restriction of h” to

% along i is canonically isomorphic to h?, for every D € 2.

ExXAMPLE A.3.16. Let ¥ be a locally small category. Then, the Yoneda embedding
h_:% < PSh(%) (resp. h™ : € - Fun(%,Set)) is dense (resp. codense), see [ML98,
§.X.6.Cor.3].

A.4. Grothendieck Sites

A Grothendieck topology is a generalisation of topological coverings to abstract cat-

egories, which enables the development of cohomology theories on abstract categories.

Throughout this section, let € be a locally small category. A sieve S on an object
U € € is an inclusion S c h, : €°P — Set, and a refinement of a sieve S on U is an
inclusion S’ ¢ S. The map that sends a sieve S on U € % to the set Ob(EI(S)) of

objects of its category of elements defines a bijection
{sieves on U} «— {right ideals in %, with a common codomain U},

where a set of morphism in % is called a right ideal if it is closed with respect to
precompositions with morphisms in ¢, see [Joh02, p.538|. For a set % of morphisms
with a common codomain in %, let S5 denote the sieve corresponding to the right ideal

in ¥ generated by % . The sieve Sy is said to be generated by the set % .
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DEFINITION A.4.1. Let S be a sieve on U € €, let T be a sieve on V € ¥ and
let f:T — h, be a morphism in the functor category Fun(%€°P,Set), i.e. a natural
transformation. The restriction of S to V along f is defined to be the sieve on V' that
is the image of the pullback projection S xn T — T in Fun(¢*°P, Set), it is denoted by
f*S. For a morphism ¢ : V - U in ¢, we abuse notation and write ¢*S for h7, S.

For a morphism ¢ : V — U in €, the sieve ¢©*S corresponds to the right ideal
{p: W >V in€|popeS(W)}.
DEFINITION A.4.2. A (Grothendieck) topology T on the category € is a set
7={Cov,(U) |U €%},

in which Cov,(U) is a set of sieves on U, for every object U € €, such that

e (Stability) the restriction ¢*S of S along ¢ belongs to Cov.(V'), for every sieve
S € Cov,(U) and for every morphism ¢:V - U in ¢;

¢ (Maximal Sieve) the sieve h, belongs to Cov,(U), for every object U € €; and

e (Local Character) a sieve R on an object U € € belongs to Cov,(U) whenever

©* R belongs to Cov, (V') for every morphism ¢ : V' — U in a sieve S € Cov,(U).

A sieve S on U € € is called a 7-covering sieves if it belongs to Cov,(U), and the pair
(¢,7) is called a (Grothendieck) site, usually denoted by %,. Moreover, when % is
essentially small, we say that % is an essentially small site, not be confused with the

notion of essentially small sites in [Joh02].

ExAMPLE A.4.3. A sieve is said to be effective epimorphic if it forms a colimit
cocone, and it is said to be universally effective epimorphic if all its restrictions are
effective epimorphic. Every category ¥ admits a topology whose covering sieves are
universally effective epimorphic sieves, called the canonical topology on €, see [Joh02,
p.542-543]. A topology that is contained in the canonical topology is said to be sub-

canonical.

The intersection of topologies on the category % is a topology. Hence, given a set
7 of sets of sieves on a category %, the intersection of all topologies on % that contain
7 is a topology on ¥, called the topology generated by .. In some occasions, it may
be simpler to specify sieves, and hence topologies, in terms of sets of morphisms that

generate them, as in §.A.4.3.

A Grothendieck pretopology on a category € with pullbacks is a set
7={Cov,(U) |U €%},

in which Cov,(U) is a set of families of morphisms with a common codomain that

satisfies closure conditions similar to those of a topology, namely
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o the set {o, : Ua xy V —» V | @ € A} belongs to Cov,(V), for every family
{04:Uqy = U |aeA}in Cov,(U) and for every morphism ¢ :V - U in €,

e the family {idy} belongs to Cov,.(U), for every object U € €; and

o the family {04 064:Usp = U |a €A, e B,} belongs to Cov,(U), for every
family {0n: Uy = U | a € A} in Cov,(U) and every family {dn 5 : Uap = Uq |
B € By} in Cov,(U,) for ae A,

see [MLIM92, §.I11.2.Def.2]. A family % in Cov,(U) is called a 7-covering family of U.

The unique element of a singleton 7-covering family of U € € is called a 7-cover of U.

A refinement of a family of morphisms % = {0, : U, > U | € A} is a pair (f,%")
of amap f: A" > A and a family of morphisms %' = {c/,: U/, > U | o' € A’} such that

o/, factorises through o (4, for every o’ e A".

DEFINITION A.4.4. Let € be a locally small category with pullbacks. A pretopol-
ogy T on % is said to be saturated if every family of morphisms in ¥ with a com-
mon codomain that admits a refinement by a 7-covering family is a 7-covering family.
Assume that € admits finite coproducts, the pretopology 7 is said to be additively-
saturated if for every T-covering family % = {0, : Uy = U | @ € A}, the set A is finite
and the singleton

{U%:UUWU}

acA acA
is a T-covering family.

In particular, a saturated pretopology on a category that admits finite coproducts

is additively-saturated.

Every pretopology admits a saturation, that is a pretopology in which covering
families are precisely families that admit refinements in the given pretopology, see
[Vis08, Def.2.52 and Prop.2.53]. Also, additive-saturations are defined similarly.

In practice, the pretopologies one considers are almost never saturated, and their
saturations allow redundant covering families that does not reflect the intended prop-
erties of the topology. For example, for a pretopology 7 and a 7-covering family
U = {04 :Uy - U | e A}, the set Z |I{f} is a covering family in the saturation
of 7, for any morphism f :V — U. It is often more practical to consider additively-

saturated pretopologies, as in Example A.4.35.

