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The paper contains a survey of results in the theory of projections: a classifica- 
tion of simple projections of surfaces onto manifolds of low dimension is pre- 
sented, assertions are formulated regarding the homotopy type of complements to 
bifurcation diagrams of projections onto a line as are theorems on rectification of 
vector fields in bundles in a neighborhood of manifolds with singularities, and the 
connection of the theory of projections with other areas of the theory of singular- 
ities (critical points of functions on a smooth manifold and on a manifold with 
boundary) is considered. 

INTRODUCTION 

In studying the dependence of various mathematical objects on parameters, we encounter 
the investigation of projections and their singularities. For example, in the theory of bi- 
furcations of singular points of differential equations an essential role is played by the 
projection of the surface formed by the singular points in the product of the space of param- 
eters and phase space onto the space of parameters. Singularities of this projection cor- 
respond to bifurcations of singular points. 

An equivalence relation more rigid than in the general theory of singularities of map- 
pings is the main distinguishing feature of the theory of projections. The projections of 
two submanifolds from the bundle spaces onto the bases are considered equivalent if there 
exists a diffeomorphism of the bundle spaces taking fibers of the first bundle into fibers 
of the second and the submanifolds being projected into one another. Such an equivalence 
is precisely an equivalence of deformations of full intersection cut out by the submanifolds 
being projected in distinguished fibers of the bundles. Therefore, for example, Golubitsky 
and Schaeffer [21] called the projections "imperfect bifurcations" (in contrast to "perfect"-- 
versal bifurcations). 

The beginning of a systematic study of singular projections was set by Arnol'd in [I] 
where, in investigating singularities in the problem of fastest passage about an obstacle, 
he obtained a list of 10 projections encountered in the projection of general smooth sur- 
faces from three-dimensional Euclidean space onto the plane along any direction (in this 
situation for a common choice of the direction of projection only singularities of mappings 
of the plane onto the plane occur; these were indicated already in the classical work of 
Whitney [25]). 

In the present paper we give a survey of results of the theory of projections: a classi- 
fication is presented of simple projections of surfaces onto manifolds of low dimension, as- 
sertions are formulated regarding the homotopy type of complements to bifurcation diagrams 
of projections onto a line as are theorems on the rectification of vector fields and bundles 
in a neighborhood of certain manifolds with singularities, and the connection of the theory 
of projections with other areas of the theory of singularities (critical points of functions 
on a smooth manifold and on a manifold with boundary) is considered. 

I. General Facts Concerning Projections of Surfaces 

The projection of a submanifold V from a bundle space E onto the base B is a triple 
V § E § B consisting of an imbedding and a projection. 

An equivalence of projections V i § Ei § Bi, i = I, 2 is a commutative 3 x 2 diagram with 
vertical elements which are diffeomorphisms h:E1 § Ee and k:Bl § B2 whereby hV1 = V2. 

Similar definitions hold for germs. 
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Locally a bundle E § B is isomorphic to the trivial bundle C n • cP § C p (to be specific 
we consider the complex case). We suppose that the manifold V projected is a full intersec- 
tion: if the codimension of V in E is equal to m, then the germ of V is given by a system of 
m holomorphic equations 

ft .... =f~=0. 

This system is determined up to multiplication by a germ on E of a nondegenerate holo- 
morphic m • m matrix M. Therefore, equivalence ,of given systems f = 0 and g = 0 of germs 
of projections from C n • CP onto C p, (x, u) ~ u implies the existence of a local diffeomor- 
phism h of the form 

h(x, u) = (X (x, u), U(u)), 

for which h*g = Mf. 

The germs of the projection (x, u) ~ u of the manifold given by the system of equations 
f(x, u) = 0 we call the projection of f. 

Let ~x,u [or ~+p) ] be the space of germs at zero of holomorphic functions of the 
variables x and u, xCC n, uCCp ; let ~,= be the space of germs of holomorphic mappings from 

C n+p to cm; let m(m)~(m) be a maximal ideal. 

We introduce a quantity called the codimension of the projection of f~.=: 

where 

codlin f - -  dime Q (f), 

Q ( f ) = ~ , u / { f *  (m(m))~,u'JV~x,u < Of  /Ox I . . . . .  O f  /Ox n >-JC~u < O f  /Ou 1 . . . .  , O f  /OUp > }. 

Thi s  number i s  t h e  c o d i m e n s i o n  o f  t h e  germ o f  t h e  o r b i t  o f  t he  p r o j e c t i o n  of  f r e l a t i v e  
to  t he  e q u i v a l e n c e  g roup  o f  p r o j e c t i o n s  which r e a l i z e s  t r a n s p o r t ' o f  d i s t i n g u i s h e d  p o i n t s  
( t h o s e  a t  which t h e  germs a r e  c o n s i d e r e d ) .  The f i r s t  t e r m  in  t h e  d e n o m i n a t o r  o f  Q(f )  c o r -  
r e s p o n d s  to infinitesimal replacements of f by mappings with the same preimage of zero, while 
the other two correspond to infinitesimal fibered changes of coordinates. 

The following result is proved by means of the Mather--Wassermann technique [18, 24]. 

THEOREM I (Finite Determination). If the codimension of the projection of f is finite, 
then there exists a finite number k such that any other projection for which the k'jet at 
zero is the same as for the germ of f is equivalent to the projection of f. 

It should be noted that Theorem I, just as Theorems 2 and 3 below, is true not only in 
the holomorphic case but also in the analytic case as well as for C ~ and formal projections. 

An s'-parameter deformation of the projection of f is the germ of a mapping % § f~ of 
s'-dimensional complex space (the base of the deformation) into the space ~(n+p) of all 
projections taking 0 into f. In the language of diagrams this means that we consider a germ 
of the diagram 

(V', V)-+(E' ,  E)-+(B', B)-+(C  ~', 0), 

where the first arrow is the imbedding of a full intersection and the two others are fiber- 
ings. This deformation is called versal if any other deformation 

(V", V)~(E", E)-+(B", B)-+(C  ~~ O) 

of this same projection can be induced from it: there exists a commutative 4 • 2 diagram 
whose horizontal elements are the two diagrams indicated and whose vertical elements are 
germs of mappings of the spaces labeled with two primes into the spaces with one prime (here 
the mapping E" § E' must be the identity on E). 

Suppose that a mapping F(X,U,%), ~CC s , gives a deformation of the projection (x, u) ~ u 
of the surface f(x, u) = 0 (i.e., f% = Fl%=const). We say that the deformation F is in- 
finitesimally versal if the images of the vectors of the initial velocities of the deforma- 
tion (3F/~%iI%=0) in the module Q(f) generate it as a space over C. 

THEOREM 2 []I]. A deformation of the projection of a full intersection is versal if and 
only if it is infinitesimally versal. 
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From this it follows, for example, that the dimension of the base of a miniversal (i.e., 
versal with the smallest possible number of parameters) deformation of a projection is equal 

to its codimension. For such a deformation it is possible to take %~-~f-{-~%ie~, ~EC ~, where 
1 

m 
= codimf, and {ei}@~x.u are representers of a basis of Q(f). 

For C ~ projections onto a line Theorems I and 2 were proved by Golubitsky and Schaeffer 
in [21]. There was hereby imposed on the projection the condition of finiteness of the num- 
ber 

dimRNm(n + l)/{f* (m(m))Nm(n @ l)@~ (n + l) ( Of /Oxl . . . . .  Of /dxn ) }. 

This number is clearly no less than the codimension of the projection. 

We now consider projections of zero codimension. It is easy to see that these are pre- 
cisely versal deformations of full intersections V0 [6] of a distinguished fiber of the bundle 
E § B. For them there is a stability theorem [10] which in our case can be reformulated as 
follows. 

THEOREM 3. The germ at 0@E of the projection f-l(0) § E + B of zero codimension is 
stable: for any mapping g sufficiently close to f there exist a representer g of it and a 
point close to zero at which the germ of the projection g-l(0) § E § B is equivalent to the 
projection of the germ of the manifold f-l(0). 

It should be noted that Theorems I-3 are also valid in a more general situation -- for 
cascades of projections, i.e., for diagrams of the form 

V-+Eo'-+EI-+..."+E~ 

where the first arrow is an imbedding of a full intersection and each of the following arrows 
is the projection of the space of the bundle Ei onto the base Ei+l, dime i = Pi + -." + Pk (the 
algebraic definition of the codimension of a projection can be generalized to this case in an 
obvious, but somewhat cumbersome, way). 

CHAPTER I 

COMPLEX PROJECTIONS ONTO A LINE 

2. Projections onto a Line and Boundary Singularities 

The most substantial results in the theory of projections are obtained for projections 
onto one-dimensional bases. The coordinate function of the base induces a function on the 
projected manifold. Therefore, as we shall see, projections onto a line have much in common 
with functions with isolated critical points on a smooth manifold. 

I. We begin with a classification of simple projections onto C I. 

We call the germ of a projection simple if a sufficiently small neighborhood of it in- 
tersects only a finite number of equivalence classes. More precisely, a germ is simple if 
there exists a finite collection of equivalence classes such that for any k any k-jet suffi- 
ciently close to the k-jet at zero of the collection of functions f giving the germ is the k- 
jet of a collection giving the germ of the projection of one of the classes indicated. 

A superstructure over a projection V § E § B is a projection V § E' § B where V is im- 
bedded in E' as a submanifold of the space of the subbundle EcE I. Stable equivalence of 
projections is equivalence of corresponding superstructures. 

THEOREM 4 [2, 11, 12]. i. Any simple projection of a full intersection onto the complex 
line is stably equivalent to the projection either of a hypersurface or a curve in three- 
dimensional space or a multiple point on the plane or in three-dimensional space. 

2. Any simple projection of a hypersurface onto the line is equivalent to the germ at 
zero of the projection (x, u) ~ u of the manifold f(x, u) = 0 where f is one of the functions 
of Table I. In the table q = x~ + ... + x~ whereby r = 3 for D~ and E~ and r = 2 for the re- 
maining singularities. 

