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Introduction

In [13] the technique of semi-simplicial resolutions was applied to the study of the
topology of the image of a stable perturbation / of a map-germ C" —> Cp with
n <p. The crucial role was played there by the multiple point sets Dk(f). These
are the closures, in (C1)*, of the sets of /c-tuples of pairwise distinct points sharing
the same image under / The set Dk is invariant under the action of the
permutation group Sk, interchanging the copies of the source. According to [13],
there exists a spectral sequence computing the homology of the image Y of f
whose E1 term is formed by the homology of the sets Dk, anti-symmetric
(alternating) with respect to these actions.

We get a good situation starting with a corank-1 map-germ of finite s&-
codimension. Then each Dk(f) is a Milnor fibre of an isolated complete
intersection singularity (icis) and, thus, has non-trivial alternating homology only
in one dimension, at least over <Q. As a consequence, the spectral sequence
mentioned degenerates at El and the rational homology of Y is the sum of the
alternating homology of the Dk [13]. This decomposition is very useful in the
study of the mixed Hodge structure [13], of the monodromy of the image [12],
etc.

For maps C - » C P with n^p, the image should be replaced by the dis-
criminant, that is, by the set of the critical values of the mapping. Indeed, the
discriminant hypersurface is very much like the image of a map Cp~1-+Cp. For
example, if we are in the nice dimensions [4], the discriminant of a perturbation
of a map-germ of a finite j^-codimension has the homotopy type of a wedge of a
finite number of middle-dimensional spheres [8], that is, we get the same as for
the image mentioned [18].

In the present paper we introduce the geometric approach to the algebraic
construction of the semi-simplicial resolution used in [13]. We extend the results,
obtained in [13] for rational homology, to the case of integer coefficients. And we
apply these results to the investigation of the topology of discriminants of
corank-1 map-germs.

In § 1 we give a description of a geometric realization of the semi-simplicial
resolution of the image of a finite map / . We show that the homological spectral
sequence, associated to the natural filtration on this resolution, has E1 term
consisting of the homology Alt H+ of the alternating chain subcomplexes of the
multiple point sets Dk(f) of/.
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Alternating chains on a variety invariant under an action of a permutation
group are chains twisting with respect to the sign homomorphism of this group. In
§ 2, following this approach, we consider a Milnor fibre F of an icis, invariant
under an action of a finite subgroup G of the orthogonal group of the ambient
linear space. We consider a complex of integer chains on F twisting with respect
to the determinantal homomorphism of G. We prove (Theorem 2.1.2) that the
homology of this complex coincides with the determinant-twisting part of the
integer homology of F and, thus, is non-trivial only in one, middle, dimension.

Multiple point sets Dk(f) of a stable perturbation / of a corank-1 map-germ
C—»CP, with n <p, are Milnor fibres of icises invariant under representations of
permutation groups for which the determinantal and sign homomorphisms
coincide (§3.2). Thus for the image of such an / , Theorem 2.1.2 implies
degeneration of the spectral sequence of § 1 at E\ giving a decomposition of the
integer homology of the image into a sum of alternating parts of the homology
groups of the sets Dk(f) (Theorem 3.3.1). This is similar to the result of [13] on
the rational homology.

In §§4-7 we study the discriminants of map-germs C - » C P with n^p. We
treat the discriminant as the image of the critical point set and define the multiple
point sets of the discriminant in the corresponding way. We fix our attention
mainly on the case of map-germs of Boardman class 2M~P+1>1--1. In this nice case
the multiple point sets again turn out to be icises. The discriminants, together
with the whole maps, are induced from the discriminants of the stable map-germs
[7] of the same Boardman class, that is, from the discriminants of the generalized
Whitney mappings (which are versal unfoldings of function singularities A^). The
discriminant of a Whitney mapping is a generalized swallowtail very well known
in singularity theory (this is the set of non-regular orbits of the complex reflection
group Ap, or the set of polynomials of degree /x + 1 in one variable with multiple
roots, etc.). The explicit equations for the multiple point sets of the swallowtail
(Corollary 4.3.4) show that all these sets are smooth (Theorem 4.1.1). Exactly this
proves each multiple point set of the discriminant of a stable perturbation of any
£/7-/>+i,i,...,i_map Q£ fin}te ^-codimension to be a Milnor fibre of an icis. The

semi-simplicial resolution of the stable discriminant gives a filtration on its
homology. By application of Theorem 2.1.2, the graded object of this filtration is
the direct sum of the alternating homology of the fibres mentioned (Theorem
5.3.4, similar to Theorem 3.3.1 on the images).

In § 6 we consider as examples the discriminants and the multiple point sets for
simple germs C -> C .

Vanishing cycles on the discriminants are defined in the traditional way (§ 5.4).
Some of them arise as complex links of certain Weyl groups. In § 7 we consider
their real representation, a problem pointed out by V. I. Arnold and D. Mond.

Sometimes, instead of considering mappings between smooth spaces, we
consider the somewhat more general case [11] of projections of complete
intersections onto smooth spaces. All the homologies are over the integers and we
often omit Z.

The author is grateful to David Mond for numerous very useful discussions and
to Terry Wall and the referee for constructive remarks on the original manuscript.
I am also grateful to SERC for funding a Visiting Research Fellowship at
Warwick during the time when the paper was prepared.
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1. Semi-simplicial resolutions and multiple point sets

1.1. The geometric resolution
Let / : X —> Y be a finite surjective algebraic mapping of compact semialgebraic

sets. The main tool of this paper is a semi-simplicial resolution of the image Y. In
[13] we introduced an algebraic approach to this notion. Here we use geometric
language to describe the same object.

Let m < oo be the maximal number of distinct preimages of a point of V.
Following [22], consider an embedding / of X into some U.M, such that the images
under i of any m distinct points of X do not belong to any (m - 2)-dimensional
affine plane (say, for X <= Us ={(z\, •••, zs)} we can take an embedding into Usm

with zf, where j = 1,..., s and a - 1,..., m, for coordinate functions). Now, let
the points xX) ..., xk G X be all the distinct /-preimages of a point y e Y. Consider
in yX UM a closed (A: - l)-dimensional simplex with vertices
(y> *(*i))» •••> (y> *(**))• Write Y' <= Y X UM for the union of all such simplices for
all points y of Y. The space Y' is homotopy equivalent to Y (see, for example,
[22]).

The set Y' has a natural filtration

(1.1) X = Yx <= y2 c ... e Ym_x c Ym = Y',

where Yk is the union of all faces of dimension less than k of all the
above-mentioned simplices. To calculate the homology of Y we can consider a
spectral sequence corresponding to this filtration. The E1 term of the sequence
consists of H^(Yk, Yk_x) for various values of k. The relative groups are quite
often easier to calculate than //*(Y) itself. Furthermore, in some nice situations,
the spectral sequence collapses at £ \

1.2. Interpretation of H^{Yk, Yk-X)
Consider the k th multiple point set of / :

Dk = closure^*!, ..., xk) e Xk: f(xx) = ... = f(xk), xt ¥^Xj if/ ^ ;}•

Let A*-! be the standard closed [k - l)-dimensional simplex oriented by a fixed
order of the vertices.

Define a mapping h: Dk x &k_x —»• Yk to be linear on each simplex

(xx,...,xk)xLk.x

and send its ordered vertices to (y, i(xx)),..., (y, i(xk)) s Y', where y is the image
of all the Xj under / . Let diag(Z)*) be the intersection of Dk with the union of all
the diagonals x, = x; in Xk. Then

h: (Dk x At_lf (diag(D^) x A*_0 U (Dk x dA*_0)^ (F,, n_,) .

