Polynomial invariants
of Legendrian links and their fronts

S. Chmutov,* V. Goryunov

The present paper is a survey of recent results on restrictions of the classical polynomial
link invariants to Legendrian curves in the standard contact 3-space and solid torus. We point
out the sets of the rules which completely define these restrictions in terms of the underlying
plane fronts. Unlike the case of arbitrary framed links when the framed versions of the
polynomials are Laurent in the framing variable x, the polynomials of Legendrian links do not
contain any negative powers of z. We give a series of estimates of the Bennequin-Tabachnikov
numbers implied by this basic property. We also show how Vassiliev type invariants appear
in the polynomials of plane curves.

The entire activity around invariants of plane fronts and regular curves has been inspired
by V. 1. Arnold. His investigations over the last few years, strongly motivated by his attempt
to prove the Last Geometrical Theorem of Jacobi [2]|, gave a second birth to the topic that
goes back to Gauss and Whitney. The central part of it is Arnold’s J*-theory of fronts which
is in fact the theory of invariants of Legendrian knots.

1 Legendrian links and plane fronts

1.1 Standard contact spaces

We recall a few basic notions.

A contact element at a point of a plane is a line in the tangent plane. Its coorientation is a
choice of one of two half-planes into which it divides the tangent plane. The manifold M of all
cooriented contact elements of the plane is the spherisation ST*R? of the cotangent bundle
of the plane. It is diffeomorphic to the solid torus R? x S!: the coorienting normal vector
of a contact element is defined by the angle ¢ mod 27 which it makes with a fixed direction
on the plane. Manifold M has the standard contact structure defined as zeros of the 1-form
a = (cos p)dx + (sin ¢)dy, where (z,y) are coordinates on R? with the positive direction of
the z-axis being that fixed above.
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Figure 1: Coordinates in the solid torus ST*R2.

We equip M with the orientation dz Ady Adp = —aAda. 1t is opposite to the orientation
usually taken in the contact geometry. .

Along with the solid torus M we will also be considering its universal cover M ~ R3,
with the orientation induced from that of M. Its standard contact form is given by the
same formula as o with the only difference that now the angular coordinate ¢ is not reduced
mod 2.

1.2 Fronts

Definition 1.1 A Legendrian curve in a contact 3-manifold is a mapping of a disjoint union
of a finite number of circles for which the pull-back of the contact form vanishes. A Legendrian
link is an embedded Legendrian curve.

The image of the canonical projection of a Legendrian link L from M or M to the plane
is called the front of L. An arbitrary small perturbation in the class of Legendrian links is
able to bring a link in general position with respect to the canonical projection. The front of
such a generic Legendrian link has only transverse double points and semi-cubical cusps as
its singularities.

At any point of a front there is a natural cooriention by the coorienting normal of the
contact element a € L whose projection this point is.

A cooriented multi-component plane curve is a front of a unique Legendrian curve in M.
So such a curve will be called a front, with no reference to the corresponding Legendrian
curve.

A necessary and sufficient condition for an above plane curve to be the front of a Legendrian
curve in M is vanishing of the winding numbers of all of its components. The winding number
is the number of full rotations made by the coorienting normal as we trace the component
once. The Legendrian link in M is well-defined by its front only if there is chosen a point on
each component of the front and there is an indication to which ¢-level of Z-many possible
ones this point should be rised. We call such fronts marked winding-free.

A generic homotopy in the class of Legendrian immersions produces generic perestroikas
of the front (Fig.2). Only dangerous self-tangencies of fronts, when the coorientations of the
two tangent branches coincide, correspond to topological changes in the links. A Legendrian



link in the solid torus ST*R? gets the double point and experiences the change-crossing at
each of these instants (Fig.3).
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Figure 2: Perestroikas of generic fronts.
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Figure 3: A dangerous self-tangency of a front rises to the change-
crossing of the Legendrian link.

Definition 1.2 An invariant of fronts is called a J*-type invariant if it does not change
under homotopies which involve no dangerous self-tangencies.

Our terminology follows the name of the first invariant of this type introduced by Arnold
in [1, 2].

From the above discussion, we see that the theory of invariants of Legendrian links in
ST*R? is isomorphic to that of J*-type invariants of fronts. So in what follows we will make
no distinction between an invariant of Legendrian links in the standard contact solid torus
and its lowering to the J*-type invariant of fronts.