3. Simple germs of projections (x, u) ~ u of curves f = 0 onto the line which do not 
reduce by stable equivalence to projections of plane curves form two series: 
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TABLE 

Type t' Type f 

A w, ~t>_.O 

Dix, ~>4 

B~ 

E7 

u+ x~ +I +q  

u + x~2x~ + x~ - I  + q 

u + xxS + x~4 + q 

u + x t  ~ + x ~ x ~  ~ + q  

E8 

B u, ~>~2 

C w 1~ .>- 3 

F~ 

u + xa* + x25 + q 

u ~ + x ,  ~ + q 

ux, + xp + q 

u ~ + x~ 8 + q 

TABLE 2 

Type 

B~, 1~ >1 1 

Xk,t,  2..< k < l  

U w ~>5 

X, /I, ~ 

X ~ + U, X t 

X 2 + t t  ~-3, t t X  

Type 

V6 

V7 

a,b Pa+0+3 

f 

3C 3 .-{- t/.2~ Is 

X l X ~  XX 2 --}-. X2a'~ 

u + x2 b 

C.,,, 2 ~ k ~ t  f=(x~x2, x~+x~ +u); 
F2~+1, k ~ 2  ~= (x12+x2 3, x ~ + u ) ;  
F2h+4, k ~ l  ~= (x12+xz 8, x x x z k + u ) .  

4. Simple projections of multiple points of f = 0 onto the line are listed in Table 2. 
Here n is the dimension of a fiber of the projection (x, u) ~ u; the series F a,b contains five 
members: b = 2, 3 for a = 2 and b = 2, 3, 4 for a = 3. 

The codimensions of the projections Ck, l and Xk, ~ are equal to k + I -- I and k + I -- 2. 
The codimension of any other of the projections listed is one less than the lower index of 
the symbol denoting the projection. 

The projections B~, ~ ~ I of part 2 (for n = 0) and of part 4 are stably equivalent (in 
part 2 BI = Al). 

2. A projection f abuts a projection g (f § g) if by an arbitrarily small perturbation 
of f it is possible to obtain a projection equivalent to g. 

Before enumerating abutments of simple projections onto the line, we indicate the coin- 
cidence of two different classifications of simple singularities. 

Arnol'd pointed out that the manifolds in simple projections of hypersurfaces onto the 
line are precisely the zeros of simple function on a manifold with boundary [4]: the boundary 
is a distinguished fiber of the bundle of the enveloping space over the line. This fact can 
be obtained not by comparing two lists of simple singularities obtained independently but 
directly, by having only lists of simple and bordering boundary functions (a nonsimple sin- 
gularity is called a bordering singularity if all singularities of smaller codimension to 
which it abuts are simple). The main role here is played by the fact that both simple and 
bordering boundary singularities are quasihomogeneous (see [4] or Sec. 7 of the present work). 

A mapping h(yl,...,yk), h = (hl .... ,hm) is called quasihomogeneous if there exist ra- 
tional numbers wl,...,w k (weights of the variables y) and dl,...,dm (degrees of the coordi- 
nate functions of the mapping h) such that 

ht (ewaVl . . . . .  eWkt g ~ = e ~ / k i  ~1 . . . . .  gk) 

for any tCs . For a quasihomogeneous mapping there is the Euler relation 

(d~h~ . . . . .  dmhm) = E w # j O h  / Ogj. 

Let T1 be the tangent space to an orbit of a quasihomogeneous function f(x, u) in the 
maximal ideal m(m+1)c~,=, relative to the equivalence group of germs of projections at zero; 
let T2 be the tangent space to the orbit of f(x, u) relative to the group of germs at zero of 
diffeomorphisms of the space C n+l which preserve the plane u = 0 (this is the group realizing 
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Diag ram I 

A.-+ A~-I,  p > O  

Ck,t-+C~_la, 1 < k < l  

Ak+t-1 C~,t-a, l ~ k < l  

Bw-* B . -h  [~ > 1 
F~-+F~.I, ~ > 3 
I r 

Diagram 2 

~,e.--*xk,e_~, I~ k<e _ r2 ~'-- rz z"~v , - ' -us ' - "xz ,  ~ 

D i a g r a m  3 

equivalence of germs of functions on a manifold with boundary). Using the expression for a 
quasihomogeneous function in terms of the sum of its derivatives, we see that TI = T2. For 
this reason a function is simple (bordering) on a manifold with boundary if and only if it 
gives a simple (bordering) projection of the hypersurface. 

Because of the quasihomogeneity of simple and bordering projections onto the line (Theo- 
rem 4 and Secs. 7, 8) the lists of simple full intersections on a manifold with boundary and 
projections of surfaces of positive dimension onto the line also coincide (if a full inter- 
section is a hypersurface, then we again obtain the list of simple boundary singularities of 
functions). As a whole the classification of boundary full intersections is rougher than the 
classification of projections onto the line: one distinguished hyperplane is preserved rather 
than the entire bundle on the hyperplane. 

3. THEOREM 5 [11, 12]. All abutments of simple projections of hypersurfaces, curves, 
and multiple points onto the line can be obtained by composition on a finite number of the 
abutments indicated, respectively, in Diagrams I, 2, and 3. 

We here consider that CI,~ = Cl+l, CI,I = B2, Bl = AI, F3 = B3, X1,1 = B~. 

Projections of hypersurfaces abut one another if and only if the boundary functions of the 
same name abut one another. 

Example. Fu + C~-I, ~ ~ 4: 

(X12 -~- X23 - -  82X22, xlp~ + x2q~ + u), 

where p~ and q~ are defined recursively: 

p 4 = l ,  q 4 ~ 8 ;  

p .  = ( - -  1)"-1 ~p.-1 + q.-1,  q .  ~ (X2 - -  ~2) p~ - I  + ( - -  1)~ ~q.-1. 

3. Dynkin Diagrams 

I. The coincidence of the lists of simple boundary functions and simple projections of 
hypersurfaces onto the line suggests a generalization to the case of projections of the defi- 
nition of the intersection form of a boundary singularity (see [4]). 
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Diagram 4 

We consider the projection E § C, (x, u) ~ u of a manifold V = f-l(0) of positive di- 
mension. In E we fix a ball of small radius r with center at zero. In this ball we con- 
sider a nonsingular fiber V e = f_l(e), Is] ~ r of the mapping f. For a general choice of 
the intersection of Ve with a fiber of the projection (x, u) ~ u over zero is a smooth mani- 
fold V~ of complex codimension I in Vg. Let V s § Vs be a two-sheeted covering with ramifica- 
tion along V~, and let H be the integer homologies of middle dimension of the manifold Ve. 
On H there acts the involution induced by permutation of the sheets of the covering. We de- 
note by H- the antiinvariant part of H. The intersection form on H gives a bilinear form on 
H-. It is called the intersection form of the projection [2]. 

The same mapping can be introduced for full intersections on a manifold with boundary 
[the boundary plays the role of the zero fiber of the projection (x, u) ~ u]. 

2. On the basis of the intersection form we can construct a Dynkin diagram. We hereby 
use the definitions of short and long cycles which are given in [4] for the symmetric case 
and in [2] for the skew-symmetric case. We consider projection as a full intersection on a 
manifold with boundary, and we shall construct for it a Dynkin diagram in the basis of the 
space H- which is labeled in the sense of [2, 9, and 11]. 

For the singularities A~, B~, C~, D~, E~, and F4 the diagrams in labeled bases coincide 
with the Dynkin diagrams of the corresponding Lie algebras [8]. 

THEOREM 6 [11]. There exist labeled bases in which the Dynkin diagrams of the intersec- 
tion forms of curves Ck,l and F~ on the manifold C 3 with boundary are as shown in Diagram 4. 

The form of the diagram explains the notation chosen in denoting simple full intersec- 
tions and projections. 

For the curves Ck, l and F~ there are relations between the labeled cycles (one for the 
series C and two for F). In constructing a diagram from these cycles we must choose a basis 
and discard the rest. This feature contains an undesirable element of arbitrariness. A more 
invariant object in the present situation is the "complete" Dynkin diagram constructed on the 
basis of all labeled cycles regardless of their dependence. 

3. We shall indicate a means of defining a vanishing basis of a projection onto the 
line which differs from that given in [11]. 

Let % + F% be a versal deformation of the projection, and let u be a coordinate function 
on the base of the projection. For a common value of ~ the manifolds V% = F%I(0) and V~ = 
Vx~{U=~ are smooth, and u is a Morse function on V%. If ~ is the number of its critical 
points (and critical values), then the factor space VI/V~ is homotopically equivalent to a 
bouquet of ~ spheres of middle dimension (~ is also the rank of the subgroup H- of antiin- 
variant homologies of the covering V% § V% branched along V~). We note that if the projec- 
tion in question is a quasihomogeneous projection of a hypersurface or is simple, then ~ = 

+ I, where ~ is the codimension of the projection (it is not hard to show that for the 
projection of an arbitrary hypersurface ~ ~ v + I). 

The motion of u along a complex line from the noncritical value 0 on VI to the ~ criti- 
cal values along ~ nonintersecting paths defines a basis of ~ vanishing semicycles in the 
relative homologies of the pair (V%, V~). To this basis there corresponds a basis of the 
antiinvariant homologies of the space ?~ composed of short, labeled (in the new sense) cy- 
cles. 

For projections onto the line of smooth hypersurfaces (including A~, D~, E~) this defi- 
nition of a labeled basis gives the same Dynkin diagrams as the definition indicated above. 
For simple projections distinct from those indicated the new diagrams are strongly different 
from the classical diagrams. For example, in the symmetric case the diagram of the projec- 
tion B~ is ~ isolated vertices, while in the skew-syrmnetric case it is a complete graph with 
two edges. For the projections C~ and F4 there exist labeled short bases in which the dia- 
grams of their symmetric intersection forms look like the classical diagrams of D~ and D~. 

THEOREM 7. There exist labeled bases in which the Dynkin diagrams of the projections 
Ck,l and F~ have the form presented in Diagram 5. 
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Diagram 5 

CHAPTER II 

THE GEOMETRY OF BIFURCATION DIAGRAMS 

4. k(~, 1)-Theorems 

We recall that the bifurcation diagram of zeros of a function on a smooth manifold is 
the set of those values of the parameter ~6C ~ of a miniversal deformation % ~+ f% of it for 
which 0 is a critical value of f%. The set of those % for which the function f% is not a 
Morse function is diffeomorphic to a cylinder over some singular hypersurface imbedded in 
C ~-I. This hypersurface is called the bifurcation diagram of functions [3]. 

