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Local invariants of mappings
of oriented surfaces into 3-space

Victor V. Goryunov

Abstract — The numbers of pinch and triple points are obvious order 1
(in the sense of Vassiliev [7]) invariants of mappings of surfaces into 3-space.
We show that, besides them, there is exactly one integer invariant of such
mappings that depends only on local perestroikas of the image. Our study
provides new restrictions on the numbers of different perestriokas during
sphere eversions.

Invariants locals des applications

des surfaces orientées dans espace de dimension 3

Résumé — Les nombres des points de type parapluie et des points triples
sont évidemment des invariants d’ordre 1 (au sens de Vassiliev [7]) des appli-
cations des surfaces dans I’espace de dimension 3. Nous démontrons qu’il n’y
a en plus qu’un invariant entier de telles applications, qui ne dépend que des
perestroikas locales de I'image. Notre étude fournit des restrictions nouvelles
sur les nombres des perestroikas différentes pendant eversions des spheres.

Version francgaise abrégée — Localement, I'image d’une application
générique d’une surface fixée fermée M dans R? est soit une feuille lisse, soit
une intersection transverse de deux ou trois feuilles lisses, soit un parapluie
de Whitney. Les applications avec des images plus compliquées forment une
hypersurface discriminante A dans ’espace €2 de dimension infinie des toutes
les applications C*° de M dans R3.

Le discriminant coupe €2 en composantes connexes. Un invariant nu-
merique est une fonction localement constante sur Q \ A. Le long d'un
chemin générique de €2, nous regardons les sauts d’un invariant au passage
du discriminant. Nous disons que notre invariant est local si chaque saut est



complétement défini par le type de difféomorphism d’une perestroika locale
de 'image au moment du passage du discriminant.

Soit Imf I'image d’une application générique f : M — R? d’une surface
orientée. Prenons un point v dans R?® \ Imf. Considérons une 2-sphére
petite, avec l'orientation extérieure, centrée en u. La contraction radiale de
I'image sur la spheére définit une application composée de M sur la spheére.
Soit deg(u) le degré de cette application.

R?\ Imf a un nombre fini de composantes connexes D. deg(u) est con-
stant dans chacune d’entre elles. Nous noterons la valeur correspondante par
deg(D).

Nous introduisons l’integral de la fonction deg par rapport a la car-
actéristique de Euler x:

iy 2o ()x(0) = > deg(D)x(D)

oli la somme est prise sur toutes les composantes connexes de R? \ Imf (cf.
8, 9])-

Il y a 8 (resp. 3) composantes connexes locales du complémentaire de
I'image au voisinage du point triple ¢ (resp. un point de type parapluie p).
Nous définissons les degrés deg(t) et deg(p) comme les moyennes arithméti-

ques des 8 ou 3 degrés correspondants.
On pose (cf. [9])

1
I (5) = [y B0 0I(0) = S deg(t) = 5 3 deg(p),
ol la somme est prise sur tous les points triple ¢ et parapluie p de I'image.

Théoreme. L’espace des invariants locals entiers des applications lisses
d’une surface orientée dans R3 est de dimension trois. Soit g le genre de la
surface source. Alors, les invariants élémentaires sont:

1. le nombre 1; des points triples de "'mage,

2. le nombre i, des paires des points parapluies,

3. (If+it+z'p+g—1)/2.

1. Generic degenerations. Locally, the image of a generic mapping of a
fixed closed surface M to R3 is either a smooth sheet, or transversal inter-
section of either 2 or 3 smooth sheets, or a Whitney umbrella. Mappings



with more complicated images form a discriminant hypersurface A in the
infinite-dimensional space € of all C* maps M — R3.

The discriminant subdivides €2 into connected components. A numerical
imwariant is a way to assign numbers to each of these components.

Moving along a generic path in {2, we watch the jumps, as we pass the
discriminant, of the values of an invariant. We say that our ¢nvariant is local
if every jump is completely determined by the diffeomorphism type of the
local perestroika of the image at the instant of crossing of the discriminant.

1.1. The top strata. There are 7 types of local events on the image that take
place at generic points of A, i.e. occur along generic curves in Q [4]:

(E) elliptic tangency of two smooth sheets;
(H) hyperbolic tangency of two smooth sheets;

(T') (for ‘triple’) tangency of the line of intersection of two smooth sheets
to a third smooth sheet (all the three sheets are pairwise transversal);

(Q) (for ‘quadruple’) four smooth sheets intersecting at the same point;
(C) (for ‘cup’) a smooth sheet passes through a pinch point;

(B) birth of a bubble with two pinch points joined by an interval of selfin-
tersection;

(K) (for ‘cones’ in Russian) the hyperbolic version of B.

A local coordinate form for B and K is (z,y) — (x, 9% y(z? £ y* — X)).
The seven perestroikas define seven top-dimensional (of codimension 1 in
Q) strata of the discriminant.

1.2. Coorientation of the strata. We say that passings through the strata F,
T, C, B and K in the direction specified by the illustration are positive. In
the first four cases amongst those five, this is equivalent to the appearence
of a new 2-cycle on a generic image.

To coorient H and @) (at least partially), we assume from now on that
the source surface M is oriented. Fix the orientation of R? as well. We get a
canonical coorientation of the image at immersive points requiring that the
frame (coorienting normal, the image of a positive frame of M) is a positive
frame in R3.

We now add the induced coorientations of the sheets in all the 7 per-
estroikas of the illustration. This splits them in 20 subcases listed below.
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There, considering a 2-sphere that consists of pieces of several smooth sheets
(with their own coorientations), we call a piece positive if it has the outer
coorientation. The outer coorientation is also called positive, the inner one
is called negative.

