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The paper studies vector fields that preserve the disaiminants of isolated singularities of complete intersections and 
bifurcation diagrams of projections to the straight line. The results are applied to find stable functions on discriminants 

of simple complete intersections and normal forms of functions of general position on bifurcation diagrams of 
projections of low codimension. 

Arnol'd [12] and Zakalyukin [9, 10], in their studies of the evolution of wave fronts, lay the foundation for the analysis 

of vector fields and functions on spaces containing discriminant varieties. It was shown, in particular, that the algebra of 

holomorphic vector fields tangent to the discriminant of a function is a free module over the ring of functions on the enclosing 

space. In this case, the discriminant is a free divisor in Saito's sense [25]. An explicit form of the generators of the module of 

tangent fields was given in [9], and the normal forms relative to the group of discriminant-preserving biholomorphisms were 

derived for the functions of general position on the enclosing space. 

The research in this direction was subsequently continued by Terao, Bruce, and Looijenga. Thus, Terao [30] proved that 

another object which naturally arises in the singularity theory of holomorphic functions -- the bifurcation diagram of a function -- 

is also a free divisor. He found the generators of the module of diagram-preserving vector fields. Terao's result was proved in. a 

more compact form by Bruce, who studied stable functions on bifurcation diagrams [13]. 

Looijenga [21] showed that the discriminant of an isolated singularity of a complete intersection is also a Saito di~6sor. 

An algorithm for constructing the generators of the corresponding module of vector fieIds was proposed in [8]. It relies on a 

number of properties of projections of (singular) manifolds on the straight line, i.e., diagrams of the form Y ~ C T M  ~ C (the first 

arrow is embedding of a submanifold, the second arrow is nondegenerate linear projection). These properties coincide with the 

properties of functions on smooth manifolds and will be reviewed in Sec. 1. 

Yet another free divisor was suggested in [8]: the bifurcation diagram of a projection. It may be interpreted as the 

bifurcation diagram of a complete intersection, because it is obtained from the discriminant of a complete intersection (possibly 

multiplied by some complex linear space) similarly to the way in which the diagram of a smooth function is obtained from the 

discriminant of the smooth function -- as a bifurcation variety of the stable projection of the discriminant along the straight line. 

In this paper, we propose a formula for the generators of the module of vector fields preserving the discriminant of a 

quasihomogeneous complete intersection of positive dimension (Theorem 2.4). Our formula is more convenient than the general 

formula. We also apply the results of [8] to find stable functions on the discriminants of a number of simple multiple points 

(Theorem 3.5) and normal forms of functions of general position on bifurcation diagrams of projections of codimension 2 and 

3 (4.6). We determine the number of basis tangent vector fields that are independent at the given point of the discriminant of a 

complete intersection (Proposition 2.2) or of the bifurcation diagram of a projection (Proposition 4.2). We indicate some 

modifications of the formulas for computing the generators of the modules of the tangent fields for edge and line singularities 

(4.8). 

All the definitions are presented in Sec. 1. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovermennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 33, pp. 

31-54, 1988. 
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1. PROJECTIONS 

1.1. Definitions and Notation. Take a nondegenerate linear projection from C n+l to the straight line, p: C n+l --, C. 
rt P 1.1.1. Definition. The projection of  the submanifold Y ~ C n+l to the straight line is the diagram Y ~ C  +1---~C. 

Definition. The projections of the submanifolds Y1, Y2 c C n+l are said to be R-, R +-, or RL-equivalent if there exists a 

biholomorphism of the enclosing space that takes Y1 to Y2, preserves the linear projection p, and induces on the base of p resp. 

an identity map, a translation, or an arbitrary biholomorphism. 

Let u be a coordinate function on the base of p. Taking as Y the graph of a function on C n (u is the value of the 

function), we see that the equivalences introduced in the above definition are generalizations of the corresponding equivalences 

of smooth functions [3]. 

Definition. The height function is the restriction of u to Y. 

In what follows, the projected submanifold is assumed to be a complete intersection of positive dimension, y_~f-1 (0), 
T : ( C~+1, 0 ) - + (  Cm, 0), m = c o d i m  Y<~n. The projection to the straight line of the manifold f = 0 is called the projection f. 

1.1.2. We use the following notation: ~ym O~ z is the bundle of holomorphic maps from Z to cm; z,z is its fiber at the point 

z E Z ;  zEZ; CYz=CY~, ~Ym(le)~--=-O '~c~,~, ~Y' (k )=~m(k)0 ;  m(m)~cO(m)~  and m(m)cCY(m) is the maximal ideal; (x, 

u)=(xa . . . . .  xn, tt)6C ~+1, p:(x,  tt) ~ u; f o - - f  !u=0, where f = f(x,u); 9~zis the algebra of the  germs at zero of the  holomor- 

phic vector fields on C r tangent to the set W C C r. 

If there is no danger of confusion, we will use the same symbol for the germ of a mapping or a set and for a representative 

of the germ. 

1.1.3. For f f i O  ~m ( n + l )  let 

T I = f *  (m {m)) ~Y,~ (n + 1) + C ~ (n + 1) ( O f  / ~xl . . . . .  0 f / Oxn ) 

and let T ~ - ~  T t q-CO f / 0 t t  be the tangent spaces to the germs of R- and R+-equivalence classes of the projection f. Q!  = 

= (Tm (n-+- 1)/T I, Q+:-=e m (rt~- 1)/T~-. 
Definition. The R- and R+-codimensions �9 and z+ of the projection f are the dimensions of the linear spaces Qf and Qf+. 

Remark. It is easy to see that 

a) for ~ < oo the complete intersections f(x, u) = 0 and f0(x) = 0 have isolated singularities; 

b) fo r0  < ~ <  o % 0 f / 0 u ~ T f a n d T = ~ +  + 1. 

1.1.4. Consider a k-parameter deformation of the projection f: FEG m ( n +  1 + k )  ; 2 E C k is the deformation parameter, 

F [2=  0 = f. 

Definition. The deformation F is infinitesimally R+-versal if its initial velocities c9F/0~.11 ~=0 . . . . .  cgF/O~h [ x=0 generate 

the linear space Qf+. 
It is easy to show that the R+-versal deformation defined in the obvious way [3] is such if and only if it is infinitesimally 

R+-versal. 