In analogy with these definitions we introduce the definitions for projections onto the 
line. 

i. Let F(x, u, A) be a miniversal deformation of projection onto the line (x, u)~§ u of 
a full intersection f(x, u) = 0. F = 0 is a smooth surface in C n+l+v. 

The bifurcation diagram of zeros W~C I+~ of the projection f is the germ at zero of the 
set of critical values of the projection (x, u, A) ~ (u, X) restricted to F = 0. 

For example, if f = 0 is a multiple point, then W is the image of the restriction in- 
dicated. 

The bifurcation diagram of zeros is a hypersurface in C l+v composed of those (u, %) 
for which 0 is a critical value of the mapping 

F~,~=F(', u, ~). 

The bifurcation diagram ~C ~ of the projection f is the union of the image of singu- 
lar points of the diagram W under the projection (u, X) ~ ~ and the set of critical values of 
this projection onto the regular part of W. 

is a germ of a hypersurface in C ~ composed of those % for which either the manifold 
V% = F~I(0) is singular or the function u on this manifold is not a Morse function. 

If f = 0 is a multiple point, then this corresponds to the coalescence of points into 
which f = 0 decomposes under deformation or to the fact that the coordinates u of different 
points coincide. 

In the general case E consists of three components: 

E1 -- the projection of the cusp edge of the manifold W (for points of El the function 
u on V% has a degenerate critical point); 

E2 -- the projection of the set of self-intersections of the diagram W (the function u 

assumes the same values at different critical points); 

Z3 -- the set of critical values of the projection (u, %),§ % onto the smooth part of W 
(the manifold V% is singular). 

Examples. I. A miniversal deformation of the projection C3: x 3 + %ix 2 + ux + %2. Here 
W is the set of those points (u, %) for which th~s polynomial in x has a multiple root. It 
is diffeomorphic to a cylinder over a semicubic parabola. The component Z3 of the diagram 
is the line %2 = 0, El is the cubic parabola tangent to this line, and E2 is empty (see Fig. 

I). 

2. If f is a simple projection of a smooth hypersurface (f6A,, D,, E~), then the diagrams 
W and ~ coincide, respectively, with the bifurcation diagrams of zeros and functions of the 
analogous functions with isolated critical points. Here Z3 = ~. Figure 2 shows the case f @ 
A3. 

2. For simple functions on a smooth manifold the Lyashko-~Loojenga theorem holds. 
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Fig. I Fig. 2 

THEOREM 7 [3, 23]. The germ of the complement of the base of a versal deformation to 
the bifurcation diagram of a simple holomorphic function with a ~-fold critical point is the 
space k(~, I) where F is a subgroup of finite index in the Artin braid group of ~ strands. 

We recall that the multiplicity of a critical point is the number of Morse points into 
which it decomposes under small perturbation. Lyashko later extended this theorem to func- 
tions on a manifold with boundary [17]. For projections there is an analogous assertion. 

THEOREM 8 [11]. The germ of the complement of the base of a miniversal deformation to 
the bifurcation diagram of a simple projection of a full intersection of positive dimension 
onto C' is the space k(~, I). Here ~ is a subgroup of finite index in the braid group of 
v + I strands (v is the codimension of the projection, i.e., the dimension of the base of 
the miniversal deformation). 

If in Theorem 8 we restrict ourselves only to projections of smooth manifolds, then we 
obtain precisely Theorem 7 (cf. Example 2, part I). For the projections of B~, C~, F~ the 
assertion of Theorem 8 differs from Lyashko's theorem for the analogous boundary functions: 
the bifurcation diagrams of the corresponding singularities and the fundamental groups 
are different. Thus, the bifurcation diagram of the boundary function C3 is a quadratic 
parabola with a tangent, and ~ has index 27 in the braid group of three strands. For the 
projection C3 (Fig. I) ~ has index 8 in this same group. 

The proof of Theorem 8 follows the scheme of proof of Theorem 7. 

In part 5, Sec. 3 it was noted that for a general value of the parameter k6C v of a 
miniversal deformation F of a simple projection the function u has on the manifold V 1 = 
F~l(0) precisely (9 + I) critical values ul,...,ug+1. It is not hard to see that the condi- 
tion that I be general is %6CV\E , and uj are the coordinates of points of intersection of 
the line I = const with the bifurcation diagram of zeros W in C I+~ (as I approaches a regular 
point of any of the three components of the diagram E two points uj coalesce; for example, 
for general degeneration of the manifold V 1 the value of the function u at its singular point 
is considered a twofold critical point). 

Thus, to any %~C~\~ we can assign a polynomial ~+l+~izv-l+ ... +~ with (v + I) dis- 
tinct roots uj -- (Zui)/(v + I). We obtain a mapping ~ into the space C~\~ of polynomials 
of this form [this is the classifying space of the braid group of (9 + I) strands]. It ex- 
tends to a holomorphic mapping ~:(C v, 0) § (C v, 0). 

The validity of Theorem 8 .is equivalent to the fact that ~ is a covering , and it fol- 
lows from the fact that ~ is proper and ~ is locally biholomorphic. The proof of these two 
facts is contained in [11], but one aspect of it -- the lemma that the preimage of zero under 
the mapping ~ is zero -- contains an error. We shall fill this gap. 

3. LEMMA. r = O. 

Proof. We must show that as soon as the function u has on V 1 a single critical value, 
then I = 0J 

For the projections A~, D~, E~ the assertion follows from the connectedness of the Dyn- 
kin diagrams of the corresponding functions on a smooth manifold. 

To prove the lemma in the remaining cases we note that all simple projections onto the 
line have quasihomogeneous versal deformations F (part 2 of Sec. 2) defined globally on C ~+I+~ 
[11]. It suffices for us to consider the global mapping ~ constructed for such a deforma- 
tion. 

Each series must be investigated separately. 

The case Be: F - - - - x 2 - - k t z g - 6 k l t t ~ - 2 - ~ .  . .  -~-kr pz (u) .  
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A critical value of the function u on V% is defined by the condition 3Fx/3x = 0, i.e., 

x = 0. The critical values of u are the roots of the polynomial p%. For LE<D-I(0) the poly- 

nomial PX has a unique root: PX = (x --a) ~. Now the sum of the roots of PX is zero. This 

implies that ~-l(0) = 0 for the series B. 

The critical values of the function u on the curve F l = 0 are determined by the condi- 

tion Jh = 0 where J% = det (DFh/Dx). All projections to which the projections Ck,/ and F~ 

abut are simple. Let r0 be the number of Morse critical points into which a singular point 
of the function u decomposes under small perturbation of the simple projection (x, u) ~ u 
of the germ at (x ~ u ~ of the curve F X = 0. It is equal to 

dime ~x~hu~ JO, 

where the upper index of the space ~ indicates the point at which the holomorphic germs of 

functions of the variables x and u are considered. As noted, this number is I greater than 
the codimension of a simple germ of the projection. 

Let {(xi,u~ all critical points of the function u on Vh at the level u = u ~ The 

condition %~(D-I(0) is equivalent to Zri = w + ]. 

The case  C k,~, 1 ~ / ~ [ :  F~(xIx2--Lo, x f  ~-L1x~-I-~ -...-~-Lk-lxl~'tt-~%kx2-~-...y~k+t-2X~-l~-X2 t) = 
(x lx2 - -Lo ,  P~ ( x O +  tt q -q~  (x2)). 

The equations of critical points on V h at the level u = u ~ are 

x~x2=Lo, p~q-t~Oq-q~=0, x~p'~--x2q'~=O. 

= X 0 0) For h0 ~ 0, x2 X0/x~, and we see that the point (x ~ ho/ ~, u is a critical point of the 

function u on VX if and only if x ~ is a nonzero multiple root of the polynomial 

Q --- x ,  t (p~ ("~1)  .A[- uO .Af_ q~ (Lo/X~)) = l~I (X 1 - -  Cti) St �9 

Suppose x ~ = ao.  We compute the number r0 of Morse singularities of the function u 
coalescing at the corresponding critical point. Noting that a0 ~ 0, i.e., the function x~ 
is invertible at the point of interest to us, we have 

ro = dime 8~;,,~x:!~ ~176 (xlx~ - -  ~o, Pz  q- tt -k q~, x,p'~ - -  .'hq'z) 

= d ~ m c ~ ,  x~ ~ /(x~--~o/Xx, Q-k(u--u~ 

0 [Q + (tt - tto) xt t ] /Ox~) = dime ~o,o ~/(x~~ I I  (x~ - al-!-  ao)~ 
~ 0  

+ tt (x~ + a # ,  ,9 Ix? 1"I (x, - a~-~- aoY~ + u (x~ + ao)q/Ox~) = S o -  1, 
~4=0 

since a i ~ a0 ~ 0. 

Hence, for h0 ~ 0 at the level u = u ~ there coalesce r = l(sj -- I) Morse critical points 

of the function u. Now Y~sT=ki~/~----~(C~t)-~l Therefore, r ~< ~(Ck,/), and the preimage of 

zero under the mapping ~ contains no points with h0 ~ 0. 

For X0 = 0 V h decomposes into two components: 

V~={x l=0 ,  q ~ + u = 0 }  and V2={x2=0,  p~-ktt=0}. 

The point x = 0, u = 0 is a singular point of the curve V~ and hence is a critical point 
for the function u. Therefore, for Z@ff3-1(0) the only critical value of the function u must 
be zero. 

The critical points of the function u on V l (or V 2) at the zero level are multiple roots 
of the polynomial qh (or p%). 

Let 

p~=x~" 1~ ( X l -  a,) ~t and q~ =X~o l-I (x2 -  bXJ, 

where ai r a i' ~ 0 ~ bj ~ bj,. 
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Just as for %0 z 0, computation of the number r i for a critical point (ai, 0, 0) [or 
(0, bi, 0)] of the function u on V 2 (or V I) different from the origin gives ri = si -- ] (or 

r i = t i - i). 