A pretopology defines a topology, generated by its covering families, and differ-
ent pretopologies may define the same topology. In particular, a pretopology and its
(additive-)saturation define the same topology. For a pretopology 7, we may abuse

notation and use 7 to also denote the topology defined by it.
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A.4.1. The Category of Sheaves. A functor P : ¢°P — Set is called a presheaf of
(small) sets on €, the functor category Fun(¢°P, Set) is called the category of presheaves
on ¢, and it is usually denoted by PSh(%).

Axiomatising the properties of sheaves of sections of étale spaces yields the definition
for a sheaf on a site, see [MLM92, §.11.6].

DEFINITION A.4.5. Let %, be a site. A presheaf P : €°P? — Set is said to be a
T-separated presheaf, a T-weak sheaf, or a T-sheafif for every object U € € and for every

T-covering sieve S on U, the canonical map
15 :PSh(%)(hy,, P) - PSh(%¥)(S, P), (90)

induced by the inclusion tg : S = h, is injective, surjective, or bijective, respectively.
Denote the full subcategory in PSh(%’) of 7-separated presheaves, 7-weak sheaves, and
T-sheaves on € by Sep, (%), WShv, (%), and Shv.(%), respectively.

Evidently the maximum sieve axiom does not affect the sheaf condition (90), nei-
ther does the local character axiom, see [Joh02, §.C.Lem.2.1.7]. They are merely
closure conditions that are particularly useful in the double plus construction of the
T-sheafification functor, see [Bor94b, p.205]. Also, as a direct consequence of Defi-
nition A.4.5, one finds that the subcategory of T-sheaves is closed under limits in the

category of presheaves, and hence it is complete, with limits given object-wise.

When the site is €, essentially small, the set Cov,(U) forms an essentially small
cofiltered! sublattice in the lattice of subobjects of h,, for every object U € €, see
[Bor94b, Prop.3.2.5]. That results in the subcategory of T-sheaves being a Cartesian
reflective subcategory in the category of presheaves, i.e. the inclusion Shv, (%) <
PSh(%) admits a left adjoint? which is left exact, called the T-sheafification functor or
associated T-sheaf functor, and it is denoted by —27, see [Bor94b, Th.3.3.12]. For a
presheaf P on &, there exists a T-separated presheaf P*7, given for an object U € € by
the filtered colimit

P*7(U) = colim PSh(%¥)(iv(-), P),
where ig; : Cov,(U) < PSh(%) is the canonical such inclusion, and Cov,(U) is consider

as a preordered category. Then, the associated 7-sheaf P2 can be given by
PaT — P+7—+-,—

see [Bor94b, §.3.3]. Alternatively, to a presheaf P one defines a 7-separated presheaf
P37, given on an object U € ¥ by the quotient

P (U) = PU)/ ~,

we adopt the terminology of [ML98, §.IX.1], where filtered categories generalise directed sets,
and cofiltered categories refer to what is called ‘filtering categories’ in [MLM92, §.VIL.6].
27 left adjoint of an inclusion functor is called a reflector.
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where ~ is the relation on P(U), with p ~ p’ for p,p" € P(U) if and only if there exists a
T-covering sieve on which the restrictions of p and p’ coincide, and given on morphisms
by the universal property of the quotient maps. Then, the associated T-sheaf P?" can
be given by

PaT — (PS.,- )+77
see the proof of [Vis08, Th.2.64.(ii)]. Since P*7 is T-separated, the canonical morphism

PS™ - P is a monomorphism. For a section p € P(U), we denote its image in P37 (U)
(resp. P3(U)) by p® (resp. p?).

For an essentially small %, the category of 7-sheaves on % is bicomplete, with
colimits given by the 7-sheafification of colimits in the category of presheaves, that
the 7-sheafification functor preserves colimits. The category of presheaves PSh(%) is

Cartesian closed, with internal Hom given by

mPSh(%) (P7 Q) = PSh((g)(‘P X h—7Q)a

for a pair of presheaves P,@Q € PSh(%). Also, the category Shv, (%) is also Cartesian

closed, with internal Hom given by

_ _ar
Homgp, () = =" o HOMpgyy () -

In fact, for an essentially small category %, the map that sends each topology on
% to the Cartesian reflective subcategory in PSh(%’) of its sheaves defines a bijection

. lecti ies in th f h
{ topologies on % } - { relective subcategories in the category of presheaves }’

PSh(%) with left exact reflectors
see [Joh02, C.Cor.2.1.11].

For an essentially small site 4, a morphism of presheaves on % is said to be a 7-local
isomorphism if its T-sheafification is an isomorphism. Then, the category Shv.(%) is
a reflective localisation of PSh(%") with respect to 7-local isomorphisms, and hence

T-sheaves coincide with 7-local objects in PSh(%).

EXAMPLE A.4.6. The component of the 7-sheafification adjunction unit is given for
a presheaf P by a morphism 7} : P - P?" in PSh(%) for which there exists a bijection

np  :PSh(€)(P?,S) > PSh(%)(P,S),

for every 7-sheaf S € Shv. (%) c PSh(%’), and hence 7} is a 7-local isomorphism.

REMARK A.4.7. Giving a topology on an essentially small category ¢ is a way of
formally declaring specific cocones to be colimit cocones in the resulting category of
sheaves. Recall that the category of presheaves PSh(%) is the free cocompletion for &,
and hence it formally adds all small colimits, forgetting the colimits that already exist

in €. The sheaf condition (90) shows that the cocone of a covering sieve is mapped
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into a colimit cocone in the category of sheaves. That is, for a topology 7 on ¥, for

every T-sheaf P on %, and for every 7-covering sieve S on U € ¥, one has
Shv,(%)( colim(h®" 7g), P) = PSh(%)( colim(h_7g), P) = PSh(%)(S, P)
~ PSh(%)(h,, P) = Shv-(%)(h", P),

where 7g : EI(S) — % is the canonical such projection functor, and hence colim(h?" 7g) =
h’" in Shv;(%). In particular, the canonical topology is the coarsest topology that re-

trieves universal colimits cocones that exist in €.