We split the strata:

e E,T,Qin £/, =0,1,2, 77, =0,1,2,3, Q/,j = 2,3,4. Here j is the
number of positive pieces of the new-born sphere (there is the vanishing
tetrahedron in the @-cases which has 4 — j positive pieces);

e Hin H' and H™: the sheets, at the tangency point, have coinciding,
respectively opposite, coorientations;

e Cin C*% o, =+, —: for the appearing cup-shaped 2-sphere, o and
B are the signs of the coorientations of the lateral (having the pinch
point) and bottom pieces respectively;

e Bin BT and B : the superscript is the coorientation of the new-born
sphere;

e K in KT and K~: the index is the coorientation of the local ‘tubular’
part before the perestroika.



We continue with the coorientation of the discriminant.

Q* and Q3. We coorient those strata in the direction of increase of the
number of positive faces of the local tetrahedron.

H~. Consider the two points of M at which we get tangency for the
degenerate mapping. We say that the crossing of the stratum is positive if
the relative motion of the images of the two points occurs in the direction
opposite to the coorientations of the sheets.

There is no way to coorient Q2 and H* by only local means, and we leave
them without coorientation. This allows them to participate only in mod 2
invariants.

2. Lists of local invariants. We express a local invariant as a linear
combination of the strata of the discriminant in which each coefficient is the
increment of the invariant for the positive crossing of the stratum.

Theorem 1. The space of integer local invariants of smooth mappings
of an oriented surface into R3 is 8-dimensional. The following are basic
mvariants:

1. I, =2T+ C;

2. 1I,=B+K;

3L,=E*-E°+H +T+C*"+CT~+Bt+ K.

Here T,C, B, K are the sums of all the corresponding 4 or 2 substrata.

The proof of the theorem is a rather routine study of generic 2-parameter
families of mappings (cf. [1]).

Theorem 1 identifies the invariants up to a choice of constants of inte-
gration. Set I, and I, to vanish on an embedding. Then those invariants
are respectively the number of triple points and the number of pairs of pinch
points of the image of a mapping.

Theorem 2. The space of mod?2 local invariants of smooth mappings
of an oriented surface into R? is 4-dimensional. Basic invariants are those
of Theorem 1 and

4. I, =E'4+H " +C*+C .

We say that a self-tangency of two smooth sheets of the image is direct
(resp. inverse) if their coorientations coincide (resp. are opposite).

The invariants I3 and I, measure modified numbers of inverse and direct
selftangencies in a generic homotopy between two mappings.



3. Immersions. We now restrict our attention to the subset of immersions
in €.

3.1. Local invariants.

Theorem 3. The space of integer local invariants of immersions of an
oriented surface to R? is 2-dimensional. Basic invariants are:

Ljy=T and L =E'-E'+H".

With the normalization I;/,(embedding) = 0, I,);(f) is the number of
pairs of triple points of the image of f.

Theorem 4. The space of mod2 local invariants of immersions of a
2-sphere to 3-space is 4-dimensional. In addition to the basic invariants of
Theorem 3 there are two more:

ILi=FE'+H" and I,=Q.

q

3.2. Sphere eversions. Those are turnings of a positive sphere inside out in
R3 by a generic regular (i.e. with no pinch points) homotopy [6].

Let N(S) be the number of crossings of the stratum S (the signs of the
crossings of an oriented stratum are respected) during a sphere eversion.

Corollary 5. The numbers of perestroikas during a generic sphere ev-
ersion are subject to the following relations:

N(T)=0, N(E*)-N(E®)+N(H )=-1, N(EY+N(H')=0mod2

This follows from consideration of a generic path in the space of mappings
S? — R? along which a positive sphere becomes a negative one via the birth
of a negative bubble and death of a positive one. The right-hand sides of
the relations are the increments of the local invariants of Theorems 1 and 2
along this path.

Remark. One more restiction, N(Q) = 1 mod 2, was proved by Max and
Banchoff [3]. This implies that, during an eversion, there are at least two
positive crossings of 7.



4. Intergal invariant. We introduce now an invariant that is very similar
to the integral in Rokhlin’s complex orientation formula for real algebraic
plane curves [5, 8.

4.1. Degrees. Let Imf be the image of a generic mapping of a surface
f: M — R3. Take a point « in R? not on the image. Consider a small 2-
sphere, with the outer coorientation, centered at u. The radial contraction of
the image onto the sphere defines a through mapping from M to the sphere.
We denote by deg(u) the degree of this mapping.

Imf subdivides the ambient 3-space into a finite number of connected
components D. deg(u) is constant on each of them. We denote the corre-
sponding value by deg(D).

We define an integral of function deg against Euler charactestics x:

iy 2o ()x(0) = > deg(D)x(D)

where D runs through all the connected components of R*\ Imf (cf. [8, 9]).

There are 8 (resp. 3) local connected components of the complement to
the image around a triple point ¢ (resp. a pinch point p). We set the degrees
deg(t) and deg(p) to be the arithmetical means of the corresponding 8 or 3
degrees.

4.2. The invariant. We set (cf. [9])
1
I (5) = Jny B0 0I0) = S deg(t) = 5 3 deg(p),
where ¢ and p run through all the triple and pinch points of the image.

Theorem 5. [ Ii 15 a local tnvariant. Up to an additive constant,
If =213 -1, - I,
Thus all the three local integer invariants of Theorem 1 may be defined

only in terms of geometry of the image of the mapping f. There is no need
to choose any homotopy in {2 between the distinguished mapping and f.



Remark. [ Ii (f) has also an integral expression in terms of the smoothed

image of f (cf. [9]).
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