For the origin 

ro=dtmc~,~/(x~x2, xfo IX (x~--a~) ~ + tt+ x~2 o I I  (x2-- b)'~, 

x~ [x~. II (x~- a~)Sq ' - x~ [x~. I I  ( x ~ -  ~)'~1') = So+  to. 

Thus, at the level u = 0 there have coalesced at different places 

r=to+So+~.~ (s,--1)-i- ~ (t j - - l )  
~#o 1#o 

Morse critical points of the function u. Since 

S0-~X S i ~ k '  and t 0 @ X t j = l ,  

then r-.<l+k----v (C~,l)+ 1. 

E q u a l i t y  i s  a c h i e v e d  o n l y  f o r  px = x k ,  qh = x~,  i . e . ,  f o r  X = 0. 

Thus, ~-i(0) = 0 for fcC~.~. 
The case FM, ~ ~> 4: F=(x~2-~x~s-~%Ix2~-%2,pz(x2)-~-xlqz(x2)), where for M = 2k + I 

Px ~.~'~ + ~axg -1 + " "  + %~+~x~ and q~ = ~,~+~X~ -~ + . . .  -~- ;~ ,  

for M = 2k + 4 

pz---- ~3Xg +1 ~ - . . .  ~- ~k~3X2 and q~ = X2 k -j- ~k+4X# -1 ~ - . . .  ~- ~2#+s" 

It is not hard to see that the coordinates x2 of critical points of the function u on 
the curve V% at the level u = u ~ are multiple roots of the polynomial. 

Q = (p~ + u0)2 + (x2~ + X~x2 + ~2) q~ 

of degree M -- I = ~(F~). 

After computations analogous to the case Ck, / but more involved, noting that V h can have 
only one singularity, we obtain: 

if V h is a smooth curve, then r=~ri,.<v(p~)_|; 

if V h has a point of self-intersection, then r~<~(Fu); 

if V% has a cusp point (here %1 = h2 = 0 and u ~ = 0), then r<~(ff~)-~|. 

In the last case equality is possible only for Q = x~ -I Hence ~-z(0) = 0 for the series 
F as well. 

4. The assertion on the triviality of the highest homotopy groups is valid also for 
certain projections of multiple points onto the complex line (for the notation see part 2 of 
Sec. 2). 

THEOREM 9 [12]. The germs of complements of bases of miniversal deformations to the 

bifurcation diagrams of the simple projections Xk,k, k ~ 2, X2, / ~ 3 and UM, M ~ 5 are the 
spaces k(~, I). 

For the projection X2,/ ~ is a subgroup of index 21-I in the group of generalized braids 
BD/; for U M it is a subgroup of index 2 in the group of generalized braids BC~- I [7]. 

Whether a similar theorem holds for the singularities Xk,/, 3 ~ k < l; V~; V7 and Fa, b 
is unknown. 

We note that for the projection Us(x 2 + u 2, ux) one of the components of the bifurcation 
diagram (corresponding to coalescence of points of the set F% = 0) coincides with the bifur- 
cation diagram of zeros E~C ~ of two quadrics in C 2. Knorrer showed in [22] that the space 
C 4 \ E' has a trivial group ~2. He also proved that the complement to the bifurcation diagram 
of zeros of two quadrics of general position in C 3 is the space k(~, I) [22]. 
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TABLE 3 

n No t iOn  f=(f,.f2) 

2 Ao (x~, x~) 

1 A .  B~ 

A~, p,>~2 
>12 

C~, F .  

>/3 D w Evt 

>~1 B u, p~>~2 

( x . ,  f ~ ( x ~  . . . . .  x n - .  u)), 
f~- -  is the projection (x~, . . . .  Xn_ ~, u ) ~ - u  of the 

hypersurface onto the lin~ analogous tO the 
boundary projection 

Xkd, k, l>~2 

(x~  + x ~  + . . .  + x ,?  + u, x~) 

+ 
>~2 

F~* (x~  2 + x2  ~ + xa  2 + . . .  + x n  2 + u, x~) 

1 (x k + u, x l) 

5. We consider the problem of classification of projections of full intersections with 
boundary, i.e., of surfaces in C n+l on which there is distinguished a submanifold of codimen- 
sion I. 

The definitions of equivalence, stable equivalence, abutment, simplicity, codimension, 

and versal deformation are obvious. 

THEOREM 10 [13]. Any simple germ of a projection of a full intersection with boundary 
onto C 1 is stably equivalent to the germ at zero of the projection (x, u) ~ u of the hyper- 
surface fl = 0 with boundary fl = f2 = 0 where f = (fl, f2):C n+1 § C 2 is one of the mappings 
of Table 3. 

The codimension ~ of the projection Xk,~ is equal to k + ~ -- 2 while for any other pro- 
jection it is ] less than the lower index of the symbol denoting it. All abutments of the 
projections of Theorem 10 are indicated in [13]. 

Let ~F~, ~cC v, be a miniversal deformation of projection onto the axis of u of the hy- 
persurface fl = 0 with boundary fl = f2 = 0. We set 

v~ =F~  (o), v~ = F ~  (0). 
T 

The germ of the set of those I for which at least one of the manifolds V 1 or V 1 is singular 
or the function u is not a Morse function on at least one of them we call the bifurcation 
diagram Z cC v of the boundary projection f. 

This definition in the cases A~-F4 leads to bifurcation diagrams of projections of the 
same name, while in the cases B~-Fq it leads to bifurcation diagrams of corresponding func- 
tions on a manifold with boundary. The complements to these diagrams are Eilenberg-MacLane 
spaces. 

THEOREM 11 [13]. Let Z be the bifurcation diagram of the boundary projection Xk, I. 
Then the germ of the space Cv\Z, ~k-~l--2, is the space k(~, I) where ~ is a subgroup 

of index (k+11--11kk§ in the braid group of (k + I- I) strands. 

5. Rectification of Vector Fields 

In this section we consider still another property of projections which is analogous to 
the property of isolated singularities of functions. It turns out that in a neighborhood of 
the bifurcation diagrams of zeros of a number of projections it is possible to rectify vec- 
tor fields while preserving the diagrams. 

I. We call the tangent space to a manifold A at a singular point 6 of it the limit of 
tangent spaces at regular points (if this limit exists). 

Examples. I. In the space C 3 of coefficients of polynomials of degree 4 

x4+ax2+bx+c 
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we consider the set corresponding to polynomials with multiple roots (a swallow tail). The 
tangent plane to it at zero is c = 0. 

2. The Whitney umbrella is the surface in C 3 given by the equation 

x2=yz  2. 

The limit of the tangent spaces to the umbrella on approach to zero does not exist. 

For simple functions on a manifold with boundary there is the theorem of Lyashko. 

THEOREM 12 [17]. Let Vl and v2 be vector fields defined in a neighborhood of the bi- 
furcation diagram of zeros of a simple function on a manifold with boundary and transversal 
to the tangent plane to the diagram at zero. The germs of the fields vl and v2 are equiva- 
lent relative to the group of germs at zero of diffeomorphisms of the enveloping space which 
preserve the diagram. 

Examples. I. Any field v transversal at zero to a swallow tail can be reduced to the 
local normal form 3/3c by a diffeomorphism of C 3 preserving the swallow tail. 

2. In three-dimensional space with coordinates (x, y, z) we consider the cylinder A 

X~=ys 
over a semicubic parabola and a field v of general position. From Theorem 12 and its exten- 
sions to the projection Cs (see Theorem 13 formulated below) we find: in a neighborhood of a 
general point of the cusp edge of the set A the field v is transversal to A and can be taken 
into the field 3/3x by a diffeomorphism preserving A while at exceptional points of the edge 
v is tangent to A and is locally equivalent to the field 3/3y +3z/3x. 

2. Let F(K, u, %) be a miniversal deformation of the projection (x, u) ~ u of a full 
intersection f(x, u) = 0 onto the line; let ~ be the codimension of this projection. The 
bifurcation diagram of zeros W of the projection f lies in C I+~. 

We consider the germ at 06C I+~- of a smooth vector field v, v(0) ~ 0. Let u' be the time 
of motion along v from the germ at 0 of some smooth hypersurface transversal to v; let %' be 
local coordinates on this hypersurface. We carry %' by the field v to CI+~.v=O/Ou '. 

Let G(x, u', %') be the notation for the mapping F in the new coordinates: 

O(x, u', ~ , ) = F  (x, ~(u', ~'), ~(u', ~')). 

G gives a deformation of the projection (x, u')~u' of the surface g(x, u') = 0 where g = 
G I~'=0; %,~Cv is the parameter of this deformation. W is the bifurcation diagram of zeros of 
the projection g as well. 

THEOREM 13 [11, 14]. Suppose that the projections onto lines of the surfaces 

f(x, U)----O and g(X, U')=O 

are equivalent and G is a miniversal deformation of g. If the projection f is simple, then 
there exists a germ of a diffeomorphism of the space (C I+~, 0) preserving the diagram W and 
taking the germ of the field 3/3u into the germ of 3/3u' 

Remarks. I. The assertions of Theorems 12 and 13 for the singularities A~, D~, ED are 
equivalent. 

2. In [14] Theorem 13 is formulated only for full intersections of positive dimension. 
However, it is easy to see that the scheme of proof presented below goes through also for 
simple projections of multiple points and for simple boundary projections. 

Example. A versal deformation of the boundary projection 22,=: F= (x~+u, x2+%~x+%2) The 
bifurcation diagram of zeros has two components (Fig. 3): 

WI: u = 0: the component consists of those (u, I) for which the function FI(', u, I) has 
the critical value 0; 

W2: (u -- %2) 2 + ul~ = 0 (the Whitney umbrella): the component consists of those (u, I) 
for which 06C = lies in the image of the mapping F(', u, %). 

By Theorem 13 for X2,2 two fields transversal at zero to the planes u = 0 and u = %2 are 
equivalent relative to the group of diffeomorphisms preserving the umbrella and u = 0. 
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Fig. 3 Fig. 4 Fig. 5 

We note that W2 is the bifurcation diagram of zeros of the projection X2,2 (not a bound- 
ary projection). In this case we find that fields transversal only to the plane u = ~2 go 
over into one another by diffeomorphisms preserving only the umbrella. 