EXAMPLE A.4.8. For an essentially small site %, representable presheaves are
T-sheaves if and only if the composition -2 oh_ : ¥ — Shv, (%) is fully faithful,
which occurs only when the topology 7 is subcanonical, see [Joh02, p.542-543]. More

generally, for any essentially small site 4 one has a canonical equivalence of categories
Shv,(€) = Shvean (Shv, (%)),

see [Joh02, §.C.2.2].

A.4.1.1. Local Epimorphisms, Monomorphisms and Isomorphisms. For an essen-
tially small site %, a morphism of presheaves is said to be a 7-local epimorphism (resp.
T-local monomorphism) if its T-sheafification is an epimorphism (resp. a monomor-
phism), and hence a morphism of presheaves is a 7-local isomorphism if and only if it
is both 7-local epimorphism and 7-local monomorphism. In particular, epimorphisms
(resp. monomorphisms) are 7-local epimorphisms (resp. 7-local monomorphisms), that
the 7-sheafification functor preserves epimorphisms for being a reflector and preserves
monomorphisms for being left exact. We recall below the characterisation of 7-local

epimorphisms and monomorphisms.

Local Epimorphisms. Every morphism f : P — h, of presheaves on ¢ admits a
canonical factorisation as f = ¢ o f, where tyrimf ch, is a sieve on U and f is the
canonical epimorphism P — im f. The sheaf condition (90) implies that the inclusion
S c h, is a 7-local isomorphism if and only if S is a T-covering sieve on U € €, see
[Bor94b, Lem.3.5.1]. Thus, f is a 7-local epimorphism if and only if imf ch, is a

T-covering sieve.

For every presheaf @) : €°P — Set, the Yoneda lemma gives a canonical isomorphism
Q(U) =z PSh(%¢)(h,,Q) for every U € €. Then, a morphism f: P — @ of presheaves
on ¢ is a (r-local) epimorphism of presheaves if and only if the projection ¢*P — h,

is a (7-local) epimorphism for every morphism of presheaves ¢ :h, - Q.

7-local epimorphisms retain the essential properties of epimorphisms of presheaves
of sets, as they contain all epimorphisms, stable under composition, left decomposi-

tion, and pullbacks. Also, they are determined by pullbacks along elements of their
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codomains, see [KS06, p.390-391 and Prop.16.1.11]. A set of morphisms of presheaves
that satisfies these properties is called a systems of local epimorphisms. They may be
though of as generalised covering sieves. In fact, the map that sends a topology to the

set of its local epimorphisms defines a bijection
{topologies on €’} «— {systems of local epimorphisms on ¢},

with an inverse sending a system of local epimorphisms on % to the topology whose

covering sieves are the sieves that are local epimorphisms.

EXAMPLE A.4.9. The initial (or discrete) topology and terminal (or indiscrete) topol-
ogy on an essentially small category ¥ is defined to be the topology whose local epi-

morphisms are all morphisms and epimorphisms, respectively, see example [KS06,
Ex.16.1.9].

LEMMA A.4.10. Let %, be an essentially small site, and let f : P - @Q be a morphism
of presheaves on €. Then, f is a 7-local epimorphism if and only if for every U € €
and for every morphism of presheaves ¢ : h, — @, there exists a 7-local epimorphism

S —h, that fists into a commutative diagram

P

7
~

~
- f
~
~

ST—h, —Q
of morphisms of presheaves.
PROOF. See [KS06, Lem.16.1.6]. O

While morphisms of 7-sheaves that are surjective object-wise are epimorphisms of

T-sheaves, the inverse does not hold as can be deduced from the following corollary.

COROLLARY A.4.11. Let % be an essentially small category with pullbacks, let 7
be a pretopology on %, and let f: P - Q be a morphism of presheaves on 4. Then,
f is a 7-local epimorphism if and only if for every object U € ¥ and for every section
q € Q(U), there exists a 7-covering family % = {0, : Uy, - U | @ € A} and a section
Pa € P(Uy) such that o (q) = fu,(pa), for every a € A.

PROOF. See [Jarl5, Lem.3.16]. O

PROPOSITION A.4.12. Let %, be an essentially small site, let I be an essentially
small category, and let F': [ — Mor(PSh(%)) be a functor. Assume that the morphism
F(i) is a 7-local epimorphism for every i € I. Then, the morphism colim F' is a 7-local

epimorphism.

PROOF. See [KS06, Prop.16.1.12]. O
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Local Monomorphisms. Recall that in a Cartesian category &, the diagonal mor-
phism Ay : X — X xy X is a monomorphism for every morphism f: X - Y in 2,
and a formal diagram chase shows that f is a monomorphism if and only if A, is an
epimorphism. Hence, for an essentially small site €7, a morphism of presheaves is a

7-local monomorphism if and only if its diagonal is 7-local epimorphism.

LEMMA A.4.13. Let %, be an essentially small site, and let f : P - @ be a morphism
of presheaves on %. Then, f is a 7-local monomorphism if and only if for every U € €
and for every commutative diagram h, = P — @, there exists a 7-covering sieve S c h,,

that makes the digram S ch, = P commute.
PROOF. See [KS06, Lem.16.2.3.(iii)]. O

COROLLARY A.4.14. Let € be an essentially small category with pullbacks, let 7
be a pretopology on %, and let f: P - (Q be a morphism of presheaves on %. Then, f
is a 7-local monomorphism if and only if for every object U € € and for every pair of
sections p,p’ € P(U) for which fy(p) = fu(p’) € Q(U) there exists a 7-covering family
U ={04:Uy = U |ae A} such that o’(p) = o(p’), for every a € A.