Example 1.3 The following local homotopy with no dangerous self-tangencies does not

change J*-type invariants:
Q. _Q ~afe _)\/L
self-tangency

cusp birth

Definition 1.4 An invariant of marked winding-free fronts is called a Jj -type invariant if
it does not change under homotopies which involve no direct self-tangencies with coinciding
phases ¢ € R of the branches at the points of tangency.

‘The theory of such invariants coincides with the theory of invariants of Legendrian knots
in M ~R3.

1.3 The Bennequin-Tabachnikov number

Any unframed link type in M and M has a Legendrian representative (see, e.g. [11]). This is
not the case for the framed setting.

A Legendrian link in a 3-manifold with a cooriented contact structure has a canonical
framing by the coorienting vectors of the contact planes. In the cases of ST*R? and its
universal cover, this is isomorphic to the framing by the Legendrian lift of the front of the
original link slightly shifted in the direction of its coorientation (Fig.4).
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Figure 4: Legendrian lifting of a plane front to a canonically framed
knot in the solid torus M = ST*R2.

Definition 1.5 The writhe § of the canonical framing of a Legendrian knot in M ~ R3 is
called the Bennequin number of the knot.

The Bennequin number can be calculated as follows. The front, with its double points
correctly resolved, is in fact a knot diagram of its Legendrian knot. This assigns “+” or “—”
to each of the double points, as if we were calculating the writhe of the blackboard framing.
Now (3 is the sum of all these signs plus half the number of the cusps.

One of the main results of [4] tells that the Bennequin number is bounded from one side
on the set of all Legendrian knots representing the same unframed knot type in R3. For our
choice of orientation the numbers are bounded from below. Insertion of a two-cusp zigzag (as
in Fig.4) increases [ by 1.



Example 1.6 a) For an unknot g > 1 [4].

b) The original estimate of [4] provides the same bounds for a knot and its mirror image.
For example, for both the right- and left-handed trefoils it gives # > —1. This bound is exact
for the left-handed trefoil. In [14, 10] it was shown that for the right-handed trefoil the exact
lower bound is 6.

An analog of the Bennequin number for knots in ST*R? was introduced by Tabachnikov
in [18]. He set it to be the index of intersection of the knot shifted in the direction of the
framing and a 2-film realising homology between the original knot and a multiple of the fibre
of the projection ST*R? — R? over a sufficiently distant point. According to one of equivalent
definitions, this is also the writhe of the canonically framed Legendrian knot with respect to
the projection (z,y, ¢) — (€%, ¢) to the annulus R?\ 0 with polar coordinates (p, ¢) (see Fig.4
in which g =4).

Via inclusion of the standard solid torus into the standard 3-space, the mentioned bound-
edness of the Bennequin numbers implies similar boundedness of the Tabachnikov numbers.

Remark 1.7 By the Bennequin and Tabachnikov numbers of oriented Legendrian links we
will mean the corresponding writhes of the canonically framed links.

2 Kauffman polynomials of fronts

2.1 The polynomial of Legendrian links
in the standard solid torus

In [21] Turaev introduced the Kauffman polynomial of a framed non-oriented link in a solid
torus. This is an element of Z[z%!, y=', &, &, .. .| uniquely defined by the relations and initial
data of Fig.5. The links L; and L, there are mutually unlinked. All the links are equipped
with the framing which is blackboard with respect to a fixed projection of the solid torus to
the annulus. The knot Z3 is a pattern for the whole series =;.

k() =k (X) =o(x() () - 5 (X))
K()=ar( /) K(Q)=ak( /)

K(Ly U Ly) = K(Ly) - K(Ly)

K(Z;) =&, wherei>1 g5 =

Figure 5: Definition of the framed version of the Kauffman polyno-
mial for links with the blackboard framing in a solid torus.
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Example 2.1 On an unknot with the trivial framing K = “_—;_1 + 1.

The Legendrian lifting lowers the polynomial to generic plane fronts. Translation of the
rules of Fig.5 to fronts gives rise to the rules of Fig.6. The fronts F| and F, of the third line
are lying in disjoint half-planes. The relation between the Legendrian generators z; and the
blackboard generators §; is easily seen to be z; = 2°¢; [8].

£() ()= %) =o(x(X) -&(, )
K(Z) =K () =ax( /)

K(FUF,) = K(F)-K(F)

K(Z;) =z, wherei>1and Z;, = 62;%

Figure 6: Definition of the Kauffman polynomial for fronts.

Theorem 2.2 ([7]) There exists a unique J*-type invariant K (F) € Z]x,y**, 21, 2,...] of a
generic front F' satisfying the relations and initial data of Fig.6.