3. Theorem 13 can be proved by following the proof of Theorem 12 in [17]. In this case 
the mapping ~ is used (see part 2, Sec. 4). 

However, it is possible to proceed otherwise, namely, as in [13] in an analogous problem 
for quasihomogeneous projections which makes it possible to prove Theorem 13 not only in the 
holomorphic case but in the C ~ and analytic cases as well. For this we note that the exis- 
tence of the required diffeomorphism is equivalent to the existence of a germ at 0 of the 
change of coordinates 

x=x(x', u', ~'), u=u'q-~(~'), ~=~(~') 

and a germ of a nondegenerate matrix M(x', u', ~') such that 

O(x', u', ~')=M(x', u', ~')F(x(x', u', ~'), u'+~(X'), ~(~')). 

We denote by ~ the group formed by the germs at 0 of the changes and matrices of the 
form indicated. 

The result of the exposition we present for the special case f6C~, ~3 . Let F be a 
quasihomogene0us miniversal deformation of the projection C~: 

F = x~ § ~x  ~-~ "6. . .  + ~-~x ~ + ux--k ~-~. 

G is induced from F: 

O=x'q-X~(u' ,  ~')x,-~q--...q-X~_2(u ', L')x2+u(u ', ~')xiL~_~(u', ~'), u(O, 0)=0,  ~@, 0)=0.  

g = OI~,=0EC ~ and (u', ~') ~ (u, ~) is a diffeomorphism. Therefore, up to changes of coor- 
dinates u' and ~' permitted by the group ~ it may be assumed that the principal part G (see 
[3]) has the form 

Oo=x~+~,x~-~+... +~_~x~+awx+~_~ +bu%'), a4=o. 

A simple computation shows that the versality of G is equivalent to the inequality a 
~b. We shall prove that in this case the mapping G is ~ -equivalent to G ~ 

G o is a versal deformation of the projection gO = G01%,=0 and is quasihomogeneous. The 
weight of u' is nonzero. Hence, 

~x,~,=~x,~' < gO, OgO/bx ) q-~,O~/Ou'-}-C ( bO~ ) 
=~,~, < ~, O~/Oz ) + C  < Ogo/Ou', OOotO~{ I~'=o ) �9 

Therefore, 

~,~,,~,=~,~,,~, ( 0o, OOO/Ox ) + ~ ,  < OOo/Ou ', OO~ > q-=x'~.~',~', 

where m x , ~ ,  is a maximal ideal. 

By Wassermann's lemma [24] the last term drops out. The equality hereby obtained means 
that G o has zero codimension relative to the group ~ to which parallel transports have been 
added. Using the Mather--Wassermann technique [18, 24], it is possible to prove that such a 
mapping is finitely ~ -determined (cf. Theorem I, Sec. 1). The element G -- G o belongs to 
the tangent space to the ~ -orbit of G O . Its quasihomogeneous components have degrees 
greater than G o . Therefore G is �9 -equivalent to G o . 
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It is now not hard to achieve the equivalence of G ~ and F by quasihomogeneous transfor- 

mations of the group ~ (see [3]). 

Analogous arguments prove Theorem 13 also for the other simple singularities. 

4. We shall now indicate the geometric meaning of the conditions of Theorem 13 imposed 
on a rectifiable field v for nonboundary projections of full intersections of positive di- 
mension. There are two conditions: 

7. Projections onto lines of the surfaces f = 0 and g = 0 are equivalent. 

2. G is a miniversal deformation of the projection g. 

We denote by W' and W" the cusp edge and set of self-intersection of the diagram W; T0A 
is the union of all tangent spaces at zero to different components of the set A; ~ is the 
factor algebra of the algebra L of vector fields on C 1+v tangent to W by its subalgebra L0 
preserving the origin. We recall that if f~C~,z , then I + v is the lower index of the sym- 
bol denoting the simple projection. 

We consider conditions I and 2 for all cases of simple projections. 

The cases A~, DZ, E~, Ck, l, 2 ( k ( l, F~', ~' < 7. 

7. v(0) is transversal to ToW (for C2,2 and F7 ToW consists of two hyperplanes and one 
hyperplane for the other singularities. 

2. It follows from I. 

The cases C~, F6. 

1. v(O) G T o W \ T o W ' = C ~ \ C  ~-~ ( F i g .  4 ) .  

2 .  The d i a g r a m s  o f  z e r o s  i n  t h e  c a s e s  c o n s i d e r e d  a r e  c y l i n d e r s  o v e r  t h e  d i a g r a m s  o f  
z e r o s  A ~ - l  and  C 2 , 3 .  T h e r e f o r e ,  t h e  f a c t o r  a l g e b r a  ~a i s  n o n t r i v i a l  and  i s o m o r p h i c  
t o  t h e  l i n e .  C o n d i t i o n  2 i s  e q u i v a l e n t  t o  t h e  f a c t  t h a t .  [v, / ] (0 )~ToW w h e r e  ~ i s  
a n y  r e p r e s e n t e r  o f  a g e n e r a t o r  o f  ~ a  We n o t e  t h a t  f o r  C~ t h i s  c o i n c i d e s  p r e c i s e l y  
w i t h  t h e  c o n d i t i o n  a ~ ~b i n  t h e  p r o o f  o f  T h e o r e m  13. 

The c a s e  F s .  He re  t h e  d i a g r a m  o f  z e r o s  i s  a c y l i n d e r  o v e r  t h e  d i a g r a m  o f  z e r o s  C2 ,2 .  
I n  s u i t a b l e  c o o r d i n a t e s  ~ 1 , . . . , ~ s 6 C  s 

TOW" ~ { ~ = h = 0 }  U {~2=h=0} (F,g. 5). 
1. v (O)GToW\(ToW'  U TOW")" 

2.  Iv, l](O)~YoW'| w h e r e  l i s  a r e p r e s e n t e r  o f  a g e n e r a t o r  o f  t h e  a l g e b r a  s  
C. 

The c a s e  F~ .  W i s  a c y l i n d e r  o v e r  a s e m i c u b i c  p a r a b o l a  w i t h  a t w o - d i m e n s i o n a l  g e n e r a -  
tor. 

have 

1 . v(O)@ToW' , b u t  [v, v ' ] (0 )~ToW w h e r e  v'GL, v '  ( 0 ) : ~ ( 0 ) .  

2 .  The m a p p i n g  Z.->.ToC4/ToW ', l q - L o ~ [ V ,  l ] (0) mod ToW' , i s  an  i s o m o r p h i s m  ( i t  c a n  be  shown 
t h a t  t h i s  m a p p i n g  i s  w e l l  d e f i n e d ) .  

The c a s e  B~. W i s  s m o o t h  and  Z-----C ~L-1. 

1. At  z e r o  v h a s  t a n g e n c y  o f  o r d e r  n --  1 w i t h  W, i . e . ,  f o r  a n y  v'~.L, v ' (0 )~ - -v (0 ) ,  we 

v ~ ~ )  . . . . .  v~ -2 (O)fiToW , v ~-~ (O)~ToW , 

where v k is the k-fold commutator of v with v', 

~=[...[[~, v'], ~' ]  ..... ~']. 

2. The mapping of ~ into C ~-I whose k-th coordinate function is equal to [v k-l, I + 
L0](O) modToW is an isomorphism. 

All the conditions enumerated here of the contact of the field v with the diagram W are 
satisfied for fields of general position on C l+~, i.e., the field obtained by a small pertur- 
bation of the field v has near zero the same singularity v has at zero. 
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5. Zakalyukin carried Theorem 12 over to quasihomogeneous (not necessarily simple) 

functions on a smooth manifold in the form of an assertion regarding the stability of a vec- 
tor field transversal to the bifurcation diagram of zeros [16]. In this form Theorem 13 also 

carries over to quasihomogeneous projections onto the line. 

Let F(x, u, %) be a quasihomogeneous miniversal deformation of a projection (x, u) ~ u 
of a full intersection (possibly with boundary), and let ~ be the codimension of this pro- 

jection. The bifurcation diagram of zeros W cC 1+v is defined globally. 

THEOREM 14 [13]. The vector field 3/3u is stable at 0@C i+~ : if v is a holomorphic field 
defined near zero sufficiently close to 3/3u, then there exist a point q@C i+~ near 0 and a 

germ of a diffeomorphism 

(Ct+L W, O)--*(C ~+~, W, q), 

taking the germ at zero of the field 3/~u into the germ of v at q. 

A similar assertion holds in the real case as well. 

An analogue of Zakalykin's theorem for functions on a manifold with boundary follows 
easily from Theorem 14 as a corollary. For this it is necessary to observe that if 

H (x, x )=h  (x) 
2 

i s  a q u a s i h o m o g e n e o u s ,  m i n i v e r s a l  d e f o r m a t i o n  o f  t h e  f u n c t i o n  h on t h e  m a n i f o l d  C n w i t h  
b o u n d a r y  x l  = 0 ,  t h e n  (H(x ,  t ) ,  x x ) i s  a m i n i v e r s a l  d e f o r m a t i o n  o f  t h e  p r o j e c t i o n  ( x ,  %1) + 
t l  o f  t h e  h y p e r s u r f a c e  h ( x )  + t l  = 0 w i t h  b o u n d a r y  h ( x )  + %1 = x l  = 0 .  

6 .  The s t a b i l i t y  we h a v e  c o n s i d e r e d  r e l a t i v e  t o  a g r oup  o f  d i f f e o m o r p h i s m s  p r e s e r v i n g  
t h e  d i a g r a m  o f  z e r o s  h o l d s  a l s o  f o r  d i r e c t i o n  f i e l d s  3 / 3 u .  No r e s t r i c t i o n s  on t h e  i n i t i a l  
projection are hereby required. Stability follows directly from the stability of versal de- 
formations of projections (Theorem 3, Sec. I). 

Somewhat more follows from Theorem 3: an analogous assertion regarding projections onto 
bases of arbitrary dimension. 

Let WcC~ ~ be the bifurcation diagram of zeros of the projection (x, u) ~ u of some 
full intersection (the definition of W is obvious). Let ~@C ~ be the parameter of a versal 
deformation. Then the fibering (u, %) ~ I and the fibering C p+~ § C ~ sufficiently close to 
it are locally equivalent relative to the group of diffeomorphisms of the space C p+v pre- 
serving W. 