PROOF. See [Jarl5, Lem.3.16]. O

Local Isomorphisms. For an essentially small site %, the set of 7-local isomor-
phisms is closed under pullback and satisfies the two-out-of-three property, see [KS06,
Lem.16.2.4.(i) and (vii)]. A set of morphisms of presheaves that satisfies these proper-
ties is called a system of local isomorphisms. In fact, the map that sends a topology to
the set of its local isomorphisms defines a bijection between topologies on an essentially

small category and systems of local isomorphisms on it, see [Bor94a, Prop.5.6.2].

PrOPOSITION A.4.15. Let %, be an essentially small site, let I be an essentially
small category, and let F': [ — Mor(PSh(%)) be a functor. Assume that the morphism
F (i) is a 7-local isomorphism for every i € I. Then, the morphism colimF' is a 7-local

isomorphism.

PROOF. See [KS06, Prop.16.3.4]. O

A.4.1.2. Sheaves on Larger Sites. For an essentially small site €., the existence of a
left exact 7-sheafification functor is due to having essentially small filtered categories of
coverings for objects of ¥, which does not necessarily hold for larger sites. For a site -
that is not essentially small, the categories of presheaves and 7-sheaves are not necessar-
ily locally small, and the 7-sheafification functor does not necessarily exist, and hence
Shv, (%) is not necessarily cocomplete, and its Cartesian structure is not necessarily
closed. Although one can define 7-local epimorphism, and hence 7-local isomorphism,
by their characteristic properties, the localisation of the category of presheaves PSh(%’)

with respect to 7-local isomorphisms does not have to be reflective on Shv,(%’). Yet,
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the situation may be remedied when ¢ admits a T-dense subcategory, see the Compar-
ison Lemma [Joh02, §.C.Th.2.2.3]. Since all sites we consider are essentially small, we
do not pursue the theory of sheaves on larger sites, and we refer the interested reader
to [Joh02, §.C.2.2].

A.4.2. Continuous Maps of Sites. Let 4 and Z. be essentially small sites. A

functor f!: 2 - € induces a functor
f« :PSh(%) - PSh(2),

given by precomposition with (f1)°P, which is called the direct image functor. The
direct image functor admits a left adjoint f., : PSh(2) — PSh(2), given by the left

Kan extension f

pre = Lan(y-1yop, and it is called the inverse image functor.

DEFINITION A.4.16. Let €, and 2. be essentially small sites. A functor f': 2 - €
is said to be continuous with respect to the topologies 7 and ¢ if f, sends 7-sheaves to

¢-sheaves. A continuous map of sites f : €» — 9. is a continuous functor f': 2 » .

Since the category of sheaves on an essentially small site is a reflective localisation of
the category of presheaves with left exact reflector, f-' is continuous if and only if Jore
preserves local isomorphisms, recall Remark 1.1.6. Also, the functor f! is continuous
if and only if for every ¢-sieve S in 2, the sieve generated by f1(S) is a 7-sieve in &,
see [Joh02, §.C.2.3]. In particular, when f_l is Cartesian between Cartesian categories
and the topologies 7 and ¢ are defined by pretopologies, the functor f_1 is continuous

if it preserves covering families.

For a continuous map of sites f: 6 - %, there exists an adjunction
[ :Shv(2) 2 Shv, (%) : f.,

where f* is given by the composition of fJ, with the associated 7-sheaf functor -,
and it is called the sheaf inverse image functor. Since f* is a left adjoint, it preserves
colimits. When, in addition, f* is left exact, the continuous map f is called a morphism

of sites.

In addition to the notion of continuous functors, we need to recall the notion of
almost cocontinuous functors, which admits a well-behaved direct image, as recalled

below.

DEFINITION A.4.17 ([Stal7, Tag 04B7]). Let ¢ and 2 be essentially small cate-
gories with pullbacks, and let 7 and ¢ be pretopologies on € and 2, respectively. A
functor f1: 2 — € is said to be almost cocontinuous if for every object V € 2 and for
every T-covering family % = {o4 : Uy — f_1 (V) | € A} there exists a ¢-covering family

¥ ={03:Vs >V | e B} such that for every 3 € B either

(1) the morphisms f_1 (63) factorises through o4, for some a € A; or
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(2) the empty sieve is a T-covering sieve for f_l(Vﬁ).

LEMMA A.4.18. Assume that € and Z be essentially small categories, let 7 and ¢
be pretopologies on € and 2, respectively, and let f': 2 - € be a continuous and an

almost cocontinuous functor. Then, the direct image functor
f+« :Shv,. (%) - Shv (2)

commutes with pushout squares.
PROOF. See [Stal7, Tag 04B9). O

DEFINITION A.4.19. A category that is equivalent to the category of sheaves on a
small Grothendieck site is called a Grothendieck topos. A geometric morphism f:& —

Z between Grothendieck topoi is an adjunction
[ FeE
in which f* is left exact.

A.4.2.1. Points of Sites. Similar to sheaves on topological spaces, isomorphisms

can be detected on the level of stalks, for sites that have enough points.

DEFINITION A.4.20. Let &, be a site. A point of the site € is a geometric morphism
p : Set = Shv(*) 2 Shv, (%), where * is the terminal site. The inverse image p* :
Shv. (%) — Set is called the stalks functor at p, whereas the direct image p. is called

the 7-skyscraper sheaf functor at p.

ExAMPLE A.4.21. Let X be a small topological spaces, let € be the category of
open sets in X, and let 7 be the topology generated by open covers in X. Then,
every set-theoretic point x € X defines a point p, of €, for which p; and p,, are the

conventional stalks and skyscraper sheaf functors, respectively.
For every point p of a subcanonical site €7, the composition of the stalks functor
at p with the Yoneda embedding yields a functor
p*oh_:% — Shv,. (%) — Set.