Note that there are no negative powers of the framing variable x now.

Example 2.3 The lips front, with two cusps and no double points, is the simplest possible

winding-free. To calculate its Kauffman polynomial one can proceed as follows (making use
of Example 1.3):

r?K(—) =K(—‘—/U\,w—)=K(-"’UQ§—)=K(—O“’%’>/-)
= K(egh ) +y(K(<h )~ K(< )
= K(‘@“)"‘?JK(\Y/-)_?JK(*—@/—)

= K(—)+yK(

) —yK(A~—")

= K(—)+yK(<>) - K(—)—yzK(—)

So, K( <> ) = # + z. Indeed, the lips front lifts to the Legendrian unknot in M with
8 =1, so its Kauffman polynomial should be that of an unknot with the trivial framing times
x.



2.2 The polynomial of Legendrain links
in the standard R3

The Kauffman polynomial K, € Z[z*', y*!]| of framed links in R? is defined by the rules of
Fig.5 with all the information about the curves Z; omitted [15]. Its Legendrian version in
terms of fronts is respectively given by Fig.6 without mentioning the fronts Z;. Only generic
marked winding-free fronts are now considered. The phases of the two interacting branches
in the main skein relation must coincide. We call this modification of Fig.6 its J; -version.

Theorem 2.4 ([7]) There exists a unique Jg -type invariant Ko(Fy) € Z]z,y*'] of a generic
marked winding-free plane front F, satisfying the relations and initial data of the J -version
of Fig.6.

2.3 The Bennequin-Tabachnikov number estimates

Due to Theorems 2.2 and 2.4, the Kauffman polynomial of a (marked winding-free) plane
front is a genuine polynomial in x, not a Laurent one. This implies the following restriction
on the values of the Bennequin-Tabachnikov numbers of oriented Legendrian links in the solid
torus and 3-space.

Let wr(L) be the writhe of an oriented link L either in the solid torus or R?. Define the
unframed versions of the Kauffman polynomial as

K, (L)=2"""WK(L) and Kg,(L)=2""WKyL).

Following [21, 15], these polynomials depend only on unframed topological type of L. Thus
we can speak about the polynomials K, and K, of unframed oriented links. In the case of
knots the orientation does not matter.

Theorem 2.5 Let L be an unframed oriented link in the standard contact manifold M ~R?
or M = ST*R2?. Let 2% be the minimal power of the framing variable x in the corresponding
unframed version of the Kauffman polynomial of L. Then the Bennequin-Tabachnikov number
of any Legendrian representative of L is at least —k.

Example 2.6 For an unknot (see Example 2.1) this coincides with the classical bound 5 > 1
[4].

Example 2.7 The Theorem implies that the minimal Bennequin-Tabachnikov number of
a Legendrian representative of the basic knot =; in the solid torus (Fig.5) is that of the
Legendrian lifting of the front Z;, which is 2¢ — 1. Note that inclusion of the standard contact
solid torus into the standard contact 3-sphere gives only # > 1 for any :: all the =; get
unknotted in S3.



Example 2.8 For the left- and right-handed (2, ¢)-torus links in M ~ R?, Theorem 2.5 gives
8 > 2 —q and [ > 2q respectively, ¢ > 2. The exactness of these estimates in all these cases
follows from the examples of Figs. 7 and 8. The double points of the (marked) winding-free
fronts in these Figures are resolved respecting the phases ¢ of the branches.

=0, Q_
=0, Qo j
(\_/_\J"';\

Figure 7: Legendrian representative of the left-handed (2, q)-torus
link in R3 with the minimal possible Bennequin number 2 — q.

o)
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Figure 8: Legendrian representatives of the right-handed (2,4)-torus
link and (2,5)-torus knot in R?® with the minimal possible Bennequin
numbers 8 and 10. Minimal representatives, with = 2q, of all the
other right-handed (2, q)-torus links are obtained by either omitting the

distinguished fragments (for ¢ = 2 and q = 3) or by their consecutive
repetition (for ¢ > 6).

Remark 2.9 A similar to ours estimate of the Bennequin number for knots in R? by the
lowest degree of the framing variable in the mod 2 Kauffman polynomial was derived in [10]
from the results of [19]. It is not known if the lowerest degrees in the integer and mod 2
Kauffman polynomials for R? may differ. In all the examples we know they coincide. The
work [20] implies that for alternating knots they are equal. See also [17].