There is a natural action of the permutation group Sk on Dk X Ak-X which is a
direct product of two actions: permutations of the copies of Xk 3 Dk and linear
automorphisms of A _̂j permuting its vertices. The mapping h is invariant with
respect to this action. Note also that h is proper, A:!-fold and locally homeomor-
phic on the complements to the second terms of the pairs. Thus, modulo the
second term, h is a factorization by the free action of Sk.

Let us take any cell decomposition of Dk on which Sk, permuting the copies in
Xk, acts by permutations of cells (so ere = e means that a fixes the cell e
pointwise). Consider this decomposition modulo diag(D*) only. Multiplication of
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the cells by A _̂i provides a cell decomposition of Dk x A t . | modulo

(diag(Dk)x Ak_x)U (Dk x d^).

The latter provides, via h, a cell decomposition of Yk modulo Y*_i. Consider the
corresponding relative chain complex of (Yk, Y*_i). This chain complex is
isomorphic to the one obtained by replacement of each cell e X A*_, of (Yk) Yk-})
by an ^-invariant sum of k\ cells in h'\e x A^_,). The latter is divisible by A*_!
and after the division we get 2 sign(cr) • (r(e'), for a e Sk, for some cell e' of Dk.
We denote such a sum by Alt(e').

The chains Alt(e') are contained in the chain subcomplex Alt C.(Dk) consisting
of all the integer chains c on Dk such that a(c) = sign(cr) • c for any a e Sk.
Moreover, Alt C.(Dk) is generated over Z by the various Alt(e'), with e'
running through all the cells of Dk. Indeed, if a cell of Dk is fixed by a
permutation, it is fixed by a transposition and thus cannot appear with non-zero
coefficient in any chain of Alt C.(Dk).

We denote by Alt H*(Dk) the homology of the complex Alt C.(Dk). Since
Alt C.(diag(D*)) = 0, we obtain

1.2.1. PROPOSITION. H,(Yk, Y*_,) = Alt H,.k+i(D
k).

1.2.2. COROLLARY. (Cf. [13, Proposition 2.3].) The homological spectral
sequence associated with the filtration (1.1) has E\q = Alt Hq(D

p+l).

When all the multiple point sets Dk are Milnor fibres of isolated complete
intersection singularities of decreasing dimension, we will be able to guarantee
that the spectral sequence collapses at E\ We show this in the next section.

2. Det-twisting vanishing homology of an icis

2.1. Det-twisting cycles and chains
Consider a map-germ / : C , 0—>CP, 0, with n^p, such that / = 0 is a

complete intersection with an isolated singularity (icis). A representative of the
germ, defined on a sufficiently small ball Bv <= C , centred at the origin and of
radius 17, will be also denoted by / . Consider its Milnor fibre F, that is, a
non-critical level / = e in Bv, with \e\ « 17. The level F is homotopy equivalent to
a wedge of a finite number of middle-dimensional spheres Sn'p [14,15] and thus
has non-trivial reduced homology only in this middle dimension. Here F could
also be a non-critical level of any small perturbation of / , not necessarily a level
of/itself.

All through this section we consider the slightly more complicated situation
when C , 0 is equipped with a complexification of a real representation pG of
some finite group G (we may assume the real representation to be orthogonal).
We suppose / = 0 to be a G-invariant isolated complete intersection singularity.
This means that the map-germ / must be G-invariant and have a finite
G-invariant contact codimension [7] (thus we are requiring more than / defining
an icis with G-symmetry). Then G acts on the Milnor fibre F and on its
homology.

2.1.1. DEFINITION. A cycle ceH*(F;Z) is called det(pc)-twisting if g(c) =
det(g) • c for any g e G.
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If G c SO(H), such a cycle should be invariant: g(c) = c for all g e G.
The set of all the det(pG)-twisting cycles is a sublattice H^W(F) in the integer

homology of F (we do not include pc in the notation since it will be clear from
the context which representation we are using).

We can also consider another twisting homological object for F. Take a cell
decomposition of F on which G acts by permutations of cells (again, ge = e means
that the element g fixes all the points of the cell e). Consider the corresponding
integer chain complex and its subcomplex of det(pc)-twisting chains. For
example, a cell fixed by some element changing the orientation of U" does not
appear in the subcomplex. We denote the homology of the det(pc)-twisting chain
subcomplex of F by Tw H#(F). The aim of this section is to prove

2.1.2. THEOREM. Let F be a G-invariant Milnor fibre of a G-invariant icis. Then

2.2. Twisting homology of homotopic spaces
Let Y and Z be two CW-complexes equipped with actions of a finite group G.

Recall that a mapping a: Y^>Z is called G-equivariant if it commutes with the
actions of G: ag = ga for any g e G.

2.2.1. DEFINITION. TWO CW-complexes Y and Z are G-equivariantly homotopy
equivalent, Y—CZ, if there exist two G-equivariant mappings a: Y^>Z and
/3: Z-+Y, such that the compositions j3°a and a°/3 are homotopic to the
identities in the class of G-equivariant maps.

Let us fix a homomorphism %'. G —>{±1}- Similar to the det-case, but in a more
general setting, we can consider subcomplexes of integer chains c of Y or Z
twisting with respect to %: g(c) = %(g) • c for any g e G. The homology of such a
^-twisting complex will be called the %-twisting homology of the corresponding
space.

2.2.2. PROPOSITION. The x-twisting homology groups of G-equivariantly homo-
topic spaces coincide.

Indeed, ^-twisting homology of Y is the homology of the factor space Y/G
with coefficients in the integer coefficient sheaf changing its orientation along the
loops whose liftings to Y are paths joining points y and g(y) with x(g)= ~1- The
G-equivariant homotopy equivalence of Y and Z lowers to a homotopy
equivalence of their factor spaces inducing an isomorphism of homology with
coefficients in such sheaves.

2.3. First part of the proof of Theorem 2.1.2
Let N be the minimal number of generators of the ring of polynomial invariants

of pG. Then the factor space Cn/G is embedded into CN. Since the mapping / i s
G-invariant, it lowers to the factor space and can be extended there to a
holomorphic germ / : CN,0-> Cp,0 such that / = 0 is an icis. Adding n-p generic
function-germs on CN,0 to /, we get a mapping / : CA',0-»C'1,0 such that
/ = 0 is an icis. On the initial C the latter mapping induces an extension
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/ ' : C,0—>C,0 of / defining a G-invariant zero-dimensional icis. Moreover,
taking generic coordinates on Cp, we may assume that for any k = 1,..., n the
first k coordinate functions of/' also define a G-invariant icis in C".

We may assume F in the claim of the theorem to be a generic level not of /
itself but of a small G-invariant perturbation of/. Let us do the above extension
procedure for G-invariant perturbations of map-germs. This includes F = Fp in a
complete flag

Fn c Fn-! c ... c Fk c F*_, c ... c f , c Fo,

where F* is a non-singular, generic level of a small G-invariant perturbation fk of a
G-invariant function-germ, Fo = £„ ^fi\U\) n ... n/"'(£/„), where the {/tcC
are sufficiently small discs. As the representation is real, we may assume that for
all k all the critical points of fk on F^_] are Morse points. We may also assume
that only one G-orbit of these critical points lies on each critical level.

Now f o cC" is G-equivariantly contractible to the origin and, thus, has Tw H+
the same as the origin has. On the other hand, for the calculation of Tw H^(F0)
we can use a spectral sequence corresponding to the filtration of FQ by the sets Fk.
The El term of this sequence is given by Tw Ht(Fk^u Fk).