1.1.5. The k-parameter R+-versal deformation of the projection f is also a k-parameter versal deformation of the complete 

intersection f(x, u) = 0 and a (k + 1)-parameter versal deformation of the complete intersection f0(x) = 0 (the additional 

parameter is u). The space C l+k, (u, ,~,) E C l+k, will be called the extended parameter space. 

Definition. The discriminant A of the projection f is the discriminant of the complete intersection f0(x) = 0 lying in the 

extended parameter space of  the R+-versal deformation F. 

A C C l+k is the set of  critical values of the projection ~ '  : (x, u, ~) ~ (u, ~.), restricted to F = 0. 

1.1.6. Let the heigh~ ,anction u have an isolated critical point (x, u) = (0, 0) on the set f(x, u) = 0 (the critical points of 

the height function are the singular points of the projected set). Let [~ = F[~=const, Yx = {F~= 0}. 

For almost all sufficiently small values of the parameter,~, the function u has on YX the same number/~ of critical points 

close to 0 E C n+l. 

Definition. The number/ ,  is called the multiplicity of the critical point (x, u) = (0, 0) of the height function on the germ 

f = 0 .  

Definition. The bifurcation diagram Z C C k of  the projection f is the germ at zero of the set of values of the parameter 

2 such that the height function has on u no fewer than ~t critical values occurring near the point (x, u) = (0, 0). 

is the bifurcation variety of the/~-sheeted covering A--+C h, (u, ~,)~-X, and in general consists of three components 

(the notation follows [5, 7]): 

A 2 corresponds to degeneration of the critical point of the height function on a smooth Y~; 
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A12 is the Maxwell stratum (the values of  the height function coincide at different critical points on a smooth Y2); 

B 2 corresponds to nonsmooth sets Y~. 

1.2. The Numbers /z  and r. 

1.2.1./Z is the intersection index in the extended parameter  space C l+k of the discriminant with the straight line 2 = 0. 

Let lc ~ O  (n-t- 1) be the ideal generated by the coordinate functions fl ..... fm of the map f and all m-minors of  the matrix (Of/Ox), 
i.e., by the equations determining the critical points of  the height function on the manifold f = 0. Let tYc =r ( n +  1 ) / l c  be the 

space of functions on the critical set. From [21, Sec. 4] we obtain 

Proposition 1.1. IX= d imc ~ c .  

1.2.2. The multiplicity of a critical point of a function on a smooth manifold is equal to the dimension of the base of the 

R-miniversal deformation of the function. This classical result is extended in its entirety to singularities of  the height function. 

THEOREM 1.2. [8]. For the projection to the straight line,/z = T. 

COROLIARY 1.3. Let f be a qusihomogeneous projection and q',  q" the Tyurina numbers of  the complete intersections 

f(x, u) = 0 and f0(x) = 0. If n > m, then r = q'  + q". 

The proposition follows from [11, 20] and the fact that for a quasihomogeneous complete intersection of positive 

dimension the Tyurina and Milnor numbers coincide [19]. 

1.2.3. Let F be a representative of the deformation (not necessarily R+-versal) of a projection having a finite R +- 

codimension. Consider on F = 0 a coherent bundle of (YA modules, 0 E A c ck: 

gr = OF~-,(O) / ~YF-'(O) ( OF / OXl . . . . .  OF / Ox~ ) .  

The support  of  9" is the set of critical points of the map st' J F=0. 

Consider the direct image Jc,~,, where u : (x, u, ~,) ,-* ~. From [8, Sec. 2] we have 

Proposition 1.4. There exists a neighborhood A'  of the point 0 E C k such that (n,Sr')A, is a free bundle of O',~, -modules 

of rank r. If the deformation F is R+-miniversal (k = T+), thenar,(OF/O2),ar,(OF/O)`l), ..., Jr,(0F/02 0 are free generators of (n,5 r') ~ ,. 

2. VECTOR FIELDS PRESERVING THE DISCRIMINANT OF A COMPLETE INTERSECTION 

2.1. The General Case. Let the map G: (C n+l+k, 0) ~ (C m, 0) define a versal deformation of the complete intersection 

go = 0, and let )` = ()`0,--', )`k) be the deformation parameters, x E C n. The discriminant of go lies in the parameter space: 
A C C k+l.  

Assume that the deformation parameters have been chosen so that the axis 020 has a finite intersection index/Z with A. 

Denote by g = g(x, 'to) the restriction of G to ;tl . . . . .  )`k = 0. Consider the projection g-1 (0) ~Cn+I __,,. C, (x, %0)~%0. By 

Theorem 1.2, ix = dimeQe , where 

Q g = O m  (rt + 1)/{g* (at (m)) O 'n (n-I- 1) +C~ (tzq- 1) ( Og/Oxl . . . . .  Og/Ox~ > }. (1) 

Since G is a versal deformation of go = 0, the preparation theorem implies that as the basis of  the/z-dimensional space 

Qg we can take the restrictions to )`1 . . . . .  )`k = 0 of  the elements 

OOl O~o . . . . .  ~'-~OQlOho, OOlO~t . . . . .  ~ ' -10010~1 . . . . .  (2) 

OO l O~k . . . . .  ~.~ok-l OQ / O~, 

where all/zj _ 0 and/zo + / z l  + .-. + /zk  =/Z. 
The preparation theorem also implies the existence of the expansion 

/t 

~,~o]OG/O~v =--. ~ vqOG/O~,, q- ~ tt,iOQ/Ox * rood Q* (at (t~)) (Y" (nq- 1 .4- k), ] = 0  . . . . .  /t. 
i~O s=l  

Here hsj(X , )`) are germs of holomorphic functions, vii(), ) are polynomials in the variable )`0 of degree strictly less than/zi (if/zi = 

0, then vii = 0). 
TI tEOREM 2.1 [8]. The algebra ~a of germs at 0 E C ~+k of holomorphic vector fields tangent to the discriminant A of 

the complete intersection go = 0 is generated by the fields vj ~= ~ (vq--Gq~J)0~l ,  j = 0, ..., k, as a free O'(1 + k)-module 

(6ij is the Kronecker symbol). 
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Remark. For m = 1 and g = go + A0, this proposition coincides with the theorem of Zakalyukin on vector fields tangent 

to a front [9]. 