3 HOMFLY polynomials

3.1 The Legendrian versions

Fig.9 recalls the definition of the framed version of the HOMFLY polynomial of oriented links
in the solid torus [21]. This relates an element of Z[z*', y*! 2.1, 219,...] to such a link.



P(X)-P(X) =) ()
P )=er( /) P(QY)=ar( /)

P(LyU Ly) = P(Ly) - P(Ls)

Figure 9: The definition of the HOMFLY polynomial for oriented
links with the blackboard framing in the solid torus.

Omitting in Fig.9 all the information about the knots =} and corresponding variables one
gets the definition of the HOMFLY polynomial for knots in the 3-space [13, 15].

Fig.10 translates the rules of Fig.9 to fronts. Relations of its first three lines are also valid
for the fragments with all the orientations reversed; F; LI F} is the disjoint union of the two
fronts on different sides of a certain straight line.

P()-r()()=ur(X)
r()()-r(F) =0e(Y)

P(2)=P(55)==r( /)

P(FLUF,) = P(Fy) - P(F)

P( @ ) = z; for the curve of winding number 7 # 0

Figure 10: The definition of the HOMFLY polynomial for oriented
plane fronts.

The definition of the J; -version of Fig.10 is obvious (cf. Section 2.2).

Theorem 3.1 ([7]) There ezist



1) a unique J*-type invariant P(F) € Z[x,y*", 211, 249, ..] of a generic plane front F;

2) a unique Ji -type invariant Py(F,) € Z[x,y*!] of a generic marked winding-free plane
front Fy

satisfying the relations and initial data of Fig.10 and of its Jy -version respectively.

Thus again, unlike the case of arbitrary framed links, the polynomials of canonically framed
Legendrian links do not contain negative powers of x.

3.2 Maslov index

It is easy to strengthen the last theorem and establish divisibility of the HOMFLY polynomials
by certain powers of the framing variable.

Consider an oriented and cooriented plane front. A cusp of such a front is called positive
if the velocity vectors of its outgoing branch have positive projections to the normal of the
coorientation at the cusp point. Otherwise the cusp is called negative.

Definition 3.2 Half a difference p = (u; — p_) between the numbers of positive and neg-
ative cusps is called the Maslov index of the front or of the corresponding Legendrian link.

The Maslov index is easily seen to be integer.

All the basic fronts of Fig.10 have zero Maslov index. The Maslov indices of all the three
fronts participating in both versions of the main skein relation coincide. The zigzag skeins
relate the change of the Maslov index by +1 to the divisibility of the polynomial by z. In the
chain of calculations of the polynomial of a particular front, the zigzag skeins may be used
only to reduce the number of cusps [7]. Thus, for both the theories of plane fronts, we get

Corollary 3.3 ([7]) In the ring of genuine polynomials in the framing variable, the HOMFLY
polynomial of a front is divisible by z'#! where p is the Maslov index of the front.

3.3 The Bennequin-Tabachnikov number estimates
in terms of the HOMFLY polynomial

The unframed analogs of the HOMFLY polynomials are

P,(L)=2""®P(L) and Pp,(L) =z ""BPy(L),
where, as in Section 2.3, wr(L) is the writhe of a framed link L either in the solid torus or in
R3.

The non-Laurent polynomiality of the framed versions of the polynomials, in the strength-
ening of Corollary 3.3, implies
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Theorem 3.4 ([7]) Let L be an oriented unframed link in the standard contact manifold
M ~ R3 or M = ST*R?. Let 2" be the minimal power of the framing variable x in the
corresponding unframed version of the HOMFLY polynomial of L. Then, for any Legendrian
representative L of L,

ﬂ + |N’| Z -,

where B and p are the Bennequin-Tabachnikov number and Maslov index of L.

For R? this is the theorem of Fuchs-Tabachnikov [10] obtained by a direct comparison of
the results of [4, 9, 16].

Example 3.5 (cf. Example 2.8) With no information on p, for the left-handed (2, ¢)-torus
links in R? the estimates of Theorems 2.5 and 3.4 are the same: 3 > 2 — ¢g. For the right-
handed series the estimate of Theorem 2.5 is stronger than that of Theorem 3.4: 3 > 2¢
instead of 8 > 2 + g.

For a generic non-oriented Legendrian knot, the number |u| is well-defined. Nevertheless,
one cannot sthrengthen Theorem 2.5 on the Kauffman polynomial estimate to include |u|
similarly to Theorem 3.4: the (2, 5)-torus knot of Fig.8 has |u| = 1 and its Bennequin number
is equal to the negative of the lowest power of the framing variable in the unframed version
of the Kauffman polynomial.