2.3.1. LEMMA. TW .lf Fk) = - i , Fk).

Proof. The homology Hit.(Fk-i, Fk) is non-trivial in dimension n - k + 1 only
and is freely generated by thimbles contracting the homology of Fk to the critical
points of fk [5]. We are going to choose these thimbles to respect the group action.

Let Fk be defined by fk = a on Fk-i and cu ..., cr be all the critical values of/* on
Fk-X. Consider a system F of non-intersecting paths y,,..., yr in UkczC from a to
cu ..., cr (Fig. 1). We shall denote by FY a set FA_, nfk\Y).

Now (/vc-i, F*) = c (Fr, Fr), where F' is F without small end segments (ph c,] of
the paths %. This G-equivariant homotopy equivalence can be obtained either by
G-averaging of non-equivariant contraction fields on Fk-} or by lifting the
corresponding contraction from the factor space Fk_JG c C"/G.

Now consider a pair (F[p.JC.J, FPi) for some /. By a choice of a parametrization of
Uk, we may assume that c, = 0, /?, = e> 0, and the segment is a part of the real
axis. Let b be one of the singular points of the critical level fk = 0 on F ^ .
Denote by H <=. G the isotropy subgroup of b. At b, Fk_x is transversal to the fixed
point set of H in C . Locally, near £>, the action of / / on F*_5 is equivalent to a
complexification of some real orthogonal representation pH of / / on an
(n - k + l)-dimensional vector space [20]. The function fk is //-invariant and has a

FIG. 1 FIG. 2
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Morse singularity at b. So we can introduce, in a small closed //-invariant ball
BczFk-i centred at b, local coordinates on Fk-1 for which fk is a sum of the
squares of all these coordinates.

Denote by GB the G-orbit of B. We suppose that g^B does not intersect g2B if
g2 is not in gxH.

We may also assume that all the fibres fk = a, with O ^ a ^ e , intersect the
boundary of GB transversally. Then, a contraction of the segment [0, e] to e
gives a contraction of F[Oe] to F£ U (F[0.e] C\ GB) (Fig. 2). This may obviously be
done G-equivariantly.

Afterwards, each level fk = a in B is contractible onto its real part (in the
coordinates introduced above), that is, onto a sphere Sn

Q~k if a 7̂  0 or point b if
a = 0 [5]. The contraction may be done in an //-equivariant way for all the levels
0 *s a < e together and may be assumed to be the identity on fk = e. The family of
real spheres S1~k, together with the critical point b, provides a real (n - k + 1)-
dimensional //-invariant disc attached to Fe. This disc is a det(pw)-twisting chain,
as well as its boundary S"~k. The G-action gives similar discs corresponding to
the other critical points on this critical level of fk. For a suitable choice of the
orientations the sum of these discs is a det(pc)-twisting chain, since det(pw) is
equal to the restriction of det(pc) to H due to the transversality of Fk_} to the
fixed point set of H. This proves

2.3.2. LEMMA. For the pair (F[0,f], Ft),

Tw //, = Hjw =

From the proof of Lemma 2.3.2, we see that F*_, is G-equivariantly
contractible onto /Y> —G Fk wi*n a G-invariant set of (n - k + l)-dimensional cells
attached. The relative det(pc)-twisting chain subcomplex of the pair (Fk-U Fk) is
thus homotopy equivalent to the det(pG)-twisting part of the free group
generated by these cells, that is, to //^Y+,(/>_!, Fk) = Tw H^(Fk.u Fk). This
completes the proof of Lemma 2.3.1.

Each G-orbit of critical points of a Morse function fk on /^_, gives rise to
exactly one G-orbit in the set of the cells mentioned and thus to one free
summand for the det(pG)-twisting homology of the pair.

2.4. Completion of the proof of Theorem 2.1.2
We now return to the spectral sequence calculating Tw H^ for the space

^o=c{0} e C . Its Ex term reduces to

0< HT
Q"(Fn)J-Hj»(Fn.u Fn)J-... J-HT

n^(Fu H)J-HT"(F0, FX)< 0.

As Fo is contractible, this sequence is exact. The left-hand part of it, starting with
Hl-k(Fk, Fk+1), is the /T1 term of the spectral sequence for Tw H*(Fk) defined
by the filtration Fn <^Fn-x c... c Fk+i <= Fk. Thus Tw//s|t(F^) is non-trivial in the
middle dimension n - k only, where it coincides with the kernel of the differential
dx on H^k(Fk, Fk+}), that is, with the det(pc)-twisting part of the kernel of the
boundary operator H,,-k(Fk, F^)->//„_*_,(/>+,, Fk+2) of the triad. Since the
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latter kernel is exactly Hn_k{Fk), the only non-trivial homology of Fk, Theorem
2.1.2 is proved.

3. The image of a corank-1 map of an icis, n <p

3.1. Corank-1 maps of icises
Consider a corank-1 map-germ fQ: Cv,0—>Cp,0, where v^p. Let f0 be its

restriction to an icis Xo a Cv, where dim Xo = n <p. Suppose fo to have an
isolated instability, in the natural left-right sense, at the origin.

3.1.1. DEFINITION. The restriction fo is called a corank-1 si-finite map-germ of
an icis Xo.

For the reasons for this terminology see § 3.6.
Let /be a restriction of a perturbation of f0 to a Milnor fibre X of Xo. Suppose

/ t o be ^-stable everywhere on X. Then, in the same way as in [17], we get

3.1.2. PROPOSITION. For each k^pl(p - n), the multiple point set Dk(f) is a
Milnor fibre of the (p - k(n - p))-dimensional icis Dk(fo). For k >pl{p — n),
Dk(f) is empty.

3.2. The Sk-symmetric equations for Dk{f0) (cf. [17])
Let us take coordinates in which /0 is given by fo(x, u) = ( ^ ( x , u),...,

OP_V+](A:, U), U), where x e C and u e U~\ Let gx{x, u) = ... = gv-n(x, u) = 0 be
the equations of Xo. Let V* = det^}"1],^! ..* be the Vandermonde determinant.
Take some function 4>{x, u) and for a fixed / replace the terms x'f1 in the
Vandermonde matrix by </>(*,, u). Denote the determinant of the new matrix by
Vk(<f>, i). Then Dk(fo) is given in the space C*+v~\ with the coordinates
xj,..., xk) u (Sk permutes the *,-), by the equations:

Vk(Qr, i)IVk = 0, where r = 1, ...,p- v + 1, / = 2,..., k,

and

Vk(gs, i)/Vk = 0, where 5 = 1,.... n-v, / = 1,..., k.

EXAMPLE. D\fo) = Xo.

REMARK. Since f0 can glue together only source points with equal u-
coordinates, we consider Dk(fo) here as a subset of C*+v~! instead of C*v.

3.3. Decomposition of the homology of the image
In [13] there was given a description of the rational homology of the image Y of

/ . Now we get an identical description over the integers.
Let us return to the filtration (1.1) on the semi-simplicial resolution Y' of Y

and to the expression of the E1 term of the corresponding spectral sequence given
by Corollary 1.2.2. The equations from the previous subsection have a very
remarkable feature: they show that a multiple point set Dk(f) is an Sk-invariant
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Milnor fibre of an ids in the space of representation of the permutation group for
which det(o-) = sign(cr) for any permutation a. Applying Theorem 2.1.2 to the
Dk(f) with such symmetries, we see that the spectral sequence collapses at E\
since the dimensions of the multiple point sets are decreasing when k is
increasing, and obtain

3.3.1. THEOREM. Let Y be the image in Cp of a stable perturbation of a
corank-1 map-germ of an n-dimensional ids, with p>n.