2.2. The Number  of Basis Field Vectors Linearly Independent at a Given Point of the Discriminant. Let GX = G [ 2=const 

and let the manifold GX = 0 have singularities only at the points x 1 .... , x r. The Tyurina numbers of these singularities are 

q~ = dimc ~m (n) ~,l (0" x,x t (~ (ra)) (7= (rt) xt + lY (n)xi ( OOx,xtl c)xl . . . . .  OO~,x~l c)x~ ) }. 

Here Ox,x~ is the germ of the map G;~ at the point x i E C n. 

If we consider the multigerm space 6 U "~ (rt) x~ , then q(;t) = ql + ... + qr is the codimension in this space of the orbit 
i = l  

of the multigerm of the map G~ relative to the contact group. We will show that q(2) determines the number of basis field vectors 

v0, . . . .  V k ~ A ,  that are linearly independent at a given point 2 E C l+k. 

Proposition Z Z  C o r k  ( v i i -  6uX~t)lx-eonst = q (~). 

Proof. It suffices to take G as a miniversal deformation, i.e., 1 + k = q(0). Then in (2) all pj > 0. 

Assume that Z~--~(~,I . . . . .  ~ ) .  In a sufficiently small neighborhood of zero /V, c C  k consider the bundle 

~ = ~ .  (a~-,(0)/G~o-,(0) ( OOlOXz . . . . .  OOlOXn ) ), 

where n (x, ~'0, ~) = ~. 

By Proposition 1.4, [9 is a free bundle of tYX-modules of rank/z. The direct ~r-images of (2) are the generators of ~ .  The 

expansion coefficients of  the polynomials vij in powers of 20 (holomorphic functions of 2)  define the matrix A 0 of multiplication 

by the function ;t o in [~ in this basis. The value of A 0 at a particular point 2 is the matrix of multiplication by 2 o in the F- 

dimensional space ,~/at (k)E~.  For example, the operator A0(0 ) acts on Qg. It is nilpotent and its corank equals codim% Im 

A 0 (0) = 1 +  k = q  (0). Here, 0 is the only critical value of the function ;to on the set {O [~-ffio= 0} c C  ~+~. 

For an arbitrary ~ '~C  ~ , everything remains the same. Let ~,~0 . . . . .  k(o ~) be all possible critical values of the function 

;t o on the set {(2 [E=eonst -~-0} ~Cn+l" " For each ;to (t) there is a subspace V t in ~ / a t  (k)X-,~3 on which the operator Ao(~ ) --~,toO 

E is nilpotent. The dimension of the subspace V t is equal to the sum of the multiplicities of the singular points of the height 

function ;t o on G I~-=const ~ 0 on the critical level ;t0(t). The number of eigenvectors of the operator A0 (~),contained in V t is 
$ 

q (~'(~ X)" X dim Vt = Ix, therefore {21 (1) ..... ;t0(s)} is the spectrum of A 0 (~) and cork (A o (~)- -Xtot)E)= q (~,(o t), ~).  
1 

This concludes the proof, because we can now easily note that the coranks of the matrices A 0 (~)--~,~0~)E , and (v U - -  

6,jZ'0 ~j) t~.=(~,CJ),~ -) are equal. 

2.3. Quasihomogeneous Complete Intersections. Consider an isolated singularity of the quasihomogeneous complete 

intersection g0(x) = 0 of positive dimension. Let GECt,~ ( r t+q ) ,  n >  m,  be its q-parameter quasihomogeneous miniversal 
q 

deformation, and Wl, . . . ,  Wq E Z the weights of the parameters ~,1 . . . . .  ~ 'q ;  ~ =  (~,1 . . . . .  Lq). The Euler field e = ~ wik~0z~ 
i = l  

preserves the discriminant A C cq. We wilt show how the remaining generators o f  9.Ia are expressed in terms of e. 

2.3.1. Let t I ) : = ( ~ i  (~)) be the matrix of multiplication by some function q~Et7 (tt) in the (9' -module 

9~ = t7 m (tz + q) / {O* (m (m)) tY m (n + q) 

+~Y (n +q) ( O01c)x~ . . . . .  OOlOx, ) } 
in the generators 0G/a21 .... , dG/OAq: 

q 

 ao/azj = ,ljoo/o t. (3) 
i ~ l  

exists because of versality of  G, but it is far from being unique: it is defined up to the addition to its columns of other 

columns formed from the components of any fields from ~ .  

We identify a vector field on cq with the column of height q formed from its components. 

LEMMA 2.3. (De~a .  
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Proof It suffices to show that ((Pe)G = 0 in 9~ Indeed, by (3), we have in 

i~ l  j = l  j = l  i~ l  j ~ l  

because G is quasihomogeneous. 

2.3.2. Consider the ideal I c t Y  (n) generated by the coordinate functions of the map go and all the m-minol~ of its Jacobi 

matrix (0g0/0x). The dimension of the linear space CY(n)/l is equal to the Milnor number of the singularity go = 0. We have 

noted in 1.2.2 that for a quasihomogeneous complete intersection of positive dimension it is equal to the Tyurina number, i.e., 

q in our notation. Let qh . . . . .  q0#tY(n) be the representatives of the basis of ~Y(n)[I. and (Pl,.-., (pq the corresponding 

multiplication matrices in 9~. 

THEOREM 2.4. The fields (pie, ..., (pqe are the free generators of the (7 -module of the vector fields tangent to the 

discriminant of the isolated singularity of the quasihomogeneous complete intersection go = 0 of positive dimension. 

2.3.3. Before proceeding with the proof, consider the following example of the curve S 5 in C3: go = (x 2 + y2 + z 2, yz) = 

0 [14-17]. Its miniversal deformation is 

O = g o +  O~3Y+)~4z+;~5, ~,, +;~2x) ; 
( 7 ( 3 ) / I = C < I ,  x, y, z, x~>. 

The fields (Pie are written out by rows: 

1.e-----e=(2L,,  ~,2, M., ~,4, 2L5), 

Xe = (2~,~-- 2~,2~,5, 2L,, 4 ~  4, 4J~2~ , 3L2~3~,4 - -  4~,,~r 

1 1 2 1 Ye = (~2~4 +~- XlXa, -~ X2~s, -- 2~ 2 -  ~ ~ + 2~, -- 4~,1, 

Ze = (Z~b3 + 1 I 

- 3 ) ~ , ~ -  )~4),  

X2e = (6~,I~,~- 3 

6~,~)~a + 4~2~L4, - -  8L~ + 4X, Xa~,4 4- 2)~ ()~2 + ~,~)). 