If a versal deformation F(x, u, %) of projection onto C p is quasihomogeneous, then in 
the formal case infinitesimal equivalence of the fiberings (u, %) ~ I and C p+~ § C ~ can be 
realized by means of fields v = (vl,...,Vp, Vp+z,...,Vp+ v) tangent to W such that Z~i3vi/ 
3ui = 0. Here ~i are complex numbers for which there exist no relation Z~iwiA i = 0, where 
wl,...,Wp are the quasihomogeneous weights of the variables ul,...,Up and AI,...,Ap are any 
positive integers. The proof follows the proof of Theorem 13 of part 3. 

Example. Taking all ~i = I, we obtain in the real case an equivalence of fiberings 
which preserves not only W but also the volume element in each of the fibers I = const. 

CHAPTER III 

CLASSIFICATION OF SIMPLE PROJECTIONS 

In this chapter we present a classiffcation of simple germs of projections 

V--+E'-+B, 

for which the dimension of the manifold V projected is no less than the dimension of the 
base B of the projection. We call them projections "onto." As before, it is assumed that 
V is a full intersection. 

6. Nonsimple Deformations of Full Intersection 

Projection of V onto B defines a family of submanifolds in fibers of the bundle E + B -- 
the family of intersections of V with the fibers. A germ of the projection V + E + B gives 
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a deformation of the submanifold V0 of a labeled fiber. The codimension of V0 in the fiber 
coincides with the codimension of V in E. The equivalence class of full intersection V0 is 
an invariant of the equivalence of projections we consider. Hence, for simplicity of the 
projection V § E § B simplicity of the full intersection V0 is required. 

We recall that the projections V § E' § B and V § E" § B are called stably equivalent 
if E' and E" can be imbedded as subbundles in some bundle E § B and the projections hereby 
induced are equivalent. 

We denote by m the codimension of V in E and by n the dimension of a fiber of the bundle 
E§ 

The next result follows from what has been said and the classification of simple full 
intersections (see [6]). 

THEOREM 15. Any germ of a simple projection "onto" is stably equivalent to some pro- 
jection for one of the following three values of the dimension parameters: I) m = I (a hy- 
persurface); 2) n = 3, m = 2; 3) n = 2, m = 2. 

The classification of simple singularities in these three cases is contained in the re- 
spective Theorems 16, 18, and 19 presented below. 

We shall present a number of considerations used in the classification. 

As before, we write the mapping E § B in local coordinates in the form 

(x, u ) ~  u, x~K ~, u~K ~, 

where K is the field of real or complex numbers. Equivalence of projections induces on the 
space of local equations f(x, u) = 0 of manifolds V the action of the group of pairs (h, M), 
where h(x, u) = (X'(x, u), U(u)) is the germ of a fibered diffeomorphism, and M is the germ 
of a nondegenerate m • m matrix: 

(h, M)f=M(h*D. 

The labeled full intersection V0 is given in the fiber enveloping it by zeros of the 

mapping f0 = flu=0" Let ~(x, %), %6K ~, be a versal deformation of the full intersection 
f0(x) = O. As any deformation of the surface f0 = 0, the deformation f(x, u) is induced from 

for some mapping of the bases 

A:(KP, 0)--~(K ~, 0): 

there exist a germ on E of an m • m matrix N, N(0) = E, and a p-parameter deformation X of 
the identity mapping of K n such that 

N(x, u)f(x, u ) = ~ ( X ( x ,  u), A(u)) .  

The mapping h inducing the deformation f plays a basic role in the classification of 
projections. 

We recall that we call the tangent space T6A to the manifold A at a singular point 6 of 
it the limit of the tangent planes at regular points (if it exists). 

The base of the versal deformation ~ is decomposed into equivalence classes of full 
intersections. Let Z be one of them. 

The mapping A is transversal to the class Z (A~Z) if the image of its differential at 
zero is transversal to the space T0Z in ToK~ (in particular, the rank of the differential is 
not less than the codimension of Z in the base of ~). 

The concept of transversality introduced does not depend on the choice of ~ and A. 

Theorem I on finite determination (Sec. I) makes it possible in the classification of 
simple projections to restrict attention to the formal case. 

It is not hard to see that the technique of Arnol'd for reducing functions to normal 
form by means of a spectral sequence [5, 7] carries over to the theory of projections. 

We present several assertions which enable us to guarantee the absence of simple pro- 
jections. We hereby speak of the projection (x, u) ~ u of a surface f = 0 onto a p-dimen- 
sional base as a p-parameter deformation f of the full intersection f0 = O, f0 = flu=0 �9 
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Proposition I. We suppose there exists an abutment fo + go of full intersections. 

Suppose that the full intersection go = 0 has no simple p-parameter deformation. Then f0 = 0 

also has none. 

For simplicity of the projection f simplicity of the full intersection f0 = 0 is re- 

quired. Any simple full intersection has a quasihomogeneous, miniversal deformation fo(x) + 

X ~iei(x) with positive weights of all variables. Here el,...,e~ is a monomial basis of the 

1 

space 

~/{fo* (m (m))~ +$x < Of/dx ,  ) }. 

We assume that the weights ~i of the variables I i are ordered: ~i ~ ~2 ~ ... ~ ~ > 0. 

Suppose that the rank at zero of the mapping A is equal to p -- I. Then there is a num- 
ber s, I ~ s ~ p, such that the deformation f can be reduced to the form 

p, 

f (x, u)=/o(X)+ ~ u~e,(x) +~(u)e~(x), (1) 
t=1,  i@s 

where u = (ul,...,Us,...,Up+ I) are the parameters of the deformation, and the derivative at 
zero of the function %s with respect to all uj, j > s, is zero. 

Proposition 2 (on Reduction). Let 2ap i> ~s" The absence for f0 of simple deformations 
of the form (I) with (p -- I) parameters implies their absence also with a large number of 
parameters p ~> p. 

The classification theorems we formulate pertain to the real case. We point out the 
differences in the complex situation after the theorems. 

7. Singular Projections of Hypersurfaces 

~. Suppose that the germ of the manifold V projected is given by the single equation 
f(x, u) = 0. If the projection is simple, then the function f0 = flu=0 is also simple and 
hence has one of the normal forms [3] 

A~, ~ > 0:x~ +~ • x2 z • . . .  • x~2; 

D , ,  ~ > 41x~2x2 i x~ - i  • xa 2 ! . . .  i xn2; 

E6IXt 8 + X2 4 • X3 2 • . . .  • Xn2; 

ET:Xla~X1X2a~ X32~ . . .  ~Xn2; 

E s : x 1 3 + x 2 ~ i x 8 2 •  . . .  •  

The a b u t m e n t s  o f  t h e s e  f u n c t i o n s  a r e  t h e  same a s  f o r  t h e  a n a l o g o u s  b o u n d a r y  s i n g u l a r i -  
t i e s  ( t h e y  a r e  i n d i c a t e d  i n  D i a g r a m  1 i n  p a r t  3 ,  S e c .  2 ) .  

I n  T h e o r e m  15 p r e s e n t e d  b e l o w  f ( x ,  u)  = f 0 ( x )  + A ( x ,  u ) ;  Xp ( o r  Yv) i s  one  o f  t h e  s i m p l e  
s i n g u l a r i t i e s  o f  f u n c t i o n s  o f  n ( o r  p --  p + 1) v a r i a b l e s ,  i . e . ,  X, Y = A, D, E; i f  t h e  s e t  
of arguments of a function g contained in Table 4 is empty, then we assume that g6Ai, g = 0; 
el,...,e~ is a monomial basis of the ring ~/(Ofo/Ox~) , and e~ is the Hessian of f0 (the ele- 
ment of maximal quasihomogeneous degree); q = • • ... • u~. 

THEOREM 16 [15]. A germ of projection of a real hypersurface is simple if and only if 
it is equivalent to the germ at zero of the projection (x, u) ~ u of the manifold f = 0 where 
f is one of the functions of Table 4. 

The function ~ 5): 

9121 3 1 4 1 5 1 6 [ 7 1 8 [ 9 [ 1 0 ] > 1 1  
~ 1 2 1 ~ l s J s J 4 1 6 1 5 1 7 ] 6  ] 7 

A l l  t h e  p r o j e c t i o n s  i n d i c a t e d  a r e  p a i r w i s e  i n e q u i v a l e n t  up t o  p e r m u t a t i o n s  o f  s i g n s  i n  
t h e  f o r m  q and  t h e  n o r m a l  f o r m s  X~ and  Y~. F o r  p = 1 A y  = A1. 

The a b u t m e n t s  o f  s i m p l e  p r o j e c t i o n s  f o r  p = 1 a r e  e n u m e r a t e d  i n  D i a g r a m  1, p a r t  3 ,  S e c .  
2 .  F o r  t h e  r e m a i n i n g  p a n y  a b u t m e n t  i s  o b t a i n e d  by  a f i n i t e  c o m p o s i t i o n  o f  t h e  a b u t m e n t s  
i n d i c a t e d  i n  D i a g r a m  6 .  
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p = 2 "  Z o 
A,, 

'4--'4 

t~zk~'i , k +  f tk 1~+ 
A'l " - " - "  ;~ f - - " "  A 2 ~'Z 

p>/2 ' 

XjYII.-.•KW• II 
,,j~ , P >/~ r yv---Vv, 

"* " "  xTz 
A, 1 

I<_~//^-~ 

Diagram 6 

Remarks. I. The projections of smooth hypersurfaces with (n, p) = (I, 2) through co- 
dimension ] constitute precisely the list of Arnol'd of all possible projections of general 
surfaces from three-dimensional space onto the plane [I]. All these projections are simple. 

2. As a whole, the complex list of simple projections of hypersurfaces differs from the 
real list only in that in place of the sign • it is necessary to.insert the sign +, and it 
is also necessary to drop 2A~. Over C this series abuts a projection containing a modulus 
(a continuous invariant) in normal form. 