(1) Ifp=n + 1, then

Hn{Y • Z) ^ 0 , = 1 n + 1 H^k+,(Dk(f); Z)

and

Hq(Y ;Z) = 0, forl^q^n.

(2) If p >n + 1, then for each integer k, with 1 =s /c ̂ p/(p — n),

Hp-k{p-n-^(Y ; Z) ^ H?\p_n)(D
k(f); Z)

and

Hq(Y, Z) = 0 for all the other values of q.

3.4. Filtration on the homology
Let us pay a bit more attention to the case p = n +1 when the image Y is

homotopy equivalent to a wedge of a finite number of middle-dimensional
spheres 5" [18].

The direct-sum decomposition of Theorem 3.3.1 is not canonical. This is a
graded object for the sequence of embeddings

... c Hn(Yk) c Hn(Yk+1) c . . . c Hn(Y') = Hn(Y)

induced by the inclusions . . . c y t c y H ! c . . . c y of the semi-simplicial
resolution.

The same filtration is given by the kernels of certain boundary operators on
Hn(Y), expressed in the following way.

Let Tif: Xk —> X', for k > I, be the projection forgetting (the last) k - / copies of
X. We set Dk = i:k(Dk), Jtl = f, and D]

o = Y. Consider the composition dk of the
mappings

Here:

i is an embedding (as Dkl\ is an (n - /c)-dimensional Stein space);

the arrow in the middle is an isomorphism induced by a homeomorphism

«/c-l- U ^Uk —^L>k-\^LJk-\->

d is the boundary operator of the pair.

We get a sequence of operators with composite

8k=dk°...°dy: Hn{Y)^Hn_k{Dk
k
 + ').

Actually 5* is a mapping onto a certain subspace of AltHn-k(Dk
+1\Z) ('Alt'



372 VICTOR V. GORYUNOV

means 'with respect to the Sk action'). An easy geometric argument shows that

3.5. Pairs (Dk,Dk
k
+x)

Each corank-1 ^-finite map-germ fo: A^O—>C/7,0 is induced from some
^-stable mapping F: C^O-^C^O by a suitable mapping 4>: Cp,0—•C^O of the
target spaces [19,7]. Thus, the image of fo and its multiple point sets are also
induced by <$> from the ones for F. So, we start with the ^-stable corank-1
map-germs CA',0—»Cp,0, with N<P. Any such mapping is ^-equivalent to a
germ

«fc.r: C i x C r ^ C . O , (*,A)->(u,A),
where

M , ^ ^ * , A) = xr+l + A 1 x r ~ 1 + . . . + Ar_,jc,

"2 = ^2(^>A)= \rx
r + Xr+ix

r~l + ... + A2r_iX,

Uc = Qc{X> X) = ^(c-iyX* + ^(c-l)r+l-^r + ... + \cr-]X,

where N^cr and P = c + N - 1, for some particular choice of c > 1 and r 5* 0.

EXAMPLES. The germ tpc0 is an embedding. The image of t//2.i: C2—>C3 is the
well-known Whitney umbrella.

There is a nice correspondence between the image of i//c r and the double point
set D2 of i/Acr+1. This is like the discriminant of A^ being the image of the cuspidal
edge of the discriminant of y4M+] under a generic projection along a line.

The set D2(ifjc r + ] ) <= C^^i A is given by the equations

(<7,(*i, A) - qi(x2, A))/(*, - x 2 ) = 0, for / = 1,.... c.

It is smooth. The projection n\ of D2(ifjcr+l) onto the (JCJ, A)-space along the
jc2-axis is a 1-parameter unfolding of the projection of the variety qj{x2, A)/x2

 = 0,
for i = 1, ..., c, onto the A-space along the x2-axis. The latter is obviously
^-equivalent to *frc.r-\'- CN~C-^>CN~] and, thus, j^-stable. Consequently,
K\\ Z ) 2 - » C N is its trivial unfolding.

We obtain by induction

3.5.1. PROPOSITION. For the stable mapping i//cr: CN-*CN+C~\ the projection
7r£+1: Dk+]-+Dk, with k^r, is ^-equivalent to the stable mapping
./. . pN-(k-\)(c-l) pN-(k-2)(c-\)
Vc.r-k- ^ —*^

The spaces Dk(ifjcr), for k > r + 1, are obviously empty.

3.5.2. COROLLARY. For a corank-1 sd-finite map-germ fo: Xo,0—>C+'l,0, of an
n-dimensional isolated hypersurface singularity Xo, Z)£+1 is a complete
intersection.

Note that Xo can only be an icis here if it is in fact a hypersurface.
Under the conditions of the corollary, Dk+] is a hypersurface in Dk and its

equation h = 0 in Dk is induced from the equation of the stable image of the
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suitable if/c r. The function h can be chosen Sk-symmetric and having only Morse
critical points on Dk\Dk

+\ As in § 2, using also arguments similar to [21], we get

3.5.3. PROPOSITION. The group Alt Hp(D
k, Dk

k
+') = H*\Dk, Dk

k
+]) is free if

p = dim Dk = n - k + 1, and is trivial otherwise.

From the exact sequence for the homology of the Sk-alternating chain
complexes of the pair (Dk, Z)£+1), it follows that all the groups Alt Hp(D

k
k
+]) are

trivial if p # n - k + 1, n — k. Consider the remaining part of the above-
mentioned exact sequence together with the ^^-alternating part of the exact
sequence of the ordinary integer homology of the same pair:

o — > Ait # „ _ * + , ( ^ r 1 )

> Alt//„_* + ,(/>*) > Alt / /„_,+,(£*, DJT1) >AhHn_k(D
k
k

 + ]) , 0

As the lattice Hn-k + ](D
k) is embedded into the lattice Hn_k + ](D

k, Dk + ]), the
same is true for HAU and Alt H as well. Thus Alt Hn_k+l(D

k + ]) = 0.
The lower sequence need not be exact at HA]2k(D

k
k
+] ; Z), but, obviously,

Ker b = HA_k + ](D
k ; Z). Consequently,

Im b = HA!lk + ](D
k, Dk

k
+} ; I)/HA}lk + 1(D

k; Z)

is a subgroup of finite index in the free group HA]2k(Dk
 + } ; Z). From the exactness

of the upper line this factor is Alt Hn_k(D
k+] ; Z). Thus, we have

3.5.4. PROPOSITION. The group AltHp(Z)£+1 ; Z) is a subgroup of finite index in
the free group HA]lk(D

k+] ; Z), // p = n - k, and is trivial otherwise.

3.6. Remark on si-equivalence of map-germs of complete intersections
The precise notion is as follows (see also [19]).

3.6.1. DEFINITION. TWO map-germs / : A^O—»C\0 of complete intersections
Xj c Cv,0 are said to be si-equivalent if there exist two complex analytic
diffeomorphisms, r and /, of Cv,0 and Cp,0 respectively, such that f, = l°f °r\x,,
where r\Xi is a restriction of r (this restriction should be a diffeomorphism
between X2 and Xx).