The intersection index of the axis 021 with A c C s is 6 (by Proposition 1.1, the index is the multiplicity of the critical point 

0 E C 4 of the function ;l t on the surface go + (0, ;lI ) = (0, 0)). On the same axis, det(((pie)j ) = 51291.16. Hence, as in [8, See. 3], 

we easily obtain Theorem 2.4 in this particular case. 

2.3.4. Ptvof of Theorem 2.4. Consider an auxiliary (1 + q)-parameter quasihomogeneous deformation of the complete 

intersection go = 0: 

0 (X, X0, K , , . .  K q ) =  O (X, w x . ,  tOq ., ~+(z tX0  ,.o Xr ), 

w h e r e  ~ i  = 0 for W i -- 0. For a general choice of the remaining constants ai, the axis 02 0 has a finite intersection index with the 

discriminant /%cC ~+q, Alq {go=~-0j=A. Theorem 2.1 gives the generators v o ..... Vq of the module ~z~ For example, 

q 

r Oal ( f o r  c*~4=0w~>l) .  
t=l  

For the fields vl, ..., Vq the coefficient of 02o is zero. We call these fields vertical. 

v~ I Xo=O . . . . .  o ,  ] x~ generate ~a. Our aim is to show that they are expressible in terms of the fields of Theorem 2.4. 
q 

a) Let g----- O [ U=0 and *t = 0010Z,~ I V-0" Any element from Og (see (1)) is uniquely expressible in the form , ~  p~ 

(~'0) ~t, where Pi is a polynomial of degree not lower than kti > 0 (see 2.1). 

As in 2.2, consider the action on Qg of the operator Ao(0 ) (multiplication by ,t0). Let 

p :Ke r  Ao (0) ~ (~, ,r  (1 + q) ~L~ep,) [ r -o  - -C  < v~ I ~--o . . . . .  vr ~--o ) ,  
q q 

(Zo) ,, zop, 0.o) 
t=I l--1 
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The construction of the basis fields ~ in 2.1 leads to 

LEMMA 2.5. p is an isomorphism. 

Ker A0(0 ) C Qg also has an alternative description. 

LEMMA 2.6. Ker A0 (0) = ({7 (n) [I) c)g/O~.o. 
Proof. The quasihomogeneous complete intersection of positive dimension g-l(0) C C n+l has an isolated singularity. 

Therefore by [1, p. 499], h0g/020 = 0, hEO' ( n+3 )  in Qg if and only if h is contained in the ideal generated by the coordinate 

functions of the map g, all the m-minors of the matrix (0g/0x), and the element 20. Therefore, all the elements from (~ (n)/I) c)g/c)Lo~(Tg 
are nonzero and lie in Ker A0(0 ). The lemma follows from equality of the dimensions of ~ ( n ) / I  and Ker A0(0 ). 

q 

COROLLARY 2.7. In Qg, epic)glOW, o := X ~ilP -~ (vtl V-o), J = 1 . . . . .  q, ~'ij(~C. Also det(Yij ) ~: 0. 

b) The Euler field eE~ta is extended to the Euler field e+X00~,~=. Adding a0v0, we obtain the extension of e to the 
q 

w l 
vertical field e + 6, where ~ ~--- ' ~  ~o~ ,0  0~. r 

Similarly to Lemma 2.3, we can easily show that q)(e + d) is the extension of any field ~e  E ~,~- to a vertical field from 

g ~ ,  where the matrix ~, (e +~) ,  is obtained from ~(~-) like the mapping G is obtained from G. 

q 

we have ~(e+8)-----~ ~,v~, I~,~a 0 +q). 

Let us find fli(0). For 2- = 0, 
q 

O(e+~)----- ~ -  w Oq I~=o~jWjho ~Oh~. 
i , j= l  

In Qg, 
q q 

% Ir=0~j*jXzJ-'00/oz, Iz=0 = ~  ~ =J=J~oJ-'oo/oxj It=0 = ~0g/ox0. 
i,]~=l ]~1 

The values of/~i(0) are obtained from the expansion in Qg 

q 

~og/OXo= ~ ~, Io)p-' Iv, It.0). 
q 

The theorem now follows from the fact that by Corollary 2.7 the matrix (Fij(0)) the expansions ~1 (e + 6 ) =  X F,jv,, 

i = l  . . . . .  q, P q G O ' ( I + q )  is nonsingular. 

2.3.5. The generators (I)je may be taken quasihomogeneous. The Poincar6 polynomial of the space ~(rt)/I ~ is calculated 

in [4]. The results of [4] lead to 

COROLIARY 2.8. Let A1, ..., A n and D1, ..., D m be the weights of the arguments and of the coordinate functions of the 
r n  /1 

map go, B ~- X D l - -  X Aj. The Poincar6 polynomial of the set of quasihomogeneous generators of ~a is given by 
1 ~ I  j ~ l  

/ (~A/m(q) ~,,, O=r~s~_o--i- ~ s"-,,,-' I I  O-t~ ]el 11 - c % -  
i - -1  j ~ l  

] ~ t B H  l+s  tAI l_tOl 
j--1 1--t Ai i=1 l + $ t  Dt { - 5 - 2 t B  " 

Remark. The same result can be obtained without Theorem 2.4, using only Lemma 2.5. Ifw o is the weight of2 o (previously 

we had w 0 = 1), then 

P (~A/m (q) ~Z~, t)-----t~~ (Ker Ao (0), t} = t =o [(t*o-- 1) P (T', t) + P  (T", t)], 
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TABLE 1 

- -  - -  2 I u " ~  ~, - ~  ~,= .. �9 "~ ;~p--= -~ ~,p--, 

4 3 
0 0 u - . .  "~ ~ *  ~ ~'t,-, 

=* *  ~=s  o==  s ,=  -=o  . - .  