In facts, points of an essentially small site € correspond to flat functors ¢ — Set that
are continuous, with respect to 7 and the canonical topology on Set, see [MLM92,
§VIL5.Cor.4]. Since the category Set is cocomplete, every functor u : ¢ — Set induces

the u-tensor-Hom adjunction
- ®4 u:PSh(%) = Set: Hom® (u,-),

as in Example A.3.8. When u is taken to be the composition py,.oh_ for a point p on

%, there exist canonical isomorphisms

p”r X -QRg U and Px = Hom%(ua _)7
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see [MLM92, p.381.(11)], so in particular — ®¢4 u is left exact.

Let € be an essentially small category, recall that a functor u : € — Set is flat if and
only if its category of elements El(u) is cofiltered, see [MLM92, §.VIL.6.Th.3]. On the
other hand, since there exists a canonical equivalence of categories Set = Shv ., (Set), a
functor u : ¥ — Set is continuous, with respect to 7 and the canonical topology on Set,
if the geometric morphism — ®¢ u : PSh(%) 2 Set : Hom® (u, —) factorises through the
T-sheafification geometric morphism PSh(%) < Shv, (%), i.e. if Hom® (u, S) is a 7-sheaf
for every set S € Set and the 7-sheafification morphism np : P - P27 is mapped to an
isomorphism by — ®¢ u, for every presheaf P € PSh(%), see [MLM92, §VII.5.Lem.3]
and [Joh02, §.C.Lem.2.3.8].

DEFINITION A.4.22. Let %, be a site. Then, a conservative set of points of € is
a set C = {p; | i€ I} of points of €, such that a morphism f : P - @ of 7-sheaves
on ¢ is an isomorphism if and only if the morphism of stalks p;(f) is a bijection for
every p; € C. The site %, is said to have enough points if it admits a conservative set

of points.

A.4.3. Grothendieck Topologies in Algebraic Geometry. In some situa-
tions, one may establish a notion that is well-behaved on stalks at points for a certain
site, in which case, it is convenient to consider sheaves on that site, see the proof of
[MV99, §.3.Th.2.21 and §.3.Th.2.23]. Also, one may have a well-behaved notion, when
certain (homotopy) colimits exist and are represented; which may be forced to hold by
considering sheaves with respect to the topology whose coving sieves are generated by

the desired colimit cocones, as in §.4.2.

In addition to desired behaviours, the choice of the topology may also be influ-
enced by the available machinery. For example, Voevodsky utilised the cdh-topology
to construct (properly supported) geometric motives for singular schemes over fields
of characteristic zero, as the latter admit resolutions of singularities. Whereas, in the
absence of resolutions of singularities, geometric motives for singular schemes were ex-
tended to perfect fields in [Kel12] using the ¢dh-topology, which is an extension of the
cdh-topology that riles on Gabber’s Local Uniformisation Theorem [ILO16, Th.3.2.1].

We conclude this section by recalling the topologies used in this thesis. For an

elaborative treatment for topologies used in algebraic geometry, see [GK15].

Fix a Noetherian scheme S of finite Krull dimension, and recall the conventions
and notations in §.0.2. In particular, the category of Noetherian schemes of finite Krull
dimensions is denoted by Nofé, whereas the category of schemes of finite type over S
is denoted by Sch /S, and an S-scheme refers to an object in Sch /S. Also, the full
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subcategory in Sch /S of smooth (resp. proper) S-schemes is denoted by Sm/S (resp.
Prop/S).

DEFINITION A.4.23. Assume that U is a Noetherian scheme in Noe. A finite family
of morphisms {0, : U, - U | @ € A} is said to be an étale (resp. proper) covering family
of U, if

e the morphism o, is étale (resp. is proper) for every «a € A; and
e it is jointly surjective, i.e. the underlying map of coproduct morphism [],c4 04 :

Hpea Ua = U is a surjection of sets.

The étale (resp. proper) pretopology on the category Noe is the pretopology whose
covering families are
e étale (resp. proper) finite covering families in Nofél; and
e the empty covering family of the empty scheme.
For more general scheme, one needs to consider all such families (not necessarily finite

ones). However, for Noetherian schemes, such coverings always admit finite refinements.

DEFINITION A.4.24. Assume that U is a Noetherian scheme in Noé. An étale (resp.
a proper) covering family {04 : Uy — U | a € A} is said to be a Nisnevich (resp. cdp®)
covering family if it is completely decomposed, i.e. for every u € U there exists « € A and
uq € Uy such that o4 (uq) = v and the induced morphism of residue fields x(u) - x(uq)

is an isomorphism®.

The Nisnevich (vesp. cdp®) pretopology on the category No€ is the pretopology

whose covering families are
e Nisnevich (resp. cdp) finite covering families in Nofé; and
e the empty covering family of the empty scheme.

Whereas, the cdh-pretopology on the category Noé is the pretopology generated by the
Nisnevich and the cdp-pretopologies.

Thus, the Nisnevich (resp. cdp) pretopology is coarser than the étale (resp. proper)
pretopology, and finer than the Zariski (resp. closed) pretopology in which nonempty

covering families consist of open (resp. closed) immersions.

REMARK A.4.25. Assume that U is a Noetherian scheme in Noféi, and let % = {04 :
Uy > U | @ € A} be an étale (resp. a proper) covering family of U. Then, % is a
Nisnevich (resp. cdp) covering family, if and only if the map

(11 oa)* : Nofé( Speck, [[ Ua) » Noféi(Spec k:,U)
acA

acA

3Remark A.4.25 shows that the cdp-topology coincides with the envelop topology, used in [GS09].

4This condition is also referred to by the Nisnevich condition, as it first appeared in [Nis89].

5The notation cdp appears in [GK15], but some authors use pro cdh instead; others use abs in
reference to abstract blow up squares.
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is surjective for every field k.