Actually a map-germ / : X,Q-*£P,Q of a complete intersection is a pair of
mappings (F, g):

g: C v ,0 -»C,0 gives equations of X, dim X = v - s,

and

F: Cv,0 -». Cp,0 provides f = F x.
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By a variation of a map-germ of a complete intersection we mean an arbitrary
variation of the pair (F, g). Thus, the ^-codimension of/is

X 0%)/{g*(ms)((K X 0s
v)

+ Ov((dF/dxu dg/dxj,..., (df/dxv, dg/dxv)) + (F*(OP)Y X {0}},

where Ok is the ring of germs of holomorphic functions on C*,0, ms c Cs is the
maximal ideal, xu ..., xv are coordinates on Cv,0.

Finiteness of the j^-codimension obviously forces X = g~\0) either to be
smooth or to have an isolated singularity.

A traditional sheaf-theoretic argument proves

3.6.2. PROPOSITION. The M-codimension of a map-germ f of an icis X is finite if
and only if f is si-stable {see, for example, [4]) on X\{G).

4. Multiple point sets of discriminants of stable corank-1 maps
between spaces of equal dimension

Starting here and up to the end of the paper we consider discriminant
hypersurfaces of maps C—>CP, with n ^p. Germs of Boardman class 2 w l ' [4]
will be our particular interest, as the multiple point sets of their discriminants turn
out to be icises. We begin with the j^-stable case, because the discriminant of any
ĵ -finite germ is induced from the discriminant of the suitable stable germ.

4.1. Whitney maps
Consider a generalized Whitney mapping WM: CM—»CM, (JC, u2,..., MM)*->

(A,,...,AM):

A 1 = X M + 1 + M M J C M ~ 1 +w/x_,x/i~2 + ... +u2x, Aj = uh for/ = 2,.. . ,/A.

The discriminant set A of its critical values, called the generalized swallowtail, is
very well known in singularity theory. Here we would like to describe the
multiple point sets of this discriminant. Note a certain difference between the
meaning of the notation used below and the meaning of the same notation in the
n <p case (actually, this difference disappears if we define the critical point set of
a mapping to be the set of source points at which the differential is not
submersive).

Let Dk(WfJ, abbreviated to Dk when the mapping is well understood, be the
closure of the subset of points (pu..., pk) in the klh power of the source space
such that:

(1) each pi is critical for WM,

(2) all these k points have the same image under W^,

(3) all these k points are distinct.

For example, Z)1 is the critical point set % of the mapping. In our earlier terms,
Dk is the k\h multiple point set for the restriction WM: <#—»A. We are going to
prove

4.1.1. THEOREM. The multiple point sets Dk(WfjL)
dimensional for k =s [^(/x + 1)] and empty otherwise.

are smooth (fi - k)-
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It is more convenient to change the sign of A, and treat the Whitney map as the
projection of the hypersurface

(4.1) f(x, A) = *M+1 + A ^ " 1 + AM_,;tM~2 + ... + \2x + A, = 0

from the (x, A)-space onto the A. We shall also consider more general sets
D(nu ..., ixk)t with 1 =£ /it, =£ ... =s /xk, which are the closures of the sets of k-tuples
(pi, . . . , pk) of distinct source points such that the germ of the mapping VVM at p, is
^-equivalent to WM, In this context Dk = D(\,..., 1) ( T repeated k times).

The points p, in a k-tuple from D(fxx, ..., /xk) have equal A-coordinates and
only their ^-coordinates x],...,xk may be distinct. So D(ixx,.... /j.k) will be
considered as a subset of (k + ju)-dimensional complex linear space with
coordinates *,, . . . , xk, A,,..., AM. We shall write out the explicit equations for
D(/x!,..., fik) in this space.

4.2. Vandermonde determinants
Let us consider the following modification of the Vandermonde determinant.

Take r monomials l,x, x2,..., x'"1 and k points xu ..., xk on the x-axis, with k *£ r.
Take also natural numbers rx,...,rk whose sum is equal to r. Now form the
r X r-matrix M(r,,..., rk) putting into its first row the values of our monomials at
*,, into the second row the values of the first derivatives of these monomials at
xx, and so on until into the r,th row the values of their derivatives of order r, - 1
at x, are put, and then repeat the same procedure for the following rows with JC2

and r2, and so on up to xk and rk. We shall denote the determinant of the matrix
obtained by V(rx,..., rk). We get the ordinary Vandermonde determinant if all
r, = 1.

4.2.1. PROPOSITION.

=0

Proof. Consider the following recursive difference expressions for the deriva-
tives of a function g in one variable. First set:

. u vw+I)

Then the limit of g[m\y\,..., ym + \), when all y,—>* for / 5* 1, is the derivative of g
of order m at x.

Substitute the derivatives in the matrix M(rx,..., rk) by these difference
expressions using variables yr,+...+r,_,+-[,-••, yr)+...+r,^+r,

 t 0 express the derivatives
evaluated at xh for / = 1,..., k. Denote the matrix obtained by Md. Then
M(rx,..., rk) is the limit of Md when, for all i^l, )>,•,+...+r,_, + i. •••,>V1+...+r,_,+r,-»*/-

The determinant Vd of the matrix Md is easily seen to be equal to the ordinary
Vandermonde determinant in the variables yx,...,yr multiplied by the scalar
factor in the statement of the proposition and divided by the product of all the
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differences yp - ya, r, + ... + r,_] + 1 =s a < (3 ^ rx + ... + r,-_, + rh for / = 1,..., k.
This, is a polynomial in the variables y, and setting yr]+ +ri ] + ] =.. . =
>V,+...+r,_,+r, = Xj completes the proof.

Now take any holomorphic function cf) in x depending on some parameters.
Substitute xj~] in the set of monomials for A/(r,,..., rk) by <t>. We denote the
corresponding matrix by M(ru..., rk \4>,j) and its determinant by
V{ru...,rk ;</>,/)•

4.2.2. PROPOSITION. The function V(ru ..., rk ; 6,j)/V(ru ..., r*) is holomorphic.

Proof. We need to show that V(ru ..., rk ; <£,;) has a zero of at least the same
order as K(r]t..., rk) on each diagonal JC,=X/. SO, take a derivative of
V(ru ..., rk ; </>,/) of a certain order m in the ^-direction. By the differentiation
rule for determinants, this is a sum of determinants of matrices like
M(ru ..., rk ; <f>,j), but in r, rows, where before we had the derivatives evaluated at
xh we now have to raise the orders of these derivatives by some non-negative
numbers whose sum is m. After setting x, = x,, we get at least two equal rows in
such a matrix, unless the orders of all the derivatives evaluated at x( are distinct
and higher than rt-\. Thus, in the above-mentioned sum of determinants, a
summand, non-vanishing on x, = xh can appear only for m 3s r,7/.

4.3. Equations of the swallowtail multiple point sets

4.3.1. THEOREM. The multiple point set

of the generalized Whitney mapping W^ is given in (xu ..., xk> A] , . . . , k^)-space
Ck+fl by the polynomial equations

V(ti} + 1,..., ixk + 1 ;/,y)/V(/ui + 1,..., fik + 1) = 0, w/zerey = 1, ..., r.

Recall that W^ is the projection of the hypersurface

fix. A) = xM+1 + A ^ ' 1 + AM_,A:M~2 + ... + \2x + A, = 0

onto the A-space.

Proof (i) r ^ fi. For a germ of the mapping WM at a point p, = (JC,-, A],..., AM) to
be ^-equivalent to W^ means that xt is a root of / of order /x,• + 1, that is, the
values of /and all its derivatives in x up to the order /A, vanish at /?,-. For different
/ = 1,..., k this provides fi^ + ... + /x^ + k = r equations linear in A1}..., AM. Solving
this system formally with respect to A1}..., Ar, we get

\j = -Vifi, + 1,..., /i* + 1 ; / f r , ; ) / V ( A I , + 1,..., fik + 1),

where flr = xM + 1 + A ^ " * 1 + \ ^ x ^ 2 + ... + \r+]x
r.