4 Finite order J+—type invariants

Vassiliev theory of finite order knot invariants is based on the concept of extension of a knot
invariant to degenerate knots with double points. In a similar way any J-type invariant f
recursively extends to fronts with a finite number of dangerous self-tangencies:

10 =108)-100 100 =100 -17)

These rules are due to the natural coorientation of the strata of dangerous self-tangencies
from [2]. When lifted to ST*R? both rules are in fact the definition of an extended invariant
of the original Vassiliev theory.

Definition 4.1 A J'—type invariant f has order n in Vassiliev sense if n is the maximal
number of dangerous self-tangencies of a front on which the extension of f does not vanish.
The symbol of such f is the restriction of f to the set of fronts with precisely n dangerous
self-tangencies.

By Gromov’s theorem [11] the winding numbers and Maslov indices of the components
are the only invariants of order zero.

The difference of two invariants of order n with the same symbol is an invariant of order
less than n.

11



Theorem 4.2 (cf. [5, 6]) Set y = e¥/? — e~4? in the Kauffman or HOMFLY polynomials of
a plane front C' and expand the result in a power series in t. Then the coefficient at t" in the
obtained series is a JT—type invariant of order at most n in Vassiliev sense.

There is an obvious analog of this theorem for J -type invariants.

5 Regular Legendrian knots and immersed plane curves

5.1 Regular Legendrian representatives

Along with the consideration of invariants of arbitrary Legendrian links in ST*R? and its
universal cover, that is J- and Jy -type invariants of plane fronts, one can study invariants
of immersed plane curves without dangerous self-tangencies [1, 2]. Now cusps are prohibited,
and we find ourselves in a situation which is appriori more poor. But from what follows we
see that the difference is basicly only in the vanishing of the Maslov index.

Definition 5.1 A Legendrian link in M = ST*R? or M ~ R3 is called reqular if its front is
an immersed plane curve.

We assume here that the orientation of an immersed plane curve is automatically defined
by its coorientation so that the frame {coorienting normal, orienting vector} gives positive
orientation of the plane.

Theorem 5.2 ([8]) Any unframed oriented link type in M and M has a regular Legendrian
representative.

Example 5.3 The Legendrian representative of Fig.7 of the left-handed (2, ¢)-torus link in
R? is regular. Fig.11 shows a regular Legendrian right-handed trefoil.

£y

\ <D\
R

Figure 11: A regular Legendrian right-handed trefoil knot in M ~ R3
with 3 = 9.

On the level of canonically framed knots one of the differences between arbitrary Legen-
drian and regular knots is the following.

Theorem 5.4 ([2, 3]) The Bennequin-Tabachnikov number of a reqular Legendrian knot is
odd.
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One of reflections of this statement is that the analog of the zigzag surgery for fronts is now
the insertion of a small fragment containing two curls with opposite directions of rotation.
The latter operation increases [ by 2.

Possibilities of arbitrary and regular Legendrian representations provides us with two ap-
priori different characteristics of an unframed knot type K in M or M. Those are the minimal
Bennequin-Tabachnikov numbers B,,i5 req(K) and B, (K) of corresponding Legendrian re-
alisations. Of course, Bpinreg(f) > Bmin(K). For the left-handed trefoil both the numbers
coincide. But it is not the case in general.

The difference between the two numbers does not seem to be due only to the parity
restriction on B req(K). While for the left-handed trefoil we have 3, = 6 (Fig.7), the best
regular realisation we know (Fig.11) suggests

Conjecture 5.5 For the right-handed trefoil B reqg = 9.

5.2 The HOMFLY polynomial

There is no straightforward lowering of the Kauffman polynomial to immersed plane curves:
the main skein relation of Fig.6 requires cusps. On the other hand, for the HOMFLY poly-
nomial we have

Theorem 5.6 ([8]) There exists a unique J™—type invariant P(C) € Z[x? y*', 241, 249, . . ]
of a generic oriented plane curve C satisfying the relations and initial data of Fig.12.

PP )=yP X
prderl Pl 2o
PlCLC)=P(C)-P(C")  P(Z)=7  Z,=(3)

Figure 12: Legendrian lowering of the definition of Fig.10 to generic
collections of reqular oriented plane curves.

Thus, in addition to the genuine polynomiality in the framing variable x which is a common
Legendrian property, the regularity implies the evenness in x.

There is an obvious version of the above theorem for marked winding-free generic plane
curves.