REMARK A.4.26. All the morphisms in the covering families defined above are of
finite type, and hence all the pretopologies defined above restrict to the category Sch /S.
In fact, for every pretopology 7 defined above on the large category category Noféi, the
canonical monoidal finite type-fibred essentially small category Sch /- Noe = - CATS,
asin [CD13, §.1.1.Ex.4, 11, 23, and 28|, induces a monoidal finite type-fibred essentially
small site

Sch /- :Noe = — Site?,
where Sited is the 2-category of symmetric monoidal essentially small sites, weak
monoidal continuous functors between them, and monoidal natural transformations
between the latter. When 7 is coarser than the étale (resp. proper) pretopology, there

exists a monoidal smooth (resp. proper)-fibred essentially small site
Sm/— : Noe = — Site? (resp. Prop/—; : Noe = — Sited)
The pseudofunctor Prop/—; is explored further in §.4.2.1.2.

The étale pretopology is subcanonical on Scﬁ/ S (resp. Sm/S), and hence the Nis-
nevich pretopology is subcanonical on the category Sch /S (resp. Sm/S), see [SGAT3,
Exposé VII.§.2]. On the other hand, the closed pretopology is not subcanonical on
Sch /S, and hence the cdp-pretopology, cdh-pretopology, and the proper pretopology
are not subcanonical. That is, a surjective closed immersion ¢ : z <~ x is a closed
cover of x € Scﬁ/S. However, i* : h (x) - h (z) is not always a bijection. For
example, let S = Speck for a field k, and let ¢ be the surjective closed immersion
Spec k[t]/(t2) < Speck[t]/(t3) in Sch/S.

REMARK A.4.27. Assume that 0 : Y — X is a cdp-cover and that X is reduced.
Then, o admits a refinement by a birational cdp-cover ¢’ : Y/ — X i.e. there exists

an open dense immersion j : U —e> X such that the base change of ¢’ along j is an
isomorphism, see [MVWO06, Ex.12.25].

A.4.3.1. Completely Decomposed Structures.

DEFINITION A.4.28. Suppose that x is an S-scheme. Then, a Cartesian square

4

b(€—>y

(91)
in Sch/S is called

e a Nisnevich square over x if p is an étale morphism and e is an open immersion,

such that the base change

(y2e) = (e,
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is an isomorphism; and

6

e a cdp-square’ over x if p is a proper morphism and e is a closed immersion,

such that the base change
(12e) > (2 e)

is an isomorphism.

LEMMA A.4.29. The Nisnevich (resp. cdp) topology on the category of S-schemes

coincides with the Grothendieck topology generated by the covering families

e {p:y—xe:a- x}, for every pair of morphisms p:y - = and e: a - x that
fit into a Nisnevich (resp. cdp) square in Sch /S; and
e the empty covering family of the empty S-scheme.

Equivalently, a presheaf of sets P € PSh(Scﬁ /S) is a Nisnevich (resp. cdp) sheaf if and
only if

e P sends every Nisnevich (resp. cdp) square to a Cartesian square; and
o P(dg) = *.

PROOF. See [VoelOa, Cor.2.17] and [VoelOb, Th.2.2]. O

PROPOSITION A.4.30. The Nisnevich (resp. cdp) sheafification of the Yoneda em-
bedding takes every Nisnevich (resp. cdp) square of S-schemes to a cocartesian square

of Nisnevich (resp. cdp) sheaves on Sch /S.
PROOF. See [VoelOa, Cor.2.16] and [VoelOb, Th.2.2]. O

The analogue of Lemma A.4.29 and Proposition A.4.30 hold for the Nisnevich (resp.
cdp) pretopology on Sm/S (resp. Prop/S), see [VoelOb, Lem.2.3].

A.4.3.2. Splitting Sequences. Assume that f:Y — X is a morphism of schemes. A
splitting sequence for f is a finite sequence of closed embeddings
B = L1 € L € Zyy € oo Zg = X,
such that the base change f_l(Zi -Zi1) = (Z; - Z;—1) splits, i.e. it admits a section.

LEMMA A.4.31. Let Z = {04 : uq & u | a € A} be a Nisnevich (or ecdp) covering
family of an S-scheme u. Then, the morphism [],c4 fa : [Haea e = w has a splitting

sequence.
PROOF. See [VoelOb, Lem.2.16, Prop.2.17, and Prop.2.18]. O

6Some sources refer to the square (91) by an abstract blow up square, as in [MVWO06, Def.12.21];
others reserve the term for a square that satisfies additional properties, as in [SV00, Def.2.2.4].
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T P;

Zariski is a local ring

Closed is a integral domain

Nisnevich is a Henselian local ring

cdh is a Henselian valuation ring

Etale is a Henselian local ring with a separably closed residue field

TABLE 1. A conservative set of points for the site SCﬁ/ST.

A.4.3.3. Points. Some of the aforementioned sites have enough points. That is,
they admit conservative sets of points, such that isomorphisms between sheaves are

determined on the stalks at those points, see §.A.4.22.

The general definition of a point of a topos is rather abstract, and does offer a
scheme-theoretic description that fits with the geometric intuition of points of schemes.
However, on sites that admits some finiteness conditions, like Sch /S and its subcate-
gories, the points of the topos Sth(Scﬁ/S), for a pretopology T on SCﬁ/S, might be
given by some S-schemes. Recall that, for every S-scheme «, since the category Sch /S
is Cartesian and the corepresentable functor h® commutes with limits, the scheme x
gives rise to a point (h™* h%) if h* is continuous, which in particular requires the
canonical morphism

[ Sch/S(z,ua) - Sch/S(x, u) (92)
acA

to be surjective, for every 7-covering family {o, : uq = u | @ € A} of an S-scheme u, cf.
[GK15, Def.0.1] and [GLO1, §.2]. A scheme z, for which (92) is an surjective, does not,
a priori, define a point, as that requires sending all 7-covering sieves to colimits cocones.
However, for most the pretopologies that we are interested in, there exist conservative

sets of points that admits such a scheme-theoretic description, see [GK15, Th.0.2].