Since for l^r, V(fi, + l,...,fik + l'tx
l-\j)/V(fii + l,...,tik + l) = 8lj (the

Kronecker symbol) and Vifii + 1,..., ^ + 1; <̂ , y) is linear in (f>, we can rewrite
this as

V(ft, + 1,..., /i* + 1 ; / , ;)/V(/x, + 1 , . . . , / . , + 1) = 0.

Together with Proposition 4.2.2 this proves the theorem for this case.
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(ii) r = ix + l. Consider / e = / + AM+];t
M instead of / and follow the same

procedure as before. Then/provides a contact versal deformation of the fat point
XM+I = Q5 s o / e is a trivial extension of/. Hence, the extended multiple point set is
a direct product of its section AM+1 =0 and C. The section mentioned is exactly
the set we are looking for (for example, the rth equation for this set is
(/x, + 1)*! + ... + (fxk + l)xk = 0). Thus, we have finished.

The Vieta theorem proves

4.3.2. COROLLARY. For /x! + ... + /xk + k = fx + 1,

= ( - l ) / * ~ y + 1 o - M - y + 2 ( * i , •••> x u •••> x k , - , x k ) ,

where each x, appears fx, + 1 times as an argument of the elementary symmetric
function of degree ix-j + 2in/x + l variables.

This statement obviously also works when some of the /x, vanish.
The proof of Theorem 4.3.1 implies

4.3.3. COROLLARY. The multiple point set D((JLU ..., /xk) of the generalized
Whitney mapping WM is smooth (/x — fi^ - ... - /ik)-dimensional if ii\ + ... + ixk +
k = r =s ix + 1 and empty otherwise.

The emptiness for r > \x + 1 is evident since a polynomial of degree \x +1 in
one variable cannot have k distinct roots whose sum of multiplicities (/A] + 1) +
... + (fxk + 1) exceeds /x + 1.

Theorem 4.1.1 on the sets Dk(W^) is the particular case of this corollary.

4.3.4. COROLLARY. The multiple point set Dk of the discriminant of the
generalized Whitney mapping WM, for k *£ [\(/x +1)], is given in the
(xu ..., xk) Aj,..., A^-space Ck+fJ' by the polynomial equations

(4.2) V(2,..., 2 ; / j)/V(2,..., 2) = 0, where j = 1,..., 2k.

Here / i s from (4.1). In the notation of the determinants '2' appears k times.
Note also that V(2,..., 2) = II(x, - x,)4, where l^i<s^k.

5. Z"7'1 ] Map-germs

5.1. Projections induced from Whitney maps
Consider now a map-germ O: Cl?I+p-1,0-»Cp,0 of corank 1. We can choose

coordinates xu ..., xm, u2,..., up in which <X> is a (p - l)-parameter unfolding of
some function $o(x):

<D: (x, u)~(4>(x, u), u), <t>(x, 0) = <f>o(x).
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Let us additionally require the corank of the Hessian matrix of <f>0 at the origin
not to exceed 1, that is, 4> to be of some Boardman class 2 m l '. Then <f>o e A^
(/x is the length of the Boardman index), and 4>(x, u) can be written as

+ A2(w2, ...,up)x] + x \ + ... +x2
nr

Thus $ is induced by a mapping \}=uu A2 = A2(w2, •••, uP), • ••> AM =
AM(w2, ..., up) from the ^-stable projection (x, A)i->A of the smooth hypersurface

(5.1) Jt?+1 + A ^ r 1 + AM_,Jcr2 + - + A2*, + A, + x\ + ... +x2
m = 0.

So, the discriminant A(<I>) and the multiple point sets Dk(<£>) are induced by the
same mapping \(uu ..., up) from the corresponding objects for the Whitney
mapping WM.

In what follows we consider the slightly more general situation when O is a
projection (x, u)*-+u of a hypersurface T induced from the hypersurface (5.1) by
some map-germ A, = A,(M,, ..., up), ..., AM = AM(w,,..., up) without the require-
ment grad A](0) T^O.

We shall refer to the projection of the hypersurface (5.1) as a suspended
Whitney mapping.

5.2. Equivalence of projections
Projections of two varieites r 1 , r 2 < = C + p onto Cp are said to be equivalent if

and only if there exists a complex analytic diffeomorphism of C"+p fibred over Cp,
which induces a diffeomorphism of Fj and F2. Variations of the equations of T in
C"+p provide all possible variations of its projection (since a variation of the
fibration reduces to a variation of the equations, we assume the fibration
£n+p_>£P t 0 b e fixed). The codimension of the projection (JC, u)>-*u of the zero
set F of a map-germ F: C+p,0—>C*,0 in the space of projection-germs of all
varieties is

dime 0Up/{F*(ms)6
s
n+p + en+p(dF!dxu ..., BF/dxn) +Cp(dF/dult.... SF/dup)}.

The notion of equivalence of projections of varieties [2,3,10] coincides with the
notion of fibred contact equivalence [6] and generalizes in a natural way the
notion of ^-equivalence of maps between smooth spaces [11].

5.3. Stable perturbations
One of the necessary conditions for a projection to have finite codimension is

that the variety being projected should be either smooth or an icis. For the case of
a projection induced in the above-mentioned way from a suspension of a Whitney
mapping VVM one has:

5.3.1. PROPOSITION. A map-germ O: F ,0^C p ,0 , (JC, W)I->«, is a projection of
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finite codimension if and only if for each k =s min{/?, [\(/JL + 1)]}, the multiple point
set Dk(<&) of its discriminant is an icis of dimension p - k.

5.3.2. PROPOSITION. The projection Q'\ T' -*CP, (x, u)>-+u, is a stable perturba-
tion of the projection 3> of finite codimension if and only if all the Dk(<£>') are
smooth for k =£ min{p, [\{fx + 1)]}.

Thus £>*($') should be a Milnor fibre of the icis Dk(4>).
The proofs of these two propositions follow the proofs of the similar statements

for corank-1 maps C"^>C+P given in [17].

5.3.3. REMARK. Since 4> is induced from a suspension of W^, any of the two
equivalent conditions of Proposition 5.3.1 implies:

(1) the sets Dk(<i>) are fat points for p < k ^ [j(/x + 1)] and empty for

(2) all the other sets D(ixu ..., \xr; 3>) are icises, fat points or empty for
appropriate values of fxu ..., fxr.

Similar to this, in the setting of Proposition 5.3.2:
(1) £>*(<&') is empty for k >min{p, [\(fx + 1)]};

(2) the smoothness of all non-empty Dk(<i>') implies the smoothness of all
non-empty D(ixu ..., \xr; 4>').

The statement of Proposition 5.3.1 is not true for projections not induced from
the suspended Whitney maps. The most general situation in which Proposition
5.3.2 is valid is: all singularities of the stabilization <£' should be equivalent to
singularities of the suspended Whitney maps.

The set £>*(<£') is an ^-invariant Milnor fibre of the icis Dk{0>) induced from
/^(W^). Due to Corollary 4.3.4, for the Sk action here det(cr) = sign(o-) for any
permutation a. Thus, as in § 3.3, the filtration (1.1) on the semi-simplicial
resolution of the discriminant A(O'), Corollary 1.2.2, Proposition 5.3.2 and
Theorem 2.1.2 prove

5.3.4. THEOREM. Let <$': T'—>CP be any small perturbation of a projection-
germ of finite codimension induced from a suspension of a Whitney mapping W^.
Then

and
Hq{Y, Z) = 0, forl^q^p-l.