0 0 0 . . .  0 u 

0 0 0 . . .  0 - -  P +----~q ;Lp+r 
q 

0 0 0 . . .  0 0 

= l .  , B o  ~ 1 7 6  , = .  ~  = . ~  

0 0 0 . , .  0 0 

0 0 0 .~. ~q2(P -F - - ( p  + 1)s 
+ 2)7,p+ 

q- - I  - -  2 
q ~.p - ~ . , o + ~  "'" "~ Zp+r 

o o . . .  0 

0 0 . . .  0 

o . ,  . , ,  , ~ .  . ~  

0 0 .., 0 

q ~ l  3 

4 
0 u �9 �9 �9 p + c . - t  

~ 1 7 6  =|  ~  ~  

0 0 , . .  0 

0 0 . . .  0 

! 

p-l-q. 
- - - ~ , p + q _ ~  

o 

o 

2 
"~ Zp+c--s 

3 Xp+q-, 

. . ~  

P + q  . 
- - ' ~ "  A,p+q. . .  

O 

o 

. . ~  

o 

o 

o 

.=| 

o 

~t 

where 

T'_-=-(Y,n(~-]- 1)/{g* (nl(m)) <Y'~(n-+- 1) + G ( r t - + -  1) ( Og/Ox~ . . . . .  Og/Ox~, Og/O~ o > } 

and T" is the corresponding space for go- The polynomials P(T' ,  t) and P(T", t) are described in [1, p. 479]. 

3. DISCRIMINANTS OF PROJECTIONS 

3.1. Vector Fields Preserving the Discriminant of a Projection. Let F EO ''~ (r~ + ~r) be a R+-miniversal deformation of the 

projection f (recall that r = 1 + r +, see 1.1.3). By R+-versality, we have the expansions 

ttOF / OZj=-- ~ v~jOF / O~,~ + 
i = O  

n 

+ ~  k s j O F / O x ,  m o d F *  (ra (m)) tY~ ( n + z ) ,  j = 0  . . . . .  x - -  1. 

Here vij(;t ) and hsj(x, u, ;t) are germs of holomorphic functions; A 0 = u, but 2 = (~1, "", 3tv-1)" 

Let 6ij be the Kronecker symbol. Using Theorem 1.2, we can prove 

THEOREM 3.1 [8]. The algebra ~a of the germs at 0 E C r of holomorphic vector fields tangent to the discriminant A 

of the projection f is generated by the fields v I ~ Z (vil - -  6tjtt) 0x i, j = 0 . . . . .  T - -  1, as a freeO' (x)module. 
i = 0  

3.2. Example. Consider the miniversal deformation of the simple projection Cp,q, p ___ q _> 2, of a three-dimensional curve 

on the straight line [5, 7], 

F (x, ~, ~) =(x f  + ~p_~f-1 + . . .  + Zlxl +u + x~ + ~p+~_2x~ -~ + . . .  + ~pX~, xlx2 + ~p+~_~. 

Note that the same map defines a miniversal deformation of the complete intersection Ip,q [15, 16] (u is regarded as one 

of the deformation parameters). Therefore the discriminant of the projection Cp,q coincides with the discriminant of  the multiple 

point Ip,q. By Theorem 3.1, we obtain the basis of ~a for the first singularities in the series (the components of the field vj 

multiplied by some integer are written out by (j + 1) rows of the matrix): 
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p = q = 2: /" 2u Xl X2 2L3 \ 
[ - -  6~.2~3 4 u - -  ~.] - -  8L3 XlX3|,  

\ 4 ~  3 - -  2~,1~,2 - -  3L2 - -  3~,1 U /  
p = 3 ,  q = 2 :  

6u 4Z, 2)~2 3Xs 5~,, \ 

- -  36~s)~ , + 4~ 3 

\ --2~,Xs + 4~,~o~ ~3~ + 5L~ --4;~, ~3~,t 

Table 1 gives the matrix of components of the linearizations (v~ t of the basis fields of ~/, (C~,q). It is easily 

constructed using the matrices of multiplication by x I and x 2 in the linear space 

(75 {2)/{f* ~ (ra (2)) 17z (2)+(Y (2) ( O f o/c)x,, O f o/C)x: > } N C  < OF /Ou]z=o, OF ]O~l ]~,=0 . . . . .  c)F /OJ~p+q-1 Ih=0 >,  

where f0----- (xf  + x~, XlX2). In what follows, knowledge of the linearizations of  the generators of  9ga will be needed in order 

to examine stability of the general function on (CL 5). 

3.3. Stable Functions and Itypersurfaces. Stability of functions and hypersurfaces in the space of versal deformation of 

a simple function relative to the group of discriminant-preserving biholomorphisms was considered in [12]. Here we examine the 

same topic in the extended parameter  space C ~ of the R+-miniversal deformation of a simple projection. 

Definition. A-stability (A-equivalence) is stability (equivalence) relative to the biholomorphism group of the pair (C r, A). 

The following proposition is proved by traditional methods (see, e.g., [3, 12]). 

Proposition 3.9_. The germs at 0 ~ C r of  the function h and the hypersurface h = 0 are A-stable if and only if resp. 

m(~)=(7(x) < voh . . . . .  v~_,h > +r~2(,O 

and 

m(z)=(7(z) < voh . . . . .  v~_,h, h > +~(~). 

COROLLARY 3.3. Let v (0) = 0 for any v ~ a  and let vj 0 be the linearization of the basis field vj. Then A-stability of 

the germ at 0 E C r of the function h is equivalent to the condition 

C < u, Xl . . . .  7.~_, > = C  ( v ~ h , . ,  o �9 . ,  v , : _ , h  > r o o d  r~2 (x) ,  

and A-stability of  the germ of the hypersurface h = 0 is equivalent to the condition 

C < tt, X,, . ,  ~,,_, > = C  < v~ o as . . . .  v ,_,h,  h > rood (~). 

COROLLARY 3.4. If v(0) = 0 for any v6~A, then A-stable germs at 0 E C r of a function and a hypersurface are A- 

equivalent to their linear parts. 

It is also. obvious that A-stability of the function h implies A-stability of the hypersurface h = 0. 

3.4. Let us elucidate what simple projections have discriminants on which stable functions and hypersurfaces exist. 

The R+-classificatic.~ of  projections of smooth manifolds on the straight line coincides with the R-classification of smooth 

functions. The discriminants also coincide. Stable functions on discriminants of simple functions, as we have noted previously, were 

obtained in [12]: these are the lowest-weight parameters in the base of the quasihomogeneous miniversal deformation. 

Discriminants of simple projections of plane nonsmooth curves (Bk, Ck, and F 4 in [5]) are cylinders over the discriminants 

of the series A (resp., A1, Ak_l,  A2). The list of stable functions on such sets is also given in [12]. 