LEMMA A.4.32. Assume that ¢ : & — % is a morphism of 7-sheaves on SCﬁ/S,
for a pretopology 7, in the Table 1, on Sch /S. Then ¢ is an isomorphism if and only if
the morphism of stalks ¢spec g is @ bijection, for every ring R (not necessarily of finite

type over S) that satisfies the property Py, in the Table 1.
PROOF. See [GK15, Th.2.6]. O

REMARK A.4.33. The proper and cdp-pretopologies on Sch /S do not admits a
conservative set of points given by affine schemes, see [GK 15, p.4673]. However, points
of a site are points of a coarser site. In particular, valuation rings (resp. valuation rings
with algebraically closed fraction fields) define points for the cdp-pretopology (resp.
proper pretopology) on SCﬁ/S, see [GLO1, Prop.2.1 and Prop.2.2].
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A.4.3.4. Representable Sheaves. For canonical sites, representable presheaves are
sheaves, and morphisms between them correspond to morphisms in the original cat-
egory. Since some of the pretopologies we are interested in are not subcanonical, we
devote this section to understanding morphisms between their representable sheaves
on the categories Sch /S and Prop/S. The argument below essentially follows [Voe96,
§.3.2], and the statements in the rest of this section are applied in §.4.2.1.

REMARK A.4.34. For every (proper) S-scheme p, the representable presheaf h, is
additive, by the very definition of colimits, i.e. for (proper) S-schemes z and w, the

canonical morphism

h,(z [[w) - h,(2) xh,(w)
is an isomorphism. Also, the 7-sheaf h:T is additive for every pretopology 7 on (proper)
S-schemes that is finer than the closed pretopology. For a (additively-)saturated pre-
topology 7 on the category of (proper) S-schemes that is finer than the closed pretopol-
ogy, and for a 7-covering family % = {04 : 2o & 2z | @ € A} in Prop/S (resp. SCﬁ/S),
one has a 7-covering family

oz/':z{]_[aazuzmz}

acA a€cA

in Prop/S (resp. Sch /S). The additivity of h, and h: implies that sections of h, and
h:: on % correspond to their sections on %’. Thus, without loss of generality, when

. . ar . . o1 .
considering h, and h ", one may assume the involved 7-covering families are singletons.

ExaMPLE A.4.35. Additively-saturated pretopologies on the category of (proper)

S-schemes, that are finer than the closed pretopology, include:

(1) the proper pretopology, see [Stal7, Tags 01T1, 01KH, and 0BX5];

(2) the cdp-pretopology, see Remark A.4.25;

(3) the finite pretopology (resp. cdf -pretopology), which is coarser than the proper
pretopology (resp. cdp-pretopology), whose nonempty covering families con-
sist of finite morphisms, see [Stal7, Tag 0CYI]; and

(4) the unramified proper pretopology (resp. unramified cdp-pretopology), which is
coarser than the proper pretopology (resp. cdp-pretopology), whose nonempty

covering families consist of unramified morphisms, see [Stal7, Tag 02G4).

While the proper pretopology (resp. cdp-pretopology) on the category Prop/S is satu-
rated, as morphisms between proper S-schemes are proper, its counterpart on the cate-
gory Sch /S is not saturated. For instance, let S = Speck, for a field k. Then, for every
S-scheme X that admits an k-rational point, the structure morphism X — S is a cover
in the saturation of the proper pretopology (resp. cdp-pretopology) on Sch /S. Also,
the finite pretopology, the cdf-pretopology, the unramified proper pretopology, and the

unramified cdp-pretopology are not saturated on the category of (proper) S-schemes.
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LEMMA A.4.36 ([Voe96, Lem.3.2.2]). Assume that 7 is a cover-saturated pretopol-
ogy on (proper) S-schemes that is finer than the closed pretopology, such that T-covers
are surjective, and let p and ¢ be S-schemes, such that p is reduced. Then,

e the canonical map Sch/S(p,q) — Sth(Scﬁ/S)(h:T,hzT) is an injection; and

e when p and ¢ are proper S-schemes, the canonical map
Prop/S(p,q) ~ Shv.(Prop/S) (k" ,B)

is an injection.

PROOF. Assume that fy, f1 : p = ¢ are morphisms of (proper) S-schemes, such
that p is reduced and suppose that fo . = f1« :h;T - h:T. Then, in particular, for the
section id? e h:T (p), one has (j‘b’*(idp))al = (fi (idp))a, and hence there exists a 7-cover

o :z = p such that

fooo=0*(fox(id,)) =0*(f1,+(id,))) = fioo eh (2).

Since p is reduced and 7T-covers are surjective, a diagram chase shows that ¢ is an

epimorphism in the category of (proper) S-schemes, and hence fy = fi. O

PROPOSITION A.4.37 ([Voe96, Prop.3.2.5]). Assume that 7 is a additively-saturated
pretopology on (proper) S-schemes, and let f : p - ¢ be a morphism of (proper)
S-schemes. Then,

(1) the morphism f, : h:T - h:T is an epimorphism if and only if f is a cover in
the saturation of 7; and

(2) assuming that 7 is finer than the closed pretopology, such that 7-covers are
surjective, the morphism f, : h:: - h:T is a monomorphism if and only if f is

universally injective.

PROOF.

(1) Assume that f is a cover in the saturation of 7, i.e. there exists a morphism
o' : p' > p of (proper) S-schemes such that o := f oo’ is a 7-cover. The
morphism o, : hp, — h, is a 7-local epimorphism because it factorises as an
epimorphism h, - imo, followed by the inclusion imo, c h, of the T-covering
sieve generated by . Thus, the morphism f, :h, —h is a 7-local epimorphism,

and hence the morphism f, :h:T - h:T is an epimorphism of T-sheaves.

ar

On the other hand, assume that f. : h

T-sheaves, i.e. f, :h — h is a 7-local epimorphism. For id, € h (¢), there

a . . .
- th is an epimorphism of

exists a T-cover ¢ : w — ¢ and a section a € h (w) such that
foa=fi(a)= U*(idq) =0,

by Corollary A.4.11. Thus, the morphism f is a cover in the saturation of 7.
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(2) The proof of the if implication essentially follows [And17], which corrects a
mistake in the proof of [Voe96, Prop.3.2.5.(i)].