5.4. Vanishing cycles
Up to the end of §5.5 we consider only finite-codimensional germs of

projections onto Cp of hypersurfaces induced from a suspension of a Whitney
mapping WM.

The base Cv of a versal deformation of the projection contains a bifurcation
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hypersurface 2 of non-stable projections. For a point a e 2 the corresponding
perturbation of the inducing mapping is not transversal to some stratum of the
swallowtail A(WM).

Consider a generic line in Cv through the origin. Denote by / its generic
translate. The line / intersects 2 transversally at some points au ..., as. It is not
difficult to show (using, say, the equivariant Morse Lemma [1]) that, approaching
each a, along /, we contract exactly one middle-dimensional sphere in the
discriminant of a stable mapping <J>O., where a' e / \2 . Traditionally we call such
a sphere a vanishing cycle. Approaching au ..., as by non-intersecting paths from
a fixed a', we define a distinguished set of vanishing cycles on A(<J>O-).

5.4.1. THEOREM. A distinguished set of vanishing cycles generates the integer
homology of A(0o). // all the multiple point sets Dk of the discriminant of the
unperturbed map-germ are isolated hypersurface singularities, a distinguished set
forms a basis of the homology.

The proof of this theorem follows the proof of Theorem 1 of [12].

5.5. Monodromy
As in § 3.4, there is a filtration on ///,_,(A(4>O)) by the kernels of the sequence

of the boundary operators

with successive factors isomorphic to H*-k(D
k(Q>Q-); Z).

Take the cycle e on A(<I>a.) vanishing along a path y <=/, going from a' to ah

Consider its boundaries 8ke. The non-zero boundary 8koe of the highest order is a
cycle on the smooth Dk°($a-) vanishing along y. Transfer 8koe by the covering
homotopy to Z)*U(OQJ, where a* e y is a point close to the end a,. Following [12]
define for c G / / P _ I ( A ( 3 V ) ) the index of intersection with e to be the index of
intersection on Dk"($>aJ of Skoc, transferred to Hp-k(D

kl)($Qt), Dkf\$>aJ), and
8kue. In terms of these indices we can describe the Picard-Lefschetz operators on
//,,_! (A(Oa-)) corresponding to the vanishing cycles (cf. [12]). This provides a
description of the monodromy group of the discriminant of the map-germ. Of
course, the monodromy respects the filtration by the subspaces Ker 8k on

In the next section we give some particular examples of the objects introduced
here in a general situation.

6. Discriminants of simple I. maps

The singularities considered here are from the list of simple (in the traditional
sense) projections of complete intersections [10]. All of them can be induced from
the suspended Whitney maps. But the suspension does not affect the dis-
criminants. So, we may restrict ourselves to the case of mappings between spaces
of equal dimension, that is, to the maps of Boardman type 21 \

The map A* with (x ss 1. This is a singularity of the projection C1+/J—•C,
(x, u)>-^u of the hypersurface

f(x, W)=JCM + 1 +g(u^,...,up)x
IL~1 +utl..]x^2 + ...+u2x + u] =0,

where g is a function on CP~M + 1 of the right equivalence class Y.
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According to Theorem 4.1.1, the multiple point sets Z>*(/4£)cC* X C£ of the
discriminant are non-empty only if k =s [\{(x + 1)]. All these sets, except £)l(/x+1)/2],
that is, the highest one, are smooth: the equations (4.2) of Dk express U\,..., u2k

as functions of the independent variables xu ...,xk> u2k+u •••, up. For the highest
set we consider two cases.

(a) fx + 1 = 2s. The equations (4.2) are equivalent to f(x, u) being a square of a
polynomial in x of the 5th degree:

f(x, u) = (JC? - a x x s ' x + a 2 x s ~ 2 - ...f,

where the cr, are the elementary symmetric functions of the coordinates xu ..., xs

of the point (*,,..., xs, u) e Ds. Comparing the coefficients of the powers of x on
the left and on the right, we get

0 = -2ai, g = 2a2 + a\, and w<M are some symmetric functions in x.

Thus, Ds has the singularity of the function g - 2cr2 on the plane crj = 0 in the
space C^xCS".^1- As a2\ai=0 is a non-degenerate quadratic form on Cs~\ the
stabilized discriminant of A^ is homotopy equivalent to a wedge of v (p - 1)-
dimensional spheres, where v is the Milnor number of the function g.

(b) fi = 2s. For a point u of the s-tuple self-intersection of the discriminant, we
have

f(x, u) = (xs - alX
s-' + a2x

s~2 - ...f • (x + 2a,).

Hence, Ds is isomorphic to a hypersurface g = 2a2 — 3a] in the
(*i, ...,xs, uM,..., wp)-space and the number of the spheres in the wedge of the
stabilized discriminant is the same as in (a).

We see that the operator of [\{fx + l)]-order boundary (see §3.4) is an
isomorphism between the integer homology of the stabilized discriminant and of
the Milnor fibre of the function singularity Y, in p - [\(/x - 1)] variables. The
intersection number (see § 5.5) of the cycles on the stabilized discriminant is equal
to the intersection number of their [2(̂ 1 + l)]-order boundaries on the regular
level of the function.

In both the cases, an ^-versal deformation of our mapping is provided by the
substitution for g of its 02-versal deformation. The ^-bifurcation diagram is the
bifurcation diagram of zeros of g (this corresponds to the inducing mapping
C£-»CM, into the target space of WM, that is, into the base of the £%-versal
deformation of the function A^, being non-transversal to the stratum A^). The
monodromy group of the discriminant of A^ coincides with the monodromy
group of the function singularity Y in p - [{-(/A - 1)] variables.

The map A'l with JX^2 and k^2. We now consider the projection CM-» O*"1,
(x, u) •-» u, of the hypersurface

f(x, U) = JCM + 1 + Mo*""1 + M0*M~2 + MM-2*M~3 + - + U2X + M! = 0.

(We can suspend this to a projection from CM+' onto C*"1^ adding a
non-degenerate quadratic form in t extra coordinates on the base to the term UQ.)

We again have two cases.
(a) fi = 2s. As for the ^^-singularity, the multiple point sets D\ ..., Z)5"1 are
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smooth and the highest set Ds is isomorphic to the Sv-symmetric variety in the
(x\,..., xs, wo)-space given by the equations

Uo = 2<72 — 3CT], UQ =

that is, to the hypersurface

h = 2{cr] + a^a2- cr3) - (2a2 - 3o"2)A' = 0

in the (xu ..., x9)-space (if there is a lack of the x variables, the corresponding
elementary symmetric functions vanish). Using the expressions of the Ss-
symmetric vector fields from [1], one can easily show that the main part
h0 = 2((7? + cr\cr2 - cr?) of the function-germ h is non-degenerate and has
symmetric t#-codimension 5 + 1 (its miniversal deformation is, say, h0 + Ao +
Aio-1+... + A^o-j). Thus, h is semihomogeneous and has the same codimension
5 + 1. This codimension is equal to the number of 5?-orbits of Morse critical
points of a generic symmetric perturbation of h [20]. Each (5 — l)-cycle on a
Milnor fibre of such a perturbation, vanishing at a Morse critical point, is
antisymmetric with respect to the action of the stationary subgroup of this point.
Hence, the rank of the ^-alternating part of the homology of the Milnor fibre
mentioned is 5 + 1 . Thus the stabilized discriminant of the mapping A^ is
homotopy equivalent to a wedge of s + 1 (2s - 2)-spheres and it does not depend
on k ̂  2.