2. In Table 5 below the functions P8, X9, J10 are as follows: 

-P8: Xt 3 -~- X2 3 -I- X3 3 -~  [~X1X2"~3 "-]- "~4 2 ! "o" "~- Xn2; 

X g :  -• x #  + ~x~Zx2 2 +_ x2 4 +_ x3 z +_ . . .  ++_ x,~Z; 

YlO: ,x13 'Ji- ~,'~'lX2 4 ----- X2 6 ! X3 2 ~ �9 �9 ~ ----- 'Xn 2" 

Here ~EC is a modulus. We denote by rkA the rank of the mapping A at zero; the dots denote 
terms of higher degree of quasihomogeneity. 

THEOREM 17. Any nonsimple germ of the projection of a hypersurface abuts at a germ at 
zero of a nonsimple projection (x, u) ~ u of the manifold f(x, u) = 0 where f is one of the 
functions of Table 5 (here again f = f0 + A). 

Remark on Table 5. Let ~" be the set of all functions of the form f0 + A where A runs 
through all values indicated in the corresponding graph; let ~ be the germ of the orbit of 

in ~=,= relative to the equivalence group of projections with transports. The codimen- 
sion of ~Y in ~,~ is the "codimension" indicated in the graph. 

Some abutments of the projections of Table 5 to simple projections are indicated in 
Diagram 7. 

3. Theorems 16 and 17 are proved by means of all the tools indicated in Sec. 6. The 
complete determinant of singularities in our problem is too broad (cl. [3]). Therefore, for 
illustration we present a small part of it consisting of five lemmas giving the classifica- 
tion of the projections of hypersurfaces for pairs (~,p), f06A, , from the hatched region of 
Fig. 6 (the region is considered with boundary). 

l- 

Fig. 6 
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TABLE 4 

P 

Smooth hypersurfaces 

Ao 

>~--I 

a (x, u) I Cm~ ] Notatio n 

(grad f lx=o u=o4=0) 

>/1 0 0 Ao 

1 X~, ~ > 0  a ~--I X~ 

>~ X w ~>0 ~u~ei(x) o x~ 
1 

X~t, ~> 1 

I-t--1 
u~e~ (X) + 

1 

+g(% . . . . .  ut, ) e~ (x), 
g~Yv' v>O 

Y,r 
X~ 

A~t, p,>3 
ur,_iX~1-1 + (u~-I + q) x~ -~ + 

p~--2 
+ ~ (UIX~--I), 1 <k  <~ (~) 

T" 

A w Ix>4 

ul.t_~xlX-1 + qx~ -2 + 
Ix--2 

1 

A3 

/zl~xt +/~2 

l$1x 1 -[-/~lx13-J~u2 

u, x t  + U2 

A 4  UaXx e + UaXl 3 + uu 

tttX: 2 + ttxaXt ~ + tt~ 

tt~X~ e q.- tts 

3 'a~: 

4 'A~ ~ 

2 2A~ 

3 ~A, ~ 

3 :A4' 

4 2A~• 

5 ~A4 ~ 

Singular hypersurfaces (grad f {x=o, u=o = 0) 

1 At _ u ~t ~--I ] B~ 

>1 A~ g(u, . . . .  up), g~Y v I v ] A~ ~' 

Art, p~> 1 uxt I ~ I Crt+x 
1 

tt 2 [ 3 [ F. 

>2 A2 u,x ,+q [ 2 [ A ~  ~ 

u,*+u,*+utkx,, k>2  [ 2k ] =Ag + 

Thus, let f0~A~ and n = |. 

LEMMAS. 

I. Let p ~ 0 and rk A = p. Then fEA~. 
2. Let p ~ I, rkA = p -- I and A~A~-I,. 

Yv 
Then f E A  . .  

3. Let ~ >~ 2, rkA = ~ -- 1, A~A~-I but A~A~-2 . Then the projection f is equivalent 

~--2 

to X~+ I + U~-I X~-I+h(U~-~, U~ .... UP)X~-2@ Z UtXI-I' where h in ~_ i has degree no higher than x(~)--l, 
i=I 
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TABLE 5 

p f0 a (x, u) [ Codimen- Notation 
- I sion 

A~ [;u~xt + u ~ 

>/max {3, 
~ - 2 }  

>~Vt--1 

>~--I 

~ - - 2  

A~ ~ u x f l  + u ~ 

D ,  u x ,  + f~uxa 

Ps, X~, J*o u V.--2 X~t 

A~ f3ua~xfl + uflxx + u~ + . . .  

A+ 

u~xi + u2 + �9 �9 A~ 

A~, ~>~2 1 

r k A = ~ - - 2  

E ~ (~) x~ -1, 
1 

r k A = ~ - - l ,  A~Ag_ 2 

p - - ~ + 4  

A w 1~>3 

1~--2 

1 

P 

+ E ,u+l 

+ U~t_IXI ~-1 

A~, ~>~2 

D~, E~ ~] ~,i (u) ei (x), AAIDu_ 1 
1 

~,i (u) ei (x) ,  
1 

r k A = ~ - - 2  

D~t, Eg~ 

2 * A~ 

~A. 

A~(I~--2) 

A~(~--I) 

A~ 

X ~  

max {0, 
1 

>~1~+1 
Agt, D tt, 

E~ 

Uie ~ (X) + 
1 

+ g(tt.t  t . . . . .  t tp)  e~  ( X ) ,  

g (0) = O, gO.Yv = Ps ,  

Xo, J~o 

v--1 g~ 
X~ 

A' If the quadratic part of the restriction biaS-l=0 is hereby nondegenerate, then fE ~. Other- 

wise f nonsimply abuts A~. 

4. Let V /> 3, rkA = V -- I but A~A~-2 . Then f is nonsimple and belongs to the class 

Ap(V -- 1 ) .  

5. Let ~ /> 2, p ~> 3 and rkA = p -- 2. Then f is nonsimple and belongs to the class 

A~ (~ -- 2). 

We note that Lemma 4 implies the absence of simple projections of hypersurfaces with 
singularities for p = 2 and f0X~, where p ~> 3. 
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AS--C # .'. A~ A~ 

.,1)#-- l# 
xfi-,,,~ s ,  , i f  there is a oorr~ponding abutment 

of singular functions 

d V • ~ >,j,-z, if x~--.-z~, 

X~ - '% if - - ~ - z ,  ~ =-~- ~, x~--- z.~_~ 

A~ Aq 

A~ kl F.]~ Yp Zl)t 
.~fs~- z " ' f  f~'~-'-F. ~. xT 'x '~  ' 

~.~-~ ~%_~ v<,-"z~, 

Diagram 7 

8. Projections of Manifolds of Codimension 2 

]. THEOREM 18. A simple projection of a manifold onto a space of dimension I less is 
simple if and only if it is stably equivalent either to a simple projection of the hypersur- 
face or to a versal deformation of a simple germ of a curve in three-dimensional space. 

The list of simple curves C 3 not equivalent to plane curves was obtained by Giusti [19]. 
Any such curve can be given by equations f0 = 0, where f0 is one of the mappings of Table 6. 

The analogous real list differs from Giusti's list by the placement of the signs + or -- 
of (S~, Ts) and addition of the singularity Ty(x~ + x~, x~ + x~), C-equivalent to TT. 

All abutments of the projections of Theorem 18 can be obtained from the list in Sec. 7 
of abutments of simple projections of hypersurfaces by the addition of abutments of versal 

V deformations X~ § Z ,. 

We note that all abutments of simple curves are so far not known. For example, in [11] 

W~'-'~D6, Zg--'~D7 and ZIo-~De 

were added to the diagram of abutments compiled by Giusti. Indeed, the first two of these 
abutments pass, respectively, through the curves E7 and Us: 

Ws-+ E7 : (Xl 2 + 64X23 - -  46s~x, ~2 + 429~x2 ~ + 2033x2x3 - -  s2x32, 

TABLE 6 

Type fo Type f0 

T7 
T8 
T, 
U, 

X l  2 -~ X2 2 ~- X~ -3,  XpX,  

XI ~ @ X~ a-~- Xz=, XlX3 

Xl  e + x= s + x s  4, XiX3 

Xl  ~ + X2 a @ Xa 5, X2X~ 

XI~ + X2Xa, X1X2-~- X3 s 

U8 

U o  

W8 
W~ 
z~ 

Zlo 

X~ ~ -.~ X2Xa 4- Xa ~, XlXe 

XII .~  X2Xs, XlX2..~- Xa 4 

Xl i .~  X~ 3, X2e,.~ XlX3 

Xx 2 -~- X2X3 2, X2 2 -it- XIX  3 

Xl  2 + x~ 3, X2 ~ + x3 a 

XI 2.~- x lX~  ~, X2 2 + x s  s 
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TABLE 7 

Type Type fo 

+- 2~<k<l ~l~,l' 
C~, ~ > 3 

H + - m+5, m >/4 

XtX=, Xz k +_x2 l: 

Xz ~ + X= l, Xe k 

Xz ~+_ x~ m, XzX~ ~ 

F~m4~, m >1 3 

F~m+~, m >1 2 

: X I ~ - X 2  3 , X 3  ng 

XZ ~ + x s  s, X z X s  m 

X l ~  Xt 4 ...... 

4x,x2 + x32-  16s4xl -]- 20888x2 -}- 16sSx~; 

U s -+ D 7 : (xl 2 + x2x~ + 2~3xl + s4x3, 

2 3 xlx2 + x~x32-  3~x~ - -  ~ 82x~xa + ~ 83xa 2 + 1 *x2xa). 

2. Before presenting the classification of simple projections of manifolds onto bases 
of the same dimension we recall the classification of simple plane 0-dimensional full inter- 
sections (by Theorem 15 our projections in the present case are deformations of multiple 
points of the plane). 

The simple multiple points in C 2 were classified by Giusti [20, 6]. The corresponding 
real list is given in Table 7 (our notation d,~fers from that of Giusti). 

Depending on the parity of the indices in the real case and always in the complex case, 
singularities differing only in sign are equivalent. Over CjC2hNCh, k. 

All abutments of real multiple points are obtained by composition of a finite number of 
abutments of Diagram 8. 