It remains to examine the projections Cp,q, p _> q >_ 2, and Fp, p >_ 7, of  spatial nonsmooth curves. It turns out that if stable 

objects exist, then their normal forms are entirely analogous to the normal forms from [12, 9]. 

Before stating the final result, we write out the R+-miniversal deformations of  projections of the series F: 
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The deformations are quasihomogeneous. The parameters 21 and/12 have minimal weights. The following theorem deals 

with extended parameter  spaces C r of these particular deformations and of the deformations Cp,q from 3.2. 

THEOREM 3.5. 

a) The germ at 0 E cP+q, p _ q _ 2, of  the hypersurface of general position is A(Cp,q)-stable only for q = 2. In this case, 

it is reducible to the normal form 2p_ 1 (the minimal weight parameter).  

b) The germ at 0 ~ cP+q, p ___ q __. 2, of  the hypersurface of general position is A(Cp,q)-stable only for q = 2 and p > q = 

3. In the first case, it is A-equivalent to the germ ~-p-I = 0, in the second case to Ap_ 1 +/1p+1 = 0. 

C) The germ at 0 ~ CP, p _> 7, of the function of general position is A(Fp)-stable only for p = 7 and p = 8. For p = 7 it 

is A-equivalent to the germ/11 + ;t2 and for p = 8 to the germ/11- 

d) The germ at 0 E CP, p _> 7, of the hypersurface of general position is A(Fp)-stable only for p = 7,8,9,10. For p = 7,9,10 

it is A-equivalent to the germ/l  1 + A 2, and for p = 8 to A t = 0. 

Remarks. a) Since the maps defining R+-miniversal deformations of the projections Cp,q and Fp define miniversal 

dcformations of the simple complete intersections Ip,q and Ip [15, 16] (u is an additional parameter),  Theorem 3.5 also classifies 

the stable objects on the discriminants of these multiple points. 

b) Theorem 3.5 is consistent with part of  the classifications of simple projections of manifolds from [7]. 

Quasihomogeneity of the miniversal deformations of projections plays a central role in the proof  of the negative part of 

the theorem (on nonexistence of A-stable objects in many cases). Theorem 3.1 leads to 

C O R O L l a R Y  3.6. If the R+-miniversal deformation of a projection is quasihomogeneous, then the weight of  the basis 

field vj~[.~ is equal to the difference of weights of u and ,tj. 

Proof of Theorem 3.5. We will only prove part a). The rest is proved similarly. 

Thus, consider the singularity Cp,.q. Assuming that the weight of x 1 in its quasihomogeneous deformation in 3.2 equals 

q, by Corollary 3.6 we obtain the Poincar6 polynomial of the set of  generators of  ~ 

Pv (t) = ( tP~--l)  ( t q - - 1 ) - : +  (tP~--t ~) ( / P - - 1 ) - : + t P q - P - t  

The Poincar6 polynomial of the set of linear homogeneous functions on C r = cP+q (with 1 having the weight 0) is 

PL(t) = (tPq+q--tq) ( t q - - l ) - ~ +  (tPq--tP) (t,--l)-~+tp+q. 

The minimal weight of a parameter from cP+q 0~p_l) is q. The function of general position contains lp-t in its expansion. 

For (p, q) ~ (2, 2), one of the generators of 9~n is of weight 0, and the remaining generators are of positive weight; all the 

generators vanish at 0 ~ CP +q. Applying Corollaries 3.3. and 3.4 and the spectral sequence in order to reduce the functions to 

normal form [3], we see that if the function is A-stable for (p, q) r (2, 2), then it is A-equivalent to its linear terra of weight q and 

PL(t) = tqPv(t ) (in other words, the linear part of the function should be reducible to normal form by the zero differential of the 

spectral sequence). 

This polynomial equality is possible only for q = 2. Thus, for q > 2, the functions have no A(CP,q)-stable germs. 

A(Cp,2)-stability of  the germ at 0 ~ CP +2 of the function 2p_ 1 now follows from Corollary 3.3 and the fact that the elements 

oi%p_~ _-- vp_l , o  i of the matrix vii~ introduced in 3.2 (q = 2) generate Ig (p ,--~-2). 

Note that any function h such that (Oh/O~a (0))2:/: (OhlOk~(O)) ~ for p = q = 2 or Oh/OL~-I (0) :r for p > q = 2 

has A-normal form Ap_~. 

4. BIFURCATION DIAGRAMS OF PROJECTIONS 

4.1. Vector Fields. Consider the R+-miniversal deformation F0gY = (n+ '~ )  of the projection L By versality, we have the 

expansions 

~'--1 

tt]OFlOtt~--~wijOF/O~.i + h~]OF/Ox, modF*(m(rn))(~'n(n-~-,), ] = 1  . . . . .  .c--l .  
i~O s = l  
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Here wij(;t ) and hsj(X , u, 2) are germs of  holomorphic functions; ;t o = u, but ;t = (;tl ..... ;tr-1)" 

THEOREM 4.1 [8]. The algebra 9Jz of the germs at 0 E C r-1 of the vector fields tangent to the bifurcation diagram of the 
"g--I 

projection f is generated by the fields ~ ~ X z~iOz~, J = 1 . . . . .  x - -  1 as a free O' (1:-- 1)-module. 
~=~ 

Remark. For m = 1 and f(x, u) = f0(x) + u, Theorem 4.1 coincides with the theorem of Bruce [13] on vector fields that 

preserve the bifurcation diagram of the function f0. 

4.2. The Number of Linearly Independent Basis Fields. Let F~ = F [ ~.=const; let Ul, ..., u r be all possible different critical 

values of the height function on the manifold YZ = {F~ = 0}; let X i be the set of x-components of the critical points of the height 

function on Y2 on level u = ui; let Te~,(~,,,~)CC/"~ (tz ~ 1)(~,,~) be the tangent space to the R-equivalence class of the germ of 

the projection F~ at the point (~, ui). 

The projection p:(x, u)~tt induces on | fY"z(n a -module structure. For example, the 

codimension of the RL-equivalence class of the germ of the projection f at the point (0, 0) ~ C n+l equals dimc~Y"* (n ~ 1)/(Ty 

-}-~ (1) Of/Ott), and the corresponding codimension of the multigerm of the projection Fg at the points (~, ui), x" ~ Xi, is 

v~ = dime [ ( j 3  ~m (n + 1)(~, . 3 /T~x  ' (-/-,~)) / O' (1)~aFx/Ou]. 
xExi 

Proposition 4.2. 

cork ( ij (~'))~,j=l = vl + . . .  + Yr. 

We thus assert that at the point ;t ~ C r-1 the number of linearly independent vectors of basis fields from ~ is equal to 

the dimension of the RL-equivalence class of the corresponding multisingularity (see [13, proposition 9]). 

Proof. Consider the r-dimensional linear space responsible for the R-codimension of the multigerm of the projection FX 

at all the critical points of  the height function on Y~: 

Qex o C ~n (n 

Its basis is O F x I Ou, a F / O X l I ~=~o~t . . . . .  OF / 0 ~.,_11 ~=~o~, t. 

Consider in Qe z the subspace W generated by the elements ua0F1/Ou, a = 0, ..., r - 1. From dimensional considerations 

we conclude that W also contains all the elements ua0F;t/0u with a __>_ 3. Thus, 

T 
QFx/W= @ ~ [( G ~yra fit+ 1)(Zu,)/T~ x (~.,,3~/~Y ( lhzaF~/du] .  

�9 = k~'iEx i - , , } J 

Hence, codim W = v I + ... + v r. 

On the other hand, W is the image of the linear map of the space C ( 1, tt . . . . .  tt ~-1 ) 0F'x / 0tt: to the space Q e~ defined 

in the bas is  OFx/Ott, OF/O~ll ~=co~st . . . . .  aF/O)~x-ll ~ o , s t  by the matrix 

1 ~r " ' "  "dg30,'r "~ 
0 r H �9 �9 wl .x-I  | .  

"0" ~-- l , l [  ] ~--I,'r ,] ] 
All the functions wij are evaluated at the point 2. The codimension of W coincides with the dimension of the kernel of this map, 

i.e., with cork (r (%))~1=i. 

4.3. Fields Preserving the RL-Bifurcation Diagram. Let F'~CY "z (tz--[-1-l-v) be the RL-miniversal deformation of the 

projection f, 2' E C v its parameter. If as before T is the R-codimension of  f, then there exist the expansions 

MOF'/Ou~ ~,~ ~jjOF,/OZ I + Z hsjOF'/Ox, modF'* (m (m)) ~m(n + 1 q-v), j = x - - v  . . . . .  x - - l ,  
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where w0j(u, 2')  are polynomials in u of  degree not higher than T - 1 - v; w'ij 0d), i > 0 and /~y (x, u, ~/} are germs of 

holomorphic functions; )i0' = u,/ l '  = (21', .... )Iv' ). 

Let X' C C v be the bifurcation diagram of the projection f (it is connected with 57 by {C v, Y/) X C ~ - l - v ~  (C ~-I, 21 ). 

COROLLARY 4.3. The algebra g~. of the germs at 0 E C �9 of  the vector fields tangent to Y' is generated by the fields 
v 

w'j = ~=1 ~OiJ0x~' j - - - x -  v . . . . .  ~ - -  1 as a free U -module. Here wj'(0) = 0 for all j. 

The corollary follows from Theorem 4.1 and Corollary 4.2 if we note that 

rain {~[ tt~O f / OttET i} =~'r v. 

4.4. Quasihomogeneous Mappings. 

COROLLARY 4.4. Let f be a quasihomogeneous mapping. Then all the vector fields preserving its bif~arcation diagram 

in the space of the R+-miniversal deformation vanish at the origin. 

The converse of this proposition would follow from a generalization of Saito's theorem on quas~homogeneous functions 

[24]. 

Conjecture 4.5 (criterion of quasihomogeneity of  a complete intersection of positive dimension). Let the projection on the 

axis u of the complete intersection f(x, u) = 0 be of  finite R-codimension, /~fiC e'~ ( t ,+ ' l ) ,  xfiC ~, u6C, n ) m .  The germ at zero 

of the set f = 0 is biholomorphically equivalent to the germ of a quasihomogeneous complete intersection if and only if 

uOf/Ouq* 1) 1) <Of/Ox: . . . . .  Of/Ox.). 

4.5. Terao Type Formula. In order to compute the generators of the module Pgz it is helDful to use the matrices V = ev. .~ ~- . t ~JJ i , ] ~ O  

of the components of  the generators of the module 02~ (see [30]). From the expansions in 3.1 it follows that V is the matrix of 

multiplication by u in the free O ' ( z - - 1 ) .  module (Y'~ ( .n+z) /Ts  in the basis 0F/0u, 0F/0)I 1 .... ,0F/02r_l:  

uOF / O~,j ~ ~ v~jOF / 0~.  

Therefore, if ~r~: (t t, lk)~ ~, and the vector field is represented as a column of its components, then Theorem 4.1 leads 

to 

COROLLARY 4.6 [8]. The generators of the module ~ are given by the formulas 

•j = < [vJ-l~.01, y = 1 . . . .  , x -  1, 
'g--1 

where ~0 = ~ v~oOz~ = vo + ttOu. 
t = 0  

4.6. Functions of General Position and tlypersurfaces. Let us indicate the normal forms of  the general germs at O E C T-: 

of functions (h) and hypersurfaces (F) relative to the group of biholomorphisms preserving X, for projections of  R+-codimensions 

2 and 3. The normal forms were obtained using a spectral sequence [3] and the action of basis vector fields from ~= on the 

functions. These fields differ from the fields of Theorem 4.1 in that they are multiplied by some integers, and we write them out 

only to the extent that it is needed for reduction of the object of general position to normal form. 

Figures 1 and 2 show the bifurcation diagrams of tile singularities. The notation of the projections follows [5, 7]. The 

bifurcation diagrams of the projections of  smooth manifolds (Ak, Dk) are the bifurcation diagrams of the corresponding 

singularities of  smooth functions (it is easy to see that the same also holds for more complicated projections of smooth manifolds). 