Assume that f : p - ¢ is universally injective, let z be a (proper) S-scheme,
and let ag,a; €h (2) such that foag= f.(ag) = f.(a1) = foa;. Consider the

commutative solid diagram

of (proper) S-schemes, and let A : z - px,p be the unique such morphism that
makes the whole diagram commute. Since f : p — ¢ is universally injective, the
diagonal morphism A, : p — px;p is a surjective closed immersion, by [Stal7,
Tag 0154]. Let i: z_, < z be the close immersion of the maximal reduced
closed subscheme in z. The morphism i is a 7-cover, as the T-pretopology is
finer than the closed pretopology. The morphism Ao factories through every
surjective closed immersion of p x4 p, in particular, it factorises through the

diagonal morphism A, which implies that
apot =ajoi.

Thus, the morphism f. : h, - h is a 7-local monomorphism, by Corollary

A.4.14, and hence the morphism f, : h: - h:T is a monomorphism of T-sheaves.

ar

On the other hand, assume that f. : h

T-sheaves, and consider the commutative diagram

a . .
- th is a monomorphism of
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of (proper) S-schemes. Recall that both the Yoneda embedding and the
T-sheafification functor preserve finite limits. In particular, the morphisms
mo,+ and 7y« are base changes of f,. along itself, and hence they are monomor-
phisms of 7-sheaves. In fact, the morphisms 7 . and 7 . are isomorphisms of
T-sheaves, as id,, . is an epimorphism of 7-sheaves and the category of T-sheaves
of sets is a balanced category. Thus, Ay, is an epimorphism of 7-sheaves, and
hence Ay is a cover in the saturation of 7, by (1). In particular, Ay is surjec-
tive, and f is universally injective, by [Stal7, Tag 0154].

0

COROLLARY A.4.38. Let 7 be a additively-saturated pretopology on the category
of (proper) S-schemes that is finer than the closed pretopology and coarser than the
proper pretopology, and let f : p - ¢ be a morphism of (proper) S-schemes. Then,
the morphism f, : h: - hZT is an isomorphism only if the morphism f is a universal

homeomorphism.

PROOF. Assume that f, : h:T - h:T is an isomorphism, then f is a universally
injective cover in the saturation of 7, by Proposition A.4.37. In particular, there exists
a morphism ¢’ : p’ > p of (proper) S-schemes such that o = f o ¢’ is a 7-cover. Since
T is coarser than the proper pretopology, the morphism o is surjective and universally

7. This implies that f is also a

closed, and hence a universal topological epimorphism
universal topological epimorphism, and hence every base change in Sch of f is both
an injection and a topological epimorphism. That is the underlying continuous map of
every base change in Sch of f is a monomorphism and an extremal epimorphism in the
category of topological spaces, and hence a homeomorphism, see [Nak89, §.2.6-§.2.9].

Therefore, f is a universal homeomorphism. O

REMARK A.4.39. In the sequel, we restrict our attention to additively-saturated pre-
topologies on the category of proper S-schemes that are finer than the cdf-pretopology

and coarser than the proper pretopology.

ExAMPLE A.4.40. Pretopologies on the category of proper S-schemes that satisfy
the assumptions of Remark A.4.39 include the finite pretopology, the cdf-pretopology,
the proper pretopology, and the cdp-pretopology.

PROPOSITION A.4.41. Let 7 be a pretopology on Prop/S as in Remark A.4.39, and
let f:p— q be a morphism of proper S-schemes. Then, the morphism f, :hj: - h:T is
an isomorphism if and only if f is a universal homeomorphism.

PROOF. Since the cdf-pretopology is finer than the closed pretopology, the only if
implication is the statement of Corollary A.4.38.

A (universal) topological epimorphism f is a morphism of schemes for which the underlying
continuous map (of every base change in Sch) of f is a quotient map, see [Voe96, §.3.1].
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Assume that f is a universal homeomorphism. Then, f is a surjective universally
injective finite morphism, by [Gro65, Prop.2.4.5]. In particular, for every field k, the
induced map

S Nofél( Speck, P) - Noféi( Speck, Q)
is an injection, by [Stal7, Tag 01S4], where P and @ are the underlying schemes for
p and ¢, respectively. Also, since f is of finite type, the map f, is surjective for every

algebraically closed field k. However, we need to show that f, is surjective for every
field k.

For a field k, let y : Speck - @ be a morphism of schemes, and consider the

Cartesian square

Z P
q s
Speck " Q

in the category No€. The morphism f is a finite universal homeomorphism, and hence Z
is a one-point scheme Spec R and [ is induced by a finite ring homomorphism ¢ : k > R,
to a local ring R of Krull dimension zero. Let m be the maximal ideal of R, and
let k = B/m. Then, the induced homomorphism k < k is a finite field extension.
Assuming that [k : k] # 1, there exist distinct ring homeomorphisms x — k over k,
which contradicts with f being universally injective. Thus, one has [k:k] =1, i.e. the
residue field of Z at its unique point is isomorphic to k. Hence, y lifts along f, and f.
is surjective for every field k. Therefore, f is a cdf-cover that is universally injective,
and hence a universally injective 7-cover. Therefore, the morphism f, :h:T - hZT is an

isomorphism, by Proposition A.4.37. O

COROLLARY A.4.42 ([Voe96, Lem.3.2.1]). Let 7 be a pretopology on Prop/S as in
Remark A.4.39, and let i : z - p be a surjective closed immersion of proper S-schemes.
Then, the morphism i, : hzT - h:: is an isomorphism. In particular, for the closed
immersion of the maximal reduced closed subscheme ¢ : p_, < p, the morphism

. a a . . .
ix:h ~—h is an isomorphism.
Pred P
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