On the other hand, according to [8,19], the number of the spheres in a
stabilized discriminant wedge is not less than the j^-codimension of a map-germ,
with the equality in the quasihomogeneous case. So, all the singularities A^ are
^-equivalent to the quasihomogeneous A^ (with the term M(V

M~2 in f(x, u)
omitted). All A2s, for k ^ 5 + 1, are ^-distinct as they have ^-codimension k. The
corresponding entries in the classification tables in [10] should be corrected.

An j^-miniversal deformation of A£] = A2s has 5 + 1 parameters: take, say, a
family of hypersurfaces

2sfa{x, u) = x2s^ + Wo*2*"1 + (a,wo + a 5 - ,w 0 ' + . . . + a ,M o + ao)x

+ uls-2x
2s~7> + ... + u2x + M, = 0.

One can easily see that this deformation does not induce a symmetric ^-versal
deformation of Ds, in spite of the coincidence of the dimensions of the bases. But,
consider a generic line / parallel to the ao-axis in the base of the deformation of
the mapping. This corresponds to a line of values of a generic symmetric
perturbation h' of the function hQ. The points of the intersection of / with the
^-bifurcation diagram give the critical values of h'. One can show that the
isotropy subgroups of the critical points on these 5 + 1 critical levels of h' are as
follows:

SS) on two levels;

Sj x Ss-i, also on two levels for each / = 1,..., [3(5 - 1)];

S5/2 x Ss/2> for s even, on one level.

Consider the mapping C^" '-^CM, 11 = 2s, into the base of $-versal deforma-
tion of A^, depending on a and inducing the projection of the perturbed
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hypersurface. The points po,...,ps of /, corresponding to the above-mentioned
critical levels of h', are responsible for the non-transversality of this mapping to
the strata A^ and A^-u (A2i-u A^-v) and (A2i, /I2J-2/-1). (As-\i As) respec-
tively. Thus there is a one-to-one correspondence between the points Po,...,ps

and all zero- and one-dimensional strata in the base of 5?-versal deformation
of Az,.

(b) /x + 1 = 2s, with s ^ 2. Now we have two singular multiple point sets, Ds

and D5"1. The first, Ds, is given by ^-symmetric equations

o-, = 0 , a3 + 2k-]ak
2 = 0

in the (*,, ..., x5)-space. Using [1], we calculate the symmetric ^-codimension of
this singularity. This is p + 1 for s = 2p + 1, and k - p + 1 for 5 = 2p. This will be
the rank of the S^-alternating homology of a symmetric Milnor fibre of D\

The second, Ds~l, is a hypersurface in the (xu ..., JC5_!, «0)-space defined by the
55_]-symmetric equation

2p3 - 4p!p2 + 4p? + 2p1w0 + «o = 0,

where the p, are elementary symmetric functions in x1,...,xs-]. The symmetric
5?-codimension of this function, that is, the rank of the Ss-i-alternating homology
of its Milnor fibre, is p + k — 1 for s = 2p + 1, and p for s = 2p.

Adding the ranks of the alternating homology groups of Ds and Ds~], we get
that the stabilized discriminant of ^ - i is homotopy equivalent to a wedge of
s + k - 1 (2s - 2)-dimensional spheres. Thus all the members of the series A'^-i
are distinct. So, the classification tables in [10] should be corrected again.

By Theorem 5.4.1, in both cases (a) and (b) a distinguished set of vanishing
cycles forms a basis of the homology of the stable discriminant.

7. The complex link of a Coxeter group

7.1.
The classification theorems of [10] say that, in addition to A^ and Ak^ the only

simple projections (that is, j^-simple map-germs) 4> of hypersurfaces onto spaces
of dimension greater than 2 are the ones induced from £%-versal deformations of
simple functions in the same way as A* is induced from A^. Namely, take a
function <f>(x) of type X = A^, D^, E6, E1 or E8 [4]. Consider its £%-miniversal
deformation F(x, A) = <f>(x) + X^e^x) + ... + k^e^x), where the e, form a mono-
mial basis of the local ring 0x/6x(d<f)/dXj) and eM = Hess<£. Then a simple
projection <J>, (x, u)i-+u, is induced from a projection {x, A)»-» A of a hypersurface
Fix, A) = 0 by setting A, = w, for i = 1,..., fi-1, AM = /z(uM,..., up), where h is
again an ^-simple function of some other type Y. We denote the induced
projection $ by XY. For X = A^ we get exactly the singularities studied in the
first half of the previous section.

An £%-miniversal deformation of Y provides a miniversal deformation of the
projection XY (that is, an j^-miniversal deformation of the map-germ). As XY is
quasihomogeneous, the number of middle-dimensional spheres Sp~l in the wedge
of its stable discriminant is equal to ^-codimAr y = {%-codim Y [8]. This number
will be denoted by v. The bifurcation set 2 c Cv of the projection XY coincides
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with the bifurcation diagram of zeros of the function Y and corresponds to
non-transversality of a perturbation of the inducing mapping to the stratum X of
the bifurcation diagram of zeros A(.A') of X (this is the discriminant of the stable
projection (x, A)»->A of F(x, A) = 0). A generic non-transversality provides a
projection which is stable everywhere except at one point at which it has an XAx

singularity (AM = u\ + . . . + u2
p). This means that at a regular point of H there is

exactly one copy of Sp~] vanishing on the stable discriminant of XY.
Consequently, as a generic 1-parameter unfolding of XY is a stable mapping onto
Cp+1, a distinguished set of vanishing cycles forms a basis of the homology of the
stabilization of &(XY).

The vanishing cycles here have a very nice real representation, which we are
going to describe.

A stabilization of l(XAl) is a (p - /x + l)th suspension of a section of A(X) by
AM = c, where c is a non-zero constant. According to [1], AM = 0 is a generic
section of our A(A'), which is the discriminant of the corresponding Weyl group.
Thus AM = c T̂  0 is the complex link of the group discriminant [9,16] and this link
is homotopy equivalent to S*~2, vanishing as c—>0. We consider the nature of
this vanishing cycle not only for the A, D, £-cases but for any Coxeter group.

7.2.
So, consider a finite irreducible group W generated by reflections in [RM.

Consider the complexification of this representation and the orbit space CM/W =
CM containing the discriminant A(W), the set of the irregular orbits. Take a
generic function on the orbit space vanishing at the origin. A diffeomorphism of
the pair (CM, A(W)) reduces it to the basic invariant AM of the second order,
positive on [RM [1]. A section Lw of A(W) by AM = c > 0 represents the complex
link of the discriminant.

On the other hand, the real part RM of the orbit space contains a (quasi-)cone
U^/W. It has a boundary 5 which is a factor space of the real mirrors. Set
lw = 8 0 {AM = c} e Lw taking c > 0.

7.2.1. THEOREM. The section Lw is homotopy equivalent to the section lw which
is homeomorphic to S*~2.

Proof. Note that AM is a positive quadratic form on the configuration space RM.
Thus any positive level of AM in CM is contractible onto its real part which is 5 M ~\
A W-equivariant contraction is provided by W-averaging of the contraction field.
This lowers to the orbit space and contracts the pair ({AM=c}, LM) onto
(IRM/M/ H{AM = c], lw). Factorization by W is a homeomorphism of a Weyl
chamber C onto its image. The intersection of the real sphere SM~' = {AM =c}
with C is homeomorphic to a ball. So lw is homeomorphic to the boundary SM~2

of this ball.
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