In Table 8 presented below we retain the notation of Theorem 16 with the sole differ- 
ence that now ez,...,e~ is a monomial basis ordered with respect to weights of the space 

~/{/o* (= (2))~+~ < afo/aX~ > }, x=(x~, x2); 
X~ is the class of f0. Sometimes, with special mention, we write the normal form C~ 2 as 

2 2 (xl, x2). The singularities C4(x~ + x~, x~) are equivalent to C~,2. 

THEOREM 19. The germ of a projection of a real surface onto a manifold of the same di- 
mension is simple if and only if it is stably equivalent either to a simple projection of a 
hypersurface or to the germ at zero of the projection (x, u),§ u of one of the manifolds f = 
0 of Table 8. 

The value of ~ (in the series F~0) is not known exactly (it is possible that ~=~oo). 
+ 

In the last row of the table X~ is any of the singularities C~,l-G10. 

Over the field C projections differing only in the placement of the signs + and -- are 
2~2r 2C~ equivalent; the index deformations C2k and Ck, k and also the singularities u2,2 and :~ 

are the same. 

Diagram 9 presents some abutments of the projections of Theorem 19. Among them are all 
abutments of real singularities for p = I and complex singularities for p = I, 2. 

THEOREM 20. Any nonsimple projection of a manifold onto a space of the same dimension 
abuts either one of the nonsimple projections of Tables 5 and 9 or one of the projections 

Fv 
Xp (XpEC~I, Csd, F~+FIO, Om; F~Ps, Xe, Ym),or some deformation of a bordered multiple point 
in R n. 

c;,e-~ ~__/. c ; , e . ~  c; -1 ,~  " 

c',+, ~ "  c~,,e'~ c",,, 
FH+e+ 1 ~ F~+ e Ak+e-f: 

C* . -,--- H+. ~ H + . I  

�9 C~,z..-~ A z 
+ 

Ftk+l / C z ~ " ~ A z k .  I 

Diagram 8 
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TABLE 8 

>3 

>4 

>~--I 

>~--1 

C~,,t, 2-.<k..<l, 

C2r, r > 2, 
Fg, ~ > 7  

A (x, u) 

(0, u) 

:odimenJ 
ston | Notation 

~t-- 1 X~ 

C2, ~ [ 

c~2 ] 

C+ v (xlL x2~ 

(X28 ,  /~) 

(u, o) 

(ua, u~+ ulkxa), k > 1 

(ut + u :x~ ,  u2 + u:x~) ,  
1-.<r<s 

4 

5 

2k 

r +  s 

F5 

F~ 

~C2~ 
2,2 

2 ?'~$ C2,2 

P 
h =  ut + ua~+uJ + ~ +  uy 2 

5 

(u, + u~x~, u, + hx,) v C+'f  ~ 
h = us + g (u4 . . . . .  Up) 

h ul k+ua 2+q,  k>~l k + l  C 2k = 2,2 

h = ul  + u3 3 + q 3 C 3 2,2 

h = ul I~ + uau4 + u~ t + 

P k + l - - 1  Ct:~ 
+ ~ + u f l ,  k > l ,  I>13 

5 

4 C3,1,2 2,2 

C~, v F~, 

C~t, l > 2  

C2,3 

uiei (x) + 
1 

+ g ( %  . . . . .  Up) % (x)  

(u~, ul + uax2 + u4x~ 2 + 
+(u~r+q)  xt) ,  r > l  

Ca, t, l > 3  

Ca,l' / > 3  

FT, Fo, Fro 

Flo 

l--1 
Ul' ~ UlX~ -1  --~Ul,IX l -.~ 

+ ~l+~x; + hx~ -1) 
h = + ut+, + g (u~ . . . . .  Up) 

h=  +u~+2+ q, r > l  

u : t  (x) + (%-1 + 
1 

+ g (% . . . . .  up!) e~ (x) 

I ~l ulel (x)  + (u, r + q) elo (x) ,  

l < r < x > 4  

V 

Yv 
X~ 

C r 
2,8 

Yv 
Ca,l, 

C r 
8,1 

YV 
F~ 

Glo 

X~ 

D--I 

u,et (X) + 
1 

+ (Uo + g (ulo . . . . .  Up))elo(x), 
ea = ( x d ,  0), e~o = (0, x ~ x : )  

~]ule t (x) 
I 

Yv 
v 01o 

o 
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AR+e-,~ 

C~,I~ .~k' ~ >~fl ~.~, k >~K ~ 
2, ~ - - ' "  C'~,2 

_4" 

z~ ~ ~ e(C~,e=C,+e) 

c,,~_ s_,, ,=,,..., [-~-J- ] 
~C~, s S z,~---A~, s>~ 

2~, I, t .A, I 

cZ,k .k K)I 
2, 2"--"~3 ' 

s ~-+,Ar*I 

C + , A r - I  ~r _.~. A/~r- ( 
Z~Z "= ' -"  -2~3 "'u 

g2 . . .~aA'l  EZ . . . . . A  ~'~ 
~,~ r,~+~ -2,S " 3  

roots in  R 2 

Diagram 9 

Diagram 10 shows the position of the projections of Table 9 in the hierarchy of projec- 
tionsrelative to simple singularities. 

3. We present the codimensions C and Co of sets of nonsimple projections "onto," re- 
spectively, of nonsingular and not necessarily nonsingular surfaces depending on the values 
of the dimensional triples (n, m, p): 

a) n =m= I, p l  1 I21>--3.  
C l o o l 3 1 2  ' 

n = m = 2 ,  .p ] 1 I 2 I - 3 ,415 - -91>~ I0 . . .  
C I o ~ 1 3 1 2  I I I 0 ' 

n = m >7 3: the same as for n = m = 2 except for the case p = 9: C(9) = 0; 

+ c - , ' - - c  ' . , - - F ,  

2 %~__ 2C I,%,~_.__2 x e . - , ~  2.2 2. 
C2,Z ~,2 ~ ~'2,2 - - "  ~ Z , i ' - -  ~2,3 

+ ^, ~+,AI 4"~r -- --~ --~AI --7@ C2,2((.)--(,2,2<--'C2,2 C2,2(2) C2, 2 < - - -  C2, 2 

C3, ~_....~2,'1 _J*,l,~ + - ~ % Î 
2 , 2 ~ - z , ~  c2,2 ~ C~,t(~'-1)~Ck, ~ 

~2,z ~ z,2 ~ , t  7 , c  z,2 c~,e(#-1)~Ck, e 
_ 5,1,3, _3,1 3 , ~ , 3 /  
~ 2. 2 - - " % ,  2 C 2, 2 C 2, J ' * ) - - "  C ~,~ 

A~ A2 

AI 

Diagram 10 

: 2 8 0 8  
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p [ 1 1 2 - 6 [ 7  I > 8 .  
b )  n = m + 1 = 2 ,  "C'ITI 2 ] 1 [ 0 ' 

n = m + 1 /> 3 t h e  s a m e  i f  p x 4 ,  5 ,  6 ;  o t h e r w i s e  C = l ;  

c) n = m + 2 = 3 or n > m + 2 /> 4 

P I 1 ] 2 - 5 1 6 1 > 7  
C I 6 ]  2 I1  [ 0 ' 

n = m + 2 /> 4 t h e  s a m e  i f  p ~ 5 ,  6 ;  C ( 5 )  = 1 ,  C ( 6 )  = O; 

d )  f o r  a n y  n a n d  m,  n /> m,  

C 0 ( 1 ) = 4  Co(p)=C(p) for p > 2 .  
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NEWTON POLYHEDRA (RESOLUTION OF SINGULARITIES) 

A. G. Khovanskii UDC 512.761 

Some results are presented on the resolution of singularities and compactification 
of an algebraic manifold determined by a system of algebraic equations with fixed 
Newton polyhedra and rather general coefficients. Resolution and compactification 
are carried out by means of smooth toric manifolds which are described in the first 
half of the survey. 

The Newton polyhedron of a polynomial depending on several variables is the convex hull 
of the exponents of the monomials contained in the polynomial with nonzero coefficients. The 
Newton polyhedron generalizes the concept of degree and plays an analogous role. Discrete 
characteristics of a joint level line of several polynomials in multidimensional complex space 
are the same for almost all values of the coefficients and are computed in terms of Newton 
polyhedra. Among the discrete characteristics computed are the number of solutions of a sys- 
tem of n equations in n unknowns, the Euler characteristic, the arithmetic and geometric 
genus of full intersections, and the Hodge numbers of a mixed Hodge structure on the cohomo- 
logy of full intersections. 

A Newton polyhedron is defined not only for polynomials but also for germs of analytic 
functions. For germs of analytic functions of general position with given Newton polyhedra 
the multiplicity of a joint solution of a system of analytic equations, the Milnor number 
and zeta function of the monodromy operator, the asymptotics of oscillating integrals, and 
the Hodge numbers of a mixed Hodge structure on vanishing cohomology are computed; in the 
two-dimensional case and the multidimensional quasihomogeneous case the modality of a germ of 
a function is computed. 

In the answers quantities characterizing both the sizes of the polygons (the volume and 
the number of integer points contained inside the polygon) and their combinatorics (the number 
of faces of different dimensions and the numerical characteristics of their abutments) are 
encountered. These and other results connected with Newton polyhedra can be found in the 
works [I-9, 11-16, 18-24, 26-28]. 

A large part of the computations with Newton polyhedra is carried out by means of toric 
manifolds. "Elementary" computations in which it is possible to get by without their help are 
are most often exceptional. The basic step in applying toric manifolds consists in the ex- 
plicit construction of a resolution of singularities and subsequent nonsingular compactifica- 
tion of the joint level line of several polynomials having sufficient general coefficients 
and fixed Newton polyhedra. The present paper is devoted to toric manifolds from the point 
of view of their applications to the resolution of singularities and compactification. 

In the first half of the paper we present a detailed construction of smooth toric mani- 
folds. Usually the description of these manifolds is presented in terms of spectra of rings 
which are common in algebraic geometry but are little suited for specialists in mathematical 
analysis. In our exposition the entire algebraic apparatus is reduced to linear algebra and 
to the simplest properties of integral lattices. 

The second half of the paper is devoted to theorems on compactification and resolution 
of singularities. In the first of these (part 2.4) a nonsingular compactification of a joint 
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