The bifurcation diagrams of the projections of  series B coincide with the discriminants of  functions of series A. In the normal 

forms below, a i E C are the modulus numbers. 
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Aa: x4+ 7,tx2+Mx+u=O, wt----(2~,~, 3X2), 
Y~: ~,218;~a+27)~=0, wa--=(9X2--2~,, ~, --7~r 

Ba: u~+Z, t t t+Z,2=0,  wt=(2~,t,  3X@, 
X: 4~,~+27~,22=0, w2=(9;%, --2~,,9, 
h: ~,, F: X,=O [12]; 

C~: x~+X,x~+ux+X~----O, wt=(Xt ,  3~r 
Z: L~ (L~--27~,z) =0, w~= (9)~2--)~, --41,~), 
h: ~,, F: )~x=O; 
4--1360 6 

A4: 

B4: 

C~,2: 

x~ + Xxxa + X2x~ + Xax + u=O, w~ ---- (23,~, 3~r 4~%), 

l lTX x., l 2XN , 

r :  Xx+M+~z#a+c%X~=O, 

u<+ Xt# +~%~u+Xa=O, 
"2 = (6M, 8M-- 2 ~ ,  - -  ;~,X2), 

~ = (2)~,, 3~2, 4)~), 
*a  = (I 6)~a- 8~, ~, - -  14)~,,)~ 

F: )u----O [12]; 
C4: x4+;~,xa-kTaxZ§ wa=(~,,, 2Zo_, 4Xal, 

w2 I ~ , = o = ( ~ +  12~,3, 0,0), 
wa 1~,=o---- (0, --  ~,~ + 72;~ + 18,%~, 

D4:x~x2 + xg -~- ~IX~ J U ~2X2 @ ~3X1 ~- I . /=  0, 
( bifurcation diagram DI: +x2,x~+x~ + .... O) 
w~ = (~,,, 2x2, 2z4, w~ k~=o.= (z,~-3z,~, 0, 0), 

2)~ 2 -  9~,2~ a -~- 9~,z, 
h: ~,1 + =~,2 + %~,a-t- c%~.2~ z._t_ z a 3 -~-%Xa , %M~,a +r +%'%~'%a, 
=1 (27% 2 -  c~) q: 0, 

F4: xa+u2+~,,x+~ux+)~=O, w,==(4~, M, 6X~), 
w2 la,=o---= (0, ~,~, 0) wa [a,=o=(36~,,)~, 0, 27~,~2--4~,,~),. 

(x~ + x~ + X~x, + X~x~ + u, x~x~ + Xa) = 10, O) 
( bifurcation diagram -- El,2: (X 2 + Xg~- . . .) = (0, 0)) 
w,=(~,, z=, 2~a~ ~o~=(~+32~,  ~+32~a,  -~x~-~gza l  

F: ~., + ~,~ + ~,~2+=~.~----- O, (~, -- 32~) (a~-- I) a~ v~ O. 

The picture of the bifurcation diagram C2,z+ in [18] is incorrect. 
4.7. Series C and D. V. I. Arnol'd called our attention to the fact that the bifurcation diagram D 4 is a two-sheeted covering 

of the projection diagram C 4. The stratum B 2 is a bifurcation variety. A similar fact for caustics (diagrams with Maxwell strata A12 ) 
has been previously noted by O. P. Shcherbak. This incidentally accounts for the name of the caustic C 4 -- "pyrse" or "puramid" -- 

are a combination of the names "purse" and "pyramid" of the caustics D4 + and D4-. 
We will show that this is a universal phenomenon for the interrelationship of the diagrams of series C and D. 

Proposition 4.Z The pair (C k-l, 57(Dk) ) is a two-sheeted covering of the pair (C k-l, Y(Ck) ). The bifurcation variety is the 

stratum B 2 to which one of the components of the Maxwell stratum is mapped. 

Proof. The R+-miniversal deformation of the projection D k is 

F (x, tt, X) = x~x2 + g ix2) + Z,k_,xx + tt = O, 

where g (x~)=x~-' + ~,~x~ -2 + . . .  + Z+_2x2. 
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The critical points of the height function on F~ = 0 are defined by the equations 

bF~,/Oxl = 2x lx2  q- ~,k_l = O, a f t ~  Ox2 = x~-~ g '  = O. 

~lk_ t = 0 is one of  the components of  the Maxwell stratum (for 2k. 1 = 0, F~ is even in xl, and the height function has 

critical points outside the plane x t = 0 on FI = 0). 

For 2k_ 1 ~ 0, the equation 0F~/0x I = 0 can be solved for x r At the critical points of  the height function we obtain 

tt = (~'~-1 - -  4x2g)  / 4x2 .  

The height function is non-Morse on F~ = 0 if and only if the function t t (x2)=(~,~_l- -4x2g) /4x~,  is non-Morse, i.e., the 

function u is non-Morse on the curve ~ 4 x g  q - 4 t t x 2 - - ~ ' ~ - 1 - - 0  in C 2 (for 2k_ 1 ~ 0 this curve is smooth). Replacing )%12 with 

�9 ~k-1 in the last equation, we obtain a R+-miniversal deformation of the projection C k. 
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4.8. Edge and Line Singularities. It is easy to show that analogs of the theorems of Zakalyukin [9, 10] and Bruce [13] hold 

for functions on a manifold with an edge [2, 3] and with isolated line singularities [26-29, 6, 22, 23]. Let us state this in the form 

of a proposition. 

Let (x> ..., Xn) E C n and let FE~ (n+q) be the R+-miniversal deformation of a function on the manifold C n with the 

edge x I = 0 or the miniversal deformation of a function on C n with an isolated line singularity on the straight line x 2 = ... = x n = 

0 [6]. Here (21 ..... 2q) ~ cq are the deformation parameters. 

Definition. The discriminant A c c l+q  of a line singularity is the set of critical values of the projection {x, go, ~,1 . . . . .  

s163 s : . . ,  ;~q) restricted to F + 20 = 0. 

For example, the plane a 0 = 0 is One of the components of A. 
q q 

Proposition 4.8. The free generators vj - - - ~  ( v q - -  6,is 0~(!~a ,  j = 0  . . . . .  q, and ~vj--  ~ ~oqO~Egg~,j = 1  . . . . .  
i~O i=1  

q, are defined by the expansions 

and 

q 

--FO (F + ~,o)lOXj =-- ~ vijO (F + Xo)/OX~, vue~Y (q), 
i=O 

q 

FJ ~ ~ wuO (F q- Xo)/axe, wuGU (q)- 
i=O 

The congruences are respectively in the rings & (n--I-1 at-q) and:  O ( n +  q}, modulo the ideals spanned by &dF/Oxi, 
aF/ax2 . . . . .  dF/ax~ for the edge singularity and by OF/dXl, xTc~F/d&, 2~r, s<~n, for the line singularity. 
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