5.3 Regular curves with few double points

In Fig.13 we give the results of calculations of the polynomial P for Arnold’s list [1, 2] of
all the regular one-component plane curves with at most 3 double points. We set there
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Figure 13: The HOMFLY polynomials and Tabachnikov numbers of
plane curves with at most 8 double points.
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2o = (z* — 1) /y. The orientations of the curves with non-zero winding numbers are chosen so
that these numbers are positive. The change of the orientation implies the change z; — z_;
for all the indices %.

Most of the polynomials of Fig.13 which have no obvious reason to be divisible by z?
(those are polynomials of the curves with no pairs of small curls of opposite orientation) are
not divisible by it. The non-divisibility of P(C) by z? means that the Bennequin-Tabachnikov
number of the corresponding Legendrian knot L C ST*R? is the minimal possible among all
the regular knots of the same topological type: 3(L¢) = Bminreq(Lc) (in fact, even stronger:

The inverse does not seem to be true. For example, for the last curve in the 4th line,
P = xz(% + yz_121), but there seems to exist no regular plane curve whose polynomial is
that in the brackets of this formula. Another similar example is the first curve of the 5th line.
Arnold’s tables in [1] contain some other curves of the same nature. All of them are certain
modifications of those two of Fig.13. This indicates that the estimate of Theorem 3.4 may
not be exact in all the cases. Perhaps, there are some special bounds for powers of = in the
coefficients of various products of z-variables in the HOMFLY polynomials of (regular) plane
curves.

Appendix A: Another approach to Legendrian links in R3

The standard contact 3-space can also be treated as the space J'(R,R) of 1-jets of functions
on a line. The contact form « is then dy—p dx, where y corresponds to values of a function, = to
its argument, and p to its derivative. We again orient R? with the form —aAda = dz AdyAdp.
Now Legendrian links are represented by their projections to the (z,y)-plane. A generic
front in this plane is a curve whose only singularities are cusps and transverse double points
and which has no tangents parallel to the y-axis. We call such a curve a front with no
vertical tangents. In order to restore the Legendrian link in J'(R,R) from a generic front
one resolves each double point putting the branch with the greater slope 0y/dz to the higher
p-level (Fig.14). The canonical Legendrian framing now is that by the positive y-direction.

Y
A

=

Figure 14: Lifting of a front with no vertical tangents to the left-
handed trefoil in J'(R, R).

Generic homotopies in the class of Legendrian immersions in J*(R, R) provide the same
list of generic perestroikas of fronts in the (z,y)-plane as earlier (see Fig.2), except for safe
self-tangencies. Of course, no vertical tangents are allowed in any of these perestroikas.
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Definition A.1 An invariant of generic fronts with no vertical tangents is called a J;;t—type
invariant if it does not change under homotopies which involve no self-tangencies.

The theory of Jjf-type invariants is that of invariants of Legendrian knots in J'(R,R)

€
(and, thus, is isomorphic to the theory of Jy -type invariants).

In terms of fronts with no vertical tangents, the rules of the Kauffman polynomial in
R? are those of Fig.6 with the curves Z; omitted and all the front fragments rotated by 90
degrees clockwise to avoid vertical tangents. Such a modification of Fig.6 will be called its

Jii-version. In the similar way one defines the J3-version of the HOMFLY rules of Fig.10.

Theorem A.2 ([7]) There exist unique Jj;-type invariants K(Fjo) and P(Fjy) € Zlz,y*!

of a generic front Fj., with no vertical tangents satisfying the relations and initial data of the
J;rt—version of Figs. 6 and 10 respectively.

e

Appendix B: Kauffman bracket of fronts

For a framed link in a solid torus the Kauffman bracket was defined in [12]. Its values belong

to Z[A*! ).
(X)=40) () +47(X)
((-9)=1 (@)=

<LiULy>=—(A24+A) <Ly > -<Ly>
Figure 15: Definition of the Kauffman bracket for framed links with

the blackboard framing in a solid torus.
The analog for plane fronts and Legendrian links in ST*R? is as follows.

Theorem B.1 ([6]) There ezists a unique J ™ —type invariant < C > € Z[A* h] of a normal
front C' satisfying the properties:

(X0 =40 (-2, )
’ (O)=—4%

<CiuUCy>=—(A2+ A7) <C, > <0y >,
for Cy #0,C, # 0.

(o) = -4

Here C; U Cy is a union of two fronts C; and C3 which lie in different half-planes with
respect to a certain line in